TWI701535B - Method and system for planning trajectory - Google Patents
Method and system for planning trajectory Download PDFInfo
- Publication number
- TWI701535B TWI701535B TW107130115A TW107130115A TWI701535B TW I701535 B TWI701535 B TW I701535B TW 107130115 A TW107130115 A TW 107130115A TW 107130115 A TW107130115 A TW 107130115A TW I701535 B TWI701535 B TW I701535B
- Authority
- TW
- Taiwan
- Prior art keywords
- trajectory
- self
- propelled device
- optimized
- parameters
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 63
- 238000013507 mapping Methods 0.000 claims abstract description 47
- 238000013459 approach Methods 0.000 claims abstract description 5
- 238000004088 simulation Methods 0.000 claims description 31
- 230000008676 import Effects 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000010276 construction Methods 0.000 claims description 9
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000004807 localization Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
本案係關於一種自走裝置軌跡規劃的技術,特別是指一種利用模擬器以一模擬器演算法構成最佳化軌跡並以此為基礎來修正製圖定位演算法的參數的軌跡規劃方法與系統。 This case is about a technology for trajectory planning of self-propelled devices, especially a trajectory planning method and system that uses a simulator to form an optimized trajectory with a simulator algorithm and based on this to modify the parameters of the mapping positioning algorithm.
近年來人工智能(AI)產業澎渤發展,市面上陸陸續續有相關產品出現,其中之一為應用在服務型機器人的運作上,包括使用服務型機器人執行巡邏、導引、遞送文件等工作,其中的核心技術之一為室內定位導航,在進行室內定位導航時,需要事先執行及時模擬定位建圖,如一種同步定位與地圖構建(Simultaneous localization and mapping,SLAM)技術,但是SLAM的效果好壞將影響機器人運行的能力。 In recent years, the artificial intelligence (AI) industry has developed, and related products have appeared on the market one after another. One of them is applied to the operation of service robots, including the use of service robots to perform patrols, guidance, and document delivery. One of the core technologies is indoor positioning and navigation. When performing indoor positioning and navigation, it is necessary to perform timely simulation positioning and mapping in advance, such as a simultaneous positioning and map construction (Simultaneous localization and mapping, SLAM) technology, but the effect of SLAM is good or bad Will affect the ability of the robot to run.
在習知技術中,在所述SLAM的機制中,主要包括先採用外部的高階攝影機對機器人錄影,並建立此機器人在特定場合中的室內定位導航圖。 In the conventional technology, the SLAM mechanism mainly includes firstly using an external high-end camera to record the robot, and establishing an indoor positioning navigation map of the robot in a specific occasion.
傳統執行即時模擬同步定位與地圖構建製作室內定位導航圖時,因為要取得高解析度影像,需要用多部高解析度攝影機錄製真實的軌跡,如此,相關軟硬體設備相當昂貴,並可能依場地大小需架設更多的攝影機。並且,若是想要更換場地,則又需要重新佈設所有攝影機。 When traditional real-time simulation synchronization positioning and map construction are used to make indoor positioning navigation maps, it is necessary to use multiple high-resolution cameras to record the real trajectory to obtain high-resolution images. Therefore, the related software and hardware equipment is quite expensive and may depend on The size of the venue requires more cameras. And, if you want to change the venue, you need to re-arrange all the cameras.
本案公開一種軌跡規劃方法與系統適用於一自走裝置,自走裝置於一環境沿一路徑上行走形成一移動軌跡,所述軌跡規劃系統包含一模擬器及一計算裝置,並執行以下軌跡規劃方法所述的步驟。所述方法包括於模擬器根據自走裝置與環境建立虛擬自走裝置模型及虛擬環境模型,其中虛擬自走裝置模型設有與自走裝置相同的一感測模組;模擬器執行一模擬器演算法取得每一單位時間的姿態資訊,並於虛擬環境模型構成一最佳化軌跡;取得虛擬自走裝置模型於虛擬環境模型移動的路徑上感測模組產生的感測資料檔案;由計算裝置取得感測資料檔案及最佳化軌跡,並將感測資料檔案導入同步定位與地圖構建演算法(SLAM),以建構對應路徑之地圖,將感測資料檔案導入製圖定位演算法,取得每一單位時間的姿態資訊,並於地圖構成參考軌跡,參考軌跡對應於移動軌跡。由計算裝置比對參考軌跡及該最佳化軌跡,判斷參考軌跡是否趨近於最佳化軌跡,若判定參考軌跡趨近於最佳化軌跡,則將製圖定位演算法中的參數導入自走裝置。若判定參考軌跡不趨近於最佳化軌跡時,則調整製圖定位演算法中的參數,重新以製圖定位演算法演算出新的參考軌跡,同樣再與最佳化軌跡比對,再判斷新的參考軌跡是否趨近最佳化軌跡,重複演算,直到得到趨近最佳化軌跡的參考軌跡,再將對應前述參考軌跡的製圖定位演算法中的參數導入自走裝置,讓自走裝置根據此參數運行在所述路徑上。 This case discloses a trajectory planning method and system suitable for a self-propelled device that walks in an environment along a path to form a moving trajectory. The trajectory planning system includes a simulator and a computing device, and executes the following trajectory planning The steps described in the method. The method includes establishing a virtual self-propelled device model and a virtual environment model according to the self-propelled device and the environment in a simulator, wherein the virtual self-propelled device model is provided with a sensing module identical to the self-propelled device; the simulator executes a simulator The algorithm obtains the posture information of each unit time, and constructs an optimized trajectory in the virtual environment model; obtains the