TWI739239B - Specific merchant recommendation system of financial institutions and method thereof - Google Patents
Specific merchant recommendation system of financial institutions and method thereof Download PDFInfo
- Publication number
- TWI739239B TWI739239B TW108146086A TW108146086A TWI739239B TW I739239 B TWI739239 B TW I739239B TW 108146086 A TW108146086 A TW 108146086A TW 108146086 A TW108146086 A TW 108146086A TW I739239 B TWI739239 B TW I739239B
- Authority
- TW
- Taiwan
- Prior art keywords
- consumption
- index
- merchant
- recommendation
- customer
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
本發明是有關於一種金融機構之特定商家推薦的系統與方法。 The present invention relates to a system and method for recommending a specific merchant of a financial institution.
目前網路以及智慧型手機,已是人們生活生不可或缺的一部份,特別是在這之上的應用及服務。例如以行動支付來消費各種的商品或服務,比一般使用現金等支付方式要方便以及快速許多。 At present, the Internet and smart phones are an indispensable part of people's lives, especially the applications and services on top of them. For example, using mobile payment to consume various goods or services is much more convenient and faster than general payment methods such as cash.
然而,客戶如欲規劃至某個特定地點旅遊或消費,通常客戶僅能事先規劃查詢相關外在環境網站及特定商家官方網站獲得相關資訊後,再以此地址查詢地圖以獲取前往附近特定商家的路線,例如要查詢預計前往日之當地氣溫、雨量、紫外線、風量、空氣品質,交通資訊等等,待適合後再繼續查詢適合的店家,如此冗長的步驟通常花上客戶不少的規劃時間,帶給客戶諸多的不便。 However, if a customer wants to plan to travel or spend at a specific location, usually the customer can only plan in advance to query the relevant external environment website and the official website of a specific business to obtain relevant information, and then query the map at this address to obtain information about the specific business nearby. Route, for example, to check the expected local temperature, rainfall, UV, wind, air quality, traffic information, etc., wait until it is suitable, and then continue to check for suitable stores. Such a lengthy step usually takes a lot of planning time for customers. Brings many inconveniences to customers.
故目前並無一種綜合外在環境資料可預先告訴客戶是否適合前往旅遊或消費,待確認適合前往後,客戶其實亦會考量內在環境例如年紀、興趣、居住地、消費紀錄等等,外在環境例如氣溫、 雨量、紫外線、風量、空氣品質,交通資訊等以及商家種類例如食、衣、住、行、育、樂等等因素,透過銀行所擁有客戶歷史消費資料庫,包含消費日的外在環境資訊、商家種類以及客戶消費資料等等,進而推薦指引客戶的最適行為模式。 Therefore, there is currently no comprehensive external environment data that can tell customers in advance whether they are suitable for travel or consumption. After confirming that they are suitable for traveling, customers will actually consider their internal environment such as age, interest, place of residence, consumption history, etc., external environment Such as temperature, Rainfall, ultraviolet rays, air volume, air quality, traffic information, etc., as well as business types such as food, clothing, housing, transportation, education, entertainment, etc., through the bank’s customer historical consumption database, including the external environment information of the consumption day, The types of merchants and customer consumption information, etc., and then recommend and guide customers' most suitable behavior patterns.
此外,現今極端氣候已成常態,故推薦適合商家必須優先站在客戶角度考量外在環境是否適合會比較慎密。故以一種以客戶主體優先考量的推薦方式,透過先評估外在綜合環境資料的因素後,再撮合行動支付客戶及特定商家之方法。 In addition, nowadays extreme weather has become the norm, so recommending suitable businesses must first consider whether the external environment is suitable from the customer's point of view. Therefore, a recommendation method that prioritizes the customer's main body is used to first evaluate the factors of the external integrated environmental data, and then match the action to pay the customer and the specific merchant.
綜言之,雖然客戶的消費行為皆不相同,但希望外在環境背景適合的狀況下,結合內部資料、商家種類盡可能移植廣大客戶的經驗來推薦特定商家給客戶。希望可以掌握客戶行為後,盡可能來推薦相關特定商家給有興趣的客戶,藉此滿足多樣性客戶需求,來創造消費需求,為銀行獲取更好的利潤。 In summary, although customers’ consumption behaviors are all different, it is hoped that when the external environment and background are suitable, combined with internal information and types of businesses, we can transplant the experience of our customers as much as possible to recommend specific businesses to customers. It is hoped that after grasping customer behavior, we can recommend relevant specific merchants to interested customers as much as possible, so as to meet the needs of diverse customers, create consumer demand, and obtain better profits for the bank.
