TWI795340B - Freezer control system and temperature control host - Google Patents
Freezer control system and temperature control host Download PDFInfo
- Publication number
- TWI795340B TWI795340B TW111143142A TW111143142A TWI795340B TW I795340 B TWI795340 B TW I795340B TW 111143142 A TW111143142 A TW 111143142A TW 111143142 A TW111143142 A TW 111143142A TW I795340 B TWI795340 B TW I795340B
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- refrigerator
- value
- values
- freezer
- Prior art date
Links
- 238000013528 artificial neural network Methods 0.000 claims abstract description 48
- 238000005057 refrigeration Methods 0.000 claims abstract description 20
- 230000001537 neural effect Effects 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 12
- 238000012549 training Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 10
- 210000002569 neuron Anatomy 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000009246 food effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
一種冷櫃控制系統,適用於與一室內溫度感測器配合運作,並包含至少一冷櫃設備及一溫度控制主機。冷櫃設備包括一冷櫃溫度感測器及一致冷單元。溫度控制主機內存一設定溫度資料、一氣溫預報資料庫、一室內溫度資料庫及一冷櫃溫度資料庫,且包括一最適溫度預測模組及一冷櫃溫度設定模組。其中,最適溫度預測模組能依據設定溫度值、預報氣溫值、室內溫度值及冷櫃溫度值,以神經網路演算法產生一估算資料。冷櫃溫度設定模組能依據一預定規則,從估算資料中擇定一設定溫度值為設定溫度目標值。溫度控制主機能傳送設定溫度目標值至冷櫃設備。A control system for a freezer is suitable for cooperating with an indoor temperature sensor and includes at least one freezer device and a temperature control host. The refrigerator equipment includes a refrigerator temperature sensor and a refrigeration unit. The temperature control host stores a set temperature data, a temperature forecast database, an indoor temperature database and a refrigerator temperature database, and includes an optimum temperature prediction module and a refrigerator temperature setting module. Among them, the optimal temperature prediction module can generate an estimation data by neural network algorithm according to the set temperature value, the forecasted temperature value, the indoor temperature value and the refrigerator temperature value. The freezer temperature setting module can select a set temperature value from the estimated data as a set temperature target value according to a predetermined rule. The temperature control host can transmit the set temperature target value to the refrigerator equipment.
Description
本發明是有關於一種控制系統及主機,特別是指一種冷櫃控制系統及溫度控制主機。The invention relates to a control system and a host, in particular to a refrigerator control system and a temperature control host.
商家的冷櫃一般是由工程人員考量天候、欲冷藏的食品類型等因素,依據自身經驗進行冷櫃的運行溫度設定。然而,此種依照經驗進行運行溫度的設定作業方式,有可能未能充分考量各項因素,而以並非最適切的溫度進行設定,使得冷櫃無法穩定地在預定溫度範圍內運作,影響冷藏效果。此外,當冷櫃的內部溫度過高或過低而未維持在預定範圍內時,商家會需要聯繫工程人員重新進行設定溫度的調整,然而在未完成運作溫度的重新設定前,冷櫃會持續在過高或過低的溫度下運行,而可能導致食品變質。The freezers of the merchants are generally set by the engineering personnel considering factors such as the weather and the type of food to be refrigerated, and setting the operating temperature of the freezer based on their own experience. However, this method of setting the operating temperature based on experience may fail to fully consider various factors, and set a temperature that is not optimal, making the refrigerator unable to operate stably within the predetermined temperature range and affecting the refrigeration effect. In addition, when the internal temperature of the freezer is too high or too low to remain within the predetermined range, the merchant will need to contact the engineering personnel to readjust the set temperature. Operating at high or low temperatures may cause food spoilage.
因此,本發明之其中一目的,即在提供一種能解決前述問題的冷櫃控制系統。Therefore, one object of the present invention is to provide a refrigerator control system capable of solving the aforementioned problems.