sensor data file generated by the sensor module of the virtual self-propelled device model on the path of the virtual environment model movement; The device obtains the sensor data file and the optimized trajectory, and imports the sensor data file into the Synchronous Positioning and Mapping Algorithm (SLAM) to construct a map of the corresponding path, and imports the sensor data file into the mapping and positioning algorithm to obtain each The posture information of a unit of time forms a reference trajectory on the map, and the reference trajectory corresponds to the movement trajectory. The computing device compares the reference trajectory and the optimized trajectory to determine whether the reference trajectory is close to the optimized trajectory, and if it is determined that the reference trajectory is close to the optimized trajectory, the parameters in the mapping positioning algorithm are imported into the self-propelled Device. If it is judged that the reference trajectory is not close to the optimized trajectory, adjust the parameters in the mapping positioning algorithm, recalculate the new reference trajectory with the mapping positioning algorithm, and compare it with the optimized trajectory again, and then judge the new If the reference trajectory is close to the optimized trajectory, repeat the calculation until the reference trajectory approaching the optimized trajectory is obtained, and then import the parameters in the mapping positioning algorithm corresponding to the aforementioned reference trajectory into the self-propelled device, and let the self-propelled device follow This parameter runs on the path.
進一步地,所述感測資料檔案包括複數對應於時間、位置與方向性的感測資料,而這些感測資料是根據虛擬自走裝置模型中的感測模組的光學雷達模擬單元、慣性量測模擬單元與一里程計模擬單元的至少其中之一所產生。 Further, the sensing data file includes a plurality of sensing data corresponding to time, position, and directionality, and these sensing data are based on the optical radar simulation unit and the inertia quantity of the sensing module in the virtual self-propelled device model. At least one of a measurement simulation unit and an odometer simulation unit.
進一步地,所述比較參考軌跡與最佳化軌跡的方式是以一差異分布方法實現,在此差異分布方法中,會計算參考軌跡相對於 最佳化軌跡在每個單位時間的姿態資訊誤差值,得出在多個單位時間的多組姿態資訊誤差值,可以得到姿態資訊誤差值的複數誤差範圍的分布比例。 Further, the method of comparing the reference trajectory with the optimized trajectory is realized by a difference distribution method. In this difference distribution method, the attitude information error value of the reference trajectory relative to the optimized trajectory in each unit time is calculated , Obtain multiple sets of attitude information error values in multiple unit times, and obtain the distribution ratio of the complex error range of attitude information error values.
進一步地,取出誤差範圍的最小誤差範圍的分布比例,可與一預設分布比例比較,以此判斷參考軌跡是否趨近於最佳化軌跡。 Furthermore, the distribution ratio of the minimum error range of the error range is taken out, and can be compared with a preset distribution ratio to determine whether the reference trajectory is close to the optimized trajectory.
進一步地,於軌跡規劃方法中,係以一低延遲的原則調整製圖定位演算法中的參數。 Further, in the trajectory planning method, the parameters in the mapping and positioning algorithm are adjusted based on a low delay principle.
本案提出的軌跡規劃方法與系統為在模擬器中建造跟現實環境中一樣的環境與自走裝置,在模擬的環境中進行參數調校,包括先行收錄模擬器中虛擬自走裝置模型於虛擬環境模型移動的路徑上感測模組產生的感測資料檔案,成為軌跡規劃的數據,並以模擬器本身的模擬器演算法取得最佳化軌跡檢測由製圖定位演算法演算得出的參考軌跡,以判斷參考軌跡是否趨近於最佳化軌跡,並且,在模擬的環境中可以在較短時間內取得大量的數據,能取代習知技術中需要架設高階攝影機等設備所產生的成本,並且可以迴避真實環境中變動因素多個困擾,可以有效收歛實驗結果。 The trajectory planning method and system proposed in this case is to build the same environment and self-propelled device in the simulator as in the real environment, and adjust the parameters in the simulated environment, including the first collection of the virtual self-propelled device model in the simulator in the virtual environment The sensing data file generated by the sensing module on the path of the model movement becomes the data of the trajectory planning, and the simulator's own simulator algorithm is used to obtain the optimized trajectory detection. The reference trajectory calculated by the mapping positioning algorithm is used. In order to judge whether the reference trajectory is close to the optimized trajectory, and a large amount of data can be obtained in a short time in the simulated environment, it can replace the cost of setting up high-end cameras and other equipment in the conventional technology, and can Avoiding multiple troubles of changing factors in the real environment can effectively converge the experimental results.
