[go: up one dir, main page]

TWI795765B - Non-contact physiological signal measurement apparatus, system and method - Google Patents

Non-contact physiological signal measurement apparatus, system and method Download PDF

Info

Publication number
TWI795765B
TWI795765B TW110115299A TW110115299A TWI795765B TW I795765 B TWI795765 B TW I795765B TW 110115299 A TW110115299 A TW 110115299A TW 110115299 A TW110115299 A TW 110115299A TW I795765 B TWI795765 B TW I795765B
Authority
TW
Taiwan
Prior art keywords
signal
heartbeat
estimated
skin
physiological
Prior art date
Application number
TW110115299A
Other languages
Chinese (zh)
Other versions
TW202241343A (en
Inventor
呂學富
蔡明恭
Original Assignee
奧比森科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧比森科技股份有限公司 filed Critical 奧比森科技股份有限公司
Priority to TW110115299A priority Critical patent/TWI795765B/en
Publication of TW202241343A publication Critical patent/TW202241343A/en
Application granted granted Critical
Publication of TWI795765B publication Critical patent/TWI795765B/en

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Electrotherapy Devices (AREA)

Abstract

A non-contact physiological signal measurement apparatus, system and method are provided. The non-contact physiological signal measurement apparatus includes a storage device, an image signal sensing element, and a processor. The storage device is used to store a plurality of modules. The image signal sensing element is used to obtain continuous images. The processor is coupled to the image signal sensing element and the storage device. The processor is used to execute the plurality of modules to detect skin images from the continuous images, and extract a skin reflection signal from the skin images in the continuous images. The processor calculates a photoplethysmography signal based on the skin reflection signal, and calculates physiological information based on the photoplethysmography signal.

Description

非接觸式生理訊號量測設備、系統及方法Non-contact physiological signal measurement equipment, system and method

本發明係關於生理資訊辨識的技術領域,特別是指提供非接觸式、全面性生理資訊的一種量測設備、系統及其方法。 The present invention relates to the technical field of physiological information identification, in particular to a measuring device, system and method for providing non-contact and comprehensive physiological information.

隨著醫療水平的提升,民眾對於健康的關注同樣隨之提升。對於身體的健康狀態最基本的評估方式,就是透過量測生理特徵值。也就是說,經由生理特徵值的數據,來判斷目前的健康狀態。特別是,患有慢性病的患者,尤其需要時刻監測生理特徵值。然而,現行的生理特徵量測設備,通常需要將量測設備配戴於待量測者的身體的某個部位上,才能採集數據。 With the improvement of medical level, people's attention to health also increases. The most basic way to evaluate the health status of the body is through the measurement of physiological characteristic values. That is to say, the current state of health is judged through the data of physiological characteristic values. In particular, patients with chronic diseases need to monitor their physiological characteristic values at all times. However, the current physiological characteristic measurement equipment usually needs to wear the measurement equipment on a certain part of the body of the person to be measured in order to collect data.

在另一方面,隨著高齡化的現象,長照的需求也越來越多。對此,長照往往需要透過大量的人力來進行高齡者的即時照護。因此,長照人力的不足也是目前長照的主要問題之一。有鑑於此,如何建立自動化的照護系統,以降低長照人力的需求以及提供即時的照護功能,以下將提出幾個實施例的解決方案。 On the other hand, with the phenomenon of aging, the demand for long-term care is also increasing. In this regard, long-term care often requires a large amount of manpower to provide immediate care for the elderly. Therefore, the shortage of long-term care manpower is also one of the main problems of long-term care. In view of this, how to establish an automated care system to reduce the demand for long-term care manpower and provide immediate care functions, the following will propose solutions in several embodiments.

本發明提供一種非接觸式生理訊號量測設備、系統及方法,可透過非接觸式的方式來有效地取得生理參數。 The present invention provides a non-contact physiological signal measuring device, system and method, which can effectively acquire physiological parameters in a non-contact manner.

本發明的非接觸式生理訊號量測設備包括儲存裝置、影像訊號感測元件以及處理器。儲存裝置用以儲存多個模組。影像訊號感測元件用以取得連續影像。處理器耦接影像訊號感測元件以及儲存裝置。處理器用以執行所述多個模組,以從連續影像偵測出皮膚影像,並且從連續影像中的皮膚影像擷取出皮膚反射訊號,並且處理器根據皮膚反射訊號計算出光體積變化描記訊號。處理器根據光體積變化描記訊號計算出生理資訊,並且生理資訊包括心跳估計曲線、心跳變異估計曲線、呼吸估計值、血氧估計值以及血壓估計值的至少其中之一。 The non-contact physiological signal measuring device of the present invention includes a storage device, an image signal sensing element and a processor. The storage device is used for storing multiple modules. The image signal sensing element is used to obtain continuous images. The processor is coupled to the image signal sensing element and the storage device. The processor is used to execute the multiple modules to detect the skin image from the continuous image, and extract the skin reflection signal from the skin image in the continuous image, and the processor calculates the photoplethysmography signal according to the skin reflection signal. The processor calculates physiological information according to the photoplethysmographic signal, and the physiological information includes at least one of an estimated heartbeat curve, an estimated heartbeat variation curve, an estimated respiration value, an estimated blood oxygen value, and an estimated blood pressure value.

本發明的非接觸式生理訊號量測系統包括監控主機以及多個量測設備。多個量測設備耦接監控主機。所述多個量測設備用以對於多個量測對象進行非接觸式生理訊號量測,並且用以決定是否輸出對應的警示訊號至監控主機,以使監控主機監控所述多個生理資訊以及對應的警示訊號。所述多個量測設備的每一個用以偵測對應的量測對象的連續影像中各別的皮膚影像,並從皮膚影像中擷取出皮膚反射訊號,並且將皮膚反射訊號計算出光體積變化描記訊號。所述多個量測設備的每一個將光體積變化描記訊號計算出對應的生理資訊,其中生理資訊包括心跳估計曲線、心跳變異估計曲線、呼吸估計值、血氧估計值以及血壓估計值的 至少其中之一。 The non-contact physiological signal measuring system of the present invention includes a monitoring host and a plurality of measuring devices. Multiple measuring devices are coupled to the monitoring host. The plurality of measurement devices are used for non-contact physiological signal measurement of a plurality of measurement objects, and are used to determine whether to output corresponding warning signals to the monitoring host, so that the monitoring host monitors the plurality of physiological information and corresponding warning signs. Each of the plurality of measuring devices is used to detect a respective skin image in the continuous images of the corresponding measurement object, extract the skin reflection signal from the skin image, and calculate the photoplethysmography from the skin reflection signal signal. Each of the plurality of measurement devices calculates corresponding physiological information from the photoplethysmographic signal, wherein the physiological information includes an estimated heartbeat curve, an estimated heartbeat variation curve, an estimated respiration value, an estimated blood oxygen value, and an estimated blood pressure value. at least one of them.

本發明的非接觸式生理訊號量測方法包括以下步驟:透過影像訊號感測元件取得連續影像;從連續影像偵測出皮膚影像,並且從連續影像中的皮膚影像擷取出皮膚反射訊號;根據皮膚反射訊號計算出光體積變化描記訊號;以及根據光體積變化描記訊號計算出生理資訊,其中生理資訊包括心跳估計曲線、心跳變異估計曲線、呼吸估計值、血氧估計值以及血壓估計值的至少其中之一。 The non-contact physiological signal measurement method of the present invention includes the following steps: obtaining continuous images through the image signal sensing element; detecting skin images from the continuous images, and extracting skin reflection signals from the skin images in the continuous images; calculating a photoplethysmographic signal from the reflected signal; and calculating physiological information based on the photoplethysmographic signal, wherein the physiological information includes at least one of an estimated heartbeat curve, an estimated heartbeat variation curve, an estimated respiration value, an estimated blood oxygen value, and an estimated blood pressure value one.