有鑑於此,本發明的目的之一是在提供一種金融機構之特定商家推薦的系統與方法。以二段式的綜合推薦法改善簡單的推薦方式,透過客戶輸入目的地後,先確認目的地外在綜合環境是否適合前往,再以目的地外在環境、客戶消費資料、商家種類做綜合考量推薦。此外,推薦可即時修正,亦即當客戶消費之後,如沒有依推薦的商家消費,再次以當地的外在環境、客戶消費資料、商家種類進行調整適合商家。 In view of this, one of the objectives of the present invention is to provide a system and method for recommending a specific merchant of a financial institution. The two-stage comprehensive recommendation method is used to improve the simple recommendation method. After the customer enters the destination, first confirm whether the external comprehensive environment of the destination is suitable for travel, and then comprehensively consider the external environment of the destination, customer consumption data, and business type recommend. In addition, the recommendation can be revised immediately, that is, after the customer consumes, if the merchant does not follow the recommended consumption, the local external environment, customer consumption information, and type of merchant can be adjusted to suit the merchant again.
本發明的系統包括商家種類資料庫、外在環境資料轉換分級模組、外在綜合環境推薦模組、客戶消費資料庫以及分析比對推薦模組。 The system of the present invention includes a merchant category database, an external environment data conversion and classification module, an external comprehensive environment recommendation module, a customer consumption database, and an analysis comparison recommendation module.
上述商家種類資料庫係為儲存金融機構授權之多個商家種類歸屬的基本資料。 The above-mentioned merchant category database is to store the basic data of multiple merchant categories authorized by the financial institution.
上述外在環境資料轉換分級模組係為接收來自客戶裝置之在預定消費環境下之預定消費資料,並用以分級多種外在環境資料並轉成外在環境的綜合指數。 The above-mentioned external environment data conversion grading module is to receive the predetermined consumption data under the predetermined consumption environment from the client device, and is used to classify a variety of external environment data and convert them into a comprehensive index of the external environment.
上述外在綜合環境推薦模組係為推薦預定消費環境至客戶裝置當綜合指數大於等於預定門檻值,推薦其他消費環境當綜合指數未達預定門檻值。 The above-mentioned external comprehensive environment recommendation module is to recommend a predetermined consumption environment to the client device when the comprehensive index is greater than or equal to the predetermined threshold, and to recommend other consumption environments when the comprehensive index does not reach the predetermined threshold.
上述客戶消費資料庫,係為儲存多個消費資訊,消費資訊包含一客戶帳號的多個消費紀錄、每一消費紀錄之消費商家資料以及消費綜合指數,其中上述消費商家資料為消費紀錄之商家種類歸屬的基本資料,消費綜合指數為對應消費紀錄發生時之外在環境的綜合指數。 The above-mentioned customer consumption database is to store multiple consumption information. The consumption information includes multiple consumption records of a customer account, consumer information for each consumption record, and consumption composite index. The above-mentioned consumer information is the type of merchant for the consumption record. The basic data of attribution, the comprehensive consumption index is the comprehensive index corresponding to the external environment when the consumption record occurs.
上述分析比對推薦模組,係為依據外在環境資料結合商家種類歸屬的基本資料,第一次篩選出一些商家,再依據客戶消費資料庫之資訊進行第二次篩選商家,取得個人化之特定商家或特定商家組合之推薦排序,推薦特定商家或特定商家組合至客戶裝置。 The above analysis and comparison recommendation module is based on the external environment data combined with the basic data of the merchant category. Some merchants are screened for the first time, and then the merchants are screened for the second time based on the information in the customer consumption database to obtain personalized information. Recommendation ranking of a specific merchant or a specific combination of merchants, recommending a specific merchant or a specific combination of merchants to the client device.
依據本發明又一實施例,本發明的系統更包括金融機構授權之商家消費系統,用以記錄該些消費資訊,將消費紀錄回傳至客 戶消費資料庫,其中消費紀錄為消費的商家、消費金額、消費日期時間或上述之任意組合。 According to another embodiment of the present invention, the system of the present invention further includes a merchant consumption system authorized by a financial institution to record the consumption information and return the consumption record to the customer Household consumption database, in which the consumption records are the merchant, consumption amount, consumption date and time, or any combination of the above.