為了能更進一步瞭解本發明為達成既定目的所採取之技術、方法及功效,請參閱以下有關本發明之詳細說明、圖式,相信本發明之目的、特徵與特點,當可由此得以深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology, methods and effects of the present invention to achieve the established objectives, please refer to the following detailed descriptions and drawings about the present invention. I believe that the objectives, features and characteristics of the present invention can be thoroughly and concretely obtained. It is understood that, however, the accompanying drawings are only provided for reference and illustration, and are not intended to limit the present invention.
10‧‧‧自走裝置 10‧‧‧Self-propelled device
101‧‧‧光學雷達 101‧‧‧Optical radar
102‧‧‧慣性量測單元 102‧‧‧Inertial measurement unit
103‧‧‧里程計 103‧‧‧Odometer
20‧‧‧模擬器 20‧‧‧Simulator
21‧‧‧感測模組 21‧‧‧Sensing Module
201‧‧‧光學雷達模擬單元 201‧‧‧Optical radar simulation unit
202‧‧‧慣性量測模擬單元 202‧‧‧Inertia measurement simulation unit
203‧‧‧里程計模擬單元 203‧‧‧Odometer simulation unit
204‧‧‧虛擬環境模型 204‧‧‧Virtual Environment Model
205‧‧‧虛擬自走裝置模型 205‧‧‧Virtual self-propelled device model
206‧‧‧模擬器演算法 206‧‧‧Simulator algorithm
22‧‧‧計算裝置 22‧‧‧Computer
221‧‧‧記憶單元 221‧‧‧Memory Unit
222‧‧‧處理單元 222‧‧‧Processing unit
223‧‧‧同步定位與地圖構建演算法 223‧‧‧Synchronous positioning and map construction algorithm
224‧‧‧製圖定位演算法 224‧‧‧Mapping positioning algorithm
40‧‧‧最佳化軌跡 40‧‧‧Optimized trajectory
401‧‧‧參考軌跡 401‧‧‧Reference track
t0,t1,t2,…tn‧‧‧時間 t0,t1,t2,…tn‧‧‧Time
d0,d1,d2,…dn‧‧‧距離誤差 d0,d1,d2,…dn‧‧‧distance error
s0,s1,s2,sn‧‧‧最佳化位置 s0,s1,s2,sn‧‧‧optimized position
p0,p1,p2,pn‧‧‧參考位置 p0,p1,p2,pn‧‧‧reference position
步驟S301~S319‧‧‧軌跡規劃流程的步驟 Steps S301~S319‧‧‧Steps of the trajectory planning process
步驟S501~S509‧‧‧差異分布方法流程的步驟 Steps S501~S509‧‧‧The steps of the difference distribution method flow
圖1顯示軌跡規劃系統架構實施例示意圖;圖2顯示軌跡規劃方法的流程實施例圖;圖3顯示在軌跡規劃方法中以最佳化軌跡與參考軌跡在每個單位時間的姿態資訊誤差值的實施例示意圖;圖4顯示在軌跡規劃方法中執行差異分布方法的流程實施例 圖。 Figure 1 shows a schematic diagram of an embodiment of the trajectory planning system architecture; Figure 2 shows an embodiment diagram of the flow of the trajectory planning method; Figure 3 shows the error value of the attitude information of the optimized trajectory and the reference trajectory in each unit time in the trajectory planning method Schematic diagram of an embodiment; FIG. 4 shows an embodiment diagram of a process of executing the difference distribution method in the trajectory planning method.
本案提出一種軌跡規劃方法與系統,軌跡規劃系統如圖1所示適用於一自走裝置10,自走裝置10於一環境沿一路徑上行走形成一移動軌跡,軌跡規劃系統包括一模擬器20及一計算裝置22。模擬器20用以根據現實中的自走裝置10與環境建立一虛擬自走裝置模型205及一虛擬環境模型204,其中虛擬自走裝置模型205設有與自走裝置10相同的感測模組21,以取得虛擬自走裝置模型205於虛擬環境模型204移動的一路徑上感測模組21產生的一感測資料檔案。感測資料檔案包括複數對應於時間、位置與方向性的感測資料。 This case proposes a trajectory planning method and system. The trajectory planning system is suitable for a self-propelled
其中模擬器20可為gazebo程式,自走裝置10的感測模組至少包含光學雷達(Light Detection and Ranging,LiDAR)101、慣性量測單元(Inertial Measurement Unit,IMU)102與里程計(Odometer)103,而虛擬自走裝置模型205的感測模組21對應於自走裝置10的感測模組,感測模組21包含光學雷達模擬單元201、慣性量測模擬單元202與里程計模擬單元203。上述多個感測資料是根據虛擬自走裝置模型205中的感測模組21的一光學雷達模擬單元201、一慣性量測模擬單元202與一里程計模擬單元203的至少其中之一所產生。 The
其中,光學雷達101及光學雷達模擬單元201係以光探測達到測距目的感測器,利用脈衝光掃描自走裝置10或虛擬自走裝置模型205於一路徑上四周環境地形地物的距離,根據接收到的光波數據可以建構四周環境或虛擬環境模型204的三維信息,可以實現定位自走裝置10或虛擬自走裝置模型205的目的。 Among them, the
慣性量測單元102及慣性量測模擬單元202是可以感測到自走裝置10或虛擬自走裝置模型205姿態的慣性導航儀以取得自走 裝置10或虛擬自走裝置模型205的姿態資訊(pose),其中記錄的數據例如自走裝置10或虛擬自走裝置模型205在三個軸向的角速度與加速度。 The
里程計103及里程計模擬單元203可以感測自走裝置或虛擬自走裝置模型205的巡航里程,若應用在以輪軸驅動的自走裝置10或虛擬自走裝置模型205上,里程計103及里程計模擬單元203即根據輪軸的圓周與轉速等數據計算自走裝置10或虛擬自走裝置模型205的里程數,也可得到方向數據。 The
模擬器20中設有以一電腦程式實現的模擬器演算法206,例如是gazebo程式本身具有的演算法,藉由模擬器演算法206取得虛擬自走裝置模型205於虛擬環境模型204的每一單位時間的姿態資訊以構成一最佳化軌跡,以及取得虛擬自走裝置模型205於虛擬環境模型204移動的一路徑上感測模組21產生的感測資料檔案。其中感測資料檔案包括複數對應於時間、位置與方向性的感測資料,根據圖1顯示的實施例,這些感測資料是由感測模組21中的光學雷達模擬單元201、慣性量測模擬單元202與里程計模擬單元203的至少其中之一所產生。 The
之後,這些感測資料檔案及最佳化軌跡將傳送至計算裝置22,例如模擬器可以通過有線或無線網路傳輸,或是以直接連線(如USB)將感測資料檔案及最佳化軌跡傳輸到計算裝置22,由其中記憶單元221儲存一或多個感測資料檔案,並以處理單元222執行後續軌跡規劃方法,包括將感測資料檔案導入一同步定位與地圖構建演算法(Simultaneous localization and mapping,SLAM)223以建構對應路徑的地圖,以及將感測資料檔案導入一製圖定位演算法(Cartographer Localization)224,取得每一單位時間的姿態資訊,並於地圖構成一參考軌跡,參考軌跡對應於現實環境中自走裝置於現實環境移動的移動軌跡。 After that, these sensing data files and optimized trajectories will be transmitted to the
通過計算裝置22比對參考軌跡及最佳化軌跡,判斷參考軌跡 是否趨近於最佳化軌跡,如判定參考軌跡趨近於最佳化軌跡,則將趨近最佳化軌跡的參考軌跡的製圖定位演算法參數導入真實自走裝置10,如判定參考軌跡未趨近於最佳化軌跡,則調整製圖定位演算法中的參數。 The
在模擬器20及計算裝置22中運行的軌跡規劃方法可參考圖2所示的流程實施例圖,並請一併參考圖1。 For the trajectory planning method running in the
如圖2所示步驟S301,上述模擬器20先根據自走裝置與所要運行的環境建立一虛擬自走裝置模型205與一虛擬環境模型204,其中虛擬自走裝置模型205設有與自走裝置10相同的一感測模組21,如步驟S303,模擬器20依據一模擬器演算法取得每一單位時間產生的姿態資訊,並於虛擬環境模型204構成一最佳化軌跡,以及步驟S305取得虛擬自走裝置模型205於虛擬環境模型204移動的路徑上感測模組21產生的感測資料檔案。 As shown in step S301 in FIG. 2, the
接著,如步驟S307,系統中計算裝置22取得由模擬器20產生的感測資料檔案後,由處理單元222將感測資料檔案導入同步定位與地圖構建演算法223,以建構對應上述路徑的地圖。 Then, in step S307, after the
在步驟S309中,由計算裝置22中的處理單元222將感測資料檔案導入製圖定位演算法224,如步驟S311,可演算取得每一單位時間的姿態資訊,姿態資訊包括時間、位置與方向性等資訊,而於上述所建構的地圖上構成參考軌跡,參考軌跡對應於自走裝置10於路徑的移動軌跡。 In step S309, the
在步驟S313中,比較由模擬器建構的最佳化軌跡與參考軌跡,目的是要得出兩條軌跡的分布特性,接著如步驟S315,判斷參考軌跡是否趨近於最佳化軌跡,其中採用的判斷方法例如一差異分布方法(difference distribution)。 In step S313, the optimized trajectory constructed by the simulator is compared with the reference trajectory, and the purpose is to obtain the distribution characteristics of the two trajectories. Then, in step S315, it is determined whether the reference trajectory is close to the optimized trajectory. The method of judging is for example a difference distribution method.