基於上述,本發明的非接觸式生理訊號量測設備、系統及方法可提供非接觸式的生理訊號量測功能,並且可自動地產生一個或多個量測目標的多種生理訊號生理資訊。 Based on the above, the non-contact physiological signal measurement device, system and method of the present invention can provide a non-contact physiological signal measurement function, and can automatically generate various physiological signal physiological information of one or more measurement targets.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

100:非接觸式生理訊號量測設備 100: Non-contact physiological signal measurement equipment

110:處理器 110: Processor

120:影像訊號感測元件 120: image signal sensing element

130:儲存裝置 130: storage device

300_1~300_N:連續影像 300_1~300_N: continuous image

301:人體皮膚區域 301: Human skin area

302:環境區域 302:Environmental area

310:心跳估計曲線 310: heartbeat estimation curve

320:心跳變異估計曲線 320:Heartbeat variation estimation curve

330:呼吸估計值 330: respiration estimate

340:血氧估計值 340: blood oxygen estimate

350:血壓估計值 350: blood pressure estimate

401:皮膚反射訊號 401: Skin reflex signal

402:等間距反射訊號 402: Equidistant reflection signal

403:光體積變化描記訊號 403: Photoplethysmography signal

410:皮膚反射訊號擷取模組 410: Skin reflection signal acquisition module

411:皮膚偵測單元 411: Skin detection unit

412:皮膚反射訊號擷取單元 412: Skin reflection signal acquisition unit

420:皮膚反射訊號運算模組 420: Skin reflection signal calculation module

421:等間隔訊號取樣單元 421: equal interval signal sampling unit

422:訊號轉換單元 422: Signal conversion unit

430:生理訊號分析模組 430: Physiological signal analysis module

431:心跳訊號計算單元 431: Heartbeat signal calculation unit

432:呼吸訊號計算單元 432:Respiratory signal calculation unit

433:血氧訊號計算單元 433: blood oxygen signal calculation unit

434:血壓訊號計算單元 434: Blood pressure signal calculation unit

600:非接觸式生理訊號量測設備 600: Non-contact physiological signal measurement equipment

610:監控主機 610: Monitor host

620_1~620_N:量測設備 620_1~620_N: Measuring equipment

S210~S240、S510~S593:步驟 S210~S240, S510~S593: steps

圖1是本發明的一實施例的非接觸式生理訊號量測設備的示意圖。 FIG. 1 is a schematic diagram of a non-contact physiological signal measuring device according to an embodiment of the present invention.

圖2是本發明的一實施例的非接觸式生理訊號量測方法的流程圖。 FIG. 2 is a flowchart of a non-contact physiological signal measurement method according to an embodiment of the present invention.

圖3是本發明的一實施例的量測示意圖。 FIG. 3 is a schematic measurement diagram of an embodiment of the present invention.

圖4是本發明的一實施例的多個模組的示意圖。 FIG. 4 is a schematic diagram of a plurality of modules according to an embodiment of the present invention.

圖5是本發明的另一實施例的非接觸式生理訊號量測方法的流程圖。 FIG. 5 is a flowchart of a non-contact physiological signal measurement method according to another embodiment of the present invention.

圖6是本發明的一實施例的非接觸式生理訊號量測系統的示意圖。 FIG. 6 is a schematic diagram of a non-contact physiological signal measurement system according to an embodiment of the present invention.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的原件/構件/步驟,係代表相同或類似部件。 In order to make the content of the present invention more comprehensible, the following specific embodiments are taken as examples in which the present invention can actually be implemented. In addition, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1是本發明一實施例的非接觸式生理訊號量測設備的示意圖。參考圖1,非接觸式生理訊號量測設備100可包括處理器110、影像訊號感測元件120以及儲存裝置130。處理器110耦接影像訊號感測元件120以及儲存裝置130。在本實施例中,儲存裝置130可用以儲存多個模組,以實現本發明各實施例的影像處理、分析及訊號處理。影像訊號感測元件120可包括可見光(Visible light)及/或紅外光(Infrared;IR)攝影機。在本實施例中,非接觸式生理訊號量測設備100可利用影像訊號感測元件120以非接觸式的方式來量測量測目標的生理資訊。 FIG. 1 is a schematic diagram of a non-contact physiological signal measuring device according to an embodiment of the present invention. Referring to FIG. 1 , the non-contact physiological signal measurement device 100 may include a processor 110 , an image signal sensing element 120 and a storage device 130 . The processor 110 is coupled to the image signal sensing element 120 and the storage device 130 . In this embodiment, the storage device 130 can be used to store multiple modules to realize image processing, analysis and signal processing in various embodiments of the present invention. The image signal sensing element 120 may include a visible light (Visible light) and/or an infrared light (Infrared; IR) camera. In this embodiment, the non-contact physiological signal measurement device 100 can use the image signal sensing element 120 to measure the physiological information of the measurement target in a non-contact manner.

在本實施例中,處理器110可例如包括中央處理器(Central Processing Unit;CPU)、微處理器(Microprocessor Control Unit;MCU)或現場可程式閘陣列(Field Programmable Gate Array;FPGA),但本發明不以此為限。處理器110可驅動並控制影像訊號感測元件120,並且處理處理器110可透過存取儲存裝置130以及執行多個模組。 In this embodiment, the processor 110 may include, for example, a central processing unit (Central Processing Unit; CPU), a microprocessor (Microprocessor Control Unit; MCU) or a field programmable gate array (Field Programmable Gate Array; FPGA), but the present invention is not limited thereto. The processor 110 can drive and control the image signal sensing element 120 , and the processing processor 110 can access the storage device 130 and execute multiple modules.

在本實施例中,儲存裝置130可例如包括隨機存取記憶體(Random-Access Memory;RAM)、唯讀記憶體(Read-Only Memory;ROM)、光碟(Optical disc)、磁碟(Magnetic disk)、硬驅動機(Hard drive)、固態驅動機(Solid-state drive)、快閃驅動機(Flash drive)、安全數位(Security digital;SD)卡、記憶條(Memory stick)、緊密快閃(Compact flash;CF)卡或任何類型的儲存裝置,但本發明不以此為限。在本實施例中,儲存裝置130可用於儲存多個模組(軟體程式或韌體)以及本發明各實施例所述之影像資料等。 In this embodiment, the storage device 130 may include, for example, random access memory (Random-Access Memory; RAM), read-only memory (Read-Only Memory; ROM), optical disc (Optical disc), magnetic disk (Magnetic disk) ), Hard drive, Solid-state drive, Flash drive, Security digital (SD) card, Memory stick, Compact flash ( Compact flash; CF card or any type of storage device, but the present invention is not limited thereto. In this embodiment, the storage device 130 can be used to store multiple modules (software programs or firmware) and image data described in various embodiments of the present invention.

在本實施例中,非接觸式生理訊號量測設備100可為一種可攜帶式的感測設備,以例如供使用者可手持非接觸式生理訊號量測設備100來對一個或多個感測對象以非接觸式地感測(影像感測)的方式來量測生理資訊。或者,在一實施例中,非接觸式生理訊號量測設備100可為一種固定式的監控設備。影像訊號感測元件120可例如設置在病床周圍,以即時監控病床上的感測對象。 In this embodiment, the non-contact physiological signal measurement device 100 can be a portable sensing device, for example, the user can hold the non-contact physiological signal measurement device 100 to measure one or more sensing devices. The object measures physiological information in a non-contact sensing (image sensing) manner. Alternatively, in an embodiment, the non-contact physiological signal measurement device 100 may be a fixed monitoring device. The image signal sensing element 120 can be disposed around the bed, for example, to monitor the sensing objects on the bed in real time.

圖2是本發明的一實施例的非接觸式生理訊號量測方法的流程圖。圖3是本發明的一實施例的量測示意圖。參考圖1至圖3,非接觸式生理訊號量測設備100可執行如圖2的步驟 S210~S240,以實現非接觸式生理訊號量測。在步驟S210,非接觸式生理訊號量測設備100可透過影像訊號感測元件120取得連續影像300_1~300_N,其中N為正整數。連續影像300_1~300_N可包括多個可見光影像及/或多個紅外光影像。在步驟S220,非接觸式生理訊號量測設備100可從連續影像300_1~300_N偵測出皮膚影像,並且從連續影像中的皮膚影像擷取出皮膚反射訊號。連續影像300_1~300_N中各別包括人體皮膚區域301以及環境區域302。在步驟S230,非接觸式生理訊號量測設備100可根據皮膚反射訊號計算出光體積變化描記訊號(Photoplethysmography,PPG)。在步驟S240,非接觸式生理訊號量測設備100可根據光體積變化描記訊號計算出生理資訊。在本實施例中,生理資訊可包括心跳估計曲線310、心跳變異估計曲線320、呼吸估計值330、血氧估計值340以及血壓估計值350的至少其中之一。或者,生理資訊可包括心跳估計曲線310、心跳變異估計曲線320、呼吸估計值330、血氧估計值340以及血壓估計值350的至少其中之二者的組合資訊。因此,本實施例的非接觸式生理訊號量測設備100可實現自動化(或稱被動式)的非接觸式生理訊號量測,而無需使用者手動操作量測設備。另外,關於本實施例的人體皮膚區域301、光體積變化描記訊號以及生理資訊的產生方式,以下將提出一個範例實施例來詳細說明之。 FIG. 2 is a flowchart of a non-contact physiological signal measurement method according to an embodiment of the present invention. FIG. 3 is a schematic measurement diagram of an embodiment of the present invention. Referring to FIG. 1 to FIG. 3, the non-contact physiological signal measurement device 100 can perform the steps shown in FIG. 2 S210-S240, to realize non-contact physiological signal measurement. In step S210 , the non-contact physiological signal measuring device 100 can obtain continuous images 300_1 - 300_N through the image signal sensing element 120 , wherein N is a positive integer. The consecutive images 300_1˜300_N may include a plurality of visible light images and/or a plurality of infrared light images. In step S220, the non-contact physiological signal measurement device 100 can detect skin images from the continuous images 300_1˜300_N, and extract skin reflection signals from the skin images in the continuous images. The continuous images 300_1 - 300_N respectively include a human skin area 301 and an environment area 302 . In step S230, the non-contact physiological signal measurement device 100 can calculate a photoplethysmography (PPG) signal according to the skin reflection signal. In step S240, the non-contact physiological signal measurement device 100 can calculate physiological information according to the photoplethysmographic signal. In this embodiment, the physiological information may include at least one of an estimated heartbeat curve 310 , an estimated heartbeat variation curve 320 , an estimated respiration value 330 , an estimated blood oxygen value 340 , and an estimated blood pressure value 350 . Alternatively, the physiological information may include combined information of at least two of the estimated heartbeat curve 310 , the estimated heartbeat variation curve 320 , the estimated respiration value 330 , the estimated blood oxygen value 340 , and the estimated blood pressure value 350 . Therefore, the non-contact physiological signal measurement device 100 of this embodiment can realize automatic (or called passive) non-contact physiological signal measurement without the need for the user to manually operate the measurement device. In addition, an exemplary embodiment will be presented below to describe in detail how to generate the human skin region 301 , the photoplethysmography signal, and the physiological information in this embodiment.

圖4是本發明的一實施例的多個模組的示意圖。圖5是本發明的另一實施例的非接觸式生理訊號量測方法的流程圖。參 考圖1、圖2、圖4及圖5,在本發明的一些實施例中,儲存裝置130可包括皮膚反射訊號擷取模組410、皮膚反射訊號運算模組420以及生理訊號分析模組430。在本實施例中,皮膚反射訊號擷取模組410可包括皮膚偵測單元411以及皮膚反射訊號擷取單元412。皮膚反射訊號運算模組420可包括等間隔訊號取樣單元421以及訊號轉換單元422。訊號轉換單元422可為光體積變化描記(Photoplethysmography,PPG)單元、遠程光體積變化描記(Remote-Photoplethysmography,rPPG)單元或影像式光體積變化描記(Image-Photoplethysmography,iPPG)單元。生理訊號分析模組430可包括心跳訊號計算單元431、呼吸訊號計算單元432、血氧訊號計算單元433以及血壓訊號計算單元434。本發明的非接觸式生理訊號量測設備100可透過執行上述多個模組與單元的軟體程式、韌體或演算法,來實現本發明所述的人體皮膚區域301的影像辨識操作、光體積變化描記訊號的訊號產生操作以及生理資訊的資訊產生操作。然而,本發明的儲存裝置130可不限於儲存上述多個模組與單元的軟體程式、韌體或演算法。在本發明的另一些實施例中,非接觸式生理訊號量測設備100可也透過執行其他已知軟體程式、韌體或演算法來實現本發明所述的影像辨識操作、訊號產生操作以及資訊產生操作。 FIG. 4 is a schematic diagram of a plurality of modules according to an embodiment of the present invention. FIG. 5 is a flowchart of a non-contact physiological signal measurement method according to another embodiment of the present invention. ginseng Referring to Figure 1, Figure 2, Figure 4 and Figure 5, in some embodiments of the present invention, the storage device 130 may include a skin reflection signal acquisition module 410, a skin reflection signal calculation module 420, and a physiological signal analysis module 430 . In this embodiment, the skin reflection signal acquisition module 410 may include a skin detection unit 411 and a skin reflection signal acquisition unit 412 . The skin reflection signal calculation module 420 may include an equally spaced signal sampling unit 421 and a signal conversion unit 422 . The signal converting unit 422 may be a Photoplethysmography (PPG) unit, a Remote-Photoplethysmography (rPPG) unit or an Image-Photoplethysmography (iPPG) unit. The physiological signal analysis module 430 may include a heartbeat signal calculation unit 431 , a respiratory signal calculation unit 432 , a blood oxygen signal calculation unit 433 , and a blood pressure signal calculation unit 434 . The non-contact physiological signal measurement device 100 of the present invention can realize the image recognition operation and light volume of the human skin area 301 described in the present invention by executing the software programs, firmware or algorithms of the above-mentioned multiple modules and units. A signal generation operation of the change tracing signal and an information generation operation of the physiological information. However, the storage device 130 of the present invention is not limited to storing software programs, firmware or algorithms of the above-mentioned multiple modules and units. In some other embodiments of the present invention, the non-contact physiological signal measurement device 100 can also realize the image recognition operation, signal generation operation and information described in the present invention by executing other known software programs, firmware or algorithms. generate operations.

在本實施例中,非接觸式生理訊號量測設備100可執行如圖5的步驟S510~S593,在步驟S510,處理器110可取得連續影像300_1~300_N。在步驟S520,處理器110可執行皮膚反射訊 號擷取模組410的皮膚偵測單元411,以從連續影像300_1~300_N偵測出皮膚影像。皮膚偵測單元411可為深度學習(Deep Learning)模組,例如神經網路(Neural Network,NN)模組,且經訓練後可辨識影像中的人體區域,其中特別是可辨識人體的皮膚區域。在步驟S530,處理器110可執行皮膚反射訊號擷取模組410的皮膚反射訊號擷取單元412,以從連續影像300_1~300_N擷取出皮膚反射訊號。皮膚反射訊號擷取模組410可將皮膚反射訊號401提供至皮膚反射訊號運算模組420。 In this embodiment, the non-contact physiological signal measurement device 100 may execute steps S510-S593 as shown in FIG. 5 , and in step S510, the processor 110 may acquire continuous images 300_1-300_N. In step S520, the processor 110 may execute the skin reflection signal The skin detection unit 411 of the number extraction module 410 detects skin images from the continuous images 300_1~300_N. The skin detection unit 411 can be a deep learning (Deep Learning) module, such as a neural network (Neural Network, NN) module, and can recognize human body regions in images after training, especially skin regions of human bodies can be recognized . In step S530, the processor 110 may execute the skin reflection signal acquisition unit 412 of the skin reflection signal acquisition module 410 to extract the skin reflection signals from the continuous images 300_1˜300_N. The skin reflection signal acquisition module 410 can provide the skin reflection signal 401 to the skin reflection signal calculation module 420 .

在步驟S540,處理器110可執行皮膚反射訊號運算模組420的等間隔訊號取樣單元421,以從時間間隔為非等間距的皮膚反射訊號401之中轉換出具有等時間間距的等間距反射訊號402。在步驟S550,處理器110可執行皮膚反射訊號運算模組420的訊號轉換單元422,以將等間距反射訊號402根據不同波長訊號重組出具備脈搏資訊的光體積變化描記訊號403。皮膚反射訊號運算模組420可將光體積變化描記訊號403提供至生理訊號分析模組430。 In step S540, the processor 110 can execute the equidistant signal sampling unit 421 of the skin reflection signal calculation module 420 to convert the equidistant reflection signals with equal time intervals from the skin reflection signals 401 whose time intervals are not equidistant. 402. In step S550, the processor 110 can execute the signal conversion unit 422 of the skin reflection signal calculation module 420 to reconstruct the equidistant reflection signal 402 into a photoplethysmographic signal 403 with pulse information according to different wavelength signals. The skin reflection signal calculation module 420 can provide the photoplethysmography signal 403 to the physiological signal analysis module 430 .

在步驟S561,處理器110可執行生理訊號分析模組430的心跳訊號計算單元431,以將光體積變化描記訊號403轉換至頻率域後進行帶狀過濾運算,以取出振幅最高的頻率作為心跳估計值。在步驟S562,心跳訊號計算單元431可將心跳估計值鄰近部分的訊號轉換回時間域,以產生心跳估計曲線。在步驟S563,心跳訊號計算單元431可根據心跳估計曲線計算出心跳強度變異曲 線(強度變異)、心跳振幅變異曲線(振幅變異)以及心跳頻率變異曲線(頻率變異)。處理器110可將心跳強度變異曲線、心跳振幅變異曲線以及心跳頻率變異曲線提供至呼吸訊號計算單元432。在步驟S564,心跳訊號計算單元431可輸出心跳估計曲線以及心跳變異估計曲線。心跳變異估計曲線包括上述的心跳強度變異曲線、心跳振幅變異曲線以及心跳頻率變異曲線的至少其中之一。 In step S561, the processor 110 can execute the heartbeat signal calculation unit 431 of the physiological signal analysis module 430 to convert the photoplethysmography signal 403 into the frequency domain and perform band filtering operation to extract the frequency with the highest amplitude as the heartbeat estimate. value. In step S562, the heartbeat signal calculation unit 431 can transform the signal of the adjacent part of the estimated heartbeat value back to the time domain to generate an estimated heartbeat curve. In step S563, the heartbeat signal calculation unit 431 can calculate the heartbeat intensity variation curve according to the heartbeat estimation curve Line (intensity variation), heartbeat amplitude variation curve (amplitude variation), and heartbeat frequency variation curve (frequency variation). The processor 110 can provide the variation curve of the heartbeat intensity, the variation curve of the heartbeat amplitude and the variation curve of the heartbeat frequency to the respiratory signal calculation unit 432 . In step S564, the heartbeat signal calculation unit 431 can output the estimated heartbeat curve and the estimated heartbeat variation curve. The estimated heartbeat variation curve includes at least one of the aforementioned heartbeat intensity variation curve, heartbeat amplitude variation curve, and heartbeat frequency variation curve.

在步驟S571,處理器110可執行生理訊分析模組430的呼吸訊號計算單元432,以根據心跳強度變異曲線、心跳振幅變異曲線以及心跳頻率變異曲線來計算出心跳強度變異曲線、心跳振幅變異曲線以及心跳頻率變異曲線在單位時間內的各別的波峰數。在步驟S572,呼吸訊號計算單元432可分別根據心跳強度變異曲線、心跳振幅變異曲線以及心跳頻率變異曲線在單位時間內的各別的波峰數產生三種呼吸估計值。在步驟S573,呼吸訊號計算單元432可輸出呼吸估計值330(輸出上述至少一種呼吸估計值)。 In step S571, the processor 110 can execute the respiratory signal calculation unit 432 of the physiological signal analysis module 430 to calculate the heartbeat intensity variation curve, the heartbeat amplitude variation curve according to the heartbeat intensity variation curve, the heartbeat amplitude variation curve, and the heartbeat frequency variation curve And the respective peak numbers of the heartbeat frequency variation curve per unit time. In step S572, the respiration signal calculation unit 432 can generate three respiration estimation values according to the respective peak numbers of the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency variation curve in a unit time. In step S573, the respiration signal calculation unit 432 may output the estimated respiration value 330 (output at least one of the above-mentioned estimated respiration values).

在步驟S581,處理器110可執行生理訊分析模組430的血氧訊號計算單元433,以從光體積變化描記訊號403擷取具有不同波長的第一參考訊號以及第二參考訊號。在步驟S582,血氧訊號計算單元433可將第一參考訊號以及第二參考訊號的兩個訊號值的比值乘以預設係數後取得到與最大血氧濃度的差異值,並且將最大血氧濃度減去差異值,以產生血氧估計值。在步驟S583, 血氧訊號計算單元433可輸出血氧估計值。 In step S581 , the processor 110 can execute the blood oxygen signal calculation unit 433 of the physiological signal analysis module 430 to extract the first reference signal and the second reference signal with different wavelengths from the photoplethysmography signal 403 . In step S582, the blood oxygen signal calculation unit 433 can multiply the ratio of the two signal values of the first reference signal and the second reference signal by a preset coefficient to obtain the difference with the maximum blood oxygen concentration, and calculate the maximum blood oxygen concentration The difference is subtracted from the concentration to produce a blood oxygen estimate. In step S583, The blood oxygen signal calculation unit 433 can output an estimated blood oxygen value.

在步驟S591,處理器110可執行血壓訊號計算單元434,以對心跳估計曲線作二次微分,以產生第三參考訊號。在步驟S592,血壓訊號計算單元434可對第三參考訊號中每相鄰的兩波谷區間取其訊號特徵,且透過回歸方法將訊號特徵轉為血壓訊號,並且根據血壓訊號產生血壓估計值。在步驟S593,血壓訊號計算單元434可輸出血壓估計值。 In step S591, the processor 110 can execute the blood pressure signal calculation unit 434 to perform quadratic differentiation on the estimated heartbeat curve to generate a third reference signal. In step S592, the blood pressure signal calculation unit 434 can obtain the signal features of every two adjacent valley intervals in the third reference signal, convert the signal features into blood pressure signals through a regression method, and generate blood pressure estimation values based on the blood pressure signals. In step S593, the blood pressure signal calculation unit 434 may output an estimated blood pressure value.

因此,本實施例的非接觸式生理訊號量測設備100以及非接觸式生理訊號量測方法,可提供非接觸式的生理訊號量測功能,並且可自動地產生量測目標的多種生理訊號生理資訊。 Therefore, the non-contact physiological signal measurement device 100 and the non-contact physiological signal measurement method of this embodiment can provide a non-contact physiological signal measurement function, and can automatically generate a variety of physiological signals of the measurement target. Information.

另外,關於上述的皮膚偵測單元411,在皮膚偵測單元411的生產製造的過程中,設備製造商可先訓練對應於皮膚偵測單元411的深度學習模組,以使深度學習模組可具有可運算並分析連續的多個感測影像。設備製造商可將訓練完成後的深度學習模組安裝或寫入至儲存裝置130中。或者,設備製造商亦可透過操作皮膚偵測單元411的處理器預先訓練深度學習模組。 In addition, regarding the above-mentioned skin detection unit 411, during the manufacturing process of the skin detection unit 411, the device manufacturer can first train the deep learning module corresponding to the skin detection unit 411, so that the deep learning module can It has multiple continuous sensing images that can be computed and analyzed. The device manufacturer can install or write the trained deep learning module into the storage device 130 . Alternatively, the device manufacturer can also pre-train the deep learning module by operating the processor of the skin detection unit 411 .

舉例而言,皮膚偵測單元411可預先接收如圖3所示的連續影像300_1~300_N來進行訓練。在本實施例中,影像300_1~300_N的每一個可各別包括人體皮膚區域301以及環境區域302。值得注意的是,由於非接觸式生理訊號量測設備100可能被操作於不同使用環境(例如操作在不同環境光強度的條件下或操作在不同環境影像的條件下)或用於感測不同量測目標類型(例 如不同人種類別或人種膚色),因此皮膚偵測單元411可先透過被輸入對應於各種使用環境以及各種量測目標類型的感測結果,而讓皮膚偵測單元411的深度學習模組可學習識別對應於各種使用環境以及各種量測目標類型的影像,而可有效地先區分影像中的人體皮膚區域301以及環境區域302,並進而能夠對影像中的人體皮膚區域301進行進一步的分析與計算,以產生皮膚反射訊號。值得注意的是,影像訊號感測元件120可用於執行一段時間的連續感測操作,或是持續性地的多次連續感測操作,以使處理器110可逐次根據的影像分析結果來即時更新生理資訊。 For example, the skin detection unit 411 may receive the continuous images 300_1 - 300_N shown in FIG. 3 in advance for training. In this embodiment, each of the images 300_1 - 300_N may respectively include a human skin area 301 and an environment area 302 . It should be noted that since the non-contact physiological signal measurement device 100 may be operated in different usage environments (such as operating under conditions of different ambient light intensities or operating under conditions of different environmental images) or for sensing different quantities type of target (e.g. Such as different race categories or race skin color), so the skin detection unit 411 can firstly let the deep learning module of the skin detection unit 411 be input by inputting the sensing results corresponding to various usage environments and various measurement target types It can learn to recognize images corresponding to various usage environments and various measurement target types, and can effectively distinguish the human skin area 301 and the environment area 302 in the image, and further analyze the human skin area 301 in the image and calculations to generate a skin reflection signal. It is worth noting that the image signal sensing element 120 can be used to perform a continuous sensing operation for a period of time, or a plurality of continuous sensing operations continuously, so that the processor 110 can update in real time according to the image analysis results successively. Physiological information.

再舉例而言,由於非接觸式生理訊號量測設備100在每次使用之情境或對象可能為不同,因此前述影像分析結果可能對應於不同使用環境或不同感測對象類型時,皮膚偵測單元411的深度學習模組需有不同的影像處理演算或不同的學習經驗。因此,本發明的非接觸式生理訊號量測設備100還可進行自適應性地學習功能。皮膚偵測單元411可根據連續影像300_1~300_N的偵測結果與下一次偵測期間的同一量測目標的另連續影像的偵測結果進行相互驗證,並且可將其驗證結果進一步反饋至深度學習模組進行校正,而使皮膚偵測單元411可對於影像中的人體皮膚區域301進行提供準確的辨識結果,並且還可具有自適應性的自我校正功能,而可被使用至各種使用環境及各種量測目標類型。 For another example, since the non-contact physiological signal measurement device 100 may be used in different situations or objects each time, the aforementioned image analysis results may correspond to different usage environments or different sensing object types, the skin detection unit 411's deep learning modules require different image processing algorithms or different learning experiences. Therefore, the non-contact physiological signal measurement device 100 of the present invention can also perform an adaptive learning function. The skin detection unit 411 can perform mutual verification based on the detection results of the continuous images 300_1~300_N and the detection results of another continuous image of the same measurement target in the next detection period, and can further feed back the verification results to the deep learning The module performs calibration, so that the skin detection unit 411 can provide accurate identification results for the human skin area 301 in the image, and also has an adaptive self-correction function, which can be used in various usage environments and various Measurement target type.

圖6是本發明的一實施例的非接觸式生理訊號量測系統的示意圖。參考圖6,本實施例的非接觸式生理訊號量測系統600 可例如建構於長期照顧環境或是醫院的醫療環境,以對於大量的量測目標進行即時、非接觸式以及自動化的生理訊號量測及監控操作。在本實施例中,非接觸式生理訊號量測系統600可包括多個量測設備620_1~620_N。量測設備620_1~620_N的每一個可獨立執行及實現上述各實施例的非接觸式生理訊號量測操作。在本實施例中,量測設備620_1~620_N的每一個可具有如上述圖1的非接觸式生理訊號量測設備100的相關硬體與軟體設置。監控主機610耦接量測設備620_1~620_N(可採用有線或無線的通訊方式)。監控主機610可包括處理器、儲存裝置及通訊介面。監控主機610可例如是雲端伺服器設備,並且用以接收量測設備620_1~620_N的每一個提供的生理資訊。 FIG. 6 is a schematic diagram of a non-contact physiological signal measurement system according to an embodiment of the present invention. Referring to FIG. 6, the non-contact physiological signal measurement system 600 of this embodiment For example, it can be constructed in a long-term care environment or a hospital medical environment to perform real-time, non-contact and automatic physiological signal measurement and monitoring operations for a large number of measurement targets. In this embodiment, the non-contact physiological signal measurement system 600 may include a plurality of measurement devices 620_1~620_N. Each of the measurement devices 620_1˜620_N can independently execute and realize the non-contact physiological signal measurement operation of the above-mentioned embodiments. In this embodiment, each of the measurement devices 620_1˜620_N may have related hardware and software configurations as in the above-mentioned non-contact physiological signal measurement device 100 of FIG. 1 . The monitoring host 610 is coupled to the measurement devices 620_1~620_N (wired or wireless communication methods can be used). The monitoring host 610 may include a processor, a storage device and a communication interface. The monitoring host 610 can be, for example, a cloud server device, and is configured to receive physiological information provided by each of the measuring devices 620_1 - 620_N.

在本實施例中,量測設備620_1~620_N可用以對於多個量測對象進行非接觸式生理訊號量測,並且用以決定是否輸出對應的警示訊號至監控主機610,以使監控主機610可監控這些生理資訊對應的警示訊號。對此,當量測設備620_1~620_N判斷這些生理資訊的任一個的心跳估計曲線、心跳變異估計曲線、呼吸估計值、血氧估計值以及血壓估計值的至少其中之一為異常值時,對應的量測設備可輸出警示訊號至監控主機610以使監控主機610可透過例如影像或聲音的警示方式來提供對應的量測目標的提醒資訊,以使監控者可透過影像或聲音的方式來取得即時的生理訊號量測異常資訊。 In this embodiment, the measurement devices 620_1~620_N can be used to perform non-contact physiological signal measurement for multiple measurement objects, and to determine whether to output corresponding warning signals to the monitoring host 610, so that the monitoring host 610 can Monitor the warning signals corresponding to these physiological information. In this regard, when the measurement devices 620_1~620_N determine that at least one of the estimated heartbeat curve, estimated heartbeat variation curve, estimated respiration value, estimated blood oxygen value, and estimated blood pressure value of any of these physiological information is an abnormal value, the corresponding The measurement equipment can output a warning signal to the monitoring host 610 so that the monitoring host 610 can provide reminder information of the corresponding measurement target through a warning method such as video or sound, so that the monitor can obtain it through video or sound Real-time abnormal information of physiological signal measurement.

另外,在本發明的另一些實施例中,運算資源也可集中 在監控主機610,以透過監控主機610來進行整體影像處理、分析與資料運算。換言之,量測設備620_1~620_N也可只具有影像訊號感測元件,並且量測設備620_1~620_N各別將連續影像上傳至監控主機610。監控主機610的處理器可對量測設備620_1~620_N各別提供連續影像進行獨立的影像處理、分析與資料運算,以產生對應的多個生理資訊。 In addition, in other embodiments of the present invention, computing resources can also be concentrated In the monitoring host 610 , overall image processing, analysis and data calculation can be performed through the monitoring host 610 . In other words, the measuring devices 620_1~620_N may also only have image signal sensing elements, and the measuring devices 620_1~620_N respectively upload continuous images to the monitoring host 610. The processor of the monitoring host 610 can perform independent image processing, analysis, and data calculation on the continuous images provided by the measurement devices 620_1~620_N, so as to generate a plurality of corresponding physiological information.

綜上所述,本發明的非接觸式生理訊號量測設備、系統及方法可通過影像訊號感測元件取得連續的連續影像,並且對連續影像進行影像處理與分析,以產生光體積變化描記訊號。本發明的非接觸式生理訊號量測設備可分析光體積變化描記訊號,以取得量測對象的多個生理資訊。 In summary, the non-contact physiological signal measurement device, system and method of the present invention can obtain continuous continuous images through the image signal sensing element, and perform image processing and analysis on the continuous images to generate photoplethysmographic signals . The non-contact physiological signal measurement device of the present invention can analyze the photoplethysmography signal to obtain multiple physiological information of the measurement object.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

100:非接觸式生理訊號量測設備 110:處理器 120:影像訊號感測元件 130:儲存裝置 100: Non-contact physiological signal measurement equipment 110: Processor 120: image signal sensing element 130: storage device

Claims (24)

一種非接觸式生理訊號量測設備,包括:一儲存裝置,用以儲存多個模組;一影像訊號感測元件,用以取得一連續影像;以及一處理器,耦接該影像訊號感測元件以及該儲存裝置,其中該處理器用以執行該些模組,以從該連續影像偵測出一皮膚影像,並且從該連續影像中的該皮膚影像擷取出一皮膚反射訊號,並且該處理器根據該皮膚反射訊號計算出一光體積變化描記訊號,其中該處理器根據該光體積變化描記訊號計算出一生理資訊,並且該生理資訊包括一心跳估計曲線、一心跳變異估計曲線、一呼吸估計值、一血氧估計值以及一血壓估計值的至少其中之一,其中該處理器執行一皮膚反射訊號擷取模組,該皮膚反射訊號擷取模組包括:一皮膚偵測單元,用以透過一深度學習模組從該連續影像偵測出該皮膚影像,其中該皮膚偵測單元還根據該連續影像的偵測結果與下一次偵測期間的同一量測目標的另連續影像的偵測結果進行相互驗證,並且將驗證結果反饋至該深度學習模組,以校正該深度學習模組,其中該處理器執行一生理訊號分析模組,其中該生理訊號分析模組包括:一心跳訊號計算單元,用以將該光體積變化描記訊號轉換至 頻率域後進行帶狀過濾運算,以取出振幅最高的頻率作為心跳估計值,並將該心跳估計值鄰近部分的訊號轉換回時間域,以產生一心跳估計曲線,其中該心跳訊號計算單元根據該心跳估計曲線計算出一心跳強度變異曲線、一心跳振幅變異曲線以及一心跳頻率變異曲線。 A non-contact physiological signal measurement device, comprising: a storage device for storing multiple modules; an image signal sensing element for obtaining a continuous image; and a processor coupled to the image signal sensing Components and the storage device, wherein the processor is used to execute the modules to detect a skin image from the continuous image, and extract a skin reflection signal from the skin image in the continuous image, and the processor A photoplethysmographic signal is calculated according to the skin reflection signal, wherein the processor calculates a physiological information according to the photoplethysmographic signal, and the physiological information includes a heartbeat estimation curve, a heartbeat variation estimation curve, and a breathing estimation value, an estimated value of blood oxygen, and an estimated value of blood pressure, wherein the processor executes a skin reflection signal acquisition module, and the skin reflection signal acquisition module includes: a skin detection unit for The skin image is detected from the continuous image through a deep learning module, wherein the skin detection unit is also based on the detection result of the continuous image and the detection of another continuous image of the same measurement target during the next detection period The results are mutually verified, and the verification results are fed back to the deep learning module to correct the deep learning module, wherein the processor executes a physiological signal analysis module, wherein the physiological signal analysis module includes: a heartbeat signal calculation unit for converting the photoplethysmographic signal into Band filtering is performed after the frequency domain to take out the frequency with the highest amplitude as the estimated heartbeat value, and the signal of the adjacent part of the estimated heartbeat value is converted back to the time domain to generate an estimated heartbeat curve, wherein the heartbeat signal calculation unit is based on the The heartbeat estimation curve calculates a heartbeat intensity variation curve, a heartbeat amplitude variation curve and a heartbeat frequency variation curve. 如請求項1所述的量測設備,其中該皮膚反射訊號擷取模組還包括:一皮膚反射訊號擷取單元,用以從該連續影像中擷取出該皮膚反射訊號。 The measurement device according to claim 1, wherein the skin reflection signal acquisition module further includes: a skin reflection signal acquisition unit, configured to extract the skin reflection signal from the continuous images. 如請求項2所述的量測設備,其中該處理器執行一皮膚反射訊號運算模組,該皮膚反射訊號運算模組包括:一等間隔訊號取樣單元,用以從時間間隔為非等間距的該皮膚反射訊號之中轉換出具有等時間間距的一等間距反射訊號;以及一訊號轉換單元,用以將該等間距反射訊號根據不同波長訊號重組出具備脈搏資訊的該光體積變化描記訊號。 The measurement device as described in claim 2, wherein the processor executes a skin reflection signal calculation module, and the skin reflection signal calculation module includes: a signal sampling unit with equal intervals, which is used to change from time intervals to non-equal intervals An equidistant reflection signal with equal time intervals is converted from the skin reflection signal; and a signal conversion unit is used to recombine the equidistant reflection signal according to different wavelength signals to obtain the photoplethysmographic signal with pulse information. 如請求項3所述的量測設備,其中該訊號轉換單元為一光體積變化描記單元(Photoplethysmography,PPG)、一遠程光體積變化描記單元(Remote-Photoplethysmography,rPPG)或一影像式光體積變化描記單元(Image-Photoplethysmography,iPPG)。 The measuring device as described in claim 3, wherein the signal conversion unit is a photoplethysmography unit (Photoplethysmography, PPG), a remote photoplethysmography unit (Remote-Photoplethysmography, rPPG) or an image photoplethysmography unit Tracing unit (Image-Photoplethysmography, iPPG). 如請求項1所述的量測設備,其中該生理訊號分析模組還包括: 一呼吸訊號計算單元,用以根據該心跳強度變異曲線、該心跳振幅變異曲線以及該心跳頻率變異曲線來計算出該心跳強度變異曲線、該心跳振幅變異曲線以及該心跳頻率變異曲線在單位時間內的各別的波峰數,以產生三種呼吸估計值。 The measurement device as described in claim 1, wherein the physiological signal analysis module further includes: A breathing signal calculation unit, used to calculate the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency variation curve in unit time according to the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency variation curve The respective peak numbers for the three respiration estimates. 如請求項1所述的量測設備,其中該處理器執行該生理訊號分析模組,其中該生理訊號分析模組還包括:一血氧訊號計算單元,用以從該光體積變化描記訊號擷取具有不同波長的一第一參考訊號以及一第二參考訊號,並且該血氧訊號計算單元將該第一參考訊號以及該第二參考訊號的兩個訊號值的比值乘以一預設係數後取得與一最大血氧濃度的一差異值,其中該血氧訊號計算單元將該最大血氧濃度減去該差異值,以產生該血氧估計值。 The measuring device as described in claim 1, wherein the processor executes the physiological signal analysis module, wherein the physiological signal analysis module further includes: a blood oxygen signal calculation unit for extracting from the photoplethysmography signal A first reference signal and a second reference signal with different wavelengths are taken, and the blood oxygen signal calculation unit multiplies the ratio of the two signal values of the first reference signal and the second reference signal by a preset coefficient A difference value from a maximum blood oxygen concentration is obtained, wherein the blood oxygen signal calculation unit subtracts the difference value from the maximum blood oxygen concentration to generate the estimated blood oxygen value. 如請求項1所述的量測設備,其中該處理器執行該生理訊號分析模組,其中該生理訊號分析模組還包括:一血壓訊號計算單元,用以對該心跳估計曲線作二次微分,以產生一第三參考訊號,並且該處理器對該第三參考訊號中每相鄰的兩波谷區間取其訊號特徵,且透過線性回歸分析將該訊號特徵轉為一血壓訊號,其中該處理器根據該血壓訊號產生該血壓估計值。 The measuring device as described in claim 1, wherein the processor executes the physiological signal analysis module, wherein the physiological signal analysis module further includes: a blood pressure signal calculation unit, which is used for quadratic differentiation of the estimated heartbeat curve , to generate a third reference signal, and the processor obtains the signal characteristics of every adjacent two valley intervals in the third reference signal, and converts the signal characteristics into a blood pressure signal through linear regression analysis, wherein the processing The device generates the estimated blood pressure value according to the blood pressure signal. 如請求項1所述的量測設備,其中該生理資訊包括該心跳估計曲線、該心跳變異估計曲線、該呼吸估計值、該血氧估計值以及該血壓估計值的至少其中之二者的一組合資訊。 The measuring device according to claim 1, wherein the physiological information includes at least one of the estimated heartbeat curve, the estimated heartbeat variation curve, the estimated respiration value, the estimated blood oxygen value, and the estimated blood pressure value Portfolio information. 一種非接觸式生理訊號量測系統,包括:一監控主機;以及多個量測設備,耦接該監控主機,其中該些量測設備用以對於多個量測對象進行非接觸式生理訊號量測,並且用以決定是否輸出對應的一警示訊號至該監控主機,以使該監控主機監控該些生理資訊以及對應的該警示訊號,其中該些量測設備的每一個用以偵測對應的量測對象的一連續影像中各別的一皮膚影像,並從該皮膚影像中擷取出一皮膚反射訊號,並且將該皮膚反射訊號計算出一光體積變化描記訊號,其中該些量測設備的每一個將該光體積變化描記訊號計算出對應的一生理資訊,其中該生理資訊包括一心跳估計曲線、一心跳變異估計曲線、一呼吸估計值、一血氧估計值以及一血壓估計值的至少其中之一,其中該些量測設備的每一個包括一皮膚反射訊號擷取模組,該皮膚反射訊號擷取模組包括:一皮膚偵測單元,用以透過一深度學習模組從該連續影像偵測出該皮膚影像,其中該皮膚偵測單元還根據該連續影像的偵測結果與下一次偵測期間的同一量測目標的另連續影像的偵測結果進行相互驗證,並且將驗證結果反饋至該深度學習模組,以校正該深度學習模組,其中該些量測設備的每一個包括一生理訊號分析模組,其中 該生理訊號分析模組包括:一心跳訊號計算單元,用以將該光體積變化描記訊號轉換至頻率域後進行帶狀過濾運算,以取出振幅最高的頻率作為心跳估計值,並將該心跳估計值鄰近部分的訊號轉換回時間域,以產生一心跳估計曲線,其中該心跳訊號計算單元根據該心跳估計曲線計算出一心跳強度變異曲線、一心跳振幅變異曲線以及一心跳頻率變異曲線。 A non-contact physiological signal measurement system, comprising: a monitoring host; and a plurality of measuring devices coupled to the monitoring host, wherein the measuring devices are used to perform non-contact physiological signal measurements on a plurality of measurement objects and used to determine whether to output a corresponding warning signal to the monitoring host, so that the monitoring host monitors the physiological information and the corresponding warning signal, wherein each of the measuring devices is used to detect the corresponding Measuring a respective skin image in a continuous image of the object, extracting a skin reflection signal from the skin image, and calculating a photoplethysmography signal from the skin reflection signal, wherein the measuring devices Each of the photoplethysmographic signals is calculated to correspond to a piece of physiological information, wherein the physiological information includes at least an estimated heartbeat curve, an estimated heartbeat variation curve, an estimated respiration value, an estimated blood oxygen value, and an estimated blood pressure value. One of them, wherein each of the measuring devices includes a skin reflection signal acquisition module, and the skin reflection signal acquisition module includes: a skin detection unit, which is used to learn from the continuous The skin image is detected by the image, wherein the skin detection unit also performs mutual verification according to the detection result of the continuous image and the detection result of another continuous image of the same measurement target during the next detection period, and the verification result Feedback to the deep learning module to correct the deep learning module, wherein each of the measuring devices includes a physiological signal analysis module, wherein The physiological signal analysis module includes: a heartbeat signal calculation unit, which is used to convert the photoplethysmography signal into the frequency domain and perform band filtering operation to extract the frequency with the highest amplitude as the estimated heartbeat value, and calculate the estimated heartbeat The signals of the adjacent parts are converted back to the time domain to generate a heartbeat estimation curve, wherein the heartbeat signal calculation unit calculates a heartbeat intensity variation curve, a heartbeat amplitude variation curve and a heartbeat frequency variation curve according to the heartbeat estimation curve. 如請求項9所述的非接觸式生理訊號量測系統,其中該皮膚反射訊號擷取模組還包括:一皮膚反射訊號擷取單元,用以從該連續影像中擷取出該皮膚反射訊號。 The non-contact physiological signal measurement system as described in Claim 9, wherein the skin reflection signal acquisition module further includes: a skin reflection signal acquisition unit, configured to extract the skin reflection signal from the continuous images. 如請求項10所述的非接觸式生理訊號量測系統,其中該些量測設備的每一個包括一皮膚反射訊號運算模組,該皮膚反射訊號運算模組包括:一等間隔訊號取樣單元,用以從時間間隔為非等間距的該皮膚反射訊號之中轉換出具有等時間間距的一等間距反射訊號;以及一訊號轉換單元,用以將該等間距反射訊號根據不同波長訊號重組出具備脈搏資訊的該光體積變化描記訊號。 The non-contact physiological signal measurement system as described in claim 10, wherein each of the measurement devices includes a skin reflection signal calculation module, and the skin reflection signal calculation module includes: a signal sampling unit at equal intervals, It is used to convert the skin reflection signals with equal time intervals from the skin reflection signals with non-equal intervals; and a signal conversion unit is used to recombine the equally spaced reflection signals according to different wavelength signals. The photoplethysmographic signal of pulse information. 如請求項11所述的非接觸式生理訊號量測系統,其中該訊號轉換單元為一光體積變化描記單元、一遠程光體積變化描記單元或一影像式光體積變化描記單元。 The non-contact physiological signal measurement system according to claim 11, wherein the signal conversion unit is a photoplethysmography unit, a remote photoplethysmography unit or an image photoplethysmography unit. 如請求項9所述的非接觸式生理訊號量測系統,其中該生理訊號分析模組還包括:一呼吸訊號計算單元,用以根據該心跳強度變異曲線、該心跳振幅變異曲線以及該心跳頻率變異曲線來計算出該心跳強度變異曲線、該心跳振幅變異曲線以及該心跳頻率變異曲線在單位時間內的各別的波峰數,以產生三種呼吸估計值。 The non-contact physiological signal measurement system as described in Claim 9, wherein the physiological signal analysis module further includes: a respiratory signal calculation unit, which is used to calculate the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency The variation curves are used to calculate the respective peak numbers of the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency variation curve in unit time, so as to generate three kinds of respiration estimation values. 如請求項9所述的非接觸式生理訊號量測系統,其中該生理訊號分析模組還包括:一血氧訊號計算單元,用以從該光體積變化描記訊號擷取具有不同波長的一第一參考訊號以及一第二參考訊號,並且該血氧訊號計算單元將該第一參考訊號以及該第二參考訊號的兩個訊號值的比值乘以一預設係數後取得與一最大血氧濃度的一差異值,其中該血氧訊號計算單元將該最大血氧濃度減去該差異值,以產生該血氧估計值。 The non-contact physiological signal measurement system as described in Claim 9, wherein the physiological signal analysis module further includes: a blood oxygen signal calculation unit, which is used to extract a first signal with different wavelengths from the photoplethysmography signal A reference signal and a second reference signal, and the blood oxygen signal calculation unit multiplies the ratio of the two signal values of the first reference signal and the second reference signal by a preset coefficient to obtain a maximum blood oxygen concentration A difference value, wherein the blood oxygen signal calculation unit subtracts the difference value from the maximum blood oxygen concentration to generate the blood oxygen estimated value. 如請求項9所述的非接觸式生理訊號量測系統,其中該生理訊號分析模組還包括:一血壓訊號計算單元,用以對該心跳估計曲線作二次微分,以產生一第三參考訊號,並且該處理器對該第三參考訊號中每相鄰的兩波谷區間取其訊號特徵,且透過線性回歸分析將該訊號特徵轉為一血壓訊號,其中該處理器根據該血壓訊號產生該血壓估計值。 The non-contact physiological signal measurement system as described in Claim 9, wherein the physiological signal analysis module further includes: a blood pressure signal calculation unit, which is used to perform quadratic differentiation on the estimated heartbeat curve to generate a third reference signal, and the processor obtains the signal characteristics of each adjacent two valley intervals in the third reference signal, and converts the signal characteristics into a blood pressure signal through linear regression analysis, wherein the processor generates the blood pressure signal according to the blood pressure signal Estimated blood pressure. 如請求項9所述的非接觸式生理訊號量測系統,其中該生理資訊包括該心跳估計曲線、該心跳變異估計曲線、該呼吸估計值、該血氧估計值以及該血壓估計值的至少其中之二者的一組合資訊。 The non-contact physiological signal measurement system according to claim 9, wherein the physiological information includes at least one of the estimated heartbeat curve, the estimated heartbeat variation curve, the estimated respiration value, the estimated blood oxygen value, and the estimated blood pressure value A combined information of the two. 一種非接觸式生理訊號量測方法,包括:透過一影像訊號感測元件取得一連續影像;透過一處理器從該連續影像偵測出一皮膚影像,並且從該連續影像中的該皮膚影像擷取出一皮膚反射訊號;透過該處理器根據該皮膚反射訊號計算出一光體積變化描記訊號;以及透過該處理器根據該光體積變化描記訊號計算出一生理資訊,其中該生理資訊包括一心跳估計曲線、一心跳變異估計曲線、一呼吸估計值、一血氧估計值以及一血壓估計值的至少其中之一,其中產生該皮膚反射訊號的步驟包括:透過該處理器執行一深度學習模組,以從該連續影像偵測出該皮膚影像;以及根據該連續影像的偵測結果與下一次偵測期間的同一量測目標的另連續影像的偵測結果進行相互驗證,並且將驗證結果反饋至該深度學習模組,以校正該深度學習模組,其中根據該光體積變化描記訊號計算出該生理資訊的步驟包括:透過該處理器將該光體積變化描記訊號轉換至頻率域後進行 帶狀過濾運算;透過該處理器取出振幅最高的頻率作為心跳估計值,並將該心跳估計值鄰近部分的訊號轉換回時間域,以產生一心跳估計曲線;以及透過該處理器根據該心跳估計曲線計算出一心跳強度變異曲線、一心跳振幅變異曲線以及一心跳頻率變異曲線。 A non-contact physiological signal measurement method, comprising: obtaining a continuous image through an image signal sensing element; detecting a skin image from the continuous image through a processor, and extracting the skin image from the continuous image taking out a skin reflection signal; calculating a photoplethysmography signal through the processor according to the skin reflection signal; and calculating a physiological information according to the photoplethysmography signal through the processor, wherein the physiological information includes a heartbeat estimate At least one of a curve, an estimated heartbeat variation curve, an estimated respiration value, an estimated blood oxygen value, and an estimated blood pressure value, wherein the step of generating the skin reflection signal includes: executing a deep learning module through the processor, The skin image is detected from the continuous image; and the detection result of the continuous image is mutually verified with the detection result of another continuous image of the same measurement target during the next detection period, and the verification result is fed back to The deep learning module is used to calibrate the deep learning module, wherein the step of calculating the physiological information according to the photoplethysmography signal includes: converting the photoplethysmography signal to a frequency domain through the processor and performing Band filtering operation; the frequency with the highest amplitude is taken out as the heartbeat estimate by the processor, and the signal of the adjacent part of the heartbeat estimate is converted back to the time domain to generate a heartbeat estimate curve; and the heartbeat estimate is estimated by the processor The curve calculates a heartbeat intensity variation curve, a heartbeat amplitude variation curve and a heartbeat frequency variation curve. 如請求項17所述的非接觸式生理訊號量測方法,其中產生該皮膚反射訊號的步驟還包括:透過該處理器從該連續影像中擷取出該皮膚反射訊號。 The non-contact physiological signal measurement method as described in claim 17, wherein the step of generating the skin reflection signal further includes: extracting the skin reflection signal from the continuous image through the processor. 如請求項18所述的非接觸式生理訊號量測方法,其中根據該皮膚反射訊號計算出該光體積變化描記訊號的步驟包括:從時間間隔為非等間距的該皮膚反射訊號之中轉換出具有等時間間距的一等間距反射訊號;以及將該等間距反射訊號根據不同波長訊號重組出具備脈搏資訊的該光體積變化描記訊號。 The non-contact physiological signal measurement method according to claim 18, wherein the step of calculating the photoplethysmography signal according to the skin reflection signal comprises: converting from the skin reflection signal whose time interval is not equidistant An equidistant reflection signal with equidistant time intervals; and the photoplethysmographic signal with pulse information is recombined from the equidistant reflection signal according to different wavelength signals. 如請求項17所述的非接觸式生理訊號量測方法,其中根據該光體積變化描記訊號計算出該生理資訊的步驟還包括:透過該處理器根據該心跳強度變異曲線、該心跳振幅變異曲線以及該心跳頻率變異曲線來計算出該心跳強度變異曲線、該心跳振幅變異曲線以及該心跳頻率變異曲線在單位時間內的各別的 波峰數,以產生三種呼吸估計值。 The non-contact physiological signal measurement method according to claim 17, wherein the step of calculating the physiological information according to the photoplethysmographic signal further includes: through the processor according to the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency variation curve to calculate the difference between the heartbeat intensity variation curve, the heartbeat amplitude variation curve and the heartbeat frequency variation curve in unit time number of peaks to produce three respiration estimates. 如請求項17所述的非接觸式生理訊號量測方法,其中根據該光體積變化描記訊號計算出該生理資訊的步驟還包括:透過該處理器從光體積變化描記訊號擷取具有不同波長的一第一參考訊號以及一第二參考訊號;透過該處理器將該第一參考訊號以及該第二參考訊號的兩個訊號值的比值乘以一預設係數後取得與一最大血氧濃度的一差異值;以及透過該處理器將該最大血氧濃度減去該差異值,以產生該血氧估計值。 The non-contact physiological signal measurement method according to claim 17, wherein the step of calculating the physiological information according to the photoplethysmographic signal further includes: extracting signals with different wavelengths from the photoplethysmographic signal through the processor A first reference signal and a second reference signal; through the processor, the ratio of the two signal values of the first reference signal and the second reference signal is multiplied by a preset coefficient to obtain a maximum blood oxygen concentration a difference value; and subtracting the difference value from the maximum blood oxygen concentration by the processor to generate the estimated blood oxygen value. 如請求項17所述的非接觸式生理訊號量測方法,其中根據該光體積變化描記訊號計算出該生理資訊的步驟還包括:透過該處理器對該心跳估計曲線作二次微分,以產生一第三參考訊號;透過該處理器對該第三參考訊號中每相鄰的兩波谷區間取其訊號特徵,且透過線性回歸分析將該訊號特徵轉為一血壓訊號;以及透過該處理器根據該血壓訊號產生該血壓估計值。 The non-contact physiological signal measurement method according to claim 17, wherein the step of calculating the physiological information according to the photoplethysmographic signal further includes: secondly differentiating the estimated heartbeat curve through the processor to generate A third reference signal; through the processor, the signal characteristics of each adjacent two trough intervals in the third reference signal are obtained, and the signal characteristics are converted into a blood pressure signal through linear regression analysis; and through the processor according to The blood pressure signal generates the blood pressure estimate. 如請求項17所述的非接觸式生理訊號量測方法,其中該生理資訊包括該心跳估計曲線、該心跳變異估計曲線、 該呼吸估計值、該血氧估計值以及該血壓估計值的至少其中之二者的一組合資訊。 The non-contact physiological signal measurement method as described in Claim 17, wherein the physiological information includes the estimated heartbeat curve, the estimated heartbeat variation curve, Combination information of at least two of the estimated respiration value, the estimated blood oxygen value, and the estimated blood pressure value. 如請求項17所述的非接觸式生理訊號量測方法,包括:根據該生理資訊決定是否輸出對應的一警示訊號至一監控主機;以及透過該監控主機監控該些生理資訊以及對應的該警示訊號。 The non-contact physiological signal measurement method as described in claim 17, including: determining whether to output a corresponding warning signal to a monitoring host according to the physiological information; and monitoring the physiological information and the corresponding warning through the monitoring host signal.
TW110115299A 2021-04-28 2021-04-28 Non-contact physiological signal measurement apparatus, system and method TWI795765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110115299A TWI795765B (en) 2021-04-28 2021-04-28 Non-contact physiological signal measurement apparatus, system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110115299A TWI795765B (en) 2021-04-28 2021-04-28 Non-contact physiological signal measurement apparatus, system and method

Publications (2)

Publication Number Publication Date
TW202241343A TW202241343A (en) 2022-11-01
TWI795765B true TWI795765B (en) 2023-03-11

Family

ID=85793138

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115299A TWI795765B (en) 2021-04-28 2021-04-28 Non-contact physiological signal measurement apparatus, system and method

Country Status (1)

Country Link
TW (1) TWI795765B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955101A (en) * 2017-01-16 2017-07-18 深圳中科汇康技术有限公司 The method and device of breath signal is extracted from electrocardiosignal
CN108742549A (en) * 2018-06-26 2018-11-06 京东方科技集团股份有限公司 A kind of image information generating method adapted and pulse wave measurement system
CN111194180A (en) * 2017-07-27 2020-05-22 长桑医疗(海南)有限公司 System and method for determining blood pressure of a subject
CN111387959A (en) * 2020-03-25 2020-07-10 南京信息工程大学 Non-contact physiological parameter detection method based on IPPG
TW202038854A (en) * 2019-04-19 2020-11-01 鉅怡智慧股份有限公司 Biological image processing method and biological information sensor
TW202041190A (en) * 2019-05-09 2020-11-16 鉅怡智慧股份有限公司 Contactless Drunken Driving Judgment System and Related Method
CN112315425A (en) * 2019-08-05 2021-02-05 三星电子株式会社 Apparatus for measuring biological information

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955101A (en) * 2017-01-16 2017-07-18 深圳中科汇康技术有限公司 The method and device of breath signal is extracted from electrocardiosignal
CN111194180A (en) * 2017-07-27 2020-05-22 长桑医疗(海南)有限公司 System and method for determining blood pressure of a subject
CN108742549A (en) * 2018-06-26 2018-11-06 京东方科技集团股份有限公司 A kind of image information generating method adapted and pulse wave measurement system
TW202038854A (en) * 2019-04-19 2020-11-01 鉅怡智慧股份有限公司 Biological image processing method and biological information sensor
TW202041190A (en) * 2019-05-09 2020-11-16 鉅怡智慧股份有限公司 Contactless Drunken Driving Judgment System and Related Method
CN112315425A (en) * 2019-08-05 2021-02-05 三星电子株式会社 Apparatus for measuring biological information
CN111387959A (en) * 2020-03-25 2020-07-10 南京信息工程大学 Non-contact physiological parameter detection method based on IPPG

Also Published As

Publication number Publication date
TW202241343A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
Fan et al. Robust blood pressure estimation using an RGB camera
EP3057486B1 (en) Automatic camera adjustment for remote photoplethysmography
EP3229676B1 (en) Method and apparatus for physiological monitoring
CN104639799B (en) Image type heart rate activity detection device and method thereof
EP3151728B1 (en) Device, system and method for detecting apnoea of a subject
CN102973253B (en) A method and system for monitoring human physiological indicators using visual information
US20190192018A1 (en) Method and System for Time Domain Signal Reconstruction for Representing Heart Activity
CA3119887A1 (en) Self-monitoring and care assistant for achieving glycemic goals
US12433495B2 (en) System and methods for determining health-related metrics from collected physiological data
CN106456071A (en) Device, system and method for determining the concentration of a substance in the blood of a subject
US20190192079A1 (en) System and a method for motion artifact reduction in a ppg signal
JP7293506B2 (en) Methods and systems for determining cardiovascular parameters
KR101996027B1 (en) Method and system for extracting Heart Information of Frequency domain by using pupil size variation
TWI795765B (en) Non-contact physiological signal measurement apparatus, system and method
CN115245317A (en) Non-contact physiological signal measurement equipment, system and method
TWM618467U (en) Non-contact physiological signal measurement apparatus and system
CN119517398A (en) Medical indicator risk warning method and device, electronic equipment and storage medium
John et al. Multimodal fusion for robust respiratory rate estimation in wearable sensing
WO2017154477A1 (en) Pulse estimating device, pulse estimating system, and pulse estimating method
Popescu et al. Cardiowatch: A solution for monitoring the heart rate on a Mobile device
Yang et al. Robust and remote measurement of heart rate based on a surveillance camera
US20250204820A1 (en) Contactless sensor-driven device, system and method enabling assessment of oxygen saturation
Rahman et al. Heart Rate Measurement on PC and Phone using Facial Videos
Kerr et al. Human pulse and respiratory signal analysis using a robot hand equipped with a biomimetic fingertip
EP4681128A1 (en) Ai - powered health monitoring system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees