[go: up one dir, main page]

TWI739181B - A calibration method for a phased array antenna - Google Patents

A calibration method for a phased array antenna Download PDF

Info

Publication number
TWI739181B
TWI739181B TW108138457A TW108138457A TWI739181B TW I739181 B TWI739181 B TW I739181B TW 108138457 A TW108138457 A TW 108138457A TW 108138457 A TW108138457 A TW 108138457A TW I739181 B TWI739181 B TW I739181B
Authority
TW
Taiwan
Prior art keywords
sub
antenna
phased array
arrays
array antenna
Prior art date
Application number
TW108138457A
Other languages
Chinese (zh)
Other versions
TW202117339A (en
Inventor
周錫增
劉人瑋
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW108138457A priority Critical patent/TWI739181B/en
Publication of TW202117339A publication Critical patent/TW202117339A/en
Application granted granted Critical
Publication of TWI739181B publication Critical patent/TWI739181B/en

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A calibration method for a phased array antenna, the phased array antenna comprising N antenna elements which are decomposed into G sub-arrays, each sub-array comprising M antenna elements, comprising the steps: (a) inputting a discrete Fourier transformation signal corresponding to an operation order r to the G sub-arrays; (b) measuring the far-field signals of the G sub-arrays corresponding to the operation order r; (c) repeating the steps a to b corresponding to the operation order from 1 to G for generating the calibration signal corresponding to the far-field signal of the G sub-array.

Description

相位陣列天線校正方法 Phase array antenna correction method

本發明是有關一種相位陣列天線校正方法,特別是一種關於一種應用於掃描波束相位陣列的校正方法。 The present invention relates to a correction method of a phase array antenna, in particular to a correction method applied to a scanning beam phase array.

相位陣列天線的輻射波束是藉由波束型成電路(BFN beamforming network)產生,其包括主動元件和相位移轉器用以激發天線陣列,BFN應用的頻段有越來越高的趨勢,因此BFN容易招致相位誤差導致波束缺損,以致需要繁複程序的方法校正相位陣列天線。 The radiation beam of the phased array antenna is generated by a beamforming network (BFN beamforming network), which includes active components and a phase shift converter to excite the antenna array. The frequency band of BFN applications has a trend of increasing, so BFN is easy to cause The phase error causes the beam defect, so that a complicated procedure is required to correct the phase array antenna.

為解決上述問題,本發明提出一種基於離散傅立葉轉換(discrete Fourier transformation DFT)有效率的校正方法應用於相位陣列天線。 In order to solve the above-mentioned problems, the present invention proposes an efficient correction method based on discrete Fourier transformation (DFT) to be applied to a phased array antenna.

本發明係提出一種應用於掃描波束的相位陣列天線,其中上述相位陣列天線具有N個天線元素,其分解成具有M個天線元素的G個子陣列,包含下列步驟:(a)輸入上述G個子陣列對應操作次序r的子陣列離散傅立葉轉換信號於上述G個子陣列; (b)在一個固定位置量測上述G個子陣列對應操作次序r的遠場信號;(c)重複步驟(a)至(b)的操作次序r由1至G次,產生對應上述G個子陣列遠場信號以及G個子陣列誤差校正信號。 The present invention proposes a phased array antenna applied to scanning beams, wherein the phased array antenna has N antenna elements, which is decomposed into G sub-arrays with M antenna elements, including the following steps: (a) Input the above G sub-arrays The discrete Fourier transform signals of the sub-arrays corresponding to the operation sequence r are in the G sub-arrays; (b) Measure the far-field signal corresponding to the operation sequence r of the above G sub-arrays at a fixed position; (c) Repeat the operation sequence r of steps (a) to (b) from 1 to G times to generate the corresponding G sub-arrays Far-field signal and G sub-array error correction signals.

更具體的說,所述相位陣列天線為一維。 More specifically, the phased array antenna is one-dimensional.

更具體的說,所述相位陣列天線為二維。 More specifically, the phased array antenna is two-dimensional.

更具體的說,所述相位陣列天線校正方法,更包含下列步驟:(d)輸入上述G個子陣列的M個天線元素對應之天線元素離散傅立葉傳換信號於上述M個天線;(e)重複步驟(a)至(d)量測M次,產生N個天線遠場信號及N個天線誤差校正信號。 More specifically, the phased array antenna correction method further includes the following steps: (d) input the discrete Fourier transform signals of the antenna elements corresponding to the M antenna elements of the G sub-arrays to the M antennas; (e) repeat Steps (a) to (d) measure M times to generate N antenna far-field signals and N antenna error correction signals.

更具體的說,所述相位陣列天線校正方法,更包含下列步驟:(f)輸入上述N個天線對應的振幅信號。 More specifically, the phased array antenna correction method further includes the following steps: (f) inputting the amplitude signals corresponding to the above N antennas.

更具體的說,所述步驟(f)的上述輸入上述N個天線對應的振幅信號A p,g ,p為M個天線標號,1至M整數,g為G個子陣列標號,1至G整數。 More specifically, in the step (f), the input amplitude signals A p,g corresponding to the above N antennas, where p is M antenna numbers, 1 to M integers, g is G sub-array numbers, 1 to G integers .

更具體的說,所述步驟(b)的上述G個子陣列的M個天線對應天線 元素離散傅立葉傳換信號為

Figure 108138457-A0305-02-0004-26
,p為M個天線標號,1至M- 整數。 More specifically, the M antennas of the G sub-arrays in the step (b) correspond to the discrete Fourier transform signals of the antenna elements as
Figure 108138457-A0305-02-0004-26
, P is the number of M antennas, 1 to M-integer.