此時,系統可設一比對門檻,根據參考軌跡與最佳化軌跡之間的誤差值判斷參考軌跡是否趨近最佳化軌跡,而在上述差異分布的方法中,則是設有預設分布比例,作為檢測參考軌跡是否趨 近最佳化軌跡的依據。 At this time, the system can set a comparison threshold to determine whether the reference trajectory is approaching the optimized trajectory according to the error value between the reference trajectory and the optimized trajectory. In the above-mentioned difference distribution method, there is a preset The distribution ratio is used as the basis for detecting whether the reference trajectory approaches the optimized trajectory.
若判斷參考軌跡並未達到趨近最佳化軌跡的比對門檻,即參考軌跡並未趨近於最佳化軌跡,如步驟S317,則調整在步驟S309中製圖定位演算法中的參數,步驟回到S309,導入前述感測資料檔案並以調整參數後的製圖定位演算法演算得出的新的參考軌跡(步驟S311),再次比對新的參考軌跡及最佳化軌跡,直到參考軌跡達到趨近最佳化軌跡的比對門檻,即參考軌跡是趨近於最佳化軌跡。值得一提的是,在調整製圖定位演算法的參數時,可以以一低延遲的原則調整製圖定位演算法中的參數。於本實施例中,製圖定位演算法的參數舉例來說可以是指光學雷達模擬單元201、慣性量測模擬單元202或里程計模擬單元203所輸出的感測資料的權重、虛擬自走裝置模型205的摩擦係數、或虛擬環境模型204中不同的雜訊干擾其對應的權重等,但不以上述情形為限。 If it is determined that the reference trajectory has not reached the comparison threshold approaching the optimized trajectory, that is, the reference trajectory has not approached the optimized trajectory, in step S317, the parameters in the mapping positioning algorithm in step S309 are adjusted. Return to S309, import the aforementioned sensing data file and use the new reference trajectory calculated by the mapping positioning algorithm after adjusting the parameters (step S311), and compare the new reference trajectory and the optimized trajectory again until the reference trajectory reaches The comparison threshold for approaching the optimized trajectory, that is, the reference trajectory is approaching the optimized trajectory. It is worth mentioning that when adjusting the parameters of the mapping positioning algorithm, the parameters in the mapping positioning algorithm can be adjusted with a low-latency principle. In this embodiment, the parameters of the mapping positioning algorithm can be, for example, the weight of the sensing data output by the optical
若判斷參考軌跡已經趨近於最佳化軌跡,如步驟S319,則得出適用於自走裝置10的製圖定位演算法中的參數,並可將上述參數導入自走裝置10,使自走裝置10能夠依據所接收的參數,在實際於路徑走動時得到對應於前述趨近於最佳化軌跡的參考軌跡的移動軌跡。 If it is judged that the reference trajectory has approached the optimized trajectory, in step S319, the parameters in the mapping positioning algorithm suitable for the self-propelled
因此藉由本實施例所揭露之軌跡規劃方法,可先於計算裝置22反覆調整製圖定位演算法中的參數,判斷參考軌跡是否趨近最佳化軌跡,又因自走裝置10的參數關聯於製圖定位演算法中的參數,故,再將最接近最佳化軌跡的參考軌跡其對應的參數導入自走裝置10,如此自走裝置10能夠依據所接收的參數,在實際於路徑走動時得到對應於前述趨近於最佳化軌跡的參考軌跡的移動軌跡。 Therefore, with the trajectory planning method disclosed in this embodiment, the parameters in the mapping positioning algorithm can be adjusted repeatedly in the
此時可將前述得到的最佳化軌跡與多個參考軌跡繪製在同一平面座標,如圖3所示在相同路徑上的最佳化軌跡40以及參考軌跡401,軌跡規劃方法即從中比對出趨近最佳化軌跡40至一定程 度的參考軌跡401及其參數。 At this time, the optimized trajectory obtained above can be drawn on the same plane coordinates with multiple reference trajectories, as shown in Figure 3, the optimized
在圖2所述流程實施例中,可以採用差異分布方法(difference distribution)作為判斷參考軌跡是否趨近最佳化軌跡的比對方法,比對的方式可參考圖3所示,圖3所示為在軌跡規劃方法中以最佳化軌跡與參考軌跡在每個單位時間的姿態資訊誤差值的實施例示意圖,以及圖4所示在軌跡規劃方法中執行差異分布方法的流程實施例圖。 In the embodiment of the process shown in FIG. 2, the difference distribution method can be used as a comparison method for judging whether the reference trajectory is close to the optimized trajectory, and the comparison method can be referred to as shown in FIG. 3. It is a schematic diagram of an embodiment of optimizing the posture information error value of the trajectory and the reference trajectory in each unit time in the trajectory planning method, and the flowchart of the embodiment of the process of executing the difference distribution method in the trajectory planning method in FIG. 4.