於是,本發明冷櫃控制系統在一些實施態樣中,適用於與設置在一室內空間的一室內溫度感測器配合運作,並包含至少一冷櫃設備及一溫度控制主機。該冷櫃設備設置於該室內空間,且包括一用於偵測該冷櫃設備之內部溫度的冷櫃溫度感測器,及一用於調節該冷櫃設備之內部溫度的致冷單元。該溫度控制主機能與該冷櫃設備連線通訊,且能接收該室內溫度感測器輸出的室內溫度值。該溫度控制主機內存一設定溫度資料、一氣溫預報資料庫、一室內溫度資料庫及一冷櫃溫度資料庫,且包括一最適溫度預測模組及一冷櫃溫度設定模組。該設定溫度資料具有多筆不同之用於設定該冷櫃設備的運作溫度的設定溫度值,該氣溫預報資料庫具有多筆接收自外部的預報氣溫值,該室內溫度資料庫具有多筆由該室內溫度感測器輸出的室內溫度值,該冷櫃溫度資料庫具有多筆由該冷櫃溫度感測器輸出的冷櫃溫度值。其中,該最適溫度預測模組能依據該等設定溫度值、該等預報氣溫值、該等室內溫度值及該等冷櫃溫度值,以預先訓練的神經網路演算法產生一估算資料,該估算資料具有多筆分別對應不同設定溫度值的估算值;該冷櫃溫度設定模組能依據一預定規則,從該估算資料中擇定具最適切的估算值所對應的設定溫度值為設定溫度目標值;該溫度控制主機能傳送該設定溫度目標值至該冷櫃設備,使該致冷單元以該設定溫度目標值調節該冷櫃設備的內部溫度。Therefore, in some embodiments, the refrigerator control system of the present invention is adapted to cooperate with an indoor temperature sensor installed in an indoor space, and includes at least one refrigerator device and a temperature control host. The refrigerator equipment is arranged in the indoor space, and includes a refrigerator temperature sensor for detecting the internal temperature of the refrigerator equipment, and a refrigeration unit for adjusting the internal temperature of the refrigerator equipment. The temperature control host can communicate with the freezer equipment and can receive the indoor temperature value output by the indoor temperature sensor. The temperature control host internally stores a set temperature data, a temperature forecast database, an indoor temperature database and a freezer temperature database, and includes an optimum temperature prediction module and a freezer temperature setting module. The set temperature data has a plurality of different set temperature values for setting the operating temperature of the refrigerator equipment, the temperature forecast database has a plurality of forecasted temperature values received from the outside, and the indoor temperature database has a plurality of records from the indoor The indoor temperature value output by the temperature sensor, the refrigerator temperature database has a plurality of refrigerator temperature values output by the refrigerator temperature sensor. Wherein, the optimum temperature prediction module can generate an estimated data by a pre-trained neural network algorithm based on the set temperature values, the forecasted air temperature values, the indoor temperature values and the refrigerator temperature values, and the estimated data There are multiple estimated values corresponding to different set temperature values; the freezer temperature setting module can select the set temperature value corresponding to the most appropriate estimated value from the estimated data according to a predetermined rule to set the target value of the set temperature; The temperature control host can transmit the set temperature target value to the refrigerator equipment, so that the refrigeration unit can adjust the internal temperature of the refrigerator equipment with the set temperature target value.
在一些實施態樣中,該冷櫃溫度設定模組的該預定規則是以該等估算值中的最大者、該等估算值中的最小者,或是該等估算值中最接近一預定數值的一者所對應的設定溫度值,作為擇定的該設定溫度目標值。In some implementations, the predetermined rule of the refrigerator temperature setting module is based on the largest of the estimated values, the smallest of the estimated values, or the closest to a predetermined value among the estimated values The set temperature value corresponding to one of them is used as the selected set temperature target value.
在一些實施態樣中,該最適溫度預測模組的神經網路演算法是由一學習資料進行訓練,該學習資料具有多筆不同的設定溫度值、多筆分別對應各該設定溫度值的預報氣溫值、多筆分別對應各該設定溫度值的室內溫度值、多筆分別對應各該設定溫度值的冷櫃溫度值,以及多筆分別對應各該設定溫度值的評價標記值,該神經網路演算法的訓練是以依據各該設定溫度值以及對應各該設定溫度值的該預報氣溫值、該室內溫度值、該冷櫃溫度值所產生的該估算值,相較於對應各該設定溫度值的該評價標記值的關聯性,來訓練調整該神經網路演算法的權重值及/或偏置值。In some implementations, the neural network algorithm of the optimal temperature prediction module is trained by a learning data, the learning data has a plurality of different set temperature values, and a plurality of forecasted temperatures respectively corresponding to the set temperature values value, multiple indoor temperature values corresponding to the set temperature values, multiple freezer temperature values corresponding to the set temperature values, and multiple evaluation mark values corresponding to the set temperature values, the neural network algorithm The training is based on the estimated value generated based on each of the set temperature values and the forecasted air temperature value, the indoor temperature value, and the refrigerator temperature value corresponding to each of the set temperature values, compared with the estimated values corresponding to each of the set temperature values Evaluate the relevance of the tag values to train and adjust the weights and/or biases of the neural network algorithm.
