TWI710920B - System and method for estimating product yield by artificial intelligence technology - Google Patents
System and method for estimating product yield by artificial intelligence technology Download PDFInfo
- Publication number
- TWI710920B TWI710920B TW108144593A TW108144593A TWI710920B TW I710920 B TWI710920 B TW I710920B TW 108144593 A TW108144593 A TW 108144593A TW 108144593 A TW108144593 A TW 108144593A TW I710920 B TWI710920 B TW I710920B
- Authority
- TW
- Taiwan
- Prior art keywords
- information
- module
- unit
- database
- product
- Prior art date
Links
- 238000005516 engineering process Methods 0.000 title claims abstract description 32
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 27
- 238000004458 analytical method Methods 0.000 claims abstract description 40
- 238000005259 measurement Methods 0.000 claims abstract description 12
- 238000012549 training Methods 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 11
- 230000007613 environmental effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000003466 welding Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000032683 aging Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
一種人工智慧技術估測產品良率的系統,其中包括:一資訊設定模組,該資訊設定模組用於設定機台的複數資訊;一量測模組,該量測模組用於量測一產品進而獲得一產品資訊;一智慧分析資料庫,該智慧分析資料庫連接該資訊設定模組,並用於接收該複數資訊,根據該複數資訊進行分析進而獲得一決策資訊;以及一比對模組,該比對模組用於根據該決策資訊與該產品資訊進行比對從而獲得該產品的一分析資訊,並將該比對後的該分析資訊回傳於該該智慧分析資料庫。 A system for estimating product yield by artificial intelligence technology, which includes: an information setting module for setting plural information of the machine; a measurement module for measuring A product further obtains a product information; a smart analysis database connected to the information setting module and used to receive the complex information, analyze the complex information to obtain decision information; and a comparison model Group, the comparison module is used to compare the decision information with the product information to obtain an analysis information of the product, and return the analysis information after the comparison to the intelligent analysis database.
Description
本發明係關於一種估測產品良率的系統與方法,特別是關於一種人工智慧技術估測產品良率的系統與方法。 The present invention relates to a system and method for estimating product yield, in particular to a system and method for artificial intelligence technology to estimate product yield.
針對傳統將機台收集到的參數使用統計方法,配合產品量測的方式,找出影響產品最大因子,並利用此因子進行產品估測;考慮產品最大因子時,亦為單機考慮,並沒有串聯整條產線,忽略了整條產線彼此間的關聯性,當環境變化較大時,亦沒有收整相關環境數據,因此並不能輕易找出重要因子進行產品估測。 For the traditional parameters collected by the machine, use statistical methods and coordinate with the method of product measurement to find out the most important factor affecting the product, and use this factor to estimate the product; when considering the largest factor of the product, it is also considered as a stand-alone machine, and there is no series connection. The entire production line ignores the correlation between the entire production line. When the environment changes greatly, the relevant environmental data is not collected, so it is not easy to find important factors for product estimation.
隨著深度學習的發展演進,亦有人利用增強學習(Reinforcement Learning)的方式,企圖使機器模仿人類的一系列行為,其主要概念為根據目前的「環境」(environment)的「狀態」(state)執行「動作」(action),執行動作會得到報酬(reward),接著因報酬及動作,會去改變環境與狀態,試圖極大化自己的長期報酬,然而,增強學習技術僅限於使用於單機複製,並無考慮多感測器及異質機台情況。 With the development and evolution of deep learning, some people use Reinforcement Learning to try to make machines imitate a series of human behaviors. The main concept is based on the current "state" of the "environment." Performing "actions" will get rewards for performing actions. Then due to rewards and actions, they will change the environment and state, trying to maximize their long-term rewards. However, enhanced learning technology is limited to single-machine replication. The situation of multiple sensors and heterogeneous machines is not considered.
先前考慮產品最大因子時,皆為單機考慮,並沒 有串聯整條產線,忽略了整條產線彼此間的關聯性,當環境變化較大時,亦沒有收整相關環境數據,因此並不能輕易找出重要因子進行產品估測,且先前方法考量之產品最大因子,並沒有隨著機台老化進行即時的模型參數更新,進而產生產品良劣的誤差。 Previously, when considering the maximum factor of the product, it was considered as a stand-alone machine, and there was The entire production line is connected in series, ignoring the correlation between the entire production line. When the environment changes greatly, the relevant environmental data is not collected. Therefore, it is not easy to find important factors for product estimation. The previous method The maximum factor of the product under consideration does not update the model parameters in real time as the machine ages, resulting in errors in product quality.