圖3顯示的兩條軌跡中,有根據定位資訊繪製的一最佳化軌跡40與一參考軌跡401,在此差異分布方法中,會計算參考軌跡相對於最佳化軌跡在每個單位時間的姿態資訊誤差值,此例示意顯示出參考軌跡401在每個時間t0,t1,t2,...tn的參考位置p0,p1,p2,...pn,對比到最佳化軌跡40上相同時間的最佳化位置s0,s1,s2,...sn,可以得出各個時間的距離誤差d0,d1,d2,...dn,根據圖4步驟S501,同理可以計算出參考軌跡相對於最佳化軌跡在每單位時間的姿態資訊誤差值,也就是在每個單位時間的位置與方向差異,再如步驟S503,當系統將各姿態資訊誤差值區分為多個誤差範圍,即可以得出每個姿態資訊誤差值所在的誤差範圍,據此,如步驟S505,可以取得姿態資訊誤差值的複數誤差範圍的分布比例,這就是這兩條軌跡(即參考軌跡與最佳化軌跡)的差異分布。 In the two trajectories shown in Figure 3, there is an optimized
為了得到趨近最佳化軌跡的參考軌跡,系統可以設有一預設分布比例,所述差異分布方法即將每次得到的參考軌跡與最佳化軌跡之間形成的誤差範圍的分佈比例比對至此預設分布比例,如步驟S507,作為檢測參考軌跡是否已經趨近最佳化軌跡的依據。 In order to obtain the reference trajectory approaching the optimized trajectory, the system may be provided with a preset distribution ratio. The difference distribution method is to compare the distribution ratio of the error range formed between the reference trajectory obtained each time and the optimized trajectory. The preset distribution ratio, as in step S507, is used as a basis for detecting whether the reference trajectory has approached the optimized trajectory.
再如步驟S509,計算裝置22中運行的軌跡規劃方法將判斷前述誤差範圍中的最小誤差範圍的分布比例是否大於預設分布比例,若否,即目前最小誤差範圍的分布比例小於預設分布比例,也就是表示目前參考軌跡仍未趨近最佳化軌跡,即回到圖2的步驟,如S317,調整製圖定位演算法中的參數,再如步驟S309,導 入前述感測資料檔案並以調整參數後的製圖定位演算法演算,以重新取得每一單位時間的姿態資訊,得出一新的參考軌跡(步驟S311),再重新執行圖4所述之差異分布方法流程中的步驟,包括計算出新的參考軌跡相對於最佳化軌跡在每單位時間的姿態資訊誤差值(步驟S501)、得出每個姿態資訊誤差值所在的誤差範圍(步驟S503)、得出姿態資訊誤差值的複數誤差範圍的分布比例(步驟S505),以及取出誤差範圍的分佈比例的至少其中之一比對至此預設分布比例(步驟S507)判斷新的參考軌跡是否趨近最佳化軌跡(步驟S509)。 In step S509, the trajectory planning method running in the
若在步驟S509的判斷中,當最小誤差範圍的分布比例大於預設分布比例,表示參考軌跡已經趨近最佳化軌跡,即如圖2步驟S319,得出適用於自走裝置10的製圖定位演算法中的參數,並可將上述參數導入自走裝置10,使自走裝置10能夠依據所接收的參數,於路徑走動時得到對應於前述趨近於最佳化軌跡的參考軌跡的移動軌跡。 If in the judgment of step S509, when the distribution ratio of the minimum error range is greater than the preset distribution ratio, it means that the reference trajectory has approached the optimized trajectory, that is, step S319 in Figure 2 shows that the mapping positioning suitable for the self-propelled
舉例來說,得出每個單位時間的姿態資訊誤差值可以一距離為例,即計算兩條軌跡在同一單位時間的兩個點座標位置之間的誤差距離,可以形成複數個距離誤差值,如d1,d2,d3,...dn。系統可以設定多個誤差範圍,如D0(1公尺),D1(0.1公尺),D2(0.05公尺)以及D3(0.01公尺),如此計算兩條曲線在每個時間點的位置誤差在0.01公尺(D3)內有多少比例、誤差在0.05公尺(D2)內有多少比例、誤差在0.1公尺(D1)內有多少比例,以及誤差在1公尺(D0)內有多少比例,這些比例值即表現出對應的參考軌跡的曲線特性,從中可以評估出最趨近於最佳化軌跡的參考軌跡。 For example, a distance can be taken as an example to obtain the attitude information error value of each unit time, that is, to calculate the error distance between two point coordinate positions of two trajectories in the same unit time, a plurality of distance error values can be formed. Such as d1, d2, d3,...dn. The system can set multiple error ranges, such as D0 (1 m), D1 (0.1 m), D2 (0.05 m) and D3 (0.01 m), and calculate the position error of the two curves at each time point. How much is the ratio within 0.01 meter (D3), what is the ratio within 0.05 meter (D2), what is the ratio within 0.1 meter (D1), and how much is the error within 1 meter (D0) Ratio, these ratio values show the curve characteristics of the corresponding reference trajectory, from which the reference trajectory closest to the optimized trajectory can be evaluated.