更具體的說,所述步驟(c)的上述G個子陣列對應操作次序r的子陣列離散傅立葉轉換信號為exp(-i(r-1)(g-1)Λ),g為G個子陣列標號,1至G整 數,Λ為上述G個子陣列之間的相位差,而

Figure 108138457-A0305-02-0004-24
。 More specifically, the discrete Fourier transform signals of the sub-array corresponding to the operation sequence r of the aforementioned G sub-arrays in the step (c) are exp(- i ( r -1)( g -1) Λ ), and g is the G sub-arrays The label, an integer from 1 to G, Λ is the phase difference between the above G sub-arrays, and
Figure 108138457-A0305-02-0004-24
.

更具體的說,所述步驟(e)上述G個子陣列誤差校正信號為

Figure 108138457-A0305-02-0004-45
,p為M個天線標號,1至M-整數,g為G個子陣列標號,1至G整數。 More specifically, in the step (e), the G sub-array error correction signals are
Figure 108138457-A0305-02-0004-45
, P is M antenna numbers, 1 to M-integer, g is G sub-array numbers, 1 to G integer.

更具體的說,所述步驟d的在一個固定位置量測上述N個天線對應操作次序r的遠場信號為F co (q,r)=

Figure 108138457-A0305-02-0005-2
Figure 108138457-A0305-02-0005-3
Figure 108138457-A0305-02-0005-5
,g表示子 陣列標號,p表示g子陣列中天線元素標號。 More specifically, in the step d, measuring the far-field signal corresponding to the operation sequence r of the N antennas at a fixed position is F co ( q,r )=
Figure 108138457-A0305-02-0005-2
Figure 108138457-A0305-02-0005-3
,
Figure 108138457-A0305-02-0005-5
, G represents the index of the sub-array, and p represents the index of the antenna element in the g sub-array.

[第1圖]係本發明相位陣列天線校正方法之流程示意圖。 [Figure 1] is a schematic flow chart of the phased array antenna calibration method of the present invention.

[第2圖]係本發明相位陣列天線校正方法之掃描波束相位陣列天線示意圖。 [Figure 2] is a schematic diagram of the scanning beam phased array antenna of the phased array antenna correction method of the present invention.

[第3圖]係本發明相位陣列天線校正方法之相位陣列天線分解成子陣列校正方法示意圖。 [Figure 3] is a schematic diagram of the phased array antenna decomposed into sub-array correction method of the phased array antenna correction method of the present invention.

[第4圖]係本發明相位陣列天線校正方法之校正方法程序流程圖。 [Figure 4] is a flow chart of the calibration method of the phased array antenna calibration method of the present invention.

[第5圖]係本發明相位陣列天線校正方法之一維相位陣列天線校正方法於第一實施例的振幅及相位校正值與預設值比較結果。 [Figure 5] The comparison result of the amplitude and phase correction values of the one-dimensional phase array antenna correction method in the first embodiment of the phased array antenna correction method of the present invention and the preset values.

[第6圖]係本發明相位陣列天線校正方法之第一實施例校正前後的輻射場型比較結果。 [Figure 6] is the comparison result of the radiation pattern before and after the calibration of the first embodiment of the phased array antenna calibration method of the present invention.

[第7圖]係本發明相位陣列天線校正方法之一維相位陣列天線校正方法於第二實施例的振幅及相位校正值與預設值比較結果。 [Figure 7] is the comparison result of the amplitude and phase correction values of the one-dimensional phase array antenna correction method of the present invention in the second embodiment of the phase array antenna correction method and the preset values.

[第8圖]係本發明相位陣列天線校正方法之第二實施例校正前後的輻射場型比較結果。 [Figure 8] is the comparison result of the radiation pattern before and after the calibration of the second embodiment of the phased array antenna calibration method of the present invention.

[第9圖]係本發明相位陣列天線校正方法之二維相位陣列天線校正方法於第 三實施例的振幅及相位校正值與預設值比較結果。 [Figure 9] The two-dimensional phased array antenna calibration method of the phased array antenna calibration method of the present invention is shown in the first The amplitude and phase correction values of the third embodiment are compared with the preset values.

[第10(a)~10(b)圖]係本發明相位陣列天線校正方法之DPS不同位元的誤差界(error bound)對相位和振幅誤差的影響比較結果。 [Figures 10(a) to 10(b)] are the comparison results of the influence of the error bounds of different bits of the DPS on the phase and amplitude errors of the phase array antenna correction method of the present invention.

[第11(a)~11(b)圖]係本發明相位陣列天線校正方法之增加步階數和天線元素數對精確度的影響結果。 [Figures 11(a) to 11(b)] are the results of the increase in the number of steps and the number of antenna elements in the phased array antenna correction method of the present invention on the accuracy.

[第12圖]係本發明相位陣列天線校正方法之數位相位移轉器和天線陣列的實體圖。 [Figure 12] is a physical diagram of the digital phase shift translator and antenna array of the phase array antenna correction method of the present invention.

[第13圖]係本發明相位陣列天線校正方法之遠場量測的追蹤振幅和相位。 [Figure 13] The tracking amplitude and phase of the far-field measurement of the phased array antenna calibration method of the present invention.

[第14圖]係本發明相位陣列天線校正方法之校正前後的輻射場型比較圖。 [Figure 14] is a comparison diagram of the radiation pattern before and after the correction method of the phased array antenna of the present invention.

為了能進一步了解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明的詳細說明及附圖。本發明的目的、特徵或特點,當可由此得到一深入且具體了解,然而所附圖式僅提供參考與說明用,並非用以對本發明加以限制。 In order to further understand the technology, means and effects adopted by the present invention to achieve the predetermined purpose, please refer to the following detailed description and drawings of the present invention. The purpose, features, or characteristics of the present invention can be obtained from this in-depth and specific understanding, but the accompanying drawings are only provided for reference and explanation, and are not used to limit the present invention.