鑒於上述習知技術之缺點並同時改善上述忽略了整條產線彼此間的關聯性,本發明提出使用人工智慧技術估測產品良率的系統,可透過監督式學習方法來解決上述的缺點。 In view of the shortcomings of the above-mentioned conventional technology and at the same time improving the above-mentioned neglect of the correlation between the entire production line, the present invention proposes a system that uses artificial intelligence technology to estimate the product yield, which can solve the above-mentioned shortcomings through a supervised learning method.
為了達到上述目的,根據本發明所提出之一種人工智慧技術估測產品良率的系統,其中包括:一資訊設定模組,該資訊設定模組用於設定機台的複數資訊;一量測模組,該量測模組用於量測一產品進而獲得一產品資訊;一智慧分析資料庫,該智慧分析資料庫連接該資訊設定模組,並用於接收該複數資訊,根據該複數資訊進行分析進而獲得一決策資訊;以及一比對模組,該比對模組用於根據該決策資訊與該產品資訊進行比對從而獲得該產品的一分析資訊,並將該比對後的該分析資訊回傳於該智慧分析資料庫。 In order to achieve the above objectives, a system for estimating product yield based on artificial intelligence technology proposed in the present invention includes: an information setting module for setting complex information of the machine; and a measurement model Group, the measurement module is used to measure a product to obtain product information; a smart analysis database, the smart analysis database is connected to the information setting module, and is used to receive the complex information, and perform analysis based on the complex information Then obtain a decision information; and a comparison module for comparing the decision information with the product information to obtain an analysis information of the product, and compare the analysis information after the comparison Return to the intelligent analysis database.
本發明的該人工智慧技術估測產品良率的系統,其中該該智慧分析資料庫又包括:一資料庫模組,該資料庫模組是用於接收該複數資訊,並將該複數資訊進行儲存; 一監督式學習模組,該監督式學習模組連接該資料庫模組,並接收該資料庫模組儲存的該複數資訊,並根據該複數資訊用於模型訓練進而獲得複數估測數值;以及一決策單元模組,該決策單元模組連接該監督式學習模組,並接收該監督式學習模組獲得該複數估測數值,並根據該複數估測數值進行交叉分析重而獲得該決策資訊。 In the system for estimating product yield with artificial intelligence technology of the present invention, the intelligent analysis database further includes: a database module, the database module is used to receive the complex information, and the complex information store; A supervised learning module, the supervised learning module is connected to the database module, and receives the complex number information stored in the database module, and uses the complex number information for model training to obtain complex estimates; and A decision-making unit module, the decision-making unit module is connected to the supervised learning module, and receives the supervised learning module to obtain the complex number estimated value, and performs cross-analysis according to the complex number estimated value to obtain the decision information .
本發明的該人工智慧技術估測產品良率的系統,其中該複數資訊又包括:一進料參數、一產線機台資訊與一環境資訊。 In the artificial intelligence technology estimation system of the present invention, the plural information further includes: a feed parameter, a production line machine information, and an environmental information.
本發明的該人工智慧技術估測產品良率的系統,其中該資料庫模組又包括分:一關聯性資料庫及一非關聯性資料庫,該關聯性資料庫適合明確的資料定義,該非關聯資料庫則較適合無固定格式之資料。 In the system for estimating product yield by artificial intelligence technology of the present invention, the database module further includes: a relevance database and a non-relational database. The relevance database is suitable for a clear data definition. Related databases are more suitable for data with no fixed format.
本發明的該人工智慧技術估測產品良率的系統,其中該監督式學習模組又包括:一選擇產線模型單元、一訓練模型單元與一重新訓練時間設定單元。 In the artificial intelligence technology estimation system of the present invention, the supervised learning module further includes: a production line selection model unit, a training model unit, and a retraining time setting unit.
本發明的該人工智慧技術估測產品良率的系統,其中該選擇產線模型單元又包括:一資料前處理單元、一損失函數單元、一學習率單元、一處理器單元、一模型選擇單元與一信心指數計算單元。 In the system for estimating product yield using artificial intelligence technology of the present invention, the selected production line model unit further includes: a data preprocessing unit, a loss function unit, a learning rate unit, a processor unit, and a model selection unit And a confidence index calculation unit.
本發明的該人工智慧技術估測產品良率的系統,其中該處理器單元是由複數處理器來進行同時的訓練及 測試。 The artificial intelligence technology of the present invention estimates the product yield system, wherein the processor unit is a plurality of processors for simultaneous training and test.
本發明提出一種人工智慧技術估測產品良率方法,其包含:利用一資訊設定模組用於設定機台的複數資訊;將該複數資訊傳遞至一資料庫模組,並將該複數資訊進行儲存,而該複數資訊透過一監督式學習模組用於模型訓練進而獲得複數估測數值,該複數估測數值並利用一決策單元模組根據該複數估測數值進行交叉分析重而獲得一決策資訊;以及利用一量測模組用於量測一產品進而獲得一產品資訊,並透過一比對模組根據該決策資訊與該產品資訊進行比對從而獲得該產品的一分析資訊。 The present invention provides a method for estimating product yield by artificial intelligence technology, which includes: using an information setting module for setting plural information of a machine; transmitting the plural information to a database module, and performing the plural information Store, and the complex information is used for model training through a supervised learning module to obtain a complex estimated value. The complex estimated value is cross-analyzed by a decision unit module based on the complex estimated value to obtain a decision Information; and using a measurement module to measure a product to obtain product information, and compare the decision information with the product information through a comparison module to obtain an analysis information of the product.
本發明的該人工智慧技術估測產品良率方法,其中該資料庫模組又包括分:一關聯性資料庫及一非關聯性資料庫,該關聯性資料庫適合明確的資料定義,該非關聯資料庫則較適合無固定格式之資料。 In the method for estimating product yield by artificial intelligence technology of the present invention, the database module further includes: a relevance database and a non-relational database, the relevance database is suitable for clear data definition, and the non-relational database The database is more suitable for data with no fixed format.
本發明的該人工智慧技術估測產品良率方法,其中該監督式學習模組又包括:一選擇產線模型單元、一訓練模型單元與一重新訓練時間設定單元。 In the method for estimating product yield using artificial intelligence technology of the present invention, the supervised learning module further includes: a production line selection model unit, a training model unit, and a retraining time setting unit.
傳統技術中由於忽略了整條製程產線彼此間的關聯性與環境的變化,使得傳統的方法無法有效地找出影響產品品質之重要因子進行產品估測,因此,本發明使用監督式學習方法於產品估測,不同於傳統方法使用增強學習來選取重要因子,監督式方法利用整條製程產線串聯所收集到的 機台參數,對模型進行訓練;並且本發明透過監控機台製程時的電流、電壓等機台實際製程參數與設定參數與環境中溫度、溼度等環境變化參數,在模型訓練前,將收集到的各種與產品或生產相關的有用訊息進行正規化,避免有用訊息因數值過小被其他特徵所遮蓋住,為了解決機台隨時間的增長製程參數的變異,本發明將訓練好的模型視為預訓練模型,而後當資料筆數達到設定值時,透過需要重新訓練時間的設定及訓練模型功能中的處理器單元,採取雙軌並行制,一個處理器進行訓練,一個處理器則是進行測試,當模型經過訓練處理器訓練完成後,將通知測試處理器更換模型,達到即時的更換模型並避免產線因機台老化原因而產生預測誤差問題。 In the traditional technology, the correlation between the entire production line and the change of the environment are ignored, so that the traditional method cannot effectively find the important factors that affect the product quality for product estimation. Therefore, the present invention uses a supervised learning method For product estimation, unlike traditional methods that use enhanced learning to select important factors, the supervised method uses the entire process production line to collect The machine parameters are used to train the model; and the present invention monitors the actual process parameters and setting parameters of the machine such as current and voltage during the machine process, as well as the environmental change parameters such as temperature and humidity in the environment, and collects data before the model training The various useful information related to the product or production is normalized to avoid the useful information being covered by other features due to the small value. In order to solve the variation of the process parameters of the machine growing over time, the present invention regards the trained model as a pre-trained model. Train the model, and then when the number of data reaches the set value, through the setting of retraining time and the processor unit in the training model function, a dual-track parallel system is adopted. One processor is trained and the other is tested. After the model has been trained by the training processor, the test processor will be notified to replace the model to achieve immediate replacement of the model and avoid the problem of prediction errors caused by the aging of the production line.