在一實施例中,系統可以僅考量最小誤差範圍(如此例的D3),以此比對預設分布比例,作為判斷參考軌跡是否趨近最佳化軌跡的依據。若最小誤差範圍的分布比例小於預設分布比例,表 示需要繼續調整製圖定位演算法中的參數,再將感測資料檔案導入已調整參數的製圖定位演算法,以重新演算取得每一單位時間的姿態資訊,得出新的參考軌跡,並重新判斷新的參考軌跡是否趨近最佳化軌跡;若新的最小誤差範圍中的分布比例大於預設分布比例,表示新的參考軌跡已經趨近最佳化軌跡,則將已調整參數的製圖定位演算法中的參數導入自走裝置10。 In one embodiment, the system may only consider the minimum error range (D3 in this example) to compare the preset distribution ratio as a basis for judging whether the reference trajectory is close to the optimized trajectory. If the distribution ratio of the minimum error range is less than the preset distribution ratio, it means that you need to continue to adjust the parameters in the mapping and positioning algorithm, and then import the sensing data file into the mapping and positioning algorithm with the adjusted parameters to recalculate to obtain the per unit time Attitude information, obtain a new reference trajectory, and re-judge whether the new reference trajectory is close to the optimized trajectory; if the distribution ratio in the new minimum error range is greater than the preset distribution ratio, it means that the new reference trajectory has approached the most To optimize the trajectory, the parameters in the mapping positioning algorithm with the adjusted parameters are imported into the self-propelled
如此反覆以上流程,軌跡規劃方法可以有效降低參考軌跡與最佳化軌跡之間的誤差,有助於改善自走裝置的的定位導航。 Repeating the above process in this way, the trajectory planning method can effectively reduce the error between the reference trajectory and the optimized trajectory, which helps to improve the positioning and navigation of the self-propelled device.
綜上所述,在真實世界中,在定位與建圖時進行演算法參數的調校與驗證是很困難的,也需要購買昂貴的設備才有辦法取得最佳化軌跡。以上所揭露的軌跡規劃方法與系統的實施例為在模擬器內根據自走裝置與環境建立虛擬模型,可在模擬的環境中進行參數調校,包括建構最佳化軌跡,並收錄模擬器中感測資料,成為軌跡規劃的數據,據此可建構地圖與取得最佳化軌跡及參考軌跡,再判斷參考軌跡是否趨近於最佳化軌跡,用以檢測製圖定位演算法的參數優劣,使得自走裝置10能夠藉由在計算裝置22中快速取得參數調整方向。如此,所述採用模擬器進行軌跡規劃的方法與系統可以在較短時間內取得大量的數據,能取代習知技術中需要架設環境產生的成本,並且可以迴避真實環境中變動因素多個困擾,可以有效收歛實驗結果。 To sum up, in the real world, it is very difficult to adjust and verify the algorithm parameters during positioning and mapping. It also requires the purchase of expensive equipment to obtain an optimized trajectory. The embodiment of the trajectory planning method and system disclosed above is to create a virtual model based on the self-propelled device and the environment in the simulator, and the parameters can be adjusted in the simulated environment, including the construction of the optimized trajectory and the inclusion in the simulator The sensed data becomes the data for trajectory planning. Based on this, the map can be constructed and the optimized trajectory and reference trajectory can be obtained, and then it can be judged whether the reference trajectory is close to the optimized trajectory. The self-propelled
以上所述僅為本發明之較佳可行實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred and feasible embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.
20‧‧‧模擬器 20‧‧‧Simulator
21‧‧‧感測模組 21‧‧‧Sensing Module
201‧‧‧光學雷達模擬單元 201‧‧‧Optical radar simulation unit
202‧‧‧慣性量測模擬單元 202‧‧‧Inertia measurement simulation unit
203‧‧‧里程計模擬單元 203‧‧‧Odometer simulation unit
204‧‧‧虛擬環境模型 204‧‧‧Virtual Environment Model
205‧‧‧虛擬自走裝置模型 205‧‧‧Virtual self-propelled device model
206‧‧‧模擬器演算法 206‧‧‧Simulator algorithm
22‧‧‧計算裝置 22‧‧‧Computer
221‧‧‧記憶單元 221‧‧‧Memory Unit
222‧‧‧處理單元 222‧‧‧Processing unit
224‧‧‧製圖定位演算法 224‧‧‧Mapping positioning algorithm
223‧‧‧同步定位與地圖構建演算法 223‧‧‧Synchronous positioning and map construction algorithm
10‧‧‧自走裝置 10‧‧‧Self-propelled device
101‧‧‧光學雷達 101‧‧‧Optical radar
102‧‧‧慣性量測單元 102‧‧‧Inertial measurement unit
103‧‧‧里程計 103‧‧‧Odometer
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107130115A TWI701535B (en) | 2018-08-29 | 2018-08-29 | Method and system for planning trajectory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107130115A TWI701535B (en) | 2018-08-29 | 2018-08-29 | Method and system for planning trajectory |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202009622A TW202009622A (en) | 2020-03-01 |
TWI701535B true TWI701535B (en) | 2020-08-11 |
Family
ID=70766356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107130115A TWI701535B (en) | 2018-08-29 | 2018-08-29 | Method and system for planning trajectory |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI701535B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201124704A (en) * | 2009-08-25 | 2011-07-16 | Tele Atlas Bv | A method of creating map data |
TWI378222B (en) * | 2007-09-17 | 2012-12-01 | Mitac Int Corp | Navigation provision system and framework for providing content to an end user |
TW201537532A (en) * | 2014-03-28 | 2015-10-01 | Trend Go Com Inc | Time-based GIS system, terminal device, and a method for map generation |
TW201727597A (en) * | 2012-06-05 | 2017-08-01 | 蘋果公司 | Method, machine-readable medium and electronic device for presenting a map |
TW201821763A (en) * | 2016-12-07 | 2018-06-16 | 財團法人車輛研究測試中心 | Automatic vehicle parking assistance correcting system with environmental detection and correcting method thereof |
-
2018
- 2018-08-29 TW TW107130115A patent/TWI701535B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI378222B (en) * | 2007-09-17 | 2012-12-01 | Mitac Int Corp | Navigation provision system and framework for providing content to an end user |
TW201124704A (en) * | 2009-08-25 | 2011-07-16 | Tele Atlas Bv | A method of creating map data |
TW201727597A (en) * | 2012-06-05 | 2017-08-01 | 蘋果公司 | Method, machine-readable medium and electronic device for presenting a map |
TW201537532A (en) * | 2014-03-28 | 2015-10-01 | Trend Go Com Inc | Time-based GIS system, terminal device, and a method for map generation |
TW201821763A (en) * | 2016-12-07 | 2018-06-16 | 財團法人車輛研究測試中心 | Automatic vehicle parking assistance correcting system with environmental detection and correcting method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202009622A (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107239076B (en) | AGV laser SLAM method based on virtual scanning and distance measurement matching | |
CN107562048B (en) | A dynamic obstacle avoidance control method based on lidar | |
JP7130062B2 (en) | Route determination method | |
KR102303432B1 (en) | System for mapless navigation based on dqn and slam considering characteristic of obstacle and processing method thereof | |
KR20200096410A (en) | Feature Extraction based on Deep Learning for LIDAR Position Estimation of Autonomous Vehicles | |
WO2019076044A1 (en) | Mobile robot local motion planning method and apparatus and computer storage medium | |
KR20200096408A (en) | LIDAR location estimation in autonomous vehicles using 3D CNN network to infer a solution | |
CN102915039A (en) | Multi-robot combined target searching method of animal-simulated space cognition | |
CN107741234A (en) | The offline map structuring and localization method of a kind of view-based access control model | |
CN111258316A (en) | Robot trajectory planning method for trend perception in dynamic environment | |
CN111736592A (en) | Path determination device, robot, and path determination method | |
JP2016024598A (en) | Control method of autonomous mobile device | |
CN114815851A (en) | Robot following method, device, electronic device and storage medium | |
CN106292656A (en) | A kind of environmental modeling method and device | |
US11467592B2 (en) | Route determination method | |
CN116858269A (en) | Tobacco industry finished product warehouse flat warehouse inventory robot path optimization method based on laser SLAM | |
CN117473693A (en) | Automatically generating corner scene data for adjusting an autonomous vehicle | |
TWI701535B (en) | Method and system for planning trajectory | |
CN111673731B (en) | path determination method | |
CN110857861B (en) | Trajectory Planning Method and System | |
CN118095482B (en) | Automatic driving algorithm training method and device | |
CN111673730A (en) | path determination method | |
CN116295497A (en) | Path generation method, device, robot and storage medium | |
CN119860784A (en) | AGV path planning method based on two-dimensional and three-dimensional data | |
Brindza et al. | Lidar-Based Mobile Mapping System for an Indoor Environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |