[go: up one dir, main page]

TWI701681B - Prediction model of atrial fibrillation and prediction system thereof - Google Patents

Prediction model of atrial fibrillation and prediction system thereof Download PDF

Info

Publication number
TWI701681B
TWI701681B TW108116971A TW108116971A TWI701681B TW I701681 B TWI701681 B TW I701681B TW 108116971 A TW108116971 A TW 108116971A TW 108116971 A TW108116971 A TW 108116971A TW I701681 B TWI701681 B TW I701681B
Authority
TW
Taiwan
Prior art keywords
atrial fibrillation
value
long
ecg signal
gate
Prior art date
Application number
TW108116971A
Other languages
Chinese (zh)
Other versions
TW202044280A (en
Inventor
黃宗祺
廖英凱
張坤正
Original Assignee
中國醫藥大學附設醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國醫藥大學附設醫院 filed Critical 中國醫藥大學附設醫院
Priority to TW108116971A priority Critical patent/TWI701681B/en
Priority to CN201910841188.5A priority patent/CN110491506A/en
Application granted granted Critical
Publication of TWI701681B publication Critical patent/TWI701681B/en
Publication of TW202044280A publication Critical patent/TW202044280A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/333Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Primary Health Care (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Economics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Development Economics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Game Theory and Decision Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)

Abstract

A prediction system of atrial fibrillation is provided. The prediction system of atrial fibrillation includes an electrocardiogram obtaining unit and a non-transitory machine readable medium. The non-transitory machine readable medium storing a program which, when executed by a processing unit, obtains a prediction result. The program includes a reference database obtaining module, a reference feature selecting module, a training module, a target feature selecting module and a comparing module. Therefore, the prediction system of atrial fibrillation can be used to predict an incidence of stroke in a subject.

Description

心房顫動預測模型及其預測系統 Atrial fibrillation prediction model and its prediction system

本發明是有關於一種醫療資訊分析模型以及系統,特別是一種心房顫動預測模型以及心房顫動預測系統。 The present invention relates to a medical information analysis model and system, especially an atrial fibrillation prediction model and atrial fibrillation prediction system.

心房顫動(atrial fibrillation)是一種因為心臟內產生節律訊號的功能異常,導致心跳不規則且經常過快的病症,每分鐘心跳可以達到350下。心房顫動是最常見的心臟節律異常,全人口中平均每100人中就有1位罹患心房顫動,隨著年齡增加,罹患心房顫動的比例愈高。60歲以上,每100人就有4位罹患心房顫動,而80歲以上,每10人就有1位罹患心房顫動。2010年全世界預估有三千三百五十萬人罹患心房顫動,除此之外可能還有許多潛在的患者因為沒有症狀而未被確診。2050年亞洲的心房顫動患者預估可以達到七千兩百萬人。 Atrial fibrillation (atrial fibrillation) is a disorder in which the heartbeat is irregular and often too fast due to the abnormal function of the rhythm signal generated in the heart. The heartbeat can reach 350 beats per minute. Atrial fibrillation is the most common abnormal heart rhythm. An average of 1 in 100 people in the entire population suffers from atrial fibrillation. As the age increases, the proportion of atrial fibrillation is higher. Four out of every 100 people over the age of 60 suffer from atrial fibrillation, and one in ten people over the age of 80 suffers from atrial fibrillation. In 2010, an estimated 33.5 million people worldwide suffered from atrial fibrillation. In addition, there may be many potential patients who have not been diagnosed because they have no symptoms. It is estimated that the number of patients with atrial fibrillation in Asia will reach 72 million in 2050.

心房顫動病人相較於一般人有5倍的風險發生血栓梗塞疾病,包含中風、肺栓塞及周邊血管栓塞。過去的研究也顯示罹患心房顫動的病人當中,陣發性心房顫動的病人相較於持續性心房顫動的病人有較低的中風發生率,相較 於陣發性心房顫動,持續性心房顫動的病人罹患中風後的預後較差,也有較高的二度中風風險,因此心房顫動的發作型態和中風有高度的相關性。是以2050年亞洲因為心房顫動而導致中風的病人預估會達到二百九十萬人。持續性心房顫動的病人相較於陣發性心房顫動的病人有較高的中風發生率,罹患中風後的預後也較差。臨床上主要以CHA2DS2-VASc score來評估心房顫動病人的中風風險,CHA2DS2ⅣASc score評估的項目包含年齡、性別及共病症包括梗塞性疾病、高血壓、鬱血性心衰竭、糖尿病及血管性疾病,隨著CHA2DS2-VASc score分數增加,發生血管栓塞的風險也逐步提高,但目前為止並沒有研究針對心房顫動病人的心電圖特徵與中風的相關性進行分析。 Patients with atrial fibrillation have 5 times the risk of developing thrombotic infarction diseases, including stroke, pulmonary embolism, and peripheral vascular embolism. Past studies have also shown that among patients suffering from atrial fibrillation, patients with paroxysmal atrial fibrillation have a lower incidence of stroke than patients with persistent atrial fibrillation. Patients with paroxysmal atrial fibrillation and persistent atrial fibrillation have a poorer prognosis after suffering from a stroke and also have a higher risk of second-degree stroke. Therefore, the pattern of atrial fibrillation and stroke are highly correlated. Therefore, in 2050, it is estimated that the number of stroke patients in Asia due to atrial fibrillation will reach 2.9 million. Patients with persistent atrial fibrillation have a higher incidence of stroke than patients with paroxysmal atrial fibrillation, and the prognosis after stroke is also worse. Clinically, CHA2DS2-VASc score is mainly used to evaluate the risk of stroke in patients with atrial fibrillation. The items evaluated by CHA2DS2IVASc score include age, gender, and comorbidities including infarct disease, hypertension, congestive heart failure, diabetes, and vascular disease. The CHA2DS2-VASc score increased, and the risk of vascular embolism also gradually increased, but so far, there has been no research on the correlation between the ECG characteristics of patients with atrial fibrillation and stroke.

心電圖提供心房顫動的資訊,例如一天中的發作頻率及型態,但其數據資料龐大,無法利用人工逐步分析,因此習用技術缺乏可以有效率分析大量資料,並可應用於臨床輔助醫師進一步判斷受試者是否可能為心房顫動併發腦中風的患者,以提高檢測的準確度。 The electrocardiogram provides information on atrial fibrillation, such as the frequency and pattern of atrial fibrillation during the day, but its data is huge and cannot be analyzed manually. Therefore, the conventional technology lacks the ability to efficiently analyze a large amount of data and can be applied to clinical assistant physicians to further judge the patient Whether the subject may be a patient with atrial fibrillation and stroke, in order to improve the accuracy of detection.

有鑒於此,本發明之一目的為提供心房顫動預測模型以及心房顫動預測系統,其可客觀且準確的判斷一受試者是否具有心房顫動的狀況,並可進一步預測其發生腦中風的機率,以輔助醫生於臨床上的判斷。 In view of this, one of the objectives of the present invention is to provide an atrial fibrillation prediction model and atrial fibrillation prediction system, which can objectively and accurately determine whether a subject has atrial fibrillation, and can further predict the probability of stroke. To assist doctors in clinical judgment.

本發明之一態樣是在提供一種心房顫動預測模型,包含下列建立步驟:取得參照資料庫、進行特徵選取步驟以及進行訓練步驟。所述參照資料庫包含複數個參照十二導程心電訊號數列。所述特徵選取步驟係根據參照資料庫選取至少一特徵值,所述特徵值包含利用一計算單元計算參照十二導程心電訊號數列中峰對峰值時間差所得到的心電訊號曲率變化最大的影像區間。所述訓練步驟,係利用一長短記憶單元(Long Short Term Memory,LSTM)儲存一心電訊號即時數值,並計算所述特徵值與所述心電訊號即時數值的相關性,當所述相關性超過一第一預設閥值則更新所述長短記憶單元,當訓練達到收斂時得到心房顫動預測模型,藉此得到一預設結果。 One aspect of the present invention is to provide an atrial fibrillation prediction model, which includes the following establishment steps: obtaining a reference database, performing a feature selection step, and performing a training step. The reference database includes a plurality of reference twelve-lead ECG signal series. The feature selection step is to select at least one feature value based on a reference database, and the feature value includes using a calculation unit to calculate the ECG signal with the largest change in curvature obtained by referring to the peak-to-peak time difference in the twelve-lead ECG signal sequence Image interval. In the training step, a Long Short Term Memory (LSTM) is used to store a real-time value of an ECG signal, and the correlation between the characteristic value and the real-time value of the ECG signal is calculated. When the correlation exceeds A first preset threshold value updates the long-short memory unit, and obtains atrial fibrillation prediction model when the training reaches convergence, thereby obtaining a preset result.