依據本發明再一實施例,上述綜合指數為氣溫舒適度指數、雨量分級、紫外線指數、風量分級、空氣品質指標、交通指數、相關縣市的活動或上述之任意組合。 According to another embodiment of the present invention, the aforementioned comprehensive index is a temperature comfort index, a rainfall classification, an ultraviolet index, an air volume classification, an air quality index, a traffic index, activities in related counties and cities, or any combination of the foregoing.
依據本發明再一實施例,上述外在綜合環境推薦模組更包括顯示該綜合指數未達該預定門檻值之原因,以及顯示改推薦該其他消費環境之原因。 According to still another embodiment of the present invention, the above-mentioned external comprehensive environment recommendation module further includes displaying the reason why the comprehensive index has not reached the predetermined threshold value, and displaying the reason why the other consumer environment is recommended.
依據本發明再一實施例,上述預定消費資料為客戶裝置之目前定位、旅遊區資料、旅遊日期、起訖位置或上述之任意組合。 According to still another embodiment of the present invention, the aforementioned predetermined consumption data is the current location of the client device, tourist area information, travel date, start and end locations, or any combination of the foregoing.
依據上述,本發明是以兩段式的綜合推薦的方式,先判斷預定消費資料之綜合環境是否適合前往,再以客戶消費資料、商家種類資料篩選出適合之商家。此外,當客戶消費之後,會依據消費資訊比對推薦之商家所判斷的推薦結果,自動修正推薦之商家。因此,可以節省許多客戶規劃行程的時間,並有效的增加尋找推薦商家的效率。 Based on the above, the present invention uses a two-stage comprehensive recommendation method to first determine whether the comprehensive environment of the predetermined consumption data is suitable for travel, and then screen out suitable merchants based on customer consumption data and merchant category data. In addition, after the customer makes a purchase, the recommended merchant will be automatically corrected based on the recommendation result judged by the recommended merchant based on the consumption information. Therefore, it can save many customers' time in planning their trips, and effectively increase the efficiency of finding recommended businesses.
綜上所述,本發明是在提供一種金融機構之特定商家推薦系統與方法,期望透過外在環境以及客戶消費資訊二種不同資訊的分析結合,找出客戶消費的強弱程度及相關性。故已不再依照「最多數」來推薦,而是考量「內外在環境因素後」,來進行「相對多數」的推薦的方式,提升客戶搜尋推薦商家的效率及接受推薦的機率。 In summary, the present invention is to provide a specific merchant recommendation system and method for financial institutions. It is expected to find out the strength and relevance of customer consumption through the analysis and combination of the external environment and customer consumption information. Therefore, it no longer recommends based on the "maximum number", but considers the "internal and external environmental factors" to conduct a "relatively majority" recommendation method to improve the efficiency of customers' search for recommended businesses and the probability of accepting recommendations.
110:金融機構內部系統 110: Internal systems of financial institutions
111:商家種類資料庫 111: Business Type Database
112:外在環境資料轉換分級模組 112: External environment data conversion classification module
113:外在綜合環境推薦模組 113: Recommended Module for External Comprehensive Environment
114:客戶消費資料庫 114: Customer consumption database
115:分析比對推薦模組 115: Analysis and comparison recommended module
120:客戶裝置 120: client device
130:商家消費系統 130: Merchant consumption system
200-255:步驟 200-255: steps
為了讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附附圖之說明如下:圖1係繪示依據本發明之一實施例之一種金融機構之特定商家推薦的系統中各模組的關係架構圖。 In order to make the above and other objectives, features, advantages and embodiments of the present invention more comprehensible, the description of the attached drawings is as follows: Figure 1 shows a specific merchant recommendation of a financial institution according to an embodiment of the present invention The relationship architecture diagram of each module in the system.
圖2係繪示依據本發明之一實施例之一種金融機構之特定商家推薦的方法的流程示意圖。 FIG. 2 is a schematic flowchart of a method for recommending a specific merchant of a financial institution according to an embodiment of the present invention.