如第1圖所示,本發明之校正方法步驟為:(a)輸入上述G個子陣列對應操作次序r的子陣列離散傅立葉轉換信號於上述G個子陣列101;(b)在一個固定位置量測上述G個子陣列對應操作次序r的遠場信號102;(c)重複步驟101至102的操作次序r由1至G次,產生對應上述G個子陣列遠場信號以及G個子陣列誤差校正信號103; (d)輸入上述G個子陣列的M個天線元素對應之天線元素離散傅立葉傳換信號於上述M個天線104;(e)重複步驟101至步驟104量測M次,產生N個天線遠場信號及N個天線誤差校正信號102;(f)輸入上述N個天線對應的振幅信號106。 As shown in Figure 1, the steps of the calibration method of the present invention are: (a) input the discrete Fourier transform signals of the sub-arrays corresponding to the operation sequence r of the G sub-arrays to the G sub-arrays 101; (b) measure at a fixed position The aforementioned G sub-arrays correspond to the far-field signal 102 of the operation sequence r; (c) Repeat the operation sequence r of steps 101 to 102 from 1 to G times to generate the aforementioned G sub-array far-field signals and G sub-array error correction signals 103; (d) Input the discrete Fourier transform signals of the antenna elements corresponding to the M antenna elements of the G sub-arrays to the M antennas 104; (e) Repeat steps 101 to 104 to measure M times to generate N antenna far-field signals And N antenna error correction signals 102; (f) Input the amplitude signal 106 corresponding to the above N antennas.

如第2圖所示,本發明之校正方法應用於產生掃描波束的N個相位陣列天線,其藉由主動波束形成線路10(beam forming network BFN)激發用以輻射指向性或週道性波束(directional/contoured beams),該主動波束形成電路包含發射器RF、數位相位移轉器PS(DPS digital phase shifter)、衰減器、功率分配器(未圖示)及天線單元Ant。 As shown in Figure 2, the correction method of the present invention is applied to N phase array antennas that generate scanning beams, which are excited by active beam forming network 10 (beam forming network BFN) to radiate directional or circumferential beams ( directional/contoured beams), the active beam forming circuit includes a transmitter RF, a digital phase shifter PS (DPS digital phase shifter), an attenuator, a power splitter (not shown), and an antenna unit Ant.

以下先說明一維(1-D)相位陣列天線的校正原理,遠場輻射場型為

Figure 108138457-A0305-02-0007-6
其中I n 為第n個天線元素的振幅,N為天線元素數,I n 與φ n 為第n個天線元素藉由功率器與相位移轉器101產生的振幅與相位,
Figure 108138457-A0305-02-0007-30
(θ,
Figure 108138457-A0305-02-0007-34
)為第n個天線元素的貢獻,而
Figure 108138457-A0305-02-0007-35
(θ,
Figure 108138457-A0305-02-0007-36
)為的公式為:
Figure 108138457-A0305-02-0007-8
上述
Figure 108138457-A0305-02-0007-40
為傳播方向的波向量,
Figure 108138457-A0305-02-0007-41
為第n個天線元素位置向量,
Figure 108138457-A0305-02-0007-39
(θ,
Figure 108138457-A0305-02-0007-42
)為第n個天線元素的輻射場型,量測位置(θ,
Figure 108138457-A0305-02-0007-43
),量測遠場輻射場型為:
Figure 108138457-A0305-02-0007-7
Figure 108138457-A0305-02-0007-44
是共極化方向(co-polarization)的極化向量,I n 併入通道不匹配引起的振幅誤差,φ n n n ,α n 為通道不匹配引起的相位誤差,ω n 為相位移轉器101產生的每個天線元素的相位。 The following first explains the correction principle of the one-dimensional (1-D) phased array antenna, the far-field radiation pattern is
Figure 108138457-A0305-02-0007-6
Where I n is the amplitude of the nth antenna element, N is the number of antenna elements, I n and φ n are the amplitude and phase of the nth antenna element generated by the power unit and the phase shifter 101,
Figure 108138457-A0305-02-0007-30
( θ ,
Figure 108138457-A0305-02-0007-34
) Is the contribution of the nth antenna element, and
Figure 108138457-A0305-02-0007-35
( θ ,
Figure 108138457-A0305-02-0007-36
) Is the formula:
Figure 108138457-A0305-02-0007-8
Above
Figure 108138457-A0305-02-0007-40
Is the wave vector in the direction of propagation,
Figure 108138457-A0305-02-0007-41
Is the position vector of the nth antenna element,
Figure 108138457-A0305-02-0007-39
( θ ,
Figure 108138457-A0305-02-0007-42
) Is the radiation field pattern of the nth antenna element, and the measurement position (θ,
Figure 108138457-A0305-02-0007-43
), the measured far-field radiation field type is:
Figure 108138457-A0305-02-0007-7
Figure 108138457-A0305-02-0007-44
Is the polarization vector in the co-polarization direction, I n is incorporated into the amplitude error caused by channel mismatch, φ n n n , α n is the phase error caused by channel mismatch, ω n is The phase of each antenna element generated by the phase shifter 101.

數位相位移轉器101藉由b-digit數位碼產生相鄰步階大小為△=2π/M的數位相位移轉,其中M=2 b 為DPS的步階數,b是相位轉移器位元數,數位相位可以表示成ω n,m =-2π(n-1)(m-1)/M,量測遠場輻射場型為:

Figure 108138457-A0305-02-0008-9
其中
Figure 108138457-A0305-02-0008-11
為併入激發振幅和天線元素輻射場型的振幅項,當 M=N,數位相位移轉器101連續切換時,(3)式中量測值F co (m)和N個天線的振幅項A n 形成離散傅立葉轉換關係式。 The digital phase shift converter 101 generates a digital phase shift converter with adjacent steps of △=2π/M by b-digit digital code, where M=2 b is the DPS step number, b is the phase shifter bit The digital phase can be expressed as ω n,m = -2 π ( n -1)( m -1)/ M , the measured far-field radiation pattern is:
Figure 108138457-A0305-02-0008-9
in
Figure 108138457-A0305-02-0008-11
In order to incorporate the excitation amplitude and the amplitude terms of the antenna element radiation field pattern, when M=N and the digital phase shifter 101 continuously switches, the measured value F co ( m ) in equation (3) and the amplitude terms of the N antennas A n forms a discrete Fourier transform relationship.