在一些實施態樣中,該溫度控制主機會分別定時接收新的該預報氣溫值、該內部溫度值及該冷櫃溫度值,而更新該氣溫預報資料庫、該室內溫度資料庫及該冷櫃溫度資料庫;該溫度控制主機能判斷該冷櫃溫度資料庫中最新接收的冷櫃溫度值是否位於一預設的溫度範圍區間內;若判斷結果為否,該溫度控制主機會依據更新後的該氣溫預報資料庫、該室內溫度資料庫及該冷櫃溫度資料庫,重新執行由該最適溫度預測模組產生該估算資料、由該冷櫃溫度設定模組擇定該設定溫度目標值以及將該設定溫度目標值傳送至該冷櫃設備的程序。In some implementations, the temperature control host will regularly receive the new forecast air temperature value, the internal temperature value and the refrigerator temperature value respectively, and update the air temperature forecast database, the indoor temperature database and the refrigerator temperature data library; the temperature control host can judge whether the latest received freezer temperature value in the freezer temperature database is within a preset temperature range; if the judgment result is no, the temperature control host will use the updated temperature forecast data Database, the indoor temperature database and the refrigerator temperature database, re-execute the estimation data generated by the optimum temperature prediction module, the set temperature target value selected by the freezer temperature setting module, and the set temperature target value transmission to the program for the freezer unit.
在一些實施態樣中,該溫度控制主機是每分鐘接收一筆該室內溫度值及該冷櫃溫度值而更新該室內溫度資料庫及該冷櫃溫度資料庫。In some implementations, the temperature control host receives the indoor temperature value and the refrigerator temperature value every minute to update the indoor temperature database and the refrigerator temperature database.
在一些實施態樣中,該神經網路演算法使用線性整流函式為激活函式,該神經網路演算法的隱藏層具有3至5個神經層,每個神經層具有64至128個神經元。In some implementation aspects, the neural network algorithm uses a linear rectification function as the activation function, and the hidden layer of the neural network algorithm has 3 to 5 neural layers, and each neural layer has 64 to 128 neurons.
在一些實施態樣中,該神經網路演算法使用線性整流函式為激活函式,該神經網路演算法的隱藏層具有3至5個神經層,每個神經層具有64至128個神經元;該神經網路演算法是以1至32的批次大小及100至200次的迭代次數進行訓練。In some implementation aspects, the neural network algorithm uses a linear rectification function as the activation function, the hidden layer of the neural network algorithm has 3 to 5 neural layers, and each neural layer has 64 to 128 neurons; The neural network algorithm is trained with a batch size of 1 to 32 and an iteration number of 100 to 200.
本發明的另一目的,在於提出一種溫度控制主機。Another object of the present invention is to provide a temperature control host.
於是,本發明溫度控制主機在一些實施態樣中,適用於與設置在一室內空間的一室內溫度感測器及一冷櫃設備配合運作。該冷櫃設備包括一用於偵測該冷櫃設備之內部溫度的冷櫃溫度感測器,及一用於調節該冷櫃設備之內部溫度的致冷單元。該溫度控制主機包含一設定溫度資料、一氣溫預報資料庫、一室內溫度資料庫、一冷櫃溫度資料庫、一最適溫度預測模組及一冷櫃溫度設定模組。該設定溫度資料具有多筆不同之用於設定該冷櫃設備的運作溫度的設定溫度值。該氣溫預報資料庫具有多筆接收自外部的預報氣溫值。該室內溫度資料庫具有多筆由該室內溫度感測器輸出的室內溫度值。該冷櫃溫度資料庫具有多筆由該冷櫃溫度感測器輸出的冷櫃溫度值。該最適溫度預測模組能受控執行一經預先訓練的神經網路演算法。該冷櫃溫度設定模組能接收該最適溫度預測模組的輸出資料以設定該冷櫃設備的溫度。其中,該最適溫度預測模組能依據該等設定溫度值、該等預報氣溫值、該等室內溫度值及該等冷櫃溫度值,以該神經網路演算法產生一估算資料,該估算資料具有多筆分別對應不同設定溫度值的估算值。該冷櫃溫度設定模組能依據一預定規則,從該估算資料中擇定具最適切的估算值所對應的設定溫度值為設定溫度目標值。該溫度控制主機能傳送該設定溫度目標值至該冷櫃設備,使該致冷單元以該設定溫度目標值調節該冷櫃設備的內部溫度。Therefore, in some embodiments, the temperature control host of the present invention is suitable for cooperating with an indoor temperature sensor and a refrigerator device installed in an indoor space. The refrigerator equipment includes a refrigerator temperature sensor for detecting the internal temperature of the refrigerator equipment, and a refrigeration unit for adjusting the internal temperature of the refrigerator equipment. The temperature control host includes a set temperature data, a temperature forecast database, an indoor temperature database, a freezer temperature database, an optimum temperature prediction module and a freezer temperature setting module. The set temperature data has a plurality of different set temperature values for setting the operating temperature of the refrigerator equipment. The temperature forecast database has a plurality of forecasted temperature values received from outside. The indoor temperature database has a plurality of indoor temperature values output by the indoor temperature sensor. The refrigerator temperature database has a plurality of refrigerator temperature values output by the refrigerator temperature sensor. The optimal temperature prediction module can be controlled to execute a pre-trained neural network algorithm. The refrigerator temperature setting module can receive the output data of the optimum temperature prediction module to set the temperature of the refrigerator equipment. Wherein, the optimal temperature forecasting module can generate an estimated data with the neural network algorithm based on the set temperature values, the forecasted air temperature values, the indoor temperature values and the refrigerator temperature values, and the estimated data has multiple The pens correspond to the estimated values of different set temperature values respectively. The freezer temperature setting module can select the set temperature value corresponding to the most suitable estimated value from the estimated data according to a predetermined rule to determine the set temperature target value. The temperature control host can transmit the set temperature target value to the refrigerator equipment, so that the refrigeration unit can adjust the internal temperature of the refrigerator equipment according to the set temperature target value.
本發明至少具有以下功效:該冷櫃控制系統藉由該溫度控制主機的該最適溫度預測模組、該冷櫃溫度設定模組的配合運作,能夠依據不斷更新的該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值,在多個設定溫度值中有效率且可靠地擇定最適切的一者進行該等冷櫃設備的運作溫度設定,讓該等冷櫃設備能夠穩定的在預定的溫度範圍區間中運作,藉以確保對食品的冷藏效果。此外,該溫度控制主機還能執行該等冷櫃設備的運作溫度監控,並能在溫度異常時即時進行該等冷櫃設備的溫度重新設定,藉以確保冷藏效果的持續性。The present invention has at least the following effects: the control system of the refrigerator can operate according to the continuously updated forecasted air temperature values and the indoor temperatures through the cooperation of the optimum temperature prediction module of the temperature control host and the refrigerator temperature setting module. value, the temperature value of the freezer, efficiently and reliably select the most suitable one among multiple set temperature values to set the operating temperature of the freezer equipment, so that the freezer equipment can be stably within the predetermined temperature range It operates in the interval to ensure the refrigeration effect of food. In addition, the temperature control host can also monitor the operating temperature of the refrigerators, and reset the temperature of the refrigerators in real time when the temperature is abnormal, so as to ensure the continuity of the refrigeration effect.
參閱圖1與圖2,本發明冷櫃控制系統100適用於與設置在一室內空間200的一室內溫度感測器201配合運作。該室內空間200例如是商家的店面內部空間,並可由該室內溫度感測器201定時偵測該室內空間200的室內溫度值。本實施例中,該冷櫃控制系統100包含至少一冷櫃設備1及一溫度控制主機2,在圖中是以兩個冷櫃設備1作為示例,然而根據實際需要,該等冷櫃設備1能夠以任意數量實施,並且不限於只能設置於同一室內空間200中,因而不以本實施例揭露內容為限。Referring to FIG. 1 and FIG. 2 , the
該等冷櫃設備1設置於該室內空間中,且各包括一用於偵測該冷櫃設備1之內部溫度的冷櫃溫度感測器11、一用於調節該冷櫃設備1之內部溫度的致冷單元12,以及圖中未示出的櫃體、櫃門、通訊單元等組成構件。該致冷單元12例如可包括壓縮機、冷凝器、毛細管、蒸發器、送風風扇等未具體示出的構件。The
該溫度控制主機2可以設置於該室內空間200中,此外也能夠設置於該室內空間200以外的區域,可藉由各類伺服器系統來實現,並能與該等冷櫃設備1連線通訊,且能接收該室內溫度感測器201輸出的室內溫度值。該溫度控制主機2例如包括圖中未示出的處理器、記憶體、儲存單元、通訊單元、輸出輸入介面等硬體構件,且具有作為軟體模組運行的一最適溫度預測模組21及一冷櫃溫度設定模組22,並內存一設定溫度資料23、一氣溫預報資料庫24、一室內溫度資料庫25及一冷櫃溫度資料庫26。The
該最適溫度預測模組21能受控執行一經預先訓練的神經網路演算法,藉以運行該等冷櫃設備1的溫度設定控制的主要步驟,此部分內容於後說明。該冷櫃溫度設定模組22能接收該最適溫度預測模組21的輸出資料,藉以設定該冷櫃設備1的運作溫度。The optimum
該設定溫度資料23具有多筆不同之用於設定該冷櫃設備1的運作溫度的設定溫度值,在該溫度控制主機2運行時該設定溫度資料23的該等設定溫度值原則上保持不變,並作為該最適溫度預測模組21的該神經網路演算法的輸入層的輸入資訊之一。 舉例來說,該等設定溫度值例如可以是0℃、高於或低於0℃的任意數值,在數值選用上可視欲冷藏的食品類型而定。The
該氣溫預報資料庫24具有多筆接收自外部的預報氣溫值,該等預報氣溫值為該最適溫度預測模組21的該神經網路演算法的輸入層的輸入資訊之一。該等預報氣溫值例如可以(但不限)是該室內空間200之所在地的未來一週預測氣溫值,並且會定時更新,其資訊來源可以選自政府氣象機構或民間氣象單位。The
該室內溫度資料庫25具有多筆由該室內溫度感測器201輸出的室內溫度值,該等室內溫度值是該最適溫度預測模組21的該神經網路演算法的輸入層的輸入資訊之一,並且會定時更新。在較佳的實施態樣中,該溫度控制主機2例如是每分鐘接收一筆該室內溫度值而更新該室內溫度資料庫25,如此的更新頻率及資料數量較能確保對該等冷櫃設備1的溫度設定提供較為即時且準確的控制依據。The