請參閱圖1,圖1係繪示依據本發明一實施例之一種金融機構之特定商家推薦系統中各模組的關係架構圖。圖1的金融機構之特定商家推薦系統包括金融機構內部系統110、客戶裝置120以及商家消費系統130。
Please refer to FIG. 1. FIG. 1 is a diagram showing the relationship structure of each module in a specific merchant recommendation system of a financial institution according to an embodiment of the present invention. The specific merchant recommendation system of the financial institution in FIG. 1 includes an
上述金融機構內部系統110包括商家種類資料庫111、外在環境資料轉換分級模組112、外在綜合環境推薦模組113、客戶消費資料庫114以及分析比對推薦模組115。
The aforementioned financial institution
上述商家種類資料庫111係儲存多個商家種類歸屬的基本資料。上述商家種類歸屬之類別例如可為食、衣、住、行、育、樂、極端等等的基本資料,商家歸屬皆有區分室內及戶外,其中「食」區再分成熱食、冷食、冷熱皆宜等區分類別。上述基本資料例如可為商家名稱、電話、地址、營業時間、網址、客戶評價或上述之任意組合。極瑞則是指特殊狀況下的推薦,例如,極冷時推薦滑雪、溫泉商家,
極熱時推薦水上活動商家等。上述商家種類資料庫111可為任意可用之資料庫。
The above-mentioned
上述外在環境資料轉換分級模組112係從各開放平台例如中央氣象局開放資料平台、環保署環境資源開放資料平台、公路總局開發資料平台以及台北市旅遊網開放平台等等抓取外在環境資料。外在環境資料例如可為氣溫、雨量、紫外線、風量、空氣品質,交通資訊,以及相關縣市的活動資料例如可為節目、活動等等。以日期、時間為鍵值,如有非斷點分類資料,先轉成斷點分類資料後進行分級,進行斷點分類資料儲存。例如下表1中的氣溫為非斷點分類資料,氣溫會隨著不同時間而變化,故將其以日期、時間為鍵值轉成斷點資料,再利用分級轉換表將氣溫分級。將其上述外在環境資料轉換分級模組112為一軟體程式,可為任何可用之計算機裝置,例如個人電腦、筆電或手持電子裝置。
The above-mentioned external environment data conversion and
下面表1-表6為外在環境資料轉換分級表。 The following table 1 to table 6 are the external environmental data conversion grading tables.
上述外在綜合環境推薦模組113係為客戶輸入之預定消費資料,例如目的地、日期,透過上述外在環境資料轉換分級表取得一綜合指數。如單一指數為0,或綜合指數未達一預定門檻值,則不予推薦並告知原因,改為推薦綜合指數大於一預定門檻值的替代地點、商家,並告知原因。上述外在綜合環境推薦模組113為一軟體程式,可為任何可用之計算機裝置,例如個人電腦、筆電或手持電子裝置。
The external comprehensive
依據本發明一實施例,某一客戶預計1/1日至內灣老街,推薦的預定門檻值需大於50分。當日外在環境之綜合指數達70分,故可直接推薦內灣老街附近的商家,並告知分析推薦原因,例如溫度舒適、紫外線指數中等、空氣品質良好等等。 According to an embodiment of the present invention, if a customer expects to arrive at Neiwan Old Street on 1/1 day, the recommended predetermined threshold must be greater than 50 points. The comprehensive index of the external environment on that day reached 70 points, so you can directly recommend businesses near Neiwan Old Street, and inform the analysis of the reasons for the recommendation, such as comfortable temperature, moderate UV index, good air quality, etc.
依據本發明再一實施例,某一客戶預計2/2日至內灣老街,推薦的預定門檻值需大於50分。當日外在環境之綜合指數僅達40分,告知分析不推薦原因,例如氣溫非常寒冷、雨量為大豪雨、風量為強風等等。故推薦另一相似地點,當日外在環境之綜合指數達90分的淡水老街,告知分析推薦原因,例如氣溫為舒適、空氣品質良好、紫外線普通等等。 According to another embodiment of the present invention, if a customer expects to arrive at Neiwan Old Street in 2/2 days, the recommended predetermined threshold must be greater than 50 points. The composite index of the external environment on that day only reached 40 points, and the analysis was informed of the reasons for not recommending, such as very cold temperature, heavy rainfall, strong wind and so on. Therefore, we recommend another similar place, Tamsui Old Street with a comprehensive index of 90 points for the external environment that day, and inform the analysis of the reasons for the recommendation, such as comfortable temperature, good air quality, and normal ultraviolet rays.
依據本發明再一實施例,某一客戶預計3/3日至內灣老街,推薦的預定門檻值需大於50分。雖然當日外在環境之綜合指數有達60分,但某一指數為0,例如空氣品質達「危害」程度,故不薦內灣老街,改推薦另一相似地點。 According to another embodiment of the present invention, if a customer expects to arrive at Neiwan Old Street in 3/3 days, the recommended predetermined threshold must be greater than 50 points. Although the composite index of the external environment reached 60 points on that day, a certain index is 0. For example, the air quality is at a "hazardous" level. Therefore, Neiwan Old Street is not recommended, and another similar location is recommended instead.
上述客戶消費資料庫114係為儲存多個消費資訊,包括客戶帳號的消費紀錄、每一筆消費紀錄之消費商家資料以及消費綜合
指數。其中消費紀錄為商家消費系統130向金融機構請求授權,金融機構授權回覆所傳遞的資料,例如可為消費日期時間、消費金額。消費商家資料為消費紀錄之商家種類歸屬的基本資料。該消費綜合指數為對應消費紀錄發生時之外在環境的該綜合指數。上述客戶消費資料庫114可為任何可用之資料庫。
The above-mentioned
上述分析比對推薦模組115係為依據目前所在地及指定日期、目的地等輸入資料,並取得外在環境資料結合商家種類歸屬的基本資料,第一次篩選出符合門檻的商家。再透過客戶消費資料庫之資訊,從符合門檻的商家中第二次篩選商家,取得個人化之特定商家或特定商家組合之推薦排序,推薦特定商家或該特定商家組合至客戶裝置120。上述分析比對推薦模組115例如可為一軟體程式,裝載在任何可用之計算機裝置,例如個人電腦、筆電或手持電子裝置。
The above analysis and
依據本發明再一實施例,某一客戶預計4/4日至台南旅遊,已取得目前台南的外在環境資料為「悶熱、無雨、紫外線中等、空氣品質良好、風量清風、交通順暢」,已通過外在環境綜合模組之推薦。針對上述外在環境資料選出適合商家,例如選出室內、戶外皆宜的冷熱食商店、衣類商店、旅宿類商店皆在候選名單之中。再透過客戶消費資料庫之資訊,例如該客戶常常去吃冷食、逛街等結合候選名單商家,分析比對將客戶全部消費資訊中比對次數最多的商家來做推薦名單。 According to another embodiment of the present invention, a customer expects to travel to Tainan on 4/4, and has obtained the current external environment data of Tainan as "sultry, no rain, moderate ultraviolet rays, good air quality, clear wind, and smooth traffic." It has passed the recommendation of the external environment integrated module. According to the above-mentioned external environment data, suitable businesses are selected, for example, hot and cold food stores, clothing stores, and lodging stores that are suitable for indoor and outdoor are all on the candidate list. Then through the information in the customer consumption database, for example, the customer often goes to eat cold food, go shopping, etc., combined with the candidate list merchants, analyze and compare the merchants with the most comparisons among all the customer's consumption information to make a recommendation list.
此外,客戶消費後,商家消費系統130回傳消費紀錄至客戶消費資料庫114,根據已發生的消費記錄,將消費資訊送到分析比
對推薦模組115,再次結合消費地的外在環境資料、消費地的商家種類、客戶的消費資料進行調整推薦的商家。
In addition, after the customer consumes, the
依據本發明再一實施例,某一客戶原本預計至九份遊玩,因外在環境不適合,故已推薦該客戶至內灣遊玩,但該客戶仍至九份遊玩,故仍將消費資訊至推薦系統分析比對推薦模組重新做推薦。 According to yet another embodiment of the present invention, a customer originally expected to play in Jiufen, and because the external environment is not suitable, the customer has been recommended to play in Neiwan, but the customer is still playing in Jiufen, so the consumption information is still recommended The system analyzes and compares the recommended modules to re-recommend.
依據本發明再一實施例,某一客戶九份遊玩,且推薦系統已推薦相關店家,但客戶消費的商店,卻不在推薦店家名單中,仍將消費資訊傳送至分析比對推薦模組重新做推薦。 According to another embodiment of the present invention, a certain customer is playing in Jiufen, and the recommendation system has recommended related stores, but the store the customer consumes is not in the list of recommended stores, and the consumption information is still sent to the analysis comparison recommendation module to do it again recommend.
圖2係繪示依據本發明之一實施例之一種金融機構之特定商家推薦的方法的流程示意圖。請同時參閱圖1-2,圖2的步驟200為開始。在步驟205中,客戶輸入在預定消費環境下之預定消費資料至客戶裝置120,金融機構內部系統110會接收該預定消費資料。
FIG. 2 is a schematic flowchart of a method for recommending a specific merchant of a financial institution according to an embodiment of the present invention. Please refer to Figs. 1-2 at the same time. Step 200 in Fig. 2 is the beginning. In
在步驟210中,外在環境資料轉換分級模組112會分級多種外在環境資料並轉成外在環境的綜合指數。接著在步驟215中,外在綜合環境推薦模組113顯示環境分析結果。在步驟220中,若綜合指數大於等於一預定門檻值則推薦該預定消費環境至客戶裝置,若未達一預定門檻值則再回到步驟215中,改推薦綜合指數有達標的其他消費環境至該客戶裝置。
In
在步驟225中,取得商家種類資料庫111中金融機構授權之多個商家種類歸屬的基本資料,並依據外在環境資料結合商家種類歸屬的基本資料,第一次篩選出有符合預定門檻值的商家。
In
在步驟230中,取得客戶消費資料庫115中的多個消費資訊,消費資訊包含一客戶帳號的多個消費紀錄、每一筆消費紀錄之消費商家資料以及當時消費綜合指數。其中消費紀錄為商家消費系統130向金融機構請求授權,金融機構授權回覆所傳遞的資料。消費商家資料為消費紀錄之商家種類歸屬的基本資料。消費綜合指數為對應消費紀錄發生時之外在環境的綜合指數。依客戶消費資料庫115之資訊,第二次篩選商家,接著到步驟235,排序出個人化之特定商家或特定商家的組合之推薦,進入到步驟240,將結果顯示於客戶裝置120上。
In
在步驟245中,若客戶接受推薦,便進入到步驟255中,客戶前往推薦之特定商家或特定商家的組合。若客戶不接受推薦,則回到步驟235。在客戶消費後,商家消費系統130回傳消費紀錄至客戶消費資料庫114。根據已發生的消費記錄,將消費資訊送到分析比對推薦模組115,再次結合消費地的外在環境資料、消費地的商家種類、客戶的消費資料進行調整推薦的商家。再依序進行步驟240-250,最後進入到步驟255完成此次商家推薦。
In
根據上述揭露之系統及方法,可改善客戶在網路上尋找推薦商家再根據自己的興趣結合外在天氣、節日等因素去做篩選的流程,轉換成系統分析,先分析該環境是否適合前往,再以目的地外在環境、商家種類,客戶消費資料做綜合考量推薦,縮短客戶規劃行程的時間。而且,推薦之商家會隨著消費紀錄的更新而自動修正。 According to the above disclosed system and method, it can improve the process of customers searching for recommended businesses on the Internet and then screening according to their own interests in combination with external weather, festivals and other factors, and converting it into a system analysis. First, analyze whether the environment is suitable for travel. Based on the external environment of the destination, the types of businesses, and customer consumption data, comprehensive consideration and recommendation are made to shorten the time for customers to plan their trips. Moreover, the recommended merchants will be automatically revised as the consumption records are updated.
雖然本發明已實施方式揭露如上,然其並非用以限定本發明,凡熟悉該項技藝之人士其所依本發明之精神,在不脫離本發明 之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後之申請專利圍所界定者為準。 Although the embodiments of the present invention have been disclosed as above, they are not intended to limit the present invention. Those who are familiar with the art will follow the spirit of the present invention without departing from the present invention. Various changes and modifications can be made within the spirit and scope of the invention. Therefore, the scope of protection of the present invention shall be subject to those defined by the subsequent patent applications.