依據前述之心房顫動預測模型,其中所述長短記憶單元可為雙向長短記憶單元(Bi-directional Long Short Term Memory,Bi-directional LSTM)。 According to the aforementioned atrial fibrillation prediction model, the long-short-term memory unit may be a Bi-directional Long Short Term Memory (Bi-directional LSTM).

依據前述之心房顫動預測模型,其中長短記憶單元可更包含一遺忘閘(Forget Gate)、一輸入閘(Input Gate)和一輸出閘(Output Gate)。遺忘閘係過濾曲率變化過大的心電訊號即時數值,以得到一輸入值。輸入閘係輸入所述輸入值,並利用Sigmoid函數計算所述相關性。輸出閘係將所述相關性利用Sigmoid函數進行計算以得到一輸出值,當輸出值超過一第二預設閥值時,將輸出值加入所述長短記憶單元。 According to the aforementioned atrial fibrillation prediction model, the long-short memory unit may further include a Forget Gate, an Input Gate, and an Output Gate. The forgetting gate filters the real-time value of the ECG signal whose curvature changes too much to obtain an input value. The input gate system inputs the input value, and uses the Sigmoid function to calculate the correlation. The output gate system calculates the correlation using the Sigmoid function to obtain an output value, and when the output value exceeds a second preset threshold value, the output value is added to the long and short memory unit.

依據前述之心房顫動預測模型,其中所述遺忘閘、所述輸入閘和所述輸出閘可為雙向串接。 According to the aforementioned atrial fibrillation prediction model, the forgetting gate, the input gate and the output gate can be two-way serially connected.

依據前述之心房顫動預測模型,其中所述第一預設閥值和所述第二預設閥值可由tanh函數決定。 According to the aforementioned atrial fibrillation prediction model, the first preset threshold and the second preset threshold can be determined by the tanh function.

本發明之另一態樣是在提供一種心房顫動預測系統,包含心電圖擷取單元和非暫態機器可讀媒體。所述心電圖擷取單元用以取得目標十二導程心電訊號數列。所述非暫態機器可讀媒體由至少一訊號連接所述心電圖擷取單元,且所述非暫態機器可讀媒體儲存一程式,當程式由至少一處理單元執行時用以得到一預測結果,所述程式包含:參照資料庫取得模組、參照特徵選取模組、訓練模組、目標特徵選取模組和比對模組。所述參照資料庫取得模組用以取得一參照資料庫,且參照資料庫包含複數個參照十二導程心電訊號數列。所述參照特徵選取模組用以根據參照資料庫選取至少一參照特徵值,所述參照特徵值包含利用一計算單元計算參照十二導程心電訊號數列中一峰對峰值時間差所得到的一心電訊號曲率變化最大的影像區間。所述訓練模組包含一長短記憶單元(Long Short Term Memory,LSTM)。所述長短記憶單元用以儲存一心電訊號即時數值,並計算所述特徵值與所述心電訊號即時數值的相關性,當所述相關性超過一第一預設閥值則更新長短記憶單元,當訓練達到收斂時得到所述心房顫動預測模型。目標特徵選取模組用以分析所述目標十二導程心電訊號數列以得到一目標特徵值,所述目標特徵值包含利用另一計算單元計算目標十二導程心電訊 號數列中一峰對峰值時間差所得到的一目標心電訊號曲率變化最大的影像區間。比對模組用以將所述目標特徵值與所述參照特徵值以所述心房顫動預測模型進行分析比對,藉此得到一預設結果。 Another aspect of the present invention is to provide an atrial fibrillation prediction system that includes an electrocardiogram capture unit and a non-transient machine-readable medium. The electrocardiogram capture unit is used to obtain a target twelve-lead electrocardiogram signal sequence. The non-transitory machine-readable medium is connected to the electrocardiogram capture unit by at least one signal, and the non-transitory machine-readable medium stores a program for obtaining a prediction result when the program is executed by at least one processing unit The program includes: a reference database acquisition module, a reference feature selection module, a training module, a target feature selection module, and a comparison module. The reference database acquisition module is used to acquire a reference database, and the reference database includes a plurality of reference twelve-lead ECG signal series. The reference feature selection module is used to select at least one reference feature value based on a reference database, and the reference feature value includes an ECG obtained by using a calculation unit to calculate a peak-to-peak time difference in a twelve-lead ECG signal sequence The image interval where the curvature changes the most. The training module includes a Long Short Term Memory (LSTM). The long-short memory unit is used to store a real-time value of an ECG signal, and calculate the correlation between the characteristic value and the real-time value of the ECG signal, and update the long-short memory unit when the correlation exceeds a first preset threshold , When the training reaches convergence, the atrial fibrillation prediction model is obtained. The target feature selection module is used to analyze the target twelve-lead ECG signal sequence to obtain a target feature value, and the target feature value includes calculating the target twelve-lead ECG signal using another calculation unit The image interval in which the curvature of the target ECG signal changes the most is obtained from the peak-to-peak time difference in the number sequence. The comparison module is used for analyzing and comparing the target feature value and the reference feature value with the atrial fibrillation prediction model, thereby obtaining a preset result.

依據前述之心房顫動預測系統,其中所述長短記憶單元可為雙向長短記憶單元(Bi-directional Long Short Term Memory,Bi-directional LSTM)。 According to the aforementioned atrial fibrillation prediction system, the long-short-term memory unit may be a Bi-directional Long Short Term Memory (Bi-directional LSTM).

依據前述之心房顫動預測系統,其中所述長短記憶單元可更包含一遺忘閘(Forget Gate)、一輸入閘(Input Gate)和一輸出閘(Output Gate)。所述遺忘閘用以過濾曲率變化過大的心電訊號即時數值,以得到一輸入值。所述輸入閘用以輸入所述輸入值,並利用Sigmoid函數計算所述相關性。所述輸出閘用以將所述相關性利用Sigmoid函數進行計算以得到一輸出值,當所述輸出值超過一第二預設閥值時,將所述輸出值加入所述長短記憶單元。 According to the aforementioned atrial fibrillation prediction system, the long-short memory unit may further include a Forget Gate, an Input Gate, and an Output Gate. The forgetting gate is used to filter the real-time value of the ECG signal with excessive curvature change to obtain an input value. The input gate is used for inputting the input value, and calculating the correlation using a Sigmoid function. The output gate is used for calculating the correlation using a Sigmoid function to obtain an output value, and when the output value exceeds a second preset threshold value, the output value is added to the long and short memory unit.

依據前述之心房顫動預測系統,其中所述遺忘閘、所述輸入閘和所述輸出閘可為雙向串接。 According to the aforementioned atrial fibrillation prediction system, the forgetting gate, the input gate and the output gate can be bidirectionally connected in series.

依據前述之心房顫動預測系統,其中所述第一預設閥值和所述第二預設閥值可由tanh函數決定。 According to the aforementioned atrial fibrillation prediction system, the first preset threshold and the second preset threshold can be determined by a tanh function.

上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。 The foregoing summary of the invention aims to provide a simplified summary of the disclosure so that readers have a basic understanding of the disclosure. This summary of the present invention is not a complete summary of the present disclosure, and its intention is not to point out important/key elements of the embodiments of the present invention or to define the scope of the present invention.

100‧‧‧心房顫動預測模型之建立步驟 100‧‧‧Building steps of atrial fibrillation prediction model

110、120、130‧‧‧步驟 110, 120, 130‧‧‧step

200‧‧‧心房顫動預測系統 200‧‧‧Atrial Fibrillation Prediction System

300‧‧‧心電圖擷取單元 300‧‧‧ECG capture unit

400‧‧‧非暫態機器可讀媒體 400‧‧‧Non-transitory machine-readable media

410‧‧‧參照資料庫取得模組 410‧‧‧Refer to the database to obtain the module

420‧‧‧參照特徵選取模組 420‧‧‧Reference feature selection module

421、441‧‧‧計算單元 421, 441‧‧‧computing unit

430‧‧‧訓練模組 430‧‧‧Training Module

432、600‧‧‧長短記憶單元 432、600‧‧‧Long and short memory unit

440‧‧‧目標特徵選取模組 440‧‧‧Target feature selection module

450‧‧‧比對模組 450‧‧‧Comparison Module

610‧‧‧輸入層 610‧‧‧Input layer

620‧‧‧第1階長短記憶單元 620‧‧‧1st level long and short memory unit

630‧‧‧第2階長短記憶單元 630‧‧‧2nd level long and short memory unit

640‧‧‧第3階長短記憶單元 640‧‧‧Level 3 Long Short Memory Unit

650‧‧‧第4階長短記憶單元 650‧‧‧Level 4 Long Short Memory Unit

660‧‧‧最大池化層 660‧‧‧Maximum pooling layer

670‧‧‧全連階層 670‧‧‧All company class

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示依照本發明之一實施方式之一種心房顫動預測模型之建立步驟流程圖;第2圖繪示依照本發明之另一實施方式之一種心房顫動預測系統之方塊圖;第3圖繪示本發明之心房顫動預測模型之參考資料庫的資料標記平台示意圖;第4圖繪示本發明之心房顫動預測模型之長短記憶單元的架構示意圖;第5圖繪示本發明之心房顫動預測模型之長短記憶單元的架構圖;以及第6圖為本發明之心房顫動預測系統用於預測受試者之腦中風機率的接收者操作特徵曲線圖。 In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the description of the accompanying drawings is as follows: Figure 1 shows the establishment of an atrial fibrillation prediction model according to an embodiment of the present invention Step flowchart; Figure 2 shows a block diagram of an atrial fibrillation prediction system according to another embodiment of the present invention; Figure 3 shows a schematic diagram of the data labeling platform of the reference database of the atrial fibrillation prediction model of the present invention; Figure 4 is a schematic diagram showing the structure of the long and short memory unit of the atrial fibrillation prediction model of the present invention; Figure 5 is a diagram showing the structure of the long and short memory unit of the atrial fibrillation prediction model of the present invention; and Figure 6 is the atrial fibrillation prediction of the present invention The system is used to predict the receiver operating characteristic curve of the fan rate in the brain of the subject.

下述將更詳細討論本發明各實施方式。然而,此實施方式可為各種發明概念的應用,可被具體實行在各種不同的特定範圍內。特定的實施方式是僅以說明為目的,且不受限於揭露的範圍。 The various embodiments of the present invention will be discussed in more detail below. However, this embodiment can be an application of various inventive concepts and can be implemented in various specific ranges. The specific implementation is for illustrative purposes only, and is not limited to the scope of disclosure.

請參照第1圖,繪示依照本發明之一實施方式之一種心房顫動預測模型之建立步驟100流程圖。本發明之心房顫動預測模型之建立步驟100包含步驟110、步驟120和 步驟130,建立後的心房顫動預測模型可用以預測受試者之腦中風發生機率。 Please refer to Fig. 1, which shows a flowchart of steps 100 for establishing an atrial fibrillation prediction model according to an embodiment of the present invention. The step 100 of establishing the atrial fibrillation prediction model of the present invention includes step 110, step 120 and In step 130, the established atrial fibrillation prediction model can be used to predict the incidence of stroke in the subject.

步驟110是取得參照資料庫,所述參照資料庫包含複數個參照十二導程心電訊號數列。進一步,參照十二導程心電訊號數列可先進行初步分類,分為一異常資料和一無異常資料並進行標記,以將參照資料庫分為兩大類。 Step 110 is to obtain a reference database, which includes a plurality of reference twelve-lead ECG signal series. Furthermore, referring to the twelve-lead ECG signal sequence, preliminary classification can be carried out first, which is divided into an abnormal data and a non-abnormal data and marked, so as to divide the reference database into two categories.

步驟120是進行特徵選取步驟,係根據參照資料庫選取至少一特徵值,所述特徵值包含利用一計算單元計算參照十二導程心電訊號數列中峰對峰值時間差所得到的心電訊號曲率變化最大的影像區間。 Step 120 is to perform a feature selection step, which is to select at least one feature value based on the reference database, the feature value including the ECG signal curvature obtained by referring to the peak-to-peak time difference in the twelve-lead ECG signal sequence calculated by a calculation unit The most changed image interval.

步驟130是進行訓練步驟,係利用一長短記憶單元(Long Short Term Memory,LSTM)儲存一心電訊號即時數值,並計算所述特徵值與所述心電訊號即時數值的相關性,當所述相關性超過一第一預設閥值則更新所述長短記憶單元,當訓練達到收斂時得到心房顫動預測模型,藉此得到一預設結果。其中長短記憶單元可更包含一遺忘閘(Forget Gate)、一輸入閘(Input Gate)和一輸出閘(Output Gate)。遺忘閘係過濾曲率變化過大的心電訊號即時數值,以得到一輸入值。輸入閘係輸入所述輸入值,並利用Sigmoid函數計算所述相關性。輸出閘係將所述相關性利用Sigmoid函數進行計算以得到一輸出值,當輸出值超過一第二預設閥值時,將輸出值加入所述長短記憶單元。較佳地,所述遺忘閘、所述輸入閘和所述輸出閘可為雙向串接,所述第一預設閥值和所述第二預設閥值可由tanh函數決定。其中 所述長短記憶單元可為雙向長短記憶單元(Bi-directional Long Short Term Memory,Bi-directional LSTM)。 Step 130 is a training step, which uses a Long Short Term Memory (LSTM) to store an ECG signal real-time value, and calculates the correlation between the characteristic value and the ECG signal real-time value, when the correlation When the sex exceeds a first preset threshold, the long-short memory unit is updated, and when the training reaches convergence, the atrial fibrillation prediction model is obtained, thereby obtaining a preset result. The long and short memory unit may further include a Forget Gate, an Input Gate, and an Output Gate. The forgetting gate filters the real-time value of the ECG signal whose curvature changes too much to obtain an input value. The input gate system inputs the input value, and uses the Sigmoid function to calculate the correlation. The output gate system calculates the correlation using the Sigmoid function to obtain an output value, and when the output value exceeds a second preset threshold value, the output value is added to the long and short memory unit. Preferably, the forgotten gate, the input gate and the output gate may be two-way serially connected, and the first preset threshold and the second preset threshold may be determined by a tanh function. among them The long and short term memory unit may be a Bi-directional Long Short Term Memory (Bi-directional LSTM).

所述第一預設閥值與第二預設閥值係由tanh函數決定,tanh函數的輸出值介於-1到1之間,其為將大量的十二導程心電訊號數列丟入機器學習的數學式計算得到的預設值。在心房顫動預測模型的訓練過程中,當特徵值與心電訊號即時數值的相關性超過第一預設閥值時,即更新長短記憶單元以達收斂得到心房顫動預測模型。其中,當相關性越趨近於-1的時候表示受試者沒有心房顫動的機率越高,反之當相關性越趨近於1的時候表示受試者有心房顫動的機率越高。使用心房顫動預測模型預測受試者是否具有心房顫動時,遺忘閘會先針對心電訊號即時數值過濾以得一輸入值,並藉由輸入閘輸入利用Sigmoid函數計算得到的相關性,輸出閘將所述相關性利用Sigmoid函數計算得到輸出值,當輸出值超過第二預設閥值時,將輸出值加入所述長短記憶單元。其中,當輸出值越趨近於-1的時候,表示受試者沒有心房顫動的機率越高,反之當輸出值越趨近於1的時候,表示受試者有心房顫動的機率越高。 The first preset threshold and the second preset threshold are determined by the tanh function, and the output value of the tanh function is between -1 and 1, which is to throw a large number of twelve-lead ECG signal series into The preset value calculated by the mathematical formula of machine learning. During the training of the atrial fibrillation prediction model, when the correlation between the characteristic value and the real-time value of the ECG signal exceeds the first preset threshold, the long and short memory units are updated to achieve convergence to obtain the atrial fibrillation prediction model. Among them, when the correlation is closer to -1, the probability that the subject does not have atrial fibrillation is higher, and when the correlation is close to 1, the probability that the subject has atrial fibrillation is higher. When the atrial fibrillation prediction model is used to predict whether the subject has atrial fibrillation, the forgetting gate will first filter the real-time value of the ECG signal to obtain an input value, and by inputting the correlation calculated by the Sigmoid function by the input gate, the output gate will be The correlation uses a Sigmoid function to calculate the output value, and when the output value exceeds a second preset threshold, the output value is added to the long-short memory unit. Among them, when the output value is closer to -1, it means that the subject has a higher probability of not having atrial fibrillation. Conversely, when the output value is closer to 1, it means that the subject is more likely to have atrial fibrillation.

請參照第2圖,繪示依照本發明另一實施方式之一種心房顫動預測系統200之方塊圖。本發明之心房顫動預測系統200包含心電圖擷取單元300和非暫態機器可讀媒體400。心房顫動預測系統200可用以預測受試者的腦中風發生機率。 Please refer to FIG. 2, which shows a block diagram of an atrial fibrillation prediction system 200 according to another embodiment of the present invention. The atrial fibrillation prediction system 200 of the present invention includes an electrocardiogram capture unit 300 and a non-transitory machine-readable medium 400. The atrial fibrillation prediction system 200 can be used to predict the occurrence probability of a subject's stroke.

心電圖擷取單元300用以取得受試者的目標十二導程心電訊號數列,以及取得參照十二導程心電訊號數列。心電圖擷取單元300可為心電圖機。較佳地,心電圖擷取單元300可十二導程心電圖機,其包含10個電極貼片,於肢體上放置2個以上的電極貼片,兩兩組成一對進行測量,記錄體表12組導程的電位變化,並在心電圖紙上描繪出12組導程信號,以得到十二導程心電訊號數列。 The ECG acquisition unit 300 is used to obtain the target twelve-lead ECG signal sequence of the subject and obtain the reference twelve-lead ECG signal sequence. The electrocardiogram capturing unit 300 may be an electrocardiograph. Preferably, the electrocardiogram capture unit 300 can be a twelve-lead electrocardiograph, which includes 10 electrode patches, and more than 2 electrode patches are placed on the limbs, which are formed in pairs for measurement, and record 12 groups of body surfaces Lead potential changes, and draw 12 sets of lead signals on the ECG paper to obtain the 12-lead ECG signal series.

非暫態機器可讀媒體400由至少一訊號連接心電圖擷取單元300,且非暫態機器可讀媒體400儲存一程式,其中當所述程式由至少一處理單元執行時,所述程式用以得到一預測結果,所述預測結果為受試者的腦中風發生機率。所述程式包含參照資料庫取得模組410、參照特徵選取模組420、訓練模組430、目標特徵選取模組440以及比對模組450。 The non-transitory machine-readable medium 400 is connected to the electrocardiogram capture unit 300 by at least one signal, and the non-transitory machine-readable medium 400 stores a program, wherein when the program is executed by at least one processing unit, the program is used A prediction result is obtained, and the prediction result is the probability of occurrence of stroke of the subject. The program includes a reference database acquisition module 410, a reference feature selection module 420, a training module 430, a target feature selection module 440, and a comparison module 450.

參照資料庫取得模組410用以取得參照資料庫,所述參照資料庫包含複數個參照十二導程心電訊號數列。進一步,參照十二導程心電訊號數列可先進行初步分類,分為一異常資料和一無異常資料並進行標記,以將參照資料庫分為兩大類。 The reference database obtaining module 410 is used to obtain a reference database, which includes a plurality of reference twelve-lead ECG signal series. Furthermore, referring to the twelve-lead ECG signal sequence, preliminary classification can be carried out first, which is divided into an abnormal data and a non-abnormal data and marked, so as to divide the reference database into two categories.

參照特徵選取模組420用以根據參照資料庫選取至少一參照特徵值,所述參照特徵值包含利用一計算單元421計算參照十二導程心電訊號數列中一峰對峰值時間差所得到的一心電訊號曲率變化最大的影像區間。 The reference feature selection module 420 is used for selecting at least one reference feature value based on a reference database, the reference feature value including an ECG obtained by using a calculation unit 421 to calculate a peak-to-peak time difference in a twelve-lead ECG signal sequence The image interval where the curvature changes the most.

訓練模組430包含一長短記憶單元432。所述長短記憶單元432用以儲存一心電訊號即時數值,並計算所述特徵值與所述心電訊號即時數值的相關性,當所述相關性超過第一預設閥值則更新長短記憶單元432,當訓練達到收斂時得到所述心房顫動預測模型。而長短記憶單元432可更包含遺忘閘、輸入閘和輸出閘。遺忘閘係過濾曲率變化過大的心電訊號即時數值,以得到輸入值。輸入閘係輸入所述輸入值,並利用Sigmoid函數計算所述相關性。輸出閘係將所述相關性利用Sigmoid函數進行計算以得到輸出值,當輸出值超過第二預設閥值時,將輸出值加入所述長短記憶單元432。較佳地,所述遺忘閘、所述輸入閘和所述輸出閘可為雙向串接,所述第一預設閥值和所述第二預設閥值可由tanh函數決定。此外,所述長短記憶單元432可為雙向長短記憶單元。 The training module 430 includes a long and short memory unit 432. The long and short memory unit 432 is used to store a real-time value of an ECG signal, and calculate the correlation between the characteristic value and the real-time value of the ECG signal, and update the long and short memory unit when the correlation exceeds a first preset threshold. 432. Obtain the atrial fibrillation prediction model when the training reaches convergence. The long and short memory unit 432 may further include a forget gate, an input gate, and an output gate. The forgetting gate system filters the real-time value of the ECG signal with excessive curvature change to obtain the input value. The input gate system inputs the input value, and uses the Sigmoid function to calculate the correlation. The output gate system calculates the correlation using a Sigmoid function to obtain an output value, and when the output value exceeds a second preset threshold value, the output value is added to the long and short memory unit 432. Preferably, the forgotten gate, the input gate and the output gate may be two-way serially connected, and the first preset threshold and the second preset threshold may be determined by a tanh function. In addition, the long and short memory unit 432 may be a bidirectional long and short memory unit.

目標特徵選取模組440用以分析所述目標十二導程心電訊號數列以得到一目標特徵值,所述目標特徵值包含利用另一計算單元441計算目標十二導程心電訊號數列中一峰對峰值時間差所得到的一目標心電訊號曲率變化最大的影像區間。 The target characteristic selection module 440 is used to analyze the target twelve-lead ECG signal series to obtain a target characteristic value. The target characteristic value includes using another calculation unit 441 to calculate the target twelve-lead ECG signal series An image interval in which the curvature of a target ECG signal changes the most, obtained by a peak-to-peak time difference.

比對模組450用以將所述目標特徵值與所述參照特徵值以所述心房顫動預測模型進行分析比對,藉此得到一預設結果。所述預設結果為受試者3-6個月內腦中風的機率,機率值為0%-100%,用以作為醫生診斷的輔助參考。 The comparison module 450 is used for analyzing and comparing the target feature value and the reference feature value with the atrial fibrillation prediction model, thereby obtaining a preset result. The preset result is the probability of the subject having a stroke within 3-6 months, and the probability value is 0%-100%, which is used as an auxiliary reference for the doctor's diagnosis.

<試驗例><Test Example>

一、參照資料庫1. Reference database

本發明所使用的參照資料庫為中國醫藥大學暨附設醫院以回溯性方式收取2009/01/01~2018/12/31區間院內去連結化的受檢者臨床內容,為經中國醫藥大學暨附設醫院研究倫理委員會(China Medical University & Hospital Research Ethics Committee)核准之臨床試驗計劃,其編號為:CMUH107-REC2-134(AR-1)。資料透過GE Healthcare MUSE系統以關鍵字參數搜尋方式,收集包含心房顫動和心肌梗塞等疾病類別之病人心電圖(Electrocardiography,ECG/EKG)波形資料,其中包含十二導程心電訊號數列,原始資料為可延伸標示語言(Extensible Markup Language,XML)格式。收取影像之所屬受檢者性別並無特別限制,年齡亦沒有特別之區間。參照受試者包含無心房顫動的參照受試者5,000位,以及具有心房顫動的參照受試者10,012位,共計15,012位參照受試者。以上數據是實際使用的「資料筆數」,不排除有「同一位病人」在「不同時間點/日期的檢查」的可能性。 The reference database used in the present invention is China Medical University and affiliated hospitals retrospectively collecting in-hospital de-linked clinical content of examinees from 2009/01/01 to 2018/12/31, which is approved by China Medical University and affiliated hospitals. The clinical trial plan approved by the Hospital Research Ethics Committee (China Medical University & Hospital Research Ethics Committee) is numbered: CMUH107-REC2-134 (AR-1). The data is collected through the GE Healthcare MUSE system with keyword parameter search method to collect the patient's electrocardiography (ECG/EKG) waveform data including atrial fibrillation and myocardial infarction, including a series of twelve-lead ECG signals. The original data is Extensible Markup Language (XML) format. There is no special restriction on the gender of the subject to whom the images are collected, and there is no special age range. The reference subjects included 5,000 reference subjects without atrial fibrillation, and 10,012 reference subjects with atrial fibrillation, for a total of 15,012 reference subjects. The above data is the actual "number of data" used. The possibility of "examination of the same patient" at different time points/dates is not excluded.

二、用於判斷受試者之腦中風機率2. Used to determine the brain fan rate of subjects

於本試驗例中,先建立最佳化的心房顫動預測模型。首先取得參照資料庫,參照資料庫包含複數個參照十二導程心電訊號數列,並將參照十二導程心電訊號數列進行初步分類,分為一異常資料和一無異常資料並進行標記。請參照第3圖,其繪示本發明之心房顫動預測模型之參考資料庫的資料標記平台示意圖,為了能使後續所建立的心房顫動 預測模型正確學習十二導程心電訊號數列對應的疾病問題,先將在沒有提供任何病人相關個人資訊以及限制特定連線的前提下建立一個資料標記平台,醫師將透過此平台對參照資料庫進行多種標記,作為心房顫動預測模型學習之參考依據。 In this experimental example, first establish an optimized atrial fibrillation prediction model. First obtain the reference database. The reference database contains a plurality of reference twelve-lead ECG signal series, and the reference twelve-lead ECG signal series will be preliminarily classified into one abnormal data and one non-abnormal data and mark . Please refer to Figure 3, which shows a schematic diagram of the data labeling platform of the reference database of the atrial fibrillation prediction model of the present invention, in order to enable the subsequent establishment of atrial fibrillation The predictive model correctly learns the disease problem corresponding to the twelve-lead ECG signal sequence. First, a data marking platform will be established without providing any patient-related personal information and restricting specific connections. The physician will use this platform to refer to the database Perform a variety of markers as a reference basis for the learning of atrial fibrillation prediction model.

再以參照特徵選取模組根據參照資料庫選取至少一特徵值,所述特徵值包含利用計算單元計算參照十二導程心電訊號數列中峰對峰值時間差所得到的心電訊號曲率變化最大的影像區間。 The reference feature selection module is then used to select at least one feature value according to the reference database, the feature value including the ECG signal with the largest change in curvature obtained by calculating the peak-to-peak value time difference in the twelve-lead ECG signal sequence by the calculation unit Image interval.

再進行訓練步驟,利用雙向長短記憶網路的架構作神經網絡學習,並由不同項的神經方向讓機器去學習時間序列的訊號。傳統的循環神經網路(Recurent Neural Network,RNN)在最佳化參數的時候是使用梯度下降法(Gradient Descent)來最佳化更新參數方式,求其參數變更的方式為以反向傳播(Backward Propagation)演算法來實現,然而此演算法會因為所取的參數導致梯度爆炸(Gradient Explosion)和梯度消失(Gradient Vanish)。本發明的心房顫動預測模型在進行訓練時加入遺忘閘,使得在反向傳播演算法時如果遇到梯度爆炸時,能利用遺忘閘將其擋下來,而遇到因為輸入值經數學式計算後趨近於0(即小數點以下十幾位以後的數值)使電腦會直接忽視而造成的梯度消失,能利用輔助輸入閘(Pass Gate)將訊息再傳遞下去,避免梯度消失。 Then proceed to the training step, using the two-way long and short memory network architecture for neural network learning, and let the machine learn time series signals from different neural directions. When optimizing parameters, the traditional Recurent Neural Network (RNN) uses gradient descent (Gradient Descent) to optimize the method of updating parameters, and the method of seeking parameter changes is Backward Propagation (Backward). Propagation) algorithm to achieve, but this algorithm will cause gradient explosion (Gradient Explosion) and gradient vanish (Gradient Vanish) due to the parameters taken. The atrial fibrillation prediction model of the present invention adds a forgetting gate during training, so that if a gradient explosion is encountered during the backpropagation algorithm, the forgetting gate can be used to block it, but the input value is mathematically calculated. Approaching 0 (that is, the value after a dozen digits below the decimal point) will cause the computer to ignore the gradient disappearance. The auxiliary input gate (Pass Gate) can be used to transmit the message to avoid the gradient disappear.

詳細地,訓練步驟係利用長短記憶單元儲存心電訊號即時數值,並計算所述特徵值與所述心電訊號即時數值的相關性,當所述相關性超過第一預設閥值則更新所述長短記憶單元。請參照第4圖,其繪示本發明之心房顫動預測模型之長短記憶單元的架構示意圖。所述長短記憶單元使用一個隨著時間更新的記憶分支來加強當前的決策結果,且長短記憶單元而包含遺忘閘、輸入閘和輸出閘來決定記憶的更新與否,且遺忘閘、輸入閘和輸出閘為雙向串接。遺忘閘用以過濾曲率變化過大的心電訊號即時數值,以得到輸入值。詳細地說,遺忘閘通過計算得到的zf(f表示forget)來作為忘記門控,來控制上一個狀態的ct-1哪些需要留下或者遺忘,通常是Sigmoid函數。輸入閘用以輸入所述輸入值,並利用Sigmoid函數計算相關性。詳細地說,輸入閘決定當前的輸入(Input)及新產生的記憶單元(Memory Cell Candidate)是否加入長期記憶(Long Term Memory)中,輸入閘也是利用Sigmoid函數表示要加入與否。具體來說是對輸入xt進行選擇記憶。哪些重要則著重記錄下來,哪些不重要,則少記一些。當前的輸入內容由前面計算得到的z表示。而選擇的門控信號則是由zi(i代表information)來進行控制。輸出閘用以將所述相關性利用Sigmoid函數進行計算以得到輸出值,當輸出值超過第二預設閥值時,將輸出值加入長短記憶單元。詳細地說,輸出閘決定哪些將會被當成當前狀態的輸出。主要是通過zo來進行控制的。並且還對上一階段得到的co通過一個tanh激活函數進行變化。遺忘 閘、輸入閘和輸出閘的詳細計算方式請參照式(I)、式(II)和式(III)。 In detail, the training step is to use the long-short memory unit to store the real-time value of the ECG signal, and calculate the correlation between the characteristic value and the real-time value of the ECG signal. When the correlation exceeds a first preset threshold, all the values are updated. The long and short memory unit. Please refer to FIG. 4, which is a schematic diagram of the structure of the long and short memory unit of the atrial fibrillation prediction model of the present invention. The long and short memory unit uses a memory branch that is updated over time to enhance the current decision result, and the long and short memory unit includes forgetting gate, input gate and output gate to determine whether the memory is updated, and forgetting gate, input gate and The output gate is two-way serial connection. The forgetting gate is used to filter the real-time value of the ECG signal with excessive curvature change to obtain the input value. In detail, the forget gate uses the calculated zf (f means forget) as the forget gate to control which ct-1 in the previous state needs to be left or forgotten, usually a Sigmoid function. The input gate is used to input the input value and calculate the correlation using the Sigmoid function. In detail, the input gate determines whether the current input (Input) and the newly generated memory cell (Memory Cell Candidate) are added to the long term memory (Long Term Memory). The input gate also uses the Sigmoid function to indicate whether to add. Specifically, it is to select and memorize the input xt. Record what is important and write less what is not. The current input content is represented by the previously calculated z. The selected gating signal is controlled by zi (i stands for information). The output gate is used to calculate the correlation using the Sigmoid function to obtain the output value, and when the output value exceeds the second preset threshold value, the output value is added to the long and short memory unit. In detail, the output gate determines which output will be regarded as the current state. It is mainly controlled by zo. And also change the co obtained in the previous stage through a tanh activation function. Forget Please refer to formula (I), formula (II) and formula (III) for detailed calculation methods of gate, input gate and output gate.

c t =z f c t-1+z i z…………………………式(I);h t =z o tanh(c t )…………………………式(II);y t =σ(W'h t )…………………………………式(III)。其中第一預設閥值和第二預設閥值由tanh函數決定,tanh函數式的輸出值介於-1到1之間,其為將大量的十二導程心電訊號數列丟入機器學習的數學式計算得到的預設值。當訓練達到收斂時得到心房顫動預測模型,藉此得到預設結果,所述預設結果為受試者的腦中風機率。 c t = z f c t -1 + z i z ………………………… formula (I); h t = z o tanh ( c t )…………………… …Formula (II); y t = σ ( W'h t )……………………………………Formula (III). The first preset threshold and the second preset threshold are determined by the tanh function. The output value of the tanh function is between -1 and 1, which is to throw a large number of twelve-lead ECG signal series into the machine The preset value calculated by the learned mathematical formula. When the training reaches convergence, the atrial fibrillation prediction model is obtained, thereby obtaining a preset result, which is the subject's brain fan rate.

在心房顫動預測模型的訓練過程中,當特徵值與心電訊號即時數值的相關性超過第一預設閥值時即更新長短記憶單元以達收斂得到心房顫動預測模型,其中,當相關性越趨近於-1的時候,表示受試者沒有心房顫動的機率越高,反之當相關性越趨近於1的時候,表示受試者有心房顫動的機率越高。使用心房顫動預測模型判斷預測心房顫動的時候,遺忘閘會先針對心電訊號即時數值過濾以得輸入值並藉由輸入閘輸入利用Sigmoid函數計算得到的相關性,輸出閘將所述相關性利用Sigmoid函數計算得輸出值,當輸出值超過第二預設閥值時,將輸出值加入所述長短記憶單元,其中,當輸出值越趨近於-1的時候,表示受試者沒有心房顫動的機率越高,反之越趨近於1的時候,表示受試者有心房顫動的機率越高。 During the training of the atrial fibrillation prediction model, when the correlation between the characteristic value and the real-time value of the ECG signal exceeds the first preset threshold, the long and short memory unit is updated to achieve convergence to obtain the atrial fibrillation prediction model. When it approaches -1, it means that the subject has a higher probability of not having atrial fibrillation. Conversely, when the correlation is closer to 1, it means that the subject is more likely to have atrial fibrillation. When the atrial fibrillation prediction model is used to predict and predict atrial fibrillation, the forgetting gate will first filter the real-time value of the ECG signal to obtain the input value and input the correlation calculated by the Sigmoid function through the input gate, and the output gate will use the correlation The sigmoid function calculates the output value. When the output value exceeds the second preset threshold, the output value is added to the long and short memory unit. When the output value approaches -1, it means that the subject does not have atrial fibrillation The higher the probability of, the higher the probability that the subject has atrial fibrillation when it approaches 1, on the contrary.

此外,請再參照第5圖,其繪示本發明之心房顫動預測模型之長短記憶單元600的架構圖。本發明之心房顫動預測模型之長短記憶單元600為四階長短記憶組內部有128*4的長短記憶單元,其包含輸入層610、第1階長短記憶單元620、第2階長短記憶單元630、第3階長短記憶單元640、第4階長短記憶單元650、最大池化層660和全連階層670。其中第1階長短記憶單元620、第2階長短記憶單元630、第3階長短記憶單元640和第4階長短記憶單元650分別具有128個長短記憶單元。第1階長短記憶單元620能處理複雜程度低的特徵值,第2階長短記憶單元630能處利複雜程度略高的特徵值,第3階長短記憶單元640能處利複雜程度更高的特徵值,第4階長短記憶單元650能處利複雜程度最高的特徵值。最大池化層會依據四階長短記憶學習的特徵做統整蒐集,全連接層(Sigmod函數/tanh函數)會依特徵學習的部分輸出最後結果。 In addition, please refer to FIG. 5 again, which shows the structure diagram of the long and short memory unit 600 of the atrial fibrillation prediction model of the present invention. The long and short memory unit 600 of the atrial fibrillation prediction model of the present invention is a 128*4 long and short memory unit in the fourth-level long and short memory group, which includes an input layer 610, a first-level long and short memory unit 620, a second-level long and short memory unit 630, The third-level long and short memory unit 640, the fourth-level long and short memory unit 650, the maximum pooling layer 660, and the fully connected layer 670. The first-level long and short memory unit 620, the second-level long and short memory unit 630, the third-level long and short memory unit 640, and the fourth-level long and short memory unit 650 each have 128 long and short memory units. The first-level long-short memory unit 620 can handle low-complexity feature values, the second-level long-short memory unit 630 can handle slightly more complex feature values, and the third-level long-short memory unit 640 can handle more complex features. Value, the fourth-level long-short memory unit 650 can handle the most complex feature value. The maximum pooling layer will be collected according to the characteristics of fourth-order long and short memory learning, and the fully connected layer (Sigmod function/tanh function) will output the final result according to the part of the feature learning.

於本試驗例中進一步將包含所建立的心房顫動預測模型的心房顫動預測系統用於預測受試者之腦中風。其步驟如下:提供前述建立好的心房顫動預測模型。提供受試者之目標十二導程心電訊號數列。將目標十二導程心電訊號數列以目標特徵選取模組分析得到的目標特徵值。最後利用比對模組將所述目標特徵值與所述參照特徵值以所述心房顫動預測模型進行分析比對,藉此得到預設結果,以預測受試者的腦中風機率。 In this test example, the atrial fibrillation prediction system including the established atrial fibrillation prediction model is further used to predict the subject's stroke. The steps are as follows: Provide the atrial fibrillation prediction model established above. Provide the subject's target 12-lead ECG signal sequence. The target characteristic value obtained by analyzing the target 12-lead ECG signal sequence with the target characteristic selection module. Finally, a comparison module is used to analyze and compare the target feature value and the reference feature value with the atrial fibrillation prediction model, thereby obtaining a preset result to predict the subject's brain fan rate.

請參照第6圖,為本發明之心房顫動預測系統用於預測受試者之腦中風機率的接收者操作特徵曲線(receiver operating characteristic curve,ROC)圖。結果顯示,當以本發明之心房顫動預測模型預測受試者的腦中風機率時,其試驗(Test)的曲線下面積(Area under the Curve,AUC)為0.996,ROC數值為99.6%。顯示本發明之心房顫動預測模型以及心房顫動預測系統可以精準地以十二導程心電訊號數列預測受試者的腦中風機率。 Please refer to Figure 6, which is a receiver operating characteristic curve (ROC) diagram used by the atrial fibrillation prediction system of the present invention to predict the fan rate in the brain of a subject. The results show that when the atrial fibrillation prediction model of the present invention predicts the subject's brain fan rate, the area under the curve (AUC) of the test is 0.996, and the ROC value is 99.6%. It is shown that the atrial fibrillation prediction model and the atrial fibrillation prediction system of the present invention can accurately predict the brain fan rate of the subject with the twelve-lead ECG signal sequence.