一般的情況下,DPS的步階數M≠天線元素數N,當N<M時,退化 係數如下所示,

Figure 108138457-A0305-02-0008-12
,數位相位移轉器101在步階數 為M γ 的情況下,以低位元數b-γ切換,藉由如此操作,量化誤差可以最小化,在陣列末端加入零元素(null element)以滿足DFT的關係式,其等效於施加DFT前的補零動作(zero padding),然而當N>M時,其為常見大型相位陣列天線的狀況,是比較複雜的狀況,一種藉由分解相位陣列天線而無須關閉(shut down)其中天線元素的校正方法由此而生。 In general, the number of DPS steps M≠the number of antenna elements N, when N<M, the degradation coefficient is as follows:
Figure 108138457-A0305-02-0008-12
When the number of steps is M γ , the digital phase shifter 101 switches with the low bit number b-γ. By doing this, the quantization error can be minimized, and a null element is added at the end of the array to satisfy The relational expression of DFT is equivalent to zero padding before DFT is applied. However, when N>M, it is a common situation of large phased array antennas, which is a more complicated situation. The antenna does not need to be shut down (shut down) The correction method of the antenna element is born from this.

如第3圖所示,係為本發明1D相位陣列天線校正方法示意圖,該相位陣列天線具有N個天線元素,分解成G個子陣列,每一個子陣列具有M個天線元素,如果有需要,最後一個子陣列可以加入無效天線元素(null element),該校正程序總共需要操作G次,每次校正程序需要M個量測值,當第一次操作時(r=1),每一個子陣列以其相位ω p,g (下標g表示子陣列標號,下標p表示g子陣列中天線元素標號)激發輻射,以產生離散傅立葉轉換項,在遠場固定位置量測得出加總每一個子陣列的離散傅立葉變換複數信號,當第二次操作時(r=2),每一個子陣列以其相位ω p,g ,加上數位相位移轉器101產生對應相位移轉(g-1)Λ激發,由離散 傅立葉轉換的線性特質得知,第r次操作時,在遠場固定位置量測得出下列公式:

Figure 108138457-A0305-02-0009-13
其中
Figure 108138457-A0305-02-0009-14
As shown in Figure 3, it is a schematic diagram of the 1D phased array antenna correction method of the present invention. The phased array antenna has N antenna elements, which are decomposed into G sub-arrays. Each sub-array has M antenna elements. If necessary, finally A sub-array can be added with a null element. The calibration procedure requires a total of G operations, and each calibration procedure requires M measurement values. When the first operation (r=1), each sub-array is Its phase ω p,g (subscript g represents the sub-array label, subscript p represents the antenna element label in the g sub-array) excites radiation to generate discrete Fourier transform terms, which are measured at a fixed position in the far field and add up each The discrete Fourier transform complex signal of the sub-arrays, when the second operation (r=2), each sub-array with its phase ω p,g , plus the digital phase shift converter 101 to generate the corresponding phase shift (g-1 )Λ excitation, it is known from the linear nature of the discrete Fourier transform that at the rth operation, the following formula is obtained by measuring at a fixed position in the far field:
Figure 108138457-A0305-02-0009-13
in
Figure 108138457-A0305-02-0009-14

藉由(4)式可以解出每一個子陣列的第p個天線元素的相位誤差,

Figure 108138457-A0305-02-0009-47
其中
Figure 108138457-A0305-02-0009-16
By formula (4), the phase error of the p-th antenna element of each sub-array can be solved,
Figure 108138457-A0305-02-0009-47
in
Figure 108138457-A0305-02-0009-16

本案所提校正方法精確度和複雜度取決於校正環境和數位相位移轉器101量化誤差,前者所產生誤差相當不可預測,因此在高品質的電波暗室是較佳的校正環境,否則將會需要後校正程序降低環境雜散訊號,後者所產生的誤差正是本發明的主要的目的,數位相位移轉器101的量化誤差時常特徵化為均方值(RMS)誤差,這些誤差可以模型化為DFT的微擾項(perturbation),

Figure 108138457-A0305-02-0009-17
其中假設相位偏差δ pq ~U[-δ max ,δ max ] 是平均分布在誤差界限δ max ,因此當執行IDFT,第p追蹤值
Figure 108138457-A0305-02-0010-29
值,也就是(8)式的逆離散傅立葉轉換,如(9)式所表示,
Figure 108138457-A0305-02-0010-18
其中C pq 為藉由IDFT所求解出之耦合係數。當δ max 趨近於0時,並且p=q時,C pq 趨近於1,而p≠q時,C pq 趨近於0,這就化簡為理想DPS,然而當DPS量化誤差存在時,C pq ≠0,每一個通道互相耦合,其他通道的貢獻無法省略,當子陣列天線元素數目增加時,其精確度會降低,
Figure 108138457-A0305-02-0010-19
其中隨機變數X pq Y pq 並不是均勻分布而是反正弦分布,因此當DFT矩陣增加時誤差亦隨之累積,這就是為什麼退化係數(degeneration coefficient)在相位陣列天線元素數目N<M的校正中是必要的理由,然而,這並不是一個大問題,如果有大數目M的校正步階,相對應的RMS相位誤差通常是非常小,另一方面,當相位陣列天線元素數目N>M的校正中,分解相位陣列天線造成的誤差會隨著天線元素數目N增加而增加。 The accuracy and complexity of the calibration method proposed in this case depends on the calibration environment and the quantization error of the digital phase shifter 101. The error produced by the former is quite unpredictable. Therefore, it is a better calibration environment in a high-quality anechoic chamber, otherwise it will be required. The post-correction procedure reduces environmental spurious signals. The errors generated by the latter are the main purpose of the present invention. The quantization errors of the digital phase shifter 101 are often characterized as mean square (RMS) errors. These errors can be modeled as Perturbation of DFT,
Figure 108138457-A0305-02-0009-17
It is assumed that the phase deviation δ pq ~ U [-δ max , δ max ] is evenly distributed within the error limit δ max , so when IDFT is performed, the p-th tracking value
Figure 108138457-A0305-02-0010-29
Value, which is the inverse discrete Fourier transform of equation (8), as expressed in equation (9),
Figure 108138457-A0305-02-0010-18
Where C pq is the coupling coefficient obtained by IDFT. When δ m ax approaches 0, and p=q, C pq approaches 1, and when p≠q, C pq approaches 0, which is simplified to ideal DPS, but when DPS quantization error exists When C pq ≠ 0, each channel is coupled with each other, and the contribution of other channels cannot be omitted. When the number of sub-array antenna elements increases, its accuracy will decrease.
Figure 108138457-A0305-02-0010-19
Among them, the random variables X pq and Y pq are not uniformly distributed but arc sine distribution, so when the DFT matrix increases, the error will also accumulate, which is why the degeneration coefficient is corrected for the number of phase array antenna elements N<M However, this is not a big problem. If there is a large number of M correction steps, the corresponding RMS phase error is usually very small. On the other hand, when the number of phased array antenna elements N>M In the calibration, the error caused by the decomposed phased array antenna will increase as the number of antenna elements N increases.