110:金融機構內部系統 110: Internal systems of financial institutions
111:商家種類資料庫 111: Business Type Database
112:外在環境資料轉換分級模組 112: External environment data conversion classification module
113:外在綜合環境推薦模組 113: Recommended Module for External Comprehensive Environment
114:客戶消費資料庫 114: Customer consumption database
115:分析比對推薦模組 115: Analysis and comparison recommended module
120:客戶裝置 120: client device
130:商家消費系統 130: Merchant consumption system
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108146086A TWI739239B (en) | 2019-12-17 | 2019-12-17 | Specific merchant recommendation system of financial institutions and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108146086A TWI739239B (en) | 2019-12-17 | 2019-12-17 | Specific merchant recommendation system of financial institutions and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202125380A TW202125380A (en) | 2021-07-01 |
| TWI739239B true TWI739239B (en) | 2021-09-11 |
Family
ID=77908537
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108146086A TWI739239B (en) | 2019-12-17 | 2019-12-17 | Specific merchant recommendation system of financial institutions and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI739239B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017100677A1 (en) * | 2015-12-11 | 2017-06-15 | Mastercard International Incorporated | Systems and methods for generating recommendations using a corpus of data |
| US9916612B2 (en) * | 2014-06-03 | 2018-03-13 | Intel Corporation | User-state mediated product selection |
| TW201933232A (en) * | 2018-01-22 | 2019-08-16 | 香港商阿里巴巴集團服務有限公司 | Shop information recommendation method, device and client |
| CN110348694A (en) * | 2019-06-14 | 2019-10-18 | 中南大学 | A kind of smart travel decision system and decision-making technique based on big data |
| TWM593594U (en) * | 2019-12-17 | 2020-04-11 | 臺灣銀行股份有限公司 | Specific merchant recommendation device of financial institutions |
-
2019
- 2019-12-17 TW TW108146086A patent/TWI739239B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9916612B2 (en) * | 2014-06-03 | 2018-03-13 | Intel Corporation | User-state mediated product selection |
| WO2017100677A1 (en) * | 2015-12-11 | 2017-06-15 | Mastercard International Incorporated | Systems and methods for generating recommendations using a corpus of data |
| TW201933232A (en) * | 2018-01-22 | 2019-08-16 | 香港商阿里巴巴集團服務有限公司 | Shop information recommendation method, device and client |
| CN110348694A (en) * | 2019-06-14 | 2019-10-18 | 中南大学 | A kind of smart travel decision system and decision-making technique based on big data |
| TWM593594U (en) * | 2019-12-17 | 2020-04-11 | 臺灣銀行股份有限公司 | Specific merchant recommendation device of financial institutions |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202125380A (en) | 2021-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10430846B2 (en) | Transaction facilitating marketplace platform | |
| US20170351978A1 (en) | Dynamic recommendation platform with artificial intelligence | |
| US20090138458A1 (en) | Application of weights to online search request | |
| US20100185509A1 (en) | Interest-based ranking system for targeted marketing | |
| US20060161480A1 (en) | Method and system for aggregating, standardizing and presenting purchase information from shoppers and sellers to facilitate comparison shopping and purchases | |
| AU2009200168B2 (en) | System and method for conducting sales | |
| US20100185517A1 (en) | User interface for interest-based targeted marketing | |
| US20080228658A1 (en) | Deal identification system | |
| Troshin et al. | Information technology in tourism: Effective strategies for communication with consumers | |
| US20160306890A1 (en) | Methods and systems for assessing excessive accessory listings in search results | |
| Ilban et al. | Determination of tourism activities of the world’s best tourism destinations using the multi-criteria decision-making method | |
| Pérez-Rodríguez et al. | Unconditional quantile regression and tourism expenditure: The case of the Canary Islands | |
| US20150088693A1 (en) | Method for displaying and navigating internet search results | |
| US20250173351A1 (en) | Multi-tier search and delivery of travel experiences | |
| Albadvi et al. | Web site evaluation of Iranian tourism and hospitality organizations: An e-commerce Web site features model | |
| CN113689233A (en) | Advertisement putting and selecting method and corresponding device, equipment and medium thereof | |
| KR101182254B1 (en) | Method for providing real-estate information and system therefor | |
| Hatim et al. | E-FoodCart: An online food ordering service | |
| Yusoff et al. | A Systematic Literature Review on Consumer Behaviour in Innovative Last-Mile Delivery. | |
| CN101770467B (en) | Method and system for locating associated products via a computer network | |
| TWI739239B (en) | Specific merchant recommendation system of financial institutions and method thereof | |
| KR102293468B1 (en) | System for providing security-enhanced map based realestate information service | |
| CN113986179A (en) | Display method, system, device and storage medium for train ticket reservation | |
| TWM593594U (en) | Specific merchant recommendation device of financial institutions | |
| Tochaiwat et al. | Bangkok four-star hotels’ average daily rate (ADR) prediction model |