以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。 The above summary and the following detailed description and drawings are for the purpose of further explaining the methods, means and effects of this creation to achieve the intended purpose. The other purposes and advantages of this creation will be explained in the following description and diagrams.
1‧‧‧資訊設定模組 1‧‧‧Information setting module
2‧‧‧量測模組 2‧‧‧Measurement Module
3‧‧‧智慧分析資料庫 3‧‧‧Smart Analysis Database
4‧‧‧比對模組 4‧‧‧Comparison Module
31‧‧‧資料庫模組 31‧‧‧Database Module
32‧‧‧監督式學習模組 32‧‧‧Supervised Learning Module
33‧‧‧決策單元模組 33‧‧‧Decision Unit Module
321‧‧‧選擇產線模型單元 321‧‧‧Select production line model unit
322‧‧‧訓練模型單元 322‧‧‧Training model unit
323‧‧‧重新訓練時間設定單元 323‧‧‧Retraining time setting unit
第一圖係為本發明人工智慧技術估測產品良率的系統之示意圖; The first figure is a schematic diagram of the system for estimating product yield by artificial intelligence technology of the present invention;
第二圖係為本發明智慧分析資料庫之示意圖。 The second figure is a schematic diagram of the intelligent analysis database of the present invention.
以下係藉由特定的具體實例說明本創作之實施 方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本創作之優點及功效。 The following is a specific example to illustrate the implementation of this creation In this way, people familiar with this technique can easily understand the advantages and effects of this creation from the content disclosed in this manual.
請參閱第一圖所示,發明人工智慧技術估測產品良率的系統之示意圖,一種人工智慧技術估測產品良率的系統,其中人工智慧技術估測產品良率的系統包含資訊設定模組1、量測模組2、智慧分析資料庫3與比對模組4所組成;再進行產品製程前可先透過資訊設定模組1用於設定機台的複數資訊,例如:進行電阻焊接時將橋絲電阻焊接之載體,經研磨、清洗與烘乾等過程後,再進行橋絲電阻焊接,再送至下個製程,而在進行橋絲電阻焊接的產品製程前可透過資訊設定模組1用於設定機台的複數資訊,其中該複數資訊包含進料參數、產線機台資訊與環境資訊,其中該進料參數包含:焊接之橋絲樣號與粗細、須橋絲電阻焊接之載體材質資訊等參數,該電阻焊接產線機台資訊包含:電阻值、電流、電壓、功率、焊接位置、馬達轉速、線拉力、焊頭壓力等參數,以及環境資訊包含:溫度、濕度等參數;而當該當產品製程後可透過量測模組2對該製程後的產品進行量測,進而獲得一產品資訊,其中該產品資訊包含拉力、震動測試、電性測試值等資訊
Please refer to the first figure, the schematic diagram of a system for inventing artificial intelligence technology to estimate product yield. A system for artificial intelligence technology to estimate product yield. The system for artificial intelligence technology to estimate product yield includes an information setting module. 1. The
接著,該人工智慧技術估測產品良率的系統的智慧分析資料庫3是連接該資訊設定模組1,並用於接收該複數資訊,根據該複數資訊進行分析進而獲得決策資訊;以及人
工智慧技術估測產品良率的系統的比對模組4用於根據該決策資訊與該產品資訊進行比對從而獲得該產品的分析資訊,最後並將該比對後的分析資訊回傳於該智慧分析資料庫3,以此根據該分析資訊來達到即時的更換模型並避免產線因機台老化原因而產生預測誤差問題。
Then, the
再一較佳實施例中,該智慧分析資料庫3包含資料庫模組31、監督式學習模組32與決策單元模組33所組成,其中該資料庫模組31是用於接收該複數資訊,並將該複數資訊進行儲存;該監督式學習模組32連接該資料庫模組31,並接收該資料庫模組31儲存的該複數資訊,並根據該複數資訊用於模型訓練進而獲得複數估測數值;以及決策單元模組33連接該監督式學習模組32,並接收該監督式學習模組32獲得該複數估測數值,並根據該複數估測數值進行交叉分析重而獲得該決策資訊。
In another preferred embodiment, the
其中,該資料庫模組31用以紀錄整條產線即時變化以及用於接收該複數資訊並儲存起來,該資料庫模組31可分為關聯性資料庫及非關聯性資料庫,該關聯性資料庫適合明確的資料定義,而該非關聯資料庫則較適合無固定格式之資料,通常以物件表示法(JavaScript Object Notation,JSON)文件存放,因此兩種資料庫的使用可依使用情境需求選擇相對應資料庫使用。
Among them, the
再接著,請參閱第二圖所示,而第二圖是根據第
一圖的人工智慧技術估測產品良率的系統之示意圖再進一步說明智慧分析資料庫3示意圖。當複數資訊存放完畢後,將資料庫模組31存放的複數資訊送至監督式學習模組32中進行分析,其中,該監督式學習模組32包含一選擇產線模型單元321、一訓練模型單元322與一重新訓練時間設定單元323所組成;重新訓練時間設定單元323可以根據使用者想要設定之模型訓練時段(例如:1天、15天、30天等)、使用者想要設定之筆數多寡(例如:100筆、1000筆、10000筆等)或依實際量測與模型預測正確率低於某個門檻值後(例如:正確率低於90%、95%、99%等),因此當複數資訊送至監督式學習模組32中進行分析前可先進行模型訓練時段的天數、訓練筆數多寡以及預測正確率低於某個門檻值後的比例。
Then, please refer to the second picture, and the second picture is based on the
A schematic diagram of a system for estimating product yield using artificial intelligence technology further illustrates the schematic diagram of
接著,使用者可透過該訓練模型單元322進行分析,而該訓練模型單元322包含資料前處理單元、損失函數單元、學習率單元、處理器單元、模型選擇單元與信心指數計算單元所組成,該資料前處理單元將資料庫模組31的複數資訊進行正規化,該正規化的方式可利用如min-max標準化或z-score標準化等方式,當min-max標準化是對原始數據做線性變換,藉此將數據落入[0,1]區間,例如:當焊頭壓力機器可設定範圍為0g至650g,而回饋電流值為0~1A,兩者相差比例太大,於機器學習中給予兩者的權重雖有差距,亦無法平衡此差距,故須先行進行正規化將焊頭壓力從0g至650g
等比例壓縮至[0,1]區間,而後才將所有數值丟入機器學習進行學習,其中min為樣本數據的最小值,max為樣本數據的最大值;另外,該z-score標準化是將數據經過處理符合標準常態分佈,即均值為0,標準差為1的數據。此兩種方法有效避免有用訊息因數值過小被其他特徵所遮蓋住。
Then, the user can perform analysis through the
接著,複數資訊進行正規化後,利用損失函數單元選擇損失函數來評估模型,如均方誤差(Mean square error,MSE)或交叉熵(Cross-entropy)等方式,藉由不同的損失函數找尋更好的預測準確率;而學習率單元可選擇學習率,藉由設定學習率,來迅速的訓練模型,學習率較大,訓練速度較快,但易陷入反覆震盪,學習率較小則網路易陷入局部最優且訓練速度較慢,常使用之學習率如Adam、AdaGrad或Momentum等方式。 Then, after the complex information is normalized, the loss function unit is used to select the loss function to evaluate the model, such as mean square error (MSE) or cross-entropy (Cross-entropy), and find better values through different loss functions. Good prediction accuracy; and the learning rate unit can choose the learning rate. By setting the learning rate, the model can be trained quickly. The learning rate is larger and the training speed is faster, but it is easy to fall into repetitive shocks. If the learning rate is small, the network is easy Falling into the local optimum and the training speed is slow, often used learning rate such as Adam, AdaGrad or Momentum.