本發明校正方法的複雜度來自於解陣列天線分解成子陣列量測值的IDFT及其(6)式反矩陣,為執行IDFT可以利用FFT演算法降低其計算複雜度的秩(order of complexity),從原本的複雜度O(GM 2d )降低至O(GM d log 2 M d ),而(6)式為Vandermonde矩陣,當d=1時,陣列為一維(1-D),而d=2時,陣列為二維(2-D),當分解陣列時,需要解M次反矩陣引起額外計算複雜度為O(G 2 M),其矩陣亦為Vandermonde矩陣。 The complexity of the correction method of the present invention comes from the IDFT that decomposes the array antenna into sub-array measurement values and its (6) inverse matrix. In order to perform IDFT, the FFT algorithm can be used to reduce the order of complexity of its calculation. From the original complexity O( GM 2 d ) to O( GM d log 2 M d ), and the formula (6) is the Vandermonde matrix, when d=1, the array is one-dimensional (1-D), and d =2, the array is two-dimensional (2-D). When decomposing the array, the inverse matrix M needs to be solved, causing additional computational complexity to be O( G 2 M ), and the matrix is also a Vandermonde matrix.

相位陣列天線的校正流程圖如第4圖所示,一開始相位陣列天線的特徵當作校正編碼,其包括天線元素數N,數位相位移轉器101的校正步階數M, 單一天線元素的輻射場型等參數,然後校正程式將會根據天線元素數N與數位相位移轉的步階數M的關係決定是否執行分解陣列或是退化的數位相位移轉,這些都是校正程序的預設值,當完成上述預設值之後,產生一個選擇表(selection table)用以指示各種量測執行的狀態,當所有量測都完成時,資料都已經收集,其包括在單一位置量測所有的相位以及振幅,並且得到每一個陣列元素的激發振幅和相位,經過校正之後產生一個新的選擇表用以提供近似數位相位移轉的零狀態,其已經納入每一通道的相位誤差,其等同於瞄準線輻射(boresight radiation)的相位分布,可以利用新產生選擇表做進一步的輻射場型最佳化。 The calibration flowchart of the phased array antenna is shown in Figure 4. At first, the characteristics of the phased array antenna are used as the correction code, which includes the number of antenna elements N, the number of correction steps M of the digital phase shift converter 101, The radiation pattern of a single antenna element and other parameters, and then the calibration program will determine whether to perform the decomposition array or the degraded digital phase shift conversion based on the relationship between the number of antenna elements N and the number of steps M of the digital phase shift conversion. These are all corrections. The default value of the program. After the above-mentioned default value is completed, a selection table is generated to indicate the status of various measurement executions. When all the measurements are completed, the data has been collected, which is included in a single location Measure all phases and amplitudes, and get the excitation amplitude and phase of each array element. After correction, a new selection table is generated to provide an approximate digital phase shift zero state, which has been included in the phase error of each channel , Which is equivalent to the phase distribution of boresight radiation, and the newly generated selection table can be used to further optimize the radiation field.

第5圖為本發明一維相位陣列天線校正方法於第一實施例的振幅及相位校正值與預設值比較,該實施例為一維相位陣列天線包含8個天線元素,配備6位元(64狀態)DPS,其天線元素數N=8小於DPS的狀態數目M=64(或步階數),根據第4圖校正流程圖,執行退化DPS校正,其模擬結果如第5圖、第6圖所示,第5圖顯示相位及振幅的校正計算結果與預設值相符,經過虛擬校正後,產生一個新的選擇表並且天線元素都校正至接近等相位,第6圖為第一實施例校正前後的輻射場型比較,在校正前由射頻通道的相位誤差導致相位陣列天線有較高的旁波束電平(sidelobe level SLL)並且主波束方向稍微偏離瞄準線(boresight),但是經校正後符合理想的狀況。 Figure 5 is a comparison of the amplitude and phase correction values of the first embodiment of the one-dimensional phased array antenna correction method of the present invention with the preset values. In this embodiment, the one-dimensional phased array antenna includes 8 antenna elements and is equipped with 6 bits ( 64 states) DPS, the number of antenna elements N=8 is smaller than the number of states of DPS M=64 (or the number of steps), according to the Fig. 4 correction flow chart, perform degenerate DPS correction, the simulation results are shown in Figs. 5 and 6 As shown in the figure, figure 5 shows that the phase and amplitude correction calculation results are consistent with the preset values. After virtual correction, a new selection list is generated and the antenna elements are corrected to nearly equal phase. Figure 6 is the first embodiment Comparison of the radiation pattern before and after the correction, the phase error of the RF channel before the correction causes the phased array antenna to have a higher sidelobe level (SLL) and the main beam direction is slightly off the line of sight (boresight), but after correction Meet the ideal situation.