藉此,本發明提供一種心房顫動預測模型以及一種心房顫動預測系統,透過長短記憶網路的架構作神經網絡學習,並由不同項的神經方向讓機器去學習時間序列的訊號,能可客觀且準確以十二導程心電訊號數列判斷受試者是否具有心房顫動的狀況,並可進一步預測其發生腦中風的機率,可提供第二意見給專科醫師,以輔助醫生於臨床上的判斷。從原始影像輸入到判讀結果,平均只需0.1-1秒即可完成,且正確率可高達0.996。是以本發明之心房顫動預測模型以及心房顫動預測系統,可以藉由個案之十二導程心電訊號數列進行自動化且快速的數據分析,輔助醫事人員進行判讀而即早確診,提高早期中風的發現率,以利醫師擬定患者的後續療程。 In this way, the present invention provides an atrial fibrillation prediction model and an atrial fibrillation prediction system. The neural network learning is performed through the structure of the long and short memory network, and the neural direction of different items allows the machine to learn time series signals, which can be objective and Accurately use the 12-lead ECG signal sequence to determine whether the subject has atrial fibrillation, and further predict the probability of stroke, and provide a second opinion to the specialist to assist the doctor in clinical judgment. From the original image input to the interpretation result, it only takes 0.1-1 seconds on average to complete, and the accuracy rate can be as high as 0.996. Based on the atrial fibrillation prediction model and atrial fibrillation prediction system of the present invention, the twelve-lead ECG signal sequence of a case can be used for automated and rapid data analysis, assisting medical staff in interpretation and immediate diagnosis, and improving early stroke The discovery rate allows the physician to plan the patient’s follow-up course of treatment.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be subject to those defined in the attached patent scope.

200‧‧‧心房顫動預測系統 200‧‧‧Atrial Fibrillation Prediction System

300‧‧‧心電圖擷取單元 300‧‧‧ECG capture unit

400‧‧‧非暫態機器可讀媒體 400‧‧‧Non-transitory machine-readable media

410‧‧‧參照資料庫取得模組 410‧‧‧Refer to the database to obtain the module

420‧‧‧參照特徵選取模組 420‧‧‧Reference feature selection module

421、441‧‧‧計算單元 421, 441‧‧‧computing unit

430‧‧‧訓練模組 430‧‧‧Training Module

432‧‧‧長短記憶單元 432‧‧‧Long and short memory unit

440‧‧‧目標特徵選取模組 440‧‧‧Target feature selection module

450‧‧‧比對模組 450‧‧‧Comparison Module

Claims (8)

一種心房顫動預測模型,包含以下建立步驟:取得一參照資料庫,其中該參照資料庫包含複數個參照十二導程心電訊號數列;進行一特徵選取步驟,其係根據該參照資料庫選取至少一特徵值,該特徵值包含利用一計算單元計算該參照十二導程心電訊號數列中一峰對峰值時間差所得到的一心電訊號曲率變化最大的影像區間;以及進行一訓練步驟,係利用四長短記憶組進行訓練,各該長短記憶組具有128個長短記憶單元(Long Short Term Memory,LSTM),且各該長短記憶單元為一雙向長短記憶單元(Bi-directional Long Short Term Memory,Bi-directional LSTM),各該長短記憶單元儲存一心電訊號即時數值,並計算該特徵值與該心電訊號即時數值的相關性,當該相關性超過一第一預設閥值則更新該長短記憶單元,當訓練達到收斂時得到該心房顫動預測模型,藉此得到一預設結果,其中該訓練步驟不包含利用一卷積神經網絡對該特徵值進行訓練。 An atrial fibrillation prediction model includes the following steps: obtaining a reference database, where the reference database includes a plurality of reference twelve-lead ECG signal sequences; performing a feature selection step, which selects at least A feature value, the feature value comprising a calculation unit calculating the time difference of a peak-to-peak value in the reference twelve-lead ECG signal sequence to obtain an image interval where the curvature of the ECG signal changes the most; and performing a training step using four Long and short memory groups are trained. Each of the long and short memory groups has 128 Long Short Term Memory (LSTM) units, and each of the long and short memory units is a bi-directional Long Short Term Memory (Bi-directional Long Short Term Memory, Bi-directional). LSTM), each of the long and short memory units stores a real-time value of the ECG signal, and calculates the correlation between the characteristic value and the real-time value of the ECG signal. When the correlation exceeds a first preset threshold, the long and short memory unit is updated, When the training reaches convergence, the atrial fibrillation prediction model is obtained, thereby obtaining a preset result, wherein the training step does not include using a convolutional neural network to train the feature value. 如申請專利範圍第1項所述之心房顫動預測模型,其中該長短記憶單元更包含: 一遺忘閘(Forget Gate),係過濾曲率變化過大的該心電訊號即時數值,以得到一輸入值;一輸入閘(Input Gate),係輸入該輸入值,並利用Sigmoid函數計算該相關性;以及一輸出閘(Output Gate),係將該相關性利用Sigmoid函數進行計算以得到一輸出值,當該輸出值超過一第二預設閥值時,將該輸出值加入該長短記憶單元。 According to the atrial fibrillation prediction model described in claim 1, wherein the long and short memory unit further includes: A Forget Gate is used to filter the real-time value of the ECG signal whose curvature changes too much to obtain an input value; an Input Gate is used to input the input value and use the Sigmoid function to calculate the correlation; And an output gate. The correlation is calculated using the Sigmoid function to obtain an output value. When the output value exceeds a second preset threshold, the output value is added to the long-short memory unit. 如申請專利範圍第2項所述之心房顫動預測模型,其中該遺忘閘、該輸入閘和該輸出閘為雙向串接。 The atrial fibrillation prediction model described in item 2 of the scope of patent application, wherein the forgetting gate, the input gate and the output gate are bidirectionally connected in series. 如申請專利範圍第2項所述之心房顫動預測模型,其中該第一預設閥值和該第二預設閥值係由tanh函數決定。 In the atrial fibrillation prediction model described in item 2 of the scope of patent application, the first preset threshold and the second preset threshold are determined by a tanh function. 一種心房顫動預測系統,包含:一心電圖擷取單元,用以取得一目標十二導程心電訊號數列;以及一非暫態機器可讀媒體,由至少一訊號連接該心電圖擷取單元,其中該非暫態機器可讀媒體用以儲存一程式,當該程式由一處理單元執行時係用以得到一預測結果,且該程式包含: 一參照資料庫取得模組,用以取得一參照資料庫,且該參照資料庫包含複數個參照十二導程心電訊號數列;一參照特徵選取模組,用以根據該參照資料庫選取至少一參照特徵值,該參照特徵值包含利用一計算單元計算該參照十二導程心電訊號數列中一峰對峰值時間差所得到的一心電訊號曲率變化最大的影像區間;一訓練模組,包含:四長短記憶組,各該長短記憶組具有128個長短記憶單元(Long Short Term Memory,LSTM),且各該長短記憶單元為一雙向長短記憶單元(Bi-directional Long Short Term Memory,Bi-directional LSTM),各該長短記憶單元用以儲存一心電訊號即時數值,並計算該特徵值與該心電訊號即時數值的相關性,當該相關性超過一第一預設閥值則更新該長短記憶單元,當訓練達到收斂時得到該心房顫動預測模型,其中該訓練模組不包含一卷積神經網絡;一目標特徵選取模組,用以分析該目標十二導程心電訊號數列以得到一目標特徵值,該目標特徵值包含利用另一計算單元計算該目標十二導程心電訊號數 列中一峰對峰值時間差所得到的一目標心電訊號曲率變化最大的影像區間;及一比對模組,用以將該目標特徵值與該參照特徵值以該心房顫動預測模型進行分析比對,藉此得到一預設結果。 An atrial fibrillation prediction system, comprising: an electrocardiogram capture unit for obtaining a target twelve-lead ECG signal sequence; and a non-transient machine-readable medium connected to the electrocardiogram capture unit by at least one signal, wherein The non-transitory machine-readable medium is used to store a program that is used to obtain a prediction result when the program is executed by a processing unit, and the program includes: A reference database acquisition module is used to acquire a reference database, and the reference database includes a plurality of reference twelve-lead ECG signal series; a reference feature selection module is used to select at least A reference eigenvalue, the reference eigenvalue includes an image interval in which the curvature of the ECG signal changes the most, which is obtained by calculating a peak-to-peak time difference in the reference twelve-lead ECG signal sequence by a calculation unit; a training module includes: Four long and short memory groups, each of which has 128 Long Short Term Memory (LSTM), and each of the long and short memory units is a Bi-directional Long Short Term Memory (Bi-directional LSTM) ), each of the long and short memory units is used to store a real-time value of an ECG signal, and calculate the correlation between the characteristic value and the real-time value of the ECG signal, and update the long and short memory unit when the correlation exceeds a first preset threshold , When the training reaches convergence, the atrial fibrillation prediction model is obtained, wherein the training module does not include a convolutional neural network; a target feature selection module is used to analyze the target twelve-lead ECG signal sequence to obtain a target The characteristic value, the target characteristic value includes calculating the target twelve-lead ECG signal number using another calculation unit A target ECG signal curvature change image interval obtained by a peak-to-peak time difference in the column; and a comparison module for analyzing and comparing the target characteristic value and the reference characteristic value with the atrial fibrillation prediction model , Thereby obtaining a preset result. 如申請專利範圍第5項所述之心房顫動預測系統,其中該長短記憶單元更包含:一遺忘閘(Forget Gate),用以過濾曲率變化過大的該心電訊號即時數值,以得到一輸入值;一輸入閘(Input Gate),用以輸入該輸入值,並利用Sigmoid函數計算該相關性;以及一輸出閘(Output Gate),用以將該相關性利用Sigmoid函數進行計算以得到一輸出值,當該輸出值超過一第二預設閥值時,將該輸出值加入該長短記憶單元。 For example, the atrial fibrillation prediction system described in item 5 of the scope of patent application, wherein the long and short memory unit further includes: a Forget Gate for filtering the real-time value of the ECG signal with excessive curvature change to obtain an input value ; An input gate (Input Gate) to input the input value, and use the Sigmoid function to calculate the correlation; and an output gate (Output Gate) to use the Sigmoid function to calculate the correlation to obtain an output value When the output value exceeds a second preset threshold value, the output value is added to the long-short memory unit. 如申請專利範圍第6項所述之心房顫動預測系統,其中該遺忘閘、該輸入閘和該輸出閘為雙向串接。 The atrial fibrillation prediction system described in item 6 of the scope of patent application, wherein the forgetting gate, the input gate and the output gate are two-way serially connected. 如申請專利範圍第6項所述之心房顫動預測系統,其中該第一預設閥值和該第二預設閥值係由tanh函數決定。 For the atrial fibrillation prediction system described in item 6 of the scope of patent application, the first preset threshold and the second preset threshold are determined by a tanh function.
TW108116971A 2019-05-16 2019-05-16 Prediction model of atrial fibrillation and prediction system thereof TWI701681B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108116971A TWI701681B (en) 2019-05-16 2019-05-16 Prediction model of atrial fibrillation and prediction system thereof
CN201910841188.5A CN110491506A (en) 2019-05-16 2019-09-06 Auricular fibrillation prediction model and its forecasting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108116971A TWI701681B (en) 2019-05-16 2019-05-16 Prediction model of atrial fibrillation and prediction system thereof

Publications (2)

Publication Number Publication Date
TWI701681B true TWI701681B (en) 2020-08-11
TW202044280A TW202044280A (en) 2020-12-01

Family

ID=68556709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116971A TWI701681B (en) 2019-05-16 2019-05-16 Prediction model of atrial fibrillation and prediction system thereof

Country Status (2)

Country Link
CN (1) CN110491506A (en)
TW (1) TWI701681B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220262516A1 (en) * 2019-09-06 2022-08-18 China Medical University Hospital Atrial Fibrillation Prediction Model And Prediction System Thereof
WO2021108950A1 (en) * 2019-12-02 2021-06-10 深圳迈瑞生物医疗电子股份有限公司 Monitoring method, monitoring apparatus, monitoring device, and computer readable storage medium
CN112971790A (en) * 2019-12-18 2021-06-18 华为技术有限公司 Electrocardiosignal detection method, device, terminal and storage medium
US11869208B2 (en) * 2020-03-16 2024-01-09 Taipei Veterans General Hospital Methods, apparatuses, and computer programs for processing pulmonary vein computed tomography images
CN111613321A (en) * 2020-04-16 2020-09-01 杭州电子科技大学 A method for auxiliary diagnosis of electrocardiogram stroke based on dense convolutional neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186011A (en) * 2017-12-13 2018-06-22 深圳竹信科技有限公司 Atrial fibrillation detection method, device and readable storage medium storing program for executing
CN109171707A (en) * 2018-10-24 2019-01-11 杭州电子科技大学 A kind of intelligent cardiac figure classification method
US20190104951A1 (en) * 2013-12-12 2019-04-11 Alivecor, Inc. Continuous monitoring of a user's health with a mobile device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242443B2 (en) * 2016-11-23 2019-03-26 General Electric Company Deep learning medical systems and methods for medical procedures
CN107890348B (en) * 2017-11-21 2018-12-25 郑州大学 One kind is extracted based on the automation of deep approach of learning electrocardio tempo characteristic and classification method
CN108766557B (en) * 2018-05-12 2021-07-20 鲁东大学 Automatic arrhythmia analysis method based on channel signal fusion neural network
CN108926338B (en) * 2018-05-31 2019-06-18 中南民族大学 Heart rate prediction technique and device based on deep learning
CN109077714B (en) * 2018-07-05 2021-03-23 广州视源电子科技股份有限公司 Signal identification method, device, device and storage medium
CN109077719A (en) * 2018-07-05 2018-12-25 广州视源电子科技股份有限公司 signal identification method, device, equipment and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190104951A1 (en) * 2013-12-12 2019-04-11 Alivecor, Inc. Continuous monitoring of a user's health with a mobile device
CN108186011A (en) * 2017-12-13 2018-06-22 深圳竹信科技有限公司 Atrial fibrillation detection method, device and readable storage medium storing program for executing
CN109171707A (en) * 2018-10-24 2019-01-11 杭州电子科技大学 A kind of intelligent cardiac figure classification method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Antkillerfarm Hacking,"深度學習(六)-LSTM",https://antkillerfarm.github.io/dl/2017/06/21/Deep_Learning_6.html,2017/06/21 *
Antkillerfarm Hacking,"深度學習(六)-LSTM",https://antkillerfarm.github.io/dl/2017/06/21/Deep_Learning_6.html,2017/06/21。

Also Published As

Publication number Publication date
TW202044280A (en) 2020-12-01
CN110491506A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
TWI701681B (en) Prediction model of atrial fibrillation and prediction system thereof
CN108478209A (en) Ecg information dynamic monitor method and dynamic monitor system
CN110974214A (en) A deep learning-based automatic electrocardiogram classification method, system and device
WO2019161610A1 (en) Electrocardiogram information processing method and electrocardiogram workstation system
WO2019161611A1 (en) Ecg information processing method and ecg workstation
Wei et al. MS-Net: Sleep apnea detection in PPG using multi-scale block and shadow module one-dimensional convolutional neural network
Sathi et al. An interpretable electrocardiogram-based model for predicting arrhythmia and ischemia in cardiovascular disease
CN110638430A (en) Multi-task cascade neural network ECG signal arrhythmia disease classification model and method
Li et al. DeepECG: Image-based electrocardiogram interpretation with deep convolutional neural networks
Prakash et al. A system for automatic cardiac arrhythmia recognition using electrocardiogram signal
Lu et al. An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment
CN118629596B (en) Psychological state analysis system and method for patients with multiple myeloma cardiac amyloidosis
Shi et al. Congestive heart failure detection based on attention mechanism-enabled bi-directional long short-term memory model in the internet of medical things
Joy et al. Review on advent of artificial intelligence in electrocardiogram for the detection of extra-cardiac and cardiovascular disease
Bahuguna et al. Statistical Analysis and Prediction of Heart Disease Using Machine Learning
Agrawal et al. A machine learning approach for classifying healthy and infarcted patients using heart rate variabilities derived vector magnitude
Dileep et al. IGHOA Based Modified Convolutional Neural Network for Prediction of Cardiovascular Disease
Meng et al. Deep Learning‐Based Arrhythmia Detection in Electrocardiograph
TWI688371B (en) Intelligent device for atrial fibrillation signal pattern acquisition and auxiliary diagnosis
Zhang et al. A deep Bayesian neural network for cardiac arrhythmia classification with rejection from ECG recordings
WO2021042372A1 (en) Atrial fibrillation prediction model and prediction system thereof
Abdulrahman et al. Improved ECG heartbeat classification based on 1-D convolutional neural networks
Garg Outlier detection system for cardiovascular disease using time-series data: a comparative analysis
Hong et al. Gated temporal convolutional neural network and expert features for diagnosing and explaining physiological time series: a case study on heart rates
de Moraes et al. Stratification of cardiopathies using photoplethysmographic signals