再接著,處理器單元可依使用者自行選用GPU、CPU或TPU等硬體設備,其中處理器單元由至少兩顆處理器來進行同時的訓練及測試,採取雙軌並行制,一個處理器進行訓練,一個處理器則是進行測試,當模型經過訓練處理器訓練完成後,會產生模型檔如.tfrecords或.pkl等,並透過全球資訊網應用程序編程接口(World Wide Web Application Programming Interface,WebAPI)重啟測試處理器程式並告知模型檔位置,並透過中央處理器(Central Processing Unit,CPU)可於1秒內更換模型完畢又或者利用使用圖形處理器 (Graphics Processing Unit,GPU)硬體設備則可於10秒內更換模型完畢,以此達到即時的更換模型並避免產線因機台老化原因而產生預測誤差問題,另外,處理器單元亦有監控程式管理,當監控程式發現處理器單元可使用之處理器僅剩一顆處理器,會優先將此處理器設定為測試處理器,並可由使用者進行相關調整,例如僅剩一顆處理器時優先設定為訓練或測試處理器、多處理器分配等功能。 Then, the processor unit can select hardware devices such as GPU, CPU, or TPU according to the user. The processor unit has at least two processors for simultaneous training and testing. It adopts a dual-track parallel system and one processor for training. , A processor is tested. After the model is trained by the training processor, a model file such as .tfrecords or .pkl will be generated and passed through the World Wide Web Application Programming Interface (WebAPI) Restart the test processor program and inform the location of the model file, and through the central processing unit (CPU), the model can be replaced within 1 second or the graphics processor can be used (Graphics Processing Unit, GPU) hardware equipment can be replaced within 10 seconds to complete the model replacement, so as to achieve real-time replacement of models and avoid the production line due to machine aging caused by forecast errors, in addition, the processor unit is also monitored Program management. When the monitoring program finds that there is only one processor left in the processor unit, it will give priority to setting this processor as the test processor, and the user can make relevant adjustments, such as when there is only one processor left Priority is set for training or testing processors, multi-processor allocation and other functions.
接著,模型選擇單元可選擇想要應用之監督式學習模型進行評估,如CNN、RNN、XGBoost…等模型皆可選擇;信心指數計算單元可利用使用者選擇之多模型進行信心指數評估,提供給使用者參考;選擇產線模型功能為因應現有產線生產之產品,使用者可選擇最新的或者過往預測中正確率最高的模型進行應用,並含有刪除、存檔與備份等小功能;因此該監督式學習模組32接收該資料庫模組31儲存的該複數資訊後,該複數資訊透過監督式學習模的資料前處理單元、損失函數單元、學習率單元、處理器單元、模型選擇單元與信心指數計算單元等單元進行模型訓練進而獲得複數估測數值,該複數估測數值包含信心指數單元數值、模型估測數值;該決策單元模組33接收該監督式學習模組32獲得該複數估測數值,並根據該複數估測數值進行交叉分析重而獲得該決策資訊;最後,比對模組4用於根據該決策資訊與該產品資訊進行比對從而獲得該產品的一分析資訊,並將該比
對後的該分析資訊回傳於該智慧分析資料庫3,以此根據該分析資訊來達到即時的更換模型並避免產線因機台老化原因而產生預測誤差問題。
Then, the model selection unit can select the supervised learning model to be applied for evaluation, such as CNN, RNN, XGBoost... and other models can be selected; the confidence index calculation unit can use multiple models selected by the user to evaluate the confidence index and provide it to User reference; the function of selecting the production line model is to respond to the products produced by the existing production line. The user can choose the latest or the model with the highest accuracy in the past predictions for application, and contains small functions such as deletion, archiving, and backup; therefore, the supervision type After the
需陳明者,以上所述僅為本案之較佳實施例,並非用以限制本創作,若依本創作之構想所作之改變,在不脫離本創作精神範圍內,例如:對於構型或佈置型態加以變換,對於各種變化,修飾與應用,所產生等效作用,均應包含於本案之權利範圍內,合予陳明。 For those who need to clarify, the above are only the preferred embodiments of this case, and are not used to limit the creation. If the changes made according to the conception of this creation are within the scope of the creation spirit, for example, regarding the configuration or layout The changes in the form, and the equivalent effects of various changes, modifications and applications, should be included in the scope of rights in this case, and shall be stated.
1‧‧‧資訊設定模組 1‧‧‧Information setting module
2‧‧‧量測模組 2‧‧‧Measurement Module
3‧‧‧智慧分析資料庫 3‧‧‧Smart Analysis Database
4‧‧‧比對模組 4‧‧‧Comparison Module
31‧‧‧資料庫模組 31‧‧‧Database Module
32‧‧‧監督式學習模組 32‧‧‧Supervised Learning Module
33‧‧‧決策單元模組 33‧‧‧Decision Unit Module
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108144593A TWI710920B (en) | 2019-12-03 | 2019-12-03 | System and method for estimating product yield by artificial intelligence technology |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108144593A TWI710920B (en) | 2019-12-03 | 2019-12-03 | System and method for estimating product yield by artificial intelligence technology |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI710920B true TWI710920B (en) | 2020-11-21 |
| TW202123033A TW202123033A (en) | 2021-06-16 |
Family
ID=74202442
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108144593A TWI710920B (en) | 2019-12-03 | 2019-12-03 | System and method for estimating product yield by artificial intelligence technology |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI710920B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI810602B (en) * | 2021-07-07 | 2023-08-01 | 友達光電股份有限公司 | Automatic search method for key factor based on machine learning |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201523180A (en) * | 2013-12-04 | 2015-06-16 | Metal Ind Res & Dev Ct | Manufacturing execution system and method for process parameter adjustment thereof |
| TW201906038A (en) * | 2017-06-30 | 2019-02-01 | 中華大學 | Semiconductor wafer analyzing system and method thereof |
| TW201923688A (en) * | 2017-11-20 | 2019-06-16 | 財團法人資訊工業策進會 | Quality prediction method for multi-workstation system and system thereof |
-
2019
- 2019-12-03 TW TW108144593A patent/TWI710920B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201523180A (en) * | 2013-12-04 | 2015-06-16 | Metal Ind Res & Dev Ct | Manufacturing execution system and method for process parameter adjustment thereof |
| TW201906038A (en) * | 2017-06-30 | 2019-02-01 | 中華大學 | Semiconductor wafer analyzing system and method thereof |
| TW201923688A (en) * | 2017-11-20 | 2019-06-16 | 財團法人資訊工業策進會 | Quality prediction method for multi-workstation system and system thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202123033A (en) | 2021-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107967485B (en) | Fault analysis method and device for electricity metering equipment | |
| CN118550958B (en) | A device abnormality determination method, system and medium based on industrial Internet of Things | |
| CN111461555A (en) | A production line quality monitoring method, device and system | |
| CN112083244A (en) | Integrated avionics equipment fault intelligent diagnosis system | |
| CN109787979A (en) | A method for detecting power network events and intrusions | |
| CN118520271A (en) | Intelligent garden monitoring method, system, equipment and medium | |
| CN118229036B (en) | Operation and maintenance management system and method for smart city | |
| CN105652845B (en) | A kind of fermentation process fault monitoring method based on instant learning partial model | |
| CN119848751B (en) | Circuit breaker fault detection method based on electrical parameter analysis | |
| CN110297469A (en) | The production line fault judgment method of Ensemble feature selection algorithm based on resampling | |
| CN118709124B (en) | Automatic system for testing thermal insulation performance of fascia ball | |
| CN118822237B (en) | Industrial data priority computing method based on correlation relation and sequence processing | |
| CN115169438A (en) | Transformer fault diagnosis method based on analysis of dissolved gas in GRU network oil | |
| CN118690226A (en) | A tower condition monitoring method based on time series | |
| CN118917390A (en) | Knowledge base management system and method based on knowledge big model | |
| CN118627909A (en) | A livestock statistics monitoring system | |
| TWI710920B (en) | System and method for estimating product yield by artificial intelligence technology | |
| CN118296544A (en) | User behavior analysis method and device for public domain traffic operation | |
| CN117521502A (en) | Wind farm life prediction methods, devices, equipment and storage media | |
| CN120106690B (en) | Copper wire tensile quality detection method and system for elongation analysis | |
| KR102469229B1 (en) | Fishbone diagram management system based on artifical intelligence and method thereof | |
| CN119599169B (en) | A method for predicting the failure probability of HVAC equipment suitable for multiple working conditions | |
| WO2022252630A1 (en) | Model set-based data prediction method, apparatus and device, and storage medium | |
| CN120631627A (en) | Computer motherboard abnormality identification method and system | |
| CN119696190A (en) | A method and system for intelligent sensor network monitoring for high and low voltage switch cabinets |