第7圖為本發明一維相位陣列天線校正方法於第二實施例的振幅及相位校正值與預設值比較,第8圖為第二實施例校正前後的輻射場型比較,該實施例為一維相位陣列天線包含12個天線元素,配備3位元(8狀態)DPS,其天線元素數N=12大於DPS的狀態數目M=8(或步階數),根據第4圖校正流程圖,執行分解相位陣列天線校正。 Figure 7 is a comparison of the amplitude and phase correction values of the second embodiment of the one-dimensional phased array antenna calibration method of the present invention with the preset values. Figure 8 is the comparison of the radiation pattern before and after the calibration of the second embodiment. This embodiment is The one-dimensional phased array antenna contains 12 antenna elements and is equipped with a 3-bit (8-state) DPS. The number of antenna elements N=12 is greater than the number of DPS states M=8 (or the number of steps). Correct the flow chart according to Figure 4. , Perform decomposition phase array antenna correction.

第9圖為本發明二維相位陣列天線校正方法於第三實施例的相位振幅模擬結果,該二維相位陣列天線包含12x12天線元素,配備3位元(8狀態)DPS的模擬結果。 Figure 9 is the simulation result of phase amplitude in the third embodiment of the two-dimensional phased array antenna calibration method of the present invention. The two-dimensional phased array antenna includes 12x12 antenna elements and is equipped with a 3-bit (8-state) DPS.

DPS的量化誤差對校正精確度是非常重要的,第10(a)(b)圖為DPS不同位元的誤差界(error bound)對相位和振幅誤差的影響,該校正方法是根據64個天線元素一維相位陣列天線配置3、4、5、6、7、8位元DPS測試,每一個測試都執行10,000次模擬,平均最大振幅誤差及相位誤差都是藉由計算校正值和計算值差的絕對值得出,可以觀察出具有線性趨勢,當DPS的誤差界減少時,其校正結果誤差亦跟著減少,當DPS的誤差界減少接近零時,並且在環境校正因素忽略的條件下,其接近理想DPS,而校正結果誤差亦跟著減少接近零。 The quantization error of DPS is very important to the accuracy of correction. Figure 10(a)(b) shows the influence of the error bounds of different bits of DPS on the phase and amplitude errors. The correction method is based on 64 antennas. Element one-dimensional phased array antenna configuration 3, 4, 5, 6, 7, 8 bit DPS test, each test is performed 10,000 times simulation, the average maximum amplitude error and phase error are calculated by calculating the correction value and the calculated value difference It can be observed that there is a linear trend. When the error bound of DPS decreases, the error of the correction result also decreases. When the error bound of DPS decreases close to zero, and under the condition of neglecting environmental correction factors, it is close to Ideal DPS, and the correction result error is also reduced to close to zero.

有一個有趣觀察是當DPS誤差界固定時,配備3位元DPS的陣列有低於配備4位元DPS的陣列的平均振幅相位誤差,所以在這些參數和精確度之間的取捨是必須注意的。 An interesting observation is that when the DPS error limit is fixed, the average amplitude and phase error of the array equipped with a 3-bit DPS is lower than that of the array equipped with a 4-bit DPS, so the trade-off between these parameters and accuracy must be paid attention to. .

如第10(a)圖、第10(b)圖所示,當DPS的位元數高過6時,誤差曲線幾乎都重疊,因為DPS的退化,M γ =N=64。如下面表1所示,當DPS的誤差界δ max =5,不同參數DPS的平均振幅相位誤差。 As shown in Figure 10(a) and Figure 10(b), when the number of bits of DPS is higher than 6, the error curves almost overlap. Because of the degradation of DPS, M γ =N=64. As shown in Table 1 below, when the error limit of DPS is δ max = 5, the average amplitude and phase error of DPS with different parameters.

Figure 108138457-A0305-02-0012-46
Figure 108138457-A0305-02-0012-46

如第11(a)圖、第11(b)圖分別顯示增加步階數和天線元素數對精確度的影響,這些結果都是模擬10,000次後取平均所得出,在第11(a)圖是在DPS位元數固定為3位元及誤差界δ max =5的條件下,天線元素數從8變化至64,從模擬 結果可以看出校正的誤差界隨天線元素數增加而增加,在第10(b)圖中,固定群組數為1時,並且=M,DPS的位元數從2變化至12,和前面情況相反的,誤差和位元數有一線性關係。 As shown in Figure 11(a) and Figure 11(b), respectively, the effect of increasing the number of steps and the number of antenna elements on the accuracy is shown. These results are obtained by averaging after 10,000 simulations. In Figure 11(a) Under the condition that the number of DPS bits is fixed at 3 bits and the error limit δ max = 5, the number of antenna elements changes from 8 to 64. It can be seen from the simulation results that the error limit of the correction increases with the increase of the number of antenna elements. In Figure 10(b), when the number of fixed groups is 1, and =M, the number of bits in DPS varies from 2 to 12. Contrary to the previous situation, there is a linear relationship between the error and the number of bits.

第12圖為數位相位移轉器和天線陣列的實體圖。 Figure 12 is the physical diagram of the digital phase shifter and antenna array.

第13圖為遠場量測的追蹤振幅和相位。 Figure 13 shows the tracking amplitude and phase of the far-field measurement.

第14圖為校正前後的輻射場型比較圖。 Figure 14 is a comparison diagram of the radiation pattern before and after correction.

本發明所提供之相位陣列天線校正方法,與其他習用技術相互比較時,其優點如下: The advantages of the phased array antenna calibration method provided by the present invention when compared with other conventional technologies are as follows:

(1)本發明特別是用在相位移轉器的輸出相位經過數位化以提供相同相位步階(step size),利用遠場輻射的資料和天線元素的激發資料滿足傅立葉轉換關係式,因此DFT可用以校正天線陣列使得共極化(co-polarization)遠場的輻射源在瞄準線(boresight)方向具有等相位,藉此數位相位移轉器將該誤差校正相位儲存作為掃描波束的參考值。 (1) The present invention is especially used when the output phase of the phase shift converter is digitized to provide the same phase step size, and the far-field radiation data and the excitation data of the antenna elements satisfy the Fourier transform relationship, so DFT It can be used to calibrate the antenna array so that the co-polarization far-field radiation source has an equal phase in the boresight direction, so that the digital phase shifter stores the error correction phase as a reference value for scanning the beam.

(2)本發明的優點在於利用電子波束掃描的處理速度比機械式探針掃描快很多。 (2) The advantage of the present invention is that the processing speed of electronic beam scanning is much faster than that of mechanical probe scanning.

(3)本發明目的係提出一種應用於掃描波束的相位陣列天線,透過分解為子陣列的FFT演算法可以同時校正多個天線,並且降低計算相位誤差的複雜度。 (3) The purpose of the present invention is to propose a phased array antenna applied to scanning beams, which can correct multiple antennas at the same time through the FFT algorithm decomposed into sub-arrays, and reduce the complexity of calculating the phase error.

本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施例,並在不脫離本發明之精神和範圍內,不可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。 The present invention has been disclosed above through the above-mentioned embodiments, but it is not intended to limit the present invention. Anyone familiar with this technical field with ordinary knowledge should understand the aforementioned technical features and embodiments of the present invention without departing from the scope of the present invention. Within the spirit and scope, no changes and modifications can be made. Therefore, the scope of patent protection of the present invention shall be subject to the definition of the claims attached to this specification.

Claims (9)

一種相位陣列天線校正方法,其中上述相位陣列天線具有N個天線元素,其分解成具有M個天線元素的G個子陣列,而相位陣列天線校正方法係包含下列步驟:(a)輸入上述G個子陣列對應操作次序r的子陣列離散傅立葉轉換信號於上述G個子陣列;(b)在一個固定位置量測上述G個子陣列對應操作次序r的遠場信號;(c)重複步驟(a)至(b)的操作次序r由1至G次,產生對應上述G個子陣列遠場信號以及G個子陣列誤差校正信號;(d)輸入上述G個子陣列的M個天線元素對應之天線元素離散傅立葉傳換信號於上述M個天線;以及(e)重複步驟(a)至(d)量測M次,產生N個天線遠場信號及N個天線誤差校正信號。 A phased array antenna correction method, wherein the above-mentioned phased array antenna has N antenna elements, which are decomposed into G sub-arrays with M antenna elements, and the phased array antenna correction method includes the following steps: (a) Input the above G sub-arrays The discrete Fourier transform signals of the sub-arrays corresponding to the operation sequence r are in the G sub-arrays; (b) measure the far-field signals of the G sub-arrays corresponding to the operation sequence r at a fixed position; (c) repeat steps (a) to (b) ) The operation sequence r is from 1 to G times to generate the far-field signals corresponding to the G sub-arrays and the G sub-array error correction signals; (d) Input the discrete Fourier transform signals corresponding to the antenna elements of the M antenna elements of the G sub-arrays In the above M antennas; and (e) repeat steps (a) to (d) to measure M times to generate N antenna far-field signals and N antenna error correction signals. 如請求項1所述之相位陣列天線校正方法,其中該相位陣列天線為一維。 The phased array antenna correction method according to claim 1, wherein the phased array antenna is one-dimensional. 如請求項1所述之相位陣列天線校正方法,其中該相位陣列天線為二維。 The phased array antenna correction method according to claim 1, wherein the phased array antenna is two-dimensional. 如請求項1所述之相位陣列天線校正方法,更包含下列步驟:(f)輸入上述N個天線對應的振幅信號。 The phased array antenna calibration method as described in claim 1, further comprising the following steps: (f) Input the amplitude signals corresponding to the above N antennas. 如請求項4所述之相位陣列天線校正方法,其中步驟(f)的上述輸入上述N個天線對應的振幅信號A p,g ,p為M個天線標號,1至M整數,g為G個子陣列標號,1至G整數。 The phased array antenna calibration method according to the item request, wherein step (f) the antenna corresponding to the N input amplitude signal A p, g, p antenna number is M, an integer of 1 to M, g is a sub-G Array label, integer from 1 to G. 如請求項1所述之相位陣列天線校正方法,其中步驟(b)的上述G個 子陣列的M個天線對應天線元素離散傅立葉傳換信號為
Figure 108138457-A0305-02-0016-20
1)),p為M個天線標號,1至M整數。
The phased array antenna correction method according to claim 1, wherein the M antennas of the G sub-arrays in step (b) correspond to the discrete Fourier transform signals of the antenna elements:
Figure 108138457-A0305-02-0016-20
1)), p is the number of M antennas, an integer from 1 to M.
如請求項1所述之相位陣列天線校正方法,其中步驟(c)的上述G個子陣列對應操作次序r的子陣列離散傅立葉轉換信號為exp(-i(r-1)(g-1)Λ), g為G個子陣列標號,1至G整數,Λ為上述G個子陣列之間的相位差,而
Figure 108138457-A0305-02-0016-21
, △=2π/M。
The phased array antenna correction method according to claim 1, wherein the discrete Fourier transform signals of the sub-array corresponding to the operation sequence r of the G sub-arrays in step (c) are exp(- i ( r -1)( g -1) Λ ), g is the number of G sub-arrays, integers from 1 to G, Λ is the phase difference between the above G sub-arrays, and
Figure 108138457-A0305-02-0016-21
, △=2π/M.
如請求項1所述之相位陣列天線校正方法,其中步驟e上述G個子陣列誤差校正信號為
Figure 108138457-A0305-02-0016-28
,p為M個天線標號,1至M整數,g為G個子陣列標號,1至G整數。
The phased array antenna correction method according to claim 1, wherein the G sub-array error correction signals in step e are
Figure 108138457-A0305-02-0016-28
, P is M antenna numbers, 1 to M integers, g is G sub-array numbers, 1 to G integers.
如請求項1所述之相位陣列天線校正方法,其中步驟d的在一個固定位置量測上述N個天線對應操作次序r的遠場信號為F co (q,r)=
Figure 108138457-A0305-02-0016-22
Figure 108138457-A0305-02-0016-23
,g表示子 陣列標號,p表示g子陣列中天線元素標號。
The phased array antenna calibration method according to claim 1, wherein the far-field signal of the operation sequence r corresponding to the above N antennas measured at a fixed position in step d is F co ( q,r )=
Figure 108138457-A0305-02-0016-22
,
Figure 108138457-A0305-02-0016-23
, G represents the index of the sub-array, and p represents the index of the antenna element in the g sub-array.
TW108138457A 2019-10-24 2019-10-24 A calibration method for a phased array antenna TWI739181B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108138457A TWI739181B (en) 2019-10-24 2019-10-24 A calibration method for a phased array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108138457A TWI739181B (en) 2019-10-24 2019-10-24 A calibration method for a phased array antenna

Publications (2)

Publication Number Publication Date
TW202117339A TW202117339A (en) 2021-05-01
TWI739181B true TWI739181B (en) 2021-09-11

Family

ID=77020778

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138457A TWI739181B (en) 2019-10-24 2019-10-24 A calibration method for a phased array antenna

Country Status (1)

Country Link
TW (1) TWI739181B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12196795B2 (en) 2021-12-01 2025-01-14 Ohmplus Technology Inc. Calibration and group testing system for radio frequency units and method therefor
US12323191B2 (en) 2023-10-27 2025-06-03 Industrial Technology Research Institute Beamforming chip and radio frequency signal calibration method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796828B (en) * 2021-11-10 2023-03-21 財團法人工業技術研究院 Antenna array calibration device and method thereof
TWI886509B (en) * 2023-07-12 2025-06-11 友達光電股份有限公司 Antenna device and antenna calibration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015450A1 (en) * 2002-08-07 2004-02-19 J I Peston Pty Ltd Near-field antenna array with signal processing
CN104779989A (en) * 2015-05-11 2015-07-15 重庆大学 Boardband array correcting filter coefficient calculation method
CN105242236A (en) * 2015-09-28 2016-01-13 黑龙江大学 Array element position error correction method in broadband signal super-resolution direction measurement
US20180115064A1 (en) * 2016-10-21 2018-04-26 C-Com Satellite Systems Inc. Method and apparatus for phased antenna array calibration
TW201824644A (en) * 2016-12-20 2018-07-01 國家中山科學研究院 Active array antenna system with hierarchical modularized mechanism comprising an array antenna and a simplified backbone beamforming circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015450A1 (en) * 2002-08-07 2004-02-19 J I Peston Pty Ltd Near-field antenna array with signal processing
CN104779989A (en) * 2015-05-11 2015-07-15 重庆大学 Boardband array correcting filter coefficient calculation method
CN105242236A (en) * 2015-09-28 2016-01-13 黑龙江大学 Array element position error correction method in broadband signal super-resolution direction measurement
US20180115064A1 (en) * 2016-10-21 2018-04-26 C-Com Satellite Systems Inc. Method and apparatus for phased antenna array calibration
TW201824644A (en) * 2016-12-20 2018-07-01 國家中山科學研究院 Active array antenna system with hierarchical modularized mechanism comprising an array antenna and a simplified backbone beamforming circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12196795B2 (en) 2021-12-01 2025-01-14 Ohmplus Technology Inc. Calibration and group testing system for radio frequency units and method therefor
US12323191B2 (en) 2023-10-27 2025-06-03 Industrial Technology Research Institute Beamforming chip and radio frequency signal calibration method

Also Published As

Publication number Publication date
TW202117339A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
TWI739181B (en) A calibration method for a phased array antenna
US12095170B2 (en) Calibration system and calibration method for phased-array antenna
US10211527B2 (en) Method and apparatus for phased antenna array calibration
US11811461B2 (en) Calibration method for a phased array of antennas
US10263650B2 (en) Calibration of active electronically steered antennas using on-chip programming
JP6867346B2 (en) Antenna device and measurement method
US20180164407A1 (en) On-site calibration of array antenna systems
Hassett Phased array antenna calibration measurement techniques and methods
CN109472059A (en) Amplitude and Phase Compensation Method of Phased Array Antenna Based on Measuring Strain
Fan et al. Large-scale phased array calibration based on amplitude-only measurement with the multiround grouped-rev method
KR20150076756A (en) Apparatus for arranging array plane of phase array antenna and method for operating the same
CA2946011C (en) Method and apparatus for phased antenna array calibration
Fan et al. Optimal synthesis of sum and difference beam patterns with a common weight vector for symmetric and asymmetric antenna arrays
CN113381187A (en) Spherical phased array antenna coordinate far and near field comparison and correction method
CN113092880B (en) An Amplitude-Phase Inconsistency Detection Method for Multi-channel Array Receivers Based on Phase Rotation
CN114915356B (en) Phased Array Antenna Calibration Method
Wang et al. Over-the-air phased array calibration based on the SPGD algorithm
Chou et al. Fast phased array antenna calibration incorporating with a far-field radiation measurement system
Yang et al. Optimisation method on conformal array element positions for low sidelobe pattern synthesis
JP7223178B1 (en) Learning model generation method and learning model generation program for array antenna
CN112946615B (en) A Correction Method of Amplitude and Phase Error in Phased Array System
Long et al. Planar phased array calibration based on near-field measurement system
Pogorzelski Extended probe instrument calibration (EPIC) for accurate spherical near-field antenna measurements
Denayer et al. Accurate radiation pattern prediction of phased array antennas using Hadamard based excitations
CN113361069A (en) Array antenna directional pattern synthesis method and system, antenna design and measurement method