該冷櫃溫度資料庫26具有多筆由該冷櫃溫度感測器11輸出的冷櫃溫度值,該等冷櫃溫度值同樣是該最適溫度預測模組21的該神經網路演算法的輸入層的輸入資訊之一,並且會定時更新。在較佳的實施態樣中,該溫度控制主機2例如是每分鐘接收一筆冷櫃溫度值而更新該冷櫃溫度資料庫26,如此的更新頻率讓該溫度控制主機2能夠實現對該等冷櫃設備1的運作溫度的即時性監控,並能在運作溫度過高、過低而未維持在預定的溫度範圍區間時能夠盡早發現異常而作出調整。此外,上述的更新頻率能讓該冷櫃溫度資料庫26中具有足夠的資料量,以確保對該等冷櫃設備1的溫度設定提供即時且準確的控制機制。The
以下,說明由該溫度控制主機2對該等冷櫃設備1進行運作溫度設定的執行流程。Hereinafter, the execution flow of setting the operating temperature of the
於步驟S01,該最適溫度預測模組21會存取該設定溫度資料23、該氣溫預報資料庫24、該室內溫度資料庫25、該冷櫃溫度資料庫26中的最新更新資訊,依據該等設定溫度值、該等預報氣溫值、該等室內溫度值及該等冷櫃溫度值,以預先訓練的該神經網路演算法產生一估算資料,該估算資料具有多筆分別對應不同設定溫度值的估算值。在此步驟中,該等估算值作為該神經網路演算法的輸出層的輸出資料,是該神經網路演算法的隱藏層依據輸入層接收的資訊,對每個設定溫度值分別計算出的評價數值,其意義在於讓該溫度控制主機2在後續程序中,能夠依據環境因素(該等預報氣溫值、該等室內溫度值)及設備因素(該等冷櫃溫度值)擇定各個設定溫度值中何者最適合作為當下應選用的設定參數。In step S01, the optimum
於步驟S02,當該最適溫度預測模組21完成該估算資料的計算後,該冷櫃溫度設定模組22便能依據一預定規則,從該估算資料中擇定具最適切的估算值所對應的設定溫度值為設定溫度目標值。舉例來說,該預定規則例如可以是擇定該等估算值中的最大者、該等估算值中的最小者,或是該等估算值中最接近一預定數值的一者所對應的設定溫度值,作為擇定的該設定溫度目標值,上述預定規則的機制選用當視該神經網路演算法的訓練內容而定。例如,該設定溫度資料23中具有10筆該等設定溫度值,於步驟S01對於這10筆設定溫度值分別計算出一估算值,若該預定規則是以該等估算值中的最大者作為擇定依據,則於步驟S02就會以具有最大的估算值所對應的設定溫度值作為該設定溫度目標值。如此一來,該溫度控制主機2就能依據最新更新的該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值,在充足資訊的計算分析後獲得相對應的該等估算值,並進一步擇定能夠讓該等冷櫃設備1在預定的溫度範圍區間中穩定運行的該設定溫度目標值。最後,於步驟S03該溫度控制主機2就能傳送該設定溫度目標值至該等冷櫃設備1,使該致冷單元12以該設定溫度目標值調節該冷櫃設備1的內部溫度,完成對該等冷櫃設備1的定期自動化溫度設定流程。In step S02, after the optimum
進一步來說,關於該等冷櫃設備1的運作溫度監控及溫度異常管理,由於該溫度控制主機2會分別定時接收新的該等預報氣溫值、該等內部溫度值及該等冷櫃溫度值,而更新該氣溫預報資料庫24、該室內溫度資料庫25及該冷櫃溫度資料庫26,因此該溫度控制主機2就能夠根據該冷櫃溫度資料庫26的資料更新而實現對該等冷櫃設備1進行即時的運作溫度監控。因此,該溫度控制主機2能夠持續性地判斷該冷櫃溫度資料庫中最新接收的冷櫃溫度值是否位於一預設的溫度範圍區間內,若判斷結果為是,代表最後一次設定的該設定溫度目標值能夠符合當下的環境因素及設備因素,讓該等冷櫃設備1以較穩定的運作溫度提供預定類型的食品冷藏功能。反之,若上述判斷結果為否,該溫度控制主機2就會依據更新後的該氣溫預報資料庫24、該室內溫度資料庫25及該冷櫃溫度資料庫26,重新執行由該最適溫度預測模組21產生該估算資料、由該冷櫃溫度設定模組22擇定該設定溫度目標值以及將該設定溫度目標值傳送至該等冷櫃設備1的程序,以新的設定溫度目標值取代先前的設定溫度目標值,讓該等冷櫃設備1的運作溫度得以逐漸恢復至正常的溫度範圍區間內。Further speaking, regarding the operation temperature monitoring and abnormal temperature management of the
另一方面,為了讓該最適溫度預測模組21的該神經網路演算法能夠分析計算出可信賴的該等估算值,本實施例對於該神經網路演算法的模型設定及訓練進行特定的配置,說明如下。On the other hand, in order to allow the neural network algorithm of the optimum
表1:神經網路演算法的模型設定
參照上述表1,本實施例將該神經網路演算法的輸入層配置為接收該等設定溫度值、該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值等4種類型的資訊,是要讓神經網路演算法能夠依據不斷更新且資料量足夠充分的環境資料(該等預報氣溫值、該等室內溫度值)及設備資料(該等冷櫃溫度值),準確地分析計算當下時刻各個設定溫度值何者為最佳。在隱藏層的配置部分,本實施例以隱藏層具有3至5個神經層為較佳,每個神經層的神經元數量以64至128個為佳。神經層的層數、神經元的數量過少較不容易得到準確可信賴的估算結果,神經層的層數、神經元的數量增加雖然能夠提升估算結果的準確性,但有可能會因為過度複雜模型的過凝合(overfitting)因素,使得神經網路演算法在訓練過程中分析學習資料時能夠取得良好的準確性,但後續分析新的資料時卻可能發生準確性下降的問題。因此,本實施例藉由對隱藏層的適當配置,有助於在執行前述步驟S01、S02時獲得準確有效的估算結果。Referring to Table 1 above, in this embodiment, the input layer of the neural network algorithm is configured to receive four types of information, including the set temperature values, the forecasted temperature values, the indoor temperature values, and the refrigerator temperature values. It is to allow the neural network algorithm to accurately analyze and calculate the current time based on the continuously updated environmental data (these forecast air temperature values, the these indoor temperature values) and equipment data (these freezer temperature values) with sufficient data volume. Whichever is the best set temperature value. In the configuration of the hidden layer, in this embodiment, the hidden layer preferably has 3 to 5 neural layers, and the number of neurons in each neural layer is preferably 64 to 128. If the number of neural layers and the number of neurons are too small, it is difficult to obtain accurate and reliable estimation results. Although increasing the number of neural layers and the number of neurons can improve the accuracy of the estimation results, it may be due to the overly complex model. The overfitting factor enables the neural network algorithm to obtain good accuracy when analyzing the learning data during the training process, but the accuracy may decrease when the new data is analyzed later. Therefore, this embodiment helps to obtain accurate and effective estimation results when performing the aforementioned steps S01 and S02 by properly configuring the hidden layer.
另一方面,本實施例對於該最適溫度預測模組21的該神經網路演算法的訓練,是由一學習資料進行訓練。該學習資料具有多筆不同的設定溫度值、多筆分別對應各該設定溫度值的預報氣溫值、多筆分別對應各該設定溫度值的室內溫度值、多筆分別對應各該設定溫度值的冷櫃溫度值,以及多筆分別對應各該設定溫度值之人為給定的評價標記值(label)。該神經網路演算法的訓練是以依據各該設定溫度值及對應各該設定溫度值的該預報氣溫值、該室內溫度值及該冷櫃溫度值所產生的該估算值,相較於對應各該設定溫度值的該評價標記值的關聯性,來訓練調整該神經網路演算法的權重值及/或偏置值。On the other hand, in this embodiment, the training of the neural network algorithm of the optimum
具體來說,於步驟S01中,該神經網路演算法是依據相同 (最近一段時間內更新) 的該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值來計算出不同的設定溫度值的估算值。而在該神經網路演算法的訓練過程中,該學習資料中用於計算不同的設定溫度值的估算值所依據的該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值,是過往的不同時間區間內的資料,因此進行訓練的工程人員會基於多種預報氣溫值、室內溫度值、冷櫃溫度值的資料組合,依據各資料組合對應的設定溫度值對該等冷櫃設備1進行設定後所展現的運作溫度的穩定性,以人為方式給定不同的評價標記值,例如評價標記值可以是0至9的整數,數字越大代表溫度穩定性越好(不容易超出預定溫度範圍區間)。因此,該神經網路演算法就可以在使用該學習資料進行訓練的過程中,藉由權重值及/或偏置值的調整,使得各設定溫度值計算出的估算值能夠逐漸與預先給定的評價標記值相對應,以達到訓練的目的。上述舉例中,由於訓練該神經網路演算法時是以評價標記值較大為佳,因此在執行步驟S02時所使用的該預定規則就會以具有最大的估算值為條件來擇定設定溫度目標值。若訓練時設定的評價標記值具有不同的評價標準,則步驟S02使用的該預定規則就可以對應進行調整。Specifically, in step S01, the neural network algorithm calculates different set temperature values based on the same (updated in the latest period) values of the forecasted air temperature, the indoor temperature, and the temperature of the refrigerator the estimated value of . During the training process of the neural network algorithm, the forecasted air temperature values, the indoor temperature values, and the refrigerator temperature values used to calculate the estimated values of different set temperature values in the learning materials are the past Therefore, the training engineers will set the
除此之外,進一步考量該溫度控制主機2的運行效能及該神經網路演算法的執行效率,在執行步驟S01或進行該神經網路演算法的訓練時,本實施例會將輸入層的輸入資訊(該等設定溫度值、該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值)進行預處理,例如將資料值縮放為0至1的範圍以使該神經網路演算法的收斂速度加快,並且可以先移除資料中的空值(null)。此外,輸入資訊的處理可以藉由1至32的批次大小(batch size)、100至200的迭代次數(epoch)並配合線性整流函式(Rectified Linear Unit,ReLU)之激活函式為佳。如此一來,該溫度控制主機2就能在充分利用運行效能的狀態下讓該神經網路演算法有效率地執行運算,因而能快速地完成步驟S01的分析計算步驟並進行後續的溫度設定步驟,藉以實現對該等冷櫃設備1的即時性溫度設定及監控管理。In addition, further considering the operating performance of the
綜合前述說明,本發明冷櫃控制系統100藉由該溫度控制主機2的該最適溫度預測模組21、該冷櫃溫度設定模組22的配合運作,能夠依據不斷更新的該等預報氣溫值、該等室內溫度值、該等冷櫃溫度值,在多個設定溫度值中有效率且可靠地擇定最適切的一者,據以進行該等冷櫃設備1的運作溫度設定,讓該等冷櫃設備1能夠持續在預定的溫度範圍區間中運作,確保對食品的冷藏效果。此外,該溫度控制主機2還能執行該等冷櫃設備1的運作溫度監控,並能在溫度異常時即時進行該等冷櫃設備1的溫度重新設定,藉以確保冷藏效果的持續性。是故,本發明冷櫃控制系統100確實能達成本發明的目的。Based on the foregoing description, the
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。But what is described above is only an embodiment of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.
100:冷櫃控制系統 200:室內空間 201:室內溫度感測器 1:冷櫃設備 11:冷櫃溫度感測器 12:致冷單元 2:溫度控制主機 21:最適溫度預測模組 22:冷櫃溫度設定模組 23:設定溫度資料 24:氣溫預報資料庫 25:室內溫度資料庫 26:冷櫃溫度資料庫 S01~S03:步驟100: Freezer control system 200: Interior space 201: Indoor temperature sensor 1: Freezer equipment 11: Freezer temperature sensor 12: Refrigeration unit 2: Temperature control host 21:Optimum temperature prediction module 22: Freezer temperature setting module 23: Set temperature data 24: Temperature forecast database 25: Indoor temperature database 26: Freezer temperature database S01~S03: Steps
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一系統方塊圖,說明本發明冷櫃控制系統的一實施例;及 圖2是該冷櫃控制系統的運行流程圖。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a system block diagram illustrating an embodiment of the refrigerator control system of the present invention; and Figure 2 is a flow chart of the operation of the refrigerator control system.
100:冷櫃控制系統 100: Freezer control system
200:室內空間 200: Interior space
201:室內溫度感測器 201: Indoor temperature sensor
1:冷櫃設備 1: Freezer equipment
11:冷櫃溫度感測器 11: Freezer temperature sensor
12:致冷單元 12: Refrigeration unit
2:溫度控制主機 2: Temperature control host
21:最適溫度預測模組 21:Optimum temperature prediction module
22:冷櫃溫度設定模組 22: Freezer temperature setting module
23:設定溫度資料 23: Set temperature data
24:氣溫預報資料庫 24: Temperature forecast database
25:室內溫度資料庫 25: Indoor temperature database
26:冷櫃溫度資料庫 26: Freezer temperature database
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111143142A TWI795340B (en) | 2022-11-11 | 2022-11-11 | Freezer control system and temperature control host |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111143142A TWI795340B (en) | 2022-11-11 | 2022-11-11 | Freezer control system and temperature control host |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI795340B true TWI795340B (en) | 2023-03-01 |
| TW202420160A TW202420160A (en) | 2024-05-16 |
Family
ID=86692118
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111143142A TWI795340B (en) | 2022-11-11 | 2022-11-11 | Freezer control system and temperature control host |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI795340B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116717938A (en) * | 2023-08-09 | 2023-09-08 | 江苏星星冷链科技有限公司 | Method and system for detecting and controlling internal environment of refrigerator |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107663590A (en) * | 2017-10-11 | 2018-02-06 | 曹茂娟 | A kind of ferrochrome smelting waste residue reclaimer |
| US10545517B2 (en) * | 2013-04-19 | 2020-01-28 | Google Llc | Generating and implementing thermodynamic models of a structure |
| US10584892B2 (en) * | 2015-10-01 | 2020-03-10 | Panasonic Intellectual Property Management Co., Ltd. | Air-conditioning control method, air-conditioning control apparatus, and storage medium |
| CN112673403A (en) * | 2018-07-16 | 2021-04-16 | 连接创新有限公司 | Electrical safety device and system |
| CN112740229A (en) * | 2018-09-21 | 2021-04-30 | 三星电子株式会社 | Method and system for providing information related to state of object in refrigerator |
| TW202212945A (en) * | 2020-05-22 | 2022-04-01 | 美商視野公司 | Environmental adjustment using artificial intelligence |
-
2022
- 2022-11-11 TW TW111143142A patent/TWI795340B/en active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10545517B2 (en) * | 2013-04-19 | 2020-01-28 | Google Llc | Generating and implementing thermodynamic models of a structure |
| US10584892B2 (en) * | 2015-10-01 | 2020-03-10 | Panasonic Intellectual Property Management Co., Ltd. | Air-conditioning control method, air-conditioning control apparatus, and storage medium |
| CN107663590A (en) * | 2017-10-11 | 2018-02-06 | 曹茂娟 | A kind of ferrochrome smelting waste residue reclaimer |
| CN112673403A (en) * | 2018-07-16 | 2021-04-16 | 连接创新有限公司 | Electrical safety device and system |
| CN112740229A (en) * | 2018-09-21 | 2021-04-30 | 三星电子株式会社 | Method and system for providing information related to state of object in refrigerator |
| TW202212945A (en) * | 2020-05-22 | 2022-04-01 | 美商視野公司 | Environmental adjustment using artificial intelligence |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116717938A (en) * | 2023-08-09 | 2023-09-08 | 江苏星星冷链科技有限公司 | Method and system for detecting and controlling internal environment of refrigerator |
| CN116717938B (en) * | 2023-08-09 | 2023-09-29 | 江苏星星冷链科技有限公司 | Method and system for detecting and controlling internal environment of refrigerator |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202420160A (en) | 2024-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11402279B2 (en) | Continuous calibration of sensors in a remotely monitored cooling system | |
| US10558180B2 (en) | Building control system with empirical uncertainty determination for energy use model parameters | |
| JP2993563B2 (en) | System for monitoring outdoor heat exchanger coils | |
| KR100277219B1 (en) | System for monitoring refrigerant charge | |
| US9740545B2 (en) | Equipment evaluation device, equipment evaluation method and non-transitory computer readable medium | |
| US20180046149A1 (en) | Prediction in building automation | |
| CN119398192A (en) | Correcting component failures in ion implantation semiconductor manufacturing tools | |
| CN118967407B (en) | Intelligent command and dispatch system for emergency rescue in highway tunnels | |
| Monfet et al. | Ongoing commissioning of water-cooled electric chillers using benchmarking models | |
| JP2019212131A (en) | Prediction device, electrical appliance, management system, prediction method, and control program | |
| EP3904987B1 (en) | Control support apparatus, control support method, control support program, computer readable medium with control support program recorded thereon and control system | |
| TWI795340B (en) | Freezer control system and temperature control host | |
| AU2019292449B2 (en) | Power consumption estimation device | |
| CN119436416A (en) | A computer room control method and system based on communication between air conditioning terminal and chiller | |
| CN110826784A (en) | Energy use efficiency prediction method and device, storage medium and terminal equipment | |
| CN113033913A (en) | Air conditioner fault predictive maintenance method and system, electronic equipment and storage medium | |
| JP6410990B2 (en) | Refrigerant shortage prediction device, refrigerant shortage prediction method and program | |
| CN117091273A (en) | Control method and device for self-adaptive learning data model of central air conditioning system | |
| CN116976488A (en) | Air conditioning energy consumption prediction method based on sparrow search algorithm optimizing BP neural network | |
| JP2020167892A (en) | Method and system for predicting air conditioning load and method and system for managing air conditioning system energy | |
| WO2022257267A1 (en) | Cluster control method and apparatus for environmental parameter control devices, and device and storage medium | |
| CN119830177A (en) | Intelligent equipment integrated management system for power grid distribution network inspection | |
| US20210133369A1 (en) | Machine learning for monitoring, managing and maintaining edge data centers | |
| JP2021526692A (en) | Methods and systems for diagnosing chiller performance abnormalities | |
| St-Laurent et al. | Analysis and prediction of chilled water plant performance based on multivariate statistical methods and large historical data |