TWI795114B - Multimaterial topology optimization method of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such - Google Patents
Multimaterial topology optimization method of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such Download PDFInfo
- Publication number
- TWI795114B TWI795114B TW110145901A TW110145901A TWI795114B TW I795114 B TWI795114 B TW I795114B TW 110145901 A TW110145901 A TW 110145901A TW 110145901 A TW110145901 A TW 110145901A TW I795114 B TWI795114 B TW I795114B
- Authority
- TW
- Taiwan
- Prior art keywords
- design
- phalanx
- density
- displacement
- adaptive
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 119
- 238000005457 optimization Methods 0.000 title claims abstract description 67
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 41
- 238000004590 computer program Methods 0.000 title claims description 6
- 238000013461 design Methods 0.000 claims abstract description 205
- 239000000463 material Substances 0.000 claims abstract description 154
- 239000007787 solid Substances 0.000 claims abstract description 34
- 238000006073 displacement reaction Methods 0.000 claims description 73
- 238000001914 filtration Methods 0.000 claims description 33
- 238000004422 calculation algorithm Methods 0.000 claims description 25
- 230000035945 sensitivity Effects 0.000 claims description 24
- 238000005381 potential energy Methods 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000003993 interaction Effects 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 claims description 18
- 239000013598 vector Substances 0.000 claims description 17
- 238000004458 analytical method Methods 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 68
- 238000010586 diagram Methods 0.000 description 39
- 230000008569 process Effects 0.000 description 21
- 230000008859 change Effects 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 13
- 229920002725 thermoplastic elastomer Polymers 0.000 description 11
- 230000004069 differentiation Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 238000012804 iterative process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 230000005483 Hooke's law Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000010206 sensitivity analysis Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 101710093617 Dihydroxyacetone synthase Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- PVFDPMYXCZLHKY-MLLWLMKGSA-M sodium [(1R,2R,4aR,8aS)-2-hydroxy-5-[(2E)-2-[(4S)-4-hydroxy-2-oxooxolan-3-ylidene]ethyl]-1,4a,6-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]methyl sulfate Chemical compound [Na+].C([C@@H]1[C@](C)(COS([O-])(=O)=O)[C@H](O)CC[C@]11C)CC(C)=C1C\C=C1/[C@H](O)COC1=O PVFDPMYXCZLHKY-MLLWLMKGSA-M 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Images
Landscapes
- Earth Drilling (AREA)
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明係關於一種夾持工具,尤指多材料條件設計之自適性撓性手指、夾爪、設計方法、電腦程式產品、電腦可讀取紀錄媒體。 The invention relates to a clamping tool, especially an adaptive flexible finger designed with multi-material conditions, a gripper, a design method, a computer program product, and a computer-readable recording medium.
撓性夾爪可適用外形差異較大之物件,且可降低夾持損傷物件機率,因此廣受使用。相關案件例如有本發明人獲准之中華民國發明專利公告第I630499號之「撓性夾爪及其設計方法、電腦程式產品、電腦可讀取紀錄媒體」。 Flexible grippers are suitable for objects with large differences in shape, and can reduce the chance of clamping damaged objects, so they are widely used. Related cases include, for example, "Flexible Grippers and Design Methods, Computer Program Products, and Computer-Readable Recording Media" of the Republic of China Invention Patent Announcement No. I630499 approved by the inventor.
上述專利所揭的撓性夾爪是以彈性材料一體形成,但撓性夾爪不同部位會有不同的剛性需求,例如傳遞力量的部位最好可有較佳的剛性,而特定部位也需易於形變,以便較佳地包覆物件。 The flexible grippers disclosed in the above patents are integrally formed of elastic materials, but different parts of the flexible grippers have different rigidity requirements. Deformation to better wrap the object.
爰此,為增進自適性撓性手指的實用性,提出一種多材料條件設計之自適性撓性手指設計方法,以透過電腦執行一SIMP方法(Solid isotropic material with penalization method)進行拓樸最佳化,包含下列步驟:步驟一:取得設計區間、邊界條件與拓樸最佳化相關參數之資訊,並取得複數種材料之元素密度ρ i 的初始值,下標i代表設計區間中的第i個元素;
步驟二:將各種材料之元素密度ρ i 分別進行濾化,以將各種材料之元素密度ρ i 轉換為元素實體密度;步驟三:執行有限元素分析,以求得節點位移,其中元素實體密度與楊氏係數E i 間之關係為:
進一步,所述SIMP方法中的體積限制式為:;其中v i 為元素之體積,V為設計區間之體積,V 0 *則為目標體積率。 Further, the volume restriction formula in the SIMP method is: ; Where v i is the volume of the element, V is the volume of the design interval, and V 0 * is the target volume ratio.
進一步,所述拓樸最佳化方法係依序以一元素密度濾化演算法及一臨界投影法更新設計變數。此外,所述拓樸最佳化方法可加入穩健性拓樸最佳化,將原始設計、擴張設計及縮減設計之目標函數同時最小化。 Further, the topology optimization method uses an element density filtering algorithm and a critical projection method to update the design variables in sequence. In addition, the topology optimization method can add robust topology optimization to simultaneously minimize the objective functions of the original design, the expanded design and the reduced design.
進一步,所述SIMP方法可採用交互位能(Mutual potential energy,MPE)作為目標函數,並於所述自適性撓性手指中的各個指節採用適合的最佳化目標函數。 Further, the SIMP method may use mutual potential energy (Mutual potential energy, MPE ) as an objective function, and use a suitable optimized objective function for each knuckle in the adaptive flexible finger.
藉由上述特徵,主要可達到如下所述的功效: With the above features, the following effects can be mainly achieved:
1.本發明之拓樸最佳化方法可透過多重材料條件設計,來提升自適性。 1. The topology optimization method of the present invention can improve self-adaptability through multi-material condition design.
2.本發明之拓樸最佳化方法可進一步透過增加邊界條件之數量,來同時優化該設計於不同運作情境中之效能。 2. The topology optimization method of the present invention can further optimize the performance of the design in different operating scenarios by increasing the number of boundary conditions.
3.本發明的變數更新可進一步加入濾化演算法與臨界投影法,前者可用於解決棋盤狀網格(Checkerboard)及網格相依性(Mesh dependence)問題,後者用以解決灰階元素問題。 3. The variable update of the present invention can further add filtering algorithm and critical projection method, the former can be used to solve the problem of checkerboard and mesh dependency, and the latter is used to solve the problem of gray scale elements.
4.拓樸最佳化方法可進一步加入穩健性拓樸最佳化,將原始設計、擴張設計及縮減設計同時進行拓樸最佳化,以避免設計上產生不合理樞紐結構的問題(如製造上的困難、易產生疲勞或應力集中等耐用性不佳的問題)。 4. The topology optimization method can further add robustness topology optimization, and perform topology optimization on the original design, expansion design and reduction design at the same time, so as to avoid the problem of unreasonable hub structure in the design (such as manufacturing Difficulty on the surface, prone to fatigue or stress concentration and other poor durability issues).
(1):自適性撓性手指 (1): Adaptive flexible fingers
(10):末端指節 (10): terminal knuckles
(20)(30):中間指節 (20)(30): middle knuckles
(40):第一指節 (40):first knuckle
(50):位移傳遞模組 (50): Displacement transfer module
(51):位移傳遞結構 (51): Displacement transfer structure
(52):致動器 (52): Actuator
(521):移動件 (521):Moving parts
(522):固定件 (522):Fixer
(523):作動件 (523): actuator
(60A)(60B):樞紐結構 (60A)(60B): hub structure
(100):夾持面 (100): clamping surface
(S01):步驟一
(S01):
(S02):步驟二
(S02):
(S03):步驟三 (S03): Step 3
(S04):步驟四
(S04):
(S05):步驟五 (S05): Step five
(S06):步驟六 (S06): Step 6
(M01):第一種撓性材料 (M01): The first flexible material
(M02):第二種撓性材料 (M02): Second flexible material
圖1係本發明實施例拓樸最佳化流程圖。 Fig. 1 is a flow chart of topology optimization according to an embodiment of the present invention.
圖2A係本發明實施例之設計區間示意圖一。 FIG. 2A is a schematic diagram of a design interval according to an embodiment of the present invention.
圖2B係本發明實施例之設計區間示意圖二。 Fig. 2B is a second schematic diagram of the design interval of the embodiment of the present invention.
圖3A係本發明實施例之一般與實心設計區間示意圖一。 Fig. 3A is a schematic diagram of the general and solid design intervals of the embodiment of the present invention.
圖3B係本發明實施例之一般與實心設計區間示意圖二。 Fig. 3B is a second schematic diagram of the general and solid design intervals of the embodiment of the present invention.
圖3C係原始設計區間示意圖。 Figure 3C is a schematic diagram of the original design interval.
圖3D係原始設計區間經多材料設計的結果示意圖一。 Figure 3D is a schematic diagram of the results of multi-material design in the original design interval.
圖3E係原始設計區間經多材料設計的結果示意圖二。 Figure 3E is the second schematic diagram of the multi-material design results of the original design interval.
圖4係元素節點自由度示意圖。 Figure 4 is a schematic diagram of the degrees of freedom of element nodes.
圖5A係棋盤狀網格示意圖。 Figure 5A is a schematic diagram of a checkerboard grid.
圖5B係未加入濾化演算法及臨界投影法之結果示意圖。 Fig. 5B is a schematic diagram of the result without adding the filtering algorithm and the critical projection method.
圖5C係加入濾化演算法之結果示意圖。 Fig. 5C is a schematic diagram of the result of adding the filtering algorithm.
圖5D係加入濾化演算法及臨界投影法之結果示意圖。 Fig. 5D is a schematic diagram of the result of adding filtering algorithm and critical projection method.
圖6係濾化半徑示意圖。 Figure 6 is a schematic diagram of the filtration radius.
圖7係投影函數示意圖。 Fig. 7 is a schematic diagram of the projection function.
圖8A係投影函數之設計結果示意圖一。 Fig. 8A is the first schematic diagram of the design result of the projection function.
圖8B係投影函數之設計結果示意圖二。 Fig. 8B is the second schematic diagram of the design result of the projection function.
圖8C係投影函數之設計結果示意圖三。 Fig. 8C is the third schematic diagram of the design result of the projection function.
圖8D係投影函數之設計結果示意圖四。 Fig. 8D is a schematic diagram 4 of the design result of the projection function.
圖9A係調整門檻閥值後的投影函數(η=0.3)。 Fig. 9A is the projection function after adjusting the threshold value (η=0.3).
圖9B係調整門檻閥值後的投影函數(η=0.7)。 Fig. 9B is the projection function after adjusting the threshold value (η=0.7).
圖10係本發明實施例收斂性分析流程圖。 Fig. 10 is a flow chart of convergence analysis of the embodiment of the present invention.
圖11係本發明實施例之撓性機構之設計區間示意圖。 Fig. 11 is a schematic diagram of the design interval of the flexible mechanism of the embodiment of the present invention.
圖12A係本發明實施例疊加原理示意圖一。 Fig. 12A is a first schematic diagram of the superposition principle of the embodiment of the present invention.
圖12B係本發明實施例疊加原理示意圖二。 Fig. 12B is the second schematic diagram of the superposition principle of the embodiment of the present invention.
圖13係本發明實施例單輸入與雙輸出之設計區間示意圖。 Fig. 13 is a schematic diagram of a design interval of a single input and a double output according to an embodiment of the present invention.
圖14A係本發明實施例單輸入與雙輸出之拆解邊界條件示意圖一。 Fig. 14A is a first schematic diagram of dismantling boundary conditions of single input and dual output according to the embodiment of the present invention.
圖14B係本發明實施例單輸入與雙輸出之拆解邊界條件示意圖二。 Fig. 14B is a second schematic diagram of dismantling boundary conditions of single input and dual output according to the embodiment of the present invention.
圖15係本發明實施例雙輸入與雙輸出之設計區間示意圖。 Fig. 15 is a schematic diagram of the design interval of dual-input and dual-output according to the embodiment of the present invention.
圖16A係本發明實施例雙輸入與雙輸出之拆解邊界條件示意圖一。 Fig. 16A is a first schematic diagram of dismantling boundary conditions of dual-input and dual-output according to the embodiment of the present invention.
圖16B係本發明實施例雙輸入與雙輸出之拆解邊界條件示意圖二。 Fig. 16B is a second schematic diagram of dismantling boundary conditions of dual-input and dual-output according to the embodiment of the present invention.
圖17係本發明實施例拓樸最佳化詳細流程圖。 Fig. 17 is a detailed flowchart of topology optimization according to the embodiment of the present invention.
圖18係本發明實施例程式碼判斷條件流程圖。 FIG. 18 is a flow chart of code judgment conditions according to an embodiment of the present invention.
圖19係本發明實施例自適性撓性手指之架構示意圖。 Fig. 19 is a schematic diagram of the structure of the self-adaptive flexible finger according to the embodiment of the present invention.
圖20係本發明實施例自適性撓性手指之夾取策略示意圖。 Fig. 20 is a schematic diagram of the gripping strategy of the self-adaptive flexible finger according to the embodiment of the present invention.
圖21A係本發明實施例自適性撓性手指之邊界條件示意圖一。 Fig. 21A is a first schematic diagram of the boundary conditions of the self-adaptive flexible finger according to the embodiment of the present invention.
圖21B係本發明實施例自適性撓性手指之邊界條件示意圖二。 Fig. 21B is the second schematic diagram of the boundary conditions of the self-adaptive flexible finger according to the embodiment of the present invention.
圖21C係本發明實施例自適性撓性手指之邊界條件示意圖三。 Fig. 21C is the third schematic diagram of the boundary conditions of the self-adaptive flexible finger according to the embodiment of the present invention.
圖21D係本發明實施例自適性撓性手指之邊界條件示意圖四。 Fig. 21D is a fourth schematic diagram of the boundary conditions of the self-adaptive flexible finger according to the embodiment of the present invention.
圖22係本發明實施例位移傳遞結構邊界條件示意圖。 Fig. 22 is a schematic diagram of the boundary conditions of the displacement transfer structure of the embodiment of the present invention.
圖23A係本發明實施例中指節之多重邊界條件示意圖一。 Fig. 23A is a first schematic diagram of the multiple boundary conditions of the phalanx in the embodiment of the present invention.
圖23B係本發明實施例中指節之多重邊界條件示意圖二。 Fig. 23B is a second schematic diagram of the multiple boundary conditions of the phalanx in the embodiment of the present invention.
圖24係本發明實施例自適性撓性手指之立體外觀示意圖。 Fig. 24 is a schematic perspective view of the three-dimensional appearance of the self-adaptive flexible finger of the embodiment of the present invention.
圖25係本發明實施例夾爪之立體外觀示意圖一。 Fig. 25 is a three-dimensional appearance schematic diagram of the clamping jaw of the embodiment of the present invention.
圖26係本發明實施例夾爪之立體外觀示意圖二。 Fig. 26 is the second perspective view of the clamping jaw of the embodiment of the present invention.
圖27係本發明實施例夾爪之立體外觀示意圖三。 Fig. 27 is a three-dimensional appearance schematic diagram of the clamping jaw of the embodiment of the present invention.
圖28係本發明實施例夾爪之立體外觀示意圖四。 Fig. 28 is a schematic view four of the three-dimensional appearance of the clamping jaw of the embodiment of the present invention.
綜合上述技術特徵,本發明多材料條件設計之自適性撓性手指、夾爪、設計方法、電腦程式產品、電腦可讀取紀錄媒體的主要功效將可於下述實施例搭配圖式清楚呈現。應注意的是,為便於理解,各圖式中,相近功能元件將採用相近或相同的元件符號。 Based on the above-mentioned technical features, the main functions of the self-adaptive flexible fingers, grippers, design methods, computer program products, and computer-readable recording media designed with multi-material conditions of the present invention can be clearly presented in the following embodiments with diagrams. It should be noted that, for ease of understanding, in each drawing, similar functional components will use similar or identical component symbols.
本發明實施例的多材料條件設計之自適性撓性手指設計方法,實施上可建構為一程式並儲存於電腦程式產品或電腦可讀取紀錄媒體。當電腦載入該程式並執行後,可完成如前述多材料條件設計之自適性撓性手指設計方法。 The self-adaptive flexible finger design method of multi-material conditional design in the embodiment of the present invention can be implemented as a program and stored in a computer program product or a computer-readable recording medium. After the computer loads and executes the program, the adaptive flexible finger design method as described above for multi-material condition design can be completed.
所述多材料條件設計之自適性撓性手指設計方法包含以一拓樸最佳化方法進行設計,所述拓樸最佳化主要是以SIMP方法(Solid Isotropic Material with Penalization)為基礎,此方法具有較佳的運算速度且無網格相依性,適合用於撓性機構設計。 The adaptive flexible finger design method of multi-material condition design includes designing with a topology optimization method, and the topology optimization is mainly based on the SIMP method (Solid Isotropic Material with Penalization). It has better calculation speed and no mesh dependency, and is suitable for flexible mechanism design.
以下將依序介紹三維拓樸最佳化之流程與理論,分別為設計區間、設計變數、有限元素分析、濾化演算法、穩健性拓樸最佳化、MMA方法、收斂準則、目標函數及元素靈敏度。 The following will introduce the process and theory of 3D topology optimization in sequence, including design interval, design variables, finite element analysis, filtering algorithm, robust topology optimization, MMA method, convergence criterion, objective function and Element sensitivity.
請先參閱圖1,揭示本實施例所述拓樸最佳化方法的主要流程,係以SIMP方法為基礎,透過對設計變數(即元素密度)執行濾化演算法及臨界投影 法可避免結構產生棋盤狀網格並降低灰階元素數量。因此最終之設計變數將趨近於0或1。所述拓樸最佳化方法之流程如下: Please refer to Figure 1 first, which reveals the main flow of the topology optimization method described in this embodiment. It is based on the SIMP method, and performs filtering algorithms and critical projections on design variables (ie, element density). The method can avoid the structure to produce a checkerboard grid and reduce the number of grayscale elements. Therefore, the final design variable will be close to 0 or 1. The process flow of the topology optimization method is as follows:
步驟一(S01):定義設計區間、邊界條件及拓樸最佳化相關參數,並取得元素密度的初始值(亦可稱為設計變數的初始值)。 Step 1 (S01): Define the design interval, boundary conditions, and parameters related to topology optimization, and obtain the initial value of the element density (also called the initial value of the design variable).
步驟二(S02):將元素密度執行濾化演算法及臨界投影法。 Step 2 (S02): Perform a filtering algorithm and a critical projection method on the element density.
步驟三(S03):執行有限元素分析並計算節點之位移。 Step 3 (S03): Perform finite element analysis and calculate the displacement of nodes.
步驟四(S04):以節點位移計算目標函數及元素靈敏度 Step 4 (S04): Calculate the objective function and element sensitivity based on node displacement
步驟五(S05):以MMA方法更新設計變數。 Step 5 (S05): Updating design variables by MMA method.
步驟五(S05):判斷是否收斂,若收斂即結束;否則至步驟二(S02)進行下一次疊代。 Step 5 (S05): Judging whether it is converged, if it is converged, it will end; otherwise, go to step 2 (S02) for the next iteration.
以下將進一步詳細說明設計區間、設計變數與有限元素分析:本實施例之自適性撓性夾爪採用二維設計區間之拓樸最佳化方法。以二維懸臂樑(Cantilever beam)為例,圖2A為受到平面應力之懸臂樑,其相關尺寸、所受外力及邊界條件皆完整定義後,便可劃分出拓樸最佳化當中之設計區間。如圖2B所示,設計區間當中之x方向元素量稱為nelx,y方向之元素量則稱之為nely。由圖2B可觀察出懸臂樑之設計區間之nelx為12,nely為6,並且設計區間已劃分為72個正方形元素。 The design interval, design variables and finite element analysis will be further described in detail below: the self-adaptive flexible gripper of this embodiment adopts the topology optimization method of the two-dimensional design interval. Taking the two-dimensional cantilever beam as an example, Figure 2A shows the cantilever beam subjected to plane stress. After the relevant dimensions, external forces and boundary conditions are completely defined, the design interval in topology optimization can be divided . As shown in Figure 2B, the element quantity in the x direction in the design interval is called nelx, and the element quantity in the y direction is called nely. It can be observed from Figure 2B that the nelx of the design interval of the cantilever beam is 12, the nely is 6, and the design interval has been divided into 72 square elements.
本實施例之撓性夾爪設計區間中又可區分為一般設計區間與實心設計區間,如圖3A及圖3B所示,實心設計區間的元素在拓樸最佳化過程中皆須維持實心元素。然而,在變數更新過程中仍可能將部分實心設計區間中的元素挖除,因此會透過強制將該元素設定回實心元素以維持實心設計區間之實心元素。 The design interval of the flexible gripper in this embodiment can be further divided into general design interval and solid design interval, as shown in Figure 3A and Figure 3B, the elements in the solid design interval must remain solid elements during the topology optimization process . However, some elements in the solid design interval may still be cut out during the variable update process, so the solid elements in the solid design interval will be maintained by forcing the element back to a solid element.
在拓樸最佳化方法中,每一個元素皆有獨立的元素密度(ρ i ),其數值界於0與1之間,下標i代表設計區間中的第i個元素,此即為拓樸最佳化中
的設計變數。每一個元素密度決定該元素將被保留或挖除,為0時代表該元素為空元素,將遭到挖除,為1時代表該元素會被保留,為實心元素。真正具有物理意義的稱作元素實體密度,能夠代表實際問題模型的機械性質,例如剛性。而元素實體密度為將元素密度經由執行濾化演算法及臨界投影法所求得。在SIMP方法中,元素實體密度與楊氏係數(E i )間之關係如式(A-1)所示,並且在有限元素法中的元素剛性矩陣(k i )為楊氏係數呈線性關係,如式(A-2)所示:
k i =E i k 0 (A-2) k i = E i k 0 (A-2)
式(A-1)為定義每個元素實體密度所對應楊氏係數之公式,E 0為原始材料之楊氏係數,E min為趨近於零之極小值,可將其設定為10-9,p為懲罰係數,可將其設定為3,而式(A-2)中的k 0為楊氏係數為1之材料之元素剛性矩陣。由式(A-1)中可觀察出當為1時,E i 等於E 0,表示該元素為實心元素,其楊氏係數與原先所設定之拓樸材料相同。當為0時,E i 等於E min ,表示該元素為空元素,其楊氏係數為趨近於零之正數,此做法是要避免在有限元素分析時產生奇異(Singularity)的全域剛性矩陣。在拓樸最佳化過程中的結構呈現上,實心元素呈現黑色元素,空元素則呈現為白色元素。而當介於0與1之間時,則稱為灰階元素,在呈現上為灰色。此種元素雖然有助於在疊代過程中找出最佳解,但會導致最終設計結果的模糊化。因此加入懲罰係數的目的即是希望能將灰階元素趨向實心元素或空元素。 Equation (A-1) is the formula for defining the Young's modulus corresponding to the solid density of each element. E 0 is the Young's modulus of the original material, and E min is the minimum value close to zero, which can be set to 10 -9 , p is the penalty coefficient, which can be set to 3, and k 0 in the formula (A-2) is the element rigidity matrix of the material whose Young's modulus is 1. It can be observed from formula (A-1) that when When it is 1, E i is equal to E 0 , which means that the element is a solid element, and its Young's modulus is the same as that of the previously set topological material. when When it is 0, E i is equal to E min , indicating that the element is an empty element, and its Young's coefficient is a positive number close to zero. This method is to avoid a global rigid matrix of singularity during finite element analysis. In the structure presentation during the topology optimization process, the solid elements appear as black elements, and the empty elements appear as white elements. And when When it is between 0 and 1, it is called a grayscale element, and it is gray in presentation. Although such elements help to find the best solution in the iterative process, they can lead to blurring of the final design results. Therefore, the purpose of adding the penalty coefficient is to make the grayscale elements tend to be solid elements or empty elements.
式(A-1)為單材料之SIMP法插值模型,若需加入多材料設計須將式(A-1)改寫成式(A-3)至式(A-5)。其中M值為所使用之材料數量再加上一。以本實施例所使用的三材料設計為例,M即為4,展開後如式(A-6)所示。E 1、
E 2及E 3分別為材料一、材料二及材料三之楊氏係數,且須滿足E 1>E 2>E 3。而、及分別為第一、第二及第三元素實體密度。第一元素實體密度決定該元素為實心元素或空元素,而第二及第三元素則進一步決定該元素將使用何種材料。依據式(A-6),若,E i 將帶入E min。若,,E i 將帶入E 3。若,,,E i 將帶入E 2。若,,,E i 將帶入E 1,如三材料設計變數與楊氏係數關係表所示。
Equation (A-1) is the SIMP interpolation model of single material. If it is necessary to add multi-material design, Equation (A-1) must be rewritten into Equation (A-3) to Equation (A-5). Where M is the number of materials used plus one. Taking the three-material design used in this embodiment as an example, M is 4, which is shown in formula (A-6) after unfolding. E 1 , E 2 and E 3 are Young's modulus of
三材料設計變數與楊氏係數關係表:
另外,在設計區間中的元素密度間雖為相互獨立,但實心元素數量仍需滿足拓樸最佳化問題方程式中的體積限制式,單材料設計之體積限制式如式(A-7)所示。多材料設計之體積限制式則如式(A-8)所示。 In addition, although the element densities in the design interval are independent of each other, the number of solid elements still needs to meet the volume constraint formula in the topology optimization problem equation. The volume constraint formula of single material design is shown in formula (A-7) Show. The volume restriction formula of multi-material design is shown in formula (A-8).
其中,v i 為元素之體積,V為設計區間之體積,則為目標體積率。在多材料設計中,為決定所有元素為實心元素或空元素之變數,因此式(A-8)即可完整定義出最終設計之目標體積率。本實施例之多材料設計對於個別材料之使用量則無額外限制,此設定之優點為無須事先測試每種材料之最佳化效果,可將所有材料一併納入多材料設計中由拓樸最佳化方法自由選用材料以提升目標函數,因此在多材料設計的設計結果中之材料仍可全部使用同一種材料,如圖3C、圖3D及圖3E所示。 Among them, v i is the volume of the element, V is the volume of the design interval, is the target volume ratio. In multi-material design, In order to determine whether all elements are solid elements or empty elements, the formula (A-8) can completely define the target volume ratio of the final design. The multi-material design of this embodiment has no additional restrictions on the amount of individual materials used. The advantage of this setting is that it is not necessary to test the optimization effect of each material in advance, and all materials can be included in the multi-material design. The optimization method freely selects materials to improve the objective function, so the materials in the design results of multi-material design can still all use the same material, as shown in Figure 3C, Figure 3D and Figure 3E.
在執行有限元素分析時,本實施例採用二維平面的線性假設之靜態分析。先前所介紹的設計區間之元素在此即為有限元素分析中之元素,每個元素四周皆有四個節點,而每個節點則具有x與y方向的自由度,如圖4所示。完成設計區間之設定並加入問題模型的邊界條件(例如固定端與輸入力量等)後即可求得有限元素平衡式如式(A-9)所示。 In performing the finite element analysis, this embodiment adopts the static analysis of the linear assumption of the two-dimensional plane. The elements of the design interval introduced earlier are the elements in the finite element analysis. There are four nodes around each element, and each node has degrees of freedom in the x and y directions, as shown in Figure 4. After completing the setting of the design interval and adding the boundary conditions of the problem model (such as fixed end and input force, etc.), the finite element balance formula can be obtained as shown in formula (A-9).
KU = F (A-9) KU = F (A-9)
其中,K為全域剛性矩陣,U為全域位移向量,F為全域力量向量。接著可以求解完畢之全域位移向量求出目標函數(f)與元素靈敏度(α i ),目標函數與元素靈敏度將詳述如後。 Among them, K is the global rigidity matrix, U is the global displacement vector, and F is the global force vector. Then, the objective function ( f ) and element sensitivity (α i ) can be obtained by solving the global displacement vector. The objective function and element sensitivity will be described in detail later.
以下將進一步詳細說明濾化演算法與臨界投影法:濾化演算法用以解決棋盤狀網格(Checkerboard)及網格相依性(Mesh dependence)問題,臨界投影法用以解決灰階元素問題。由於SIMP方法將連續體離散為獨立的網格,即元素密度,因此易產生如圖5A的棋盤狀網格設計結果。此設計結果不僅無法製造,亦不是合理的設計結果。而網格相依性問題則是設計結果隨著設計區間所劃分的元素量不同而有所改變。圖5B、圖5C、 圖5D為加入濾化演算法與臨界投影法前後之設計案例。解決上述問題之流程為在每次的疊代過程中皆針對元素密度進行濾化演算法並接著執行臨界投影法。而濾化演算法針對元素密度ρ i 進行濾化形成,臨界投影法再以進行計算形成,如下表所示。 The filtering algorithm and the critical projection method will be further described in detail below: the filtering algorithm is used to solve the checkerboard and mesh dependency problems, and the critical projection method is used to solve the gray scale element problem. Since the SIMP method discretizes the continuum into independent grids, that is, the element density, it is easy to produce a checkerboard grid design result as shown in Figure 5A. This design result is not only unmanufacturable, but also not a reasonable design result. The grid dependency problem is that the design results change with the different elements divided by the design interval. Fig. 5B, Fig. 5C, and Fig. 5D are design cases before and after adding filtering algorithm and critical projection method. The process to solve the above problem is to perform a filtering algorithm for element density in each iteration and then perform a critical projection method. The filtering algorithm performs filtering on the element density ρ i to form , the critical projection method and then perform calculations to form , as shown in the table below.
變數關係表:
濾化演算法之基本概念為將每個元素密度與周圍之元素密度進行平均,藉此提升元素間的關聯性。其公式如式(A-10)與(A-11)所示。 The basic concept of the filtering algorithm is to average the density of each element with the density of surrounding elements, thereby improving the correlation between elements. The formulas are shown in formulas (A-10) and (A-11).
w ij =max(0,r min -r ij ) (A-11) w ij = max (0 ,r min - r ij ) (A-11)
w ij 為第i個元素與第j個元素間的權重,v j 為第j個元素之面積,若每個元素之面積均相同則可皆視為1,r min 為濾化半徑,r ij 為第i個元素與第j個元素之形心位置間的距離。濾化演算法會分別對設計區間內的每一個元素進行濾化,首先會用濾化半徑(r min)以第i個元素之形心位置為圓心畫圓,以四周元素之形心位置判別是否位在該圓內,圓內之元素將與第i個元素進行加權平均,如圖6所示。N e,i 為以第i個元素之形心位置畫圓且位於該圓內之元素數量,下標j則為N e,i 集合中的第j個元素,w ij 之計算方式為r min扣除兩元素形心位置間的距離,因此由式(A-11)可觀察出元素間的距離越近則彼此間的影 響越大,以此讓每個元素與鄰近之元素產生關連性。而執行濾化演算法後的元素密度以符號作為代表。 w ij is the weight between the i -th element and the j -th element, v j is the area of the j- th element, if the area of each element is the same, it can be regarded as 1, r min is the filtering radius, r ij is the distance between the centroid positions of the i- th element and the j -th element. The filtering algorithm will filter each element in the design interval separately. First, use the filtering radius ( r min ) to draw a circle with the centroid position of the i- th element as the center, and use the centroid positions of the surrounding elements to distinguish Whether it is in the circle, the elements in the circle will be weighted average with the i- th element, as shown in Figure 6. N e,i is the number of elements within the circle drawn with the centroid position of the i- th element, and the subscript j is the j -th element in the set of N e,i , and the calculation method of w ij is r min The distance between the centroid positions of two elements is deducted, so it can be observed from formula (A-11) that the closer the distance between elements, the greater the influence on each other, so that each element can be related to adjacent elements. The element density after performing the filtering algorithm is represented by the symbol As a representative.
當設計區間中的每個元素皆完成濾化演算法後,將接著執行臨界投影法。在SIMP方法的疊代過程中會產生灰階元素,而使得設計結果之樣貌模糊不清。而臨界投影法即是透過投影函數,以減少灰階元素之數量,其公式如下:
在投影函數中主要由投影參數(β)和門檻閥值(η)操縱元素密度之變化。當門檻閥值定為0.5時,意即元素密度大於0.5之元素執行臨界投影法後其元素密度將往1遞增。反之小於0.5將往0遞減。而遞增與遞減的速度則取決於β之大小。由圖7可觀察出當β為1時,投影函數呈現斜直線,即元素密度不受投影函數影響。而隨著β的提升投影函數將逐漸趨向步階函數,但若在拓樸最佳化過程的初始即將β設定過大將導致疊代時元素密度產生劇烈變動,易造成結果無法收斂同時影響最佳解的搜尋。於此,在拓樸最佳化的初始設定中可將β設定為1,而只要設計結果趨於平緩或經過50次疊代便將β提升一倍,最高提升至512。圖8A至圖8D為疊代過程中不同β值所呈現之結果。 In the projection function, the change of the element density is mainly manipulated by the projection parameter ( β ) and the threshold value (η). When the threshold value is set to 0.5, it means that the element density of elements with element density greater than 0.5 will increase towards 1 after the critical projection method is executed. On the contrary, if it is less than 0.5, it will decrease towards 0. The speed of increment and decrement depends on the size of β . It can be observed from Figure 7 that when β is 1, the projection function presents an oblique straight line, that is, the element density is not affected by the projection function. As β increases, the projection function will gradually tend to a step function, but if β is set too large at the beginning of the topology optimization process, it will cause drastic changes in the element density during iterations, which will easily cause the results to fail to converge and affect the optimal solution search. Here, β can be set as 1 in the initial setting of topology optimization, and as long as the design result tends to be flat or after 50 iterations, β can be doubled to a maximum of 512. 8A to 8D show the results of different β values in the iterative process.
在三材料設計中,三種元素密度皆須經過濾化演算法及臨界投影法才會成為具有物理意義之元素實體密度。三種元素實體密度(、及)之計算流程為將元素密度依序帶入式(A-13)與式(A-14)中。 In the three-material design, the three element densities have to go through the filtering algorithm and the critical projection method to become the element entity density with physical meaning. Three element solid densities ( , and ) calculation process is to bring the element density into formula (A-13) and formula (A-14) in sequence.
元素靈敏度(α i )之定義為目標函數對元素密度進行偏微分。計算過程中所使用之連鎖率(Chain rule)如下:
並由式(A-12)進行偏微分可得:
由式(A-10)進行偏微分可得:
當中N e,j 為在第j個元素之形心位置以濾化半徑畫圓且位於該圓內之元素集合,k代表該集合中的第k個元素。 Among them, N e,j is a set of elements that draw a circle at the centroid position of the jth element with a filtering radius and are located within the circle, and k represents the kth element in the set.
在三材料設計中,欲求得第一、第二及第三元素靈敏度則須將目標函數分別對第一、第二及第三元素密度進行偏微分。三種元素靈敏度(α1、α2及α3)之計算如下:
再由式(A-12)與式(A-10)進行偏微分可得:
應注意的是,上述實施例雖以三材料的元素靈敏度為例示,但亦可選擇帶入不同材料數量多材料的元素靈敏度。多材料元素靈敏度之通式如下式(A-20-2):
其中m為材料數量,E i 則使用式(A-3)代入,藉此可求出m種材料的m個元素靈敏度分別為αmi 、α(m-1)i 、α(m-2)i ...、α1i 。 Among them, m is the number of materials, and E i is substituted by formula (A-3), so that the sensitivities of m elements of m materials can be calculated as α m i , α (m-1) i , α (m-2 ) i ..., α 1 i .
以下將進一步詳細說明穩健性拓樸最佳化:在拓樸最佳化過程中往往會出現異常樞紐結構,會產生異常樞紐結構之原因,為其能夠幫助該處增加撓性以利機構進行旋轉及彎曲等運作。然而這樣的結構會造成製造上的困難,也容易使撓性機構產生疲勞或應力集中導致耐用度降低,因此異常樞紐結構是拓樸最佳化過程中應避免的結構。 The robustness topology optimization will be further explained in detail below: in the process of topology optimization, abnormal hinge structures often appear, and the reason for the abnormal hinge structure is that it can help increase the flexibility of the place to facilitate the rotation of the mechanism and bending operations. However, such a structure will cause difficulties in manufacturing, and it is also easy to cause fatigue or stress concentration in the flexible mechanism, resulting in a decrease in durability. Therefore, the abnormal hinge structure is a structure that should be avoided in the topology optimization process.
於此,所謂的穩健性拓樸最佳化是將原始設計、擴張設計及縮減設計同時進行拓樸最佳化以避免異常樞紐結構的產生。 Here, the so-called robust topology optimization is to optimize the topology of the original design, expansion design and reduction design at the same time to avoid the occurrence of abnormal hub structures.
式(A-21)為加入穩健性拓樸最佳化前的問題方程式,如前所述,目標函數f由元素實體密度求得,而元素實體密度又是由元素密度ρ經濾化演算法與臨界投影法求得,故目標函數寫作f((ρ))。限制式的部分除了須滿足有限元素平衡式之外,還須滿足目標體積率限制式以及元素密度範圍之限制式。 Equation (A-21) is the problem equation before adding robust topology optimization. As mentioned above, the objective function f is determined by the element entity density and the element entity density is obtained from the element density ρ by filtering algorithm and critical projection method, so the objective function is written as f ( ( ρ )). In addition to satisfying the finite element balance formula, the part of the restriction formula must also satisfy the target volume ratio restriction formula and the restriction formula of the element density range.
加入穩健性拓樸最佳化後則須把問題方程式改寫為式(A-22)。其概念為將原始設計、擴張設計及縮減設計之目標函數同時最小化,意即最小化最大值(min-max)。最小化最大值之問題能針對最差的目標函數進行最佳化,使得當中每一種設計均會得到優化,使設計結果較不會出現異常的樞紐結構。 After adding robust topological optimization, the problem equation must be rewritten as equation (A-22). The concept is to simultaneously minimize the objective functions of the original design, the expanded design and the reduced design, that is, to minimize the maximum value (min-max). The problem of minimizing the maximum value can be optimized for the worst objective function, so that each of the designs will be optimized, so that the design results are less prone to abnormal hinge structures.
當中上標d與e分別代表擴張設計與縮減設計,與分別代表擴張設計與縮減設計之元素實體密度,當中與是經由ρ並調整投影函數中的門檻閥值η計算而得。於此,可將擴張設計與縮減設計之門檻閥值分別設定為0.3與0.7,調整門檻閥值後的投影函數分別如圖9A及圖9B所示。 The superscripts d and e represent the expanded design and reduced design, respectively. and Represent the element entity density of the expanded design and the reduced design, respectively, where and It is calculated by ρ and adjusting the threshold value η in the projection function. Here, the threshold values of the expanded design and the reduced design can be set to 0.3 and 0.7 respectively, and the projection functions after adjusting the threshold values are shown in Fig. 9A and Fig. 9B respectively.
加入多材料設計後的問題方程式則如式(A-23-1)所示:
其中,上標及下標的d、o與e分別代表擴張設計、原始設計與縮減設計,K為全域剛性矩陣,U為全域位移向量,F為全域力量向量。 Among them, the superscript and subscript d , o and e represent the expanded design, the original design and the reduced design respectively, K is the global rigidity matrix, U is the global displacement vector, and F is the global force vector.
於本實施例中,加入三材料設計後的問題方程式則如式(A-23-2)所示,在三材料設計中,每個元素皆須由ρ 1 j、ρ 2 j及ρ 3 j才能定義元素之材料種類,分別代表第一、第二及第三元素密度,三種元素密度均須介於0與1之間。因此在目標函數及有限元素平衡式方面須進行改寫。另外,由於第一元素實體密度決定該元素為實心元素或空元素,因此須符合第四條限制式,即體積限制式。且三種元素密度均需界於0與1之間。 In this embodiment, the problem equation after adding the three-material design is shown in formula (A-23-2). In the three-material design, each element must be composed of ρ 1 j , ρ 2 j and ρ 3 j In order to define the material type of the element, it represents the first, second and third element densities respectively, and the densities of the three elements must be between 0 and 1. Therefore, the objective function and finite element balance must be rewritten. Also, since the first element solid density Determine whether the element is a solid element or an empty element, so it must meet the fourth restriction, that is, the volume restriction. And the densities of the three elements need to be between 0 and 1.
以下將進一步詳細說明MMA理論:MMA方法為一種適用於結構最佳化之非線性規劃(Non-linear programming)方法,能有效處理複雜的問題方程式。使用時須先將原始問題之目標函數以近似轉換為凸函數形式之子問題,並用對偶法(Dual method)對該子問題進行求解,MMA方法之問題方程式之通式如下:
式(A-24)中f 0為原始問題方程式之目標函數,f i 為原始問題方程式中之限制式函數,m為限制式之數量,f 0與f i 均需為連續且可對設計變數進行
偏微分之函數,x j 為原始問題方程式中之設計變數,與為設計變數x j 的下界與上界,n為設計變數之數量,y i 及z為僅存在於MMA問題中的人工變數(artificial variable),其作用為增加將原始問題方程式轉換為MMA問題時之靈活度。a 0、a i 、c i 及d i 同樣為僅存在於MMA問題中之常數,需在求解前即設定完成,當中須滿足a 0>0、a i 0、c i 0、d i 0及c i +d i >0。而當a i >0時須符合a i c i >a 0。
In formula (A-24), f 0 is the objective function of the original problem equation, f i is the constraint function in the original problem equation, m is the number of constraints, and both f 0 and f i must be continuous and controllable design variables The function of partial differentiation, x j is the design variable in the original problem equation, and is the lower bound and upper bound of the design variable x j , n is the number of design variables, y i and z are artificial variables that only exist in the MMA problem, and their function is to increase the time when the original problem equation is transformed into an MMA problem of flexibility. a 0 , a i , ci and d i are also constants that only exist in MMA problems, and they need to be set before solving the problem, and a 0 > 0, a i must be satisfied 0,
MMA方法之求解流程如下: The solution process of the MMA method is as follows:
步驟一:設定MMA相關參數、設計變數初始值x(0),並設疊代次數為iter=0。 Step 1: Set the MMA related parameters, the initial value x (0) of the design variable, and set the number of iterations to iter =0.
步驟二:計算f i (x(iter))與▽f i (x(iter)),以便進行f i 之凸函數近似轉換以求得。 Step 2: Calculating f i (x ( iter ) ) and ▽ f i (x ( iter ) ), in order to carry out the approximate transformation of the convex function of f i to obtain .
步驟三:以建立MMA子問題,再以對偶法求解。 Step 3: Take Establish the MMA subproblem, and then solve it by the dual method.
步驟四:將子問題求得之解帶入x(iter),並回到步驟二進行下一次疊代:iter=iter+1。
Step 4: Bring the solution of the subproblem into x ( iter ) , and return to
MMA方法之子問題如下:
式(A-25)中近似函數 (x)之計算如下:
當中、及之計算如下:
其中,
式(A-25)中及為設計變數的上下界,其計算方式如下:
當中與分別為下漸近線(Lower asymptote)與上漸近線(Upper asymptote),且當iter=1及iter=2時:
於此,將asyinit設定為0.5除以投影函數中的β,目的是避免疊代過程中β的變動使得設計脫離原先最佳化的趨勢。 Here, asyinit is set to 0.5 divided by β in the projection function, the purpose is to avoid the change of β in the iterative process and make the design deviate from the original optimization trend.
而當iter 3時:
則為移動漸進線的調整參數,其定義如下:
為了套用前述所介紹之穩健性拓樸最佳化,於此將式(A-24)轉換為min-max型式的問題方程式,該型式之問題會將原始、擴張與縮減設計之目標函數寫入限制式中並使其小於人工變數z,再將人工變數z設定為目標函數,改寫過後之問題方程式如下:
當中h i (x)為以原始、擴張與縮減設計所計算之目標函數,故P為3,n為設計變數數量,g i (x)代表體積限制式。而為了將MMA通式轉換為式(A-39),需將參數設定為m=P+Q,f 0 (x)=0、f i (x)=h i (x)與f P+i (x)=g i (x),其他係數之設定如下表所示。 Among them, h i (x) is the objective function calculated by the original, expanded and reduced designs, so P is 3, n is the number of design variables, and g i (x) represents the volume restriction formula. In order to convert the general formula of MMA into formula (A-39), the parameters need to be set as m = P + Q , f 0 (x) =0, f i (x) = h i (x) and f P + i (x) = g i (x) , the settings of other coefficients are shown in the table below.
MMA相關參數設定表:
以下將進一步詳細說明收斂準則:在拓樸最佳化方法中的最後一個步驟為判別設計結果是否達到收斂,而在本方法中收斂判別的執行時機為進行完MMA變數更新後。所採用的判別標準為目標體積率是否在容忍範圍內以及設計變數之更新是否趨於平緩。前者由體積率容忍誤差voltol進行判別,而後者由元素密度變動率change進行判別,其定義如下:change=max(| ρ new - ρ |) (A-40) The convergence criterion will be further described in detail below: the last step in the topology optimization method is to judge whether the design result has reached convergence, and the execution time of the convergence judgment in this method is after the MMA variable update. The criteria adopted are whether the target volume ratio is within the tolerance range and whether the update of design variables tends to be smooth. The former is judged by the volume ratio tolerance error voltol , while the latter is judged by the element density change rate change , which is defined as follows: change = max (| ρ new - ρ |) (A-40)
其中,ρ new 為MMA變數更新後所得到的元素密度,ρ則為MMA變數更新前的元素密度。而則是由ρ new 分別經過濾化演算法與臨界投影法計算所求得的元素實體密度。於此,達到收斂條件須同時通過三項標準,分別是投影函數中的β已提升至512、change需小於0.01以及voltol需小於0.001。其流程如圖10A中虛線方框所示。 Among them, ρ new is the element density obtained after the MMA variable is updated, and ρ is the element density before the MMA variable is updated. and It is the element entity density calculated by ρ new through filtering algorithm and critical projection method respectively. Here, to achieve the convergence condition, three criteria must be passed at the same time, namely, the β in the projection function has been increased to 512, the change must be less than 0.01, and the voltol must be less than 0.001. The process is shown in the dotted box in Fig. 10A.
多材料設計之收斂分析流程則和單材料設計之收斂分析流程相似,但由於本研究在多材料設計中個別材料之體積率無額外之限制,因此為了確保在多材料設計中各材料之更新皆達到收斂,因此在本研究的三材料設計中另外定義change2與change3,其分別對應到第二及第三元素密度之變動率計算,而原先之change在多材料設計中則針對第一元素密度之變動率計算,其公式如下:
多材料設計的收斂分析流程如圖10B虛線方框所示。 The convergence analysis process of multi-material design is shown in the dotted box in Fig. 10B.
以下將進一步詳細說明目標函數:交互位能 The objective function will be described in further detail below: Interaction Potential Energy
如圖11所示,為設計撓性機構之設計區間,具有一個輸入端與一個輸出端,下方則為固定端,在輸入端與輸出端各受到一單位虛擬力量f in 及f out ,並且根據力學原理可拆分為x分量之力量f in,x 及f out,x ,與y分量之力量f in,y 及f out,y 。且在輸入端與輸出端各連接一剛性不等之彈簧k in 及k out ,兩處之彈簧同樣可拆分為代表x分量之彈簧k in,x 、k out,x ,與代表y分量之彈簧k in,y 、k out,y ,彈簧常數之設定將於稍後作說明。 As shown in Figure 11, the design interval for designing a flexible mechanism has an input end and an output end, and the lower end is a fixed end. The input end and output end are respectively subjected to a unit virtual force f in and f out , and according to The principle of mechanics can be divided into the force f in,x and f out,x of the x component, and the force f in,y and f out,y of the y component. And a spring k in and k out with unequal rigidity are connected to the input end and the output end respectively. The springs at the two places can also be divided into springs k in,x and k out,x representing the x component, and springs representing the y component The setting of spring k in,y , k out,y , and spring constant will be described later.
於此,以交互位能(Mutual potential energy,MPE)作為目標函數。交互位能用於描述機構受到兩處作用力時的撓性。於兩處作用力之彈簧常數設定上可透過不同的比例進而產生不同的優化效果,若k in 較k out 大,則此撓性機構較易於輸出端產生形變進而傳遞位移。而本方法在設計撓性夾爪時,期望在輸入端給定一輸入位移的情形下輸出端能產生對應之輸出位移,因此可使用最大化交互位能來描述此目標。反之,若k out 較k in 大,則此撓性機構在輸入端所受到之位移較易以力量的形式傳遞至輸出端。欲計算交互位能首先須將圖11之設計區間拆分為僅有輸入負載與僅有輸出負載的設計區間,如圖12A及圖12B所示,分別計算完畢後再以疊加原理(Principle of superposition)進行計算。 Here, the mutual potential energy (MPE) is used as the objective function. Interaction potential energy is used to describe the flexibility of a mechanism when it is subjected to two forces. The spring constants of the two acting forces can be set through different ratios to produce different optimization effects. If k in is larger than k out , the flexible mechanism is more likely to generate deformation at the output end and transmit displacement. In this method, when designing the flexible gripper, it is expected that the output terminal can produce a corresponding output displacement when the input terminal is given an input displacement, so the maximum interaction potential energy can be used to describe this goal. Conversely, if k out is larger than kin , the displacement suffered by the flexible mechanism at the input end is more likely to be transmitted to the output end in the form of force. To calculate the interaction potential energy, the design interval in Figure 11 must first be split into the design interval with only input load and only output load, as shown in Figure 12A and Figure 12B. )Calculation.
計算交互位能時採用有限元素分析,分別對僅有輸入負載與僅有輸出負載之邊界條件進行計算。其中U 1與U 2分別代表上述兩種邊界條件之全域位移向量,F 1與F 2分別代表上述兩種邊界條件之全域力量向量,K則代表
全域剛性矩陣。接著根據虎克定律(Hooke’s law)即可得到兩組有限元素平衡方程式:
透過對兩組有限元素平衡方程式求解即可獲得全域位移向量U 1與U 2,接著根據式(A-46)即可完成交互位能之計算。
以下將進一步詳細說明靈敏度分析:元素靈敏度為更新設計變數時之重要指標,由目標函數對元素密度進行偏微分求得。然而全域剛性矩陣K由元素實體密度組成,因此在計算時需先由目標函數對元素實體密度進行偏微分,其計算方式如下:
又因K為對稱矩陣,故,式(A-47)可整理為:
因式(A-48)中之全域位移向量對元素實體密度進行偏微分之計算極為繁雜,故為了免去此計算將透過下列方式進行代換。首先將式(A-45)對元素實體密度進行偏微分可得到如式(A-49)之結果。式(A-49)中之全域力量向量為常數向量,故偏微分之結果為0。 The calculation of the partial differential of the element entity density by the global displacement vector in the factor (A-48) is very complicated, so in order to avoid this calculation, the following method will be used for substitution. Firstly, the partial differential of formula (A-45) to the element entity density can get the result of formula (A-49). The global force vector in formula (A-49) is a constant vector, so the result of partial differential is 0.
式(A-49)經移項後可得:
再將式(A-50)代入式(A-48)後可得:
在設計區間中單一元素的型式可寫成:
其中, u 1及 u 2分別為僅輸入負載與僅輸出負載之邊界條件之位移向量,而元素剛性矩陣對元素實體密度之偏微分可透過式(A-1)與式(A-2)求得:
將式(A-53)帶入式(A-52)中可得:
而最終再將式(A-54)代入式(A-15)中即可完成元素靈敏度計算:
多材料設計之元素靈敏度分析:
本實施例採用三材料設計,故目標函數需依序對三種元素密度進行偏微分以求得三種元素密度之元素靈敏度(α1、α2及α3)。第一元素密度之元素靈敏度推導如下:
當中元素之剛性矩陣對元素實體密度之偏微分可透過式(A-2)與式(A-6)求得:
將式(A-57)代入式(A-56)中即可求得交互位能對元素實體密度之偏微分:
最後再將式(A-58)代入式(A-15)中即為第一元素密度之元素靈敏度:
第二元素密度之元素靈敏度推導如下:
當中元素之剛性矩陣對元素實體密度之偏微分可透過式(A-2)與式(A-6)求得:
將式(A-61)代入式(A-60)中即可求得交互位能對元素實體密度之偏微分:
最後再將式(A-62)代入式(A-15)中即為第二元素密度之元素靈敏度:
第三元素密度之元素靈敏度推導如下:
當中元素之剛性矩陣對元素實體密度之偏微分可透過式(A-2)與式(A-6)求得:
將式(A-65)代入式(A-64)中即可求得交互位能對元素實體密度之偏微分:
最後再將式(A-66)代入式(A-15)中即為第三元素密度之元素靈敏度:
以下將進一步詳細說明多重邊界條件拓樸最佳化方法:先前提及作目標函數的交互位能為描述物體受到兩處作用力時所表現出的撓性,因此交互位能僅能夠針對單一的輸入與所對應之單一輸出進行計算。然而,在撓性機構的設計中有時會面臨到單一撓性機構具又多個輸入與輸出的情況,多重邊界條件設計即可針對此種設定拆分為多個單一輸入與輸出的邊界條件,分別計算其目標函數再以線性疊加的方式作為最終的目標函數。以下將針對兩種情形進行說明,第一種情形為單一設計區間內具有一個輸入對應到兩個輸出,如圖13所示。此時可將其拆分為兩種邊界條件,分別為輸入端對應輸出端#1,與輸入端對應輸出端#2之邊界條件,如圖14A及圖14B所示。分別計算兩種邊界條件之目標函數後再搭配權重形成最終之拓樸最佳化目標函數如下:f=f c1+ω1 f c2 (A-68)
The topological optimization method with multiple boundary conditions will be further described in detail below: the interaction potential energy mentioned earlier as the objective function is to describe the flexibility of the object when it is subjected to two forces, so the interaction potential energy can only be used for a single An input is computed with a corresponding single output. However, in the design of flexible mechanisms, sometimes a single flexible mechanism has multiple inputs and outputs. The design of multiple boundary conditions can be split into multiple boundary conditions with a single input and output for this setting. , respectively calculate their objective functions and then use linear superposition as the final objective function. Two situations will be described below. The first situation is that there is one input corresponding to two outputs in a single design interval, as shown in FIG. 13 . At this time, it can be divided into two boundary conditions, namely, the boundary condition that the input terminal corresponds to the
其中,f c1與f c2分別為由邊界條件一與邊界條件二所計算之目標函數,ω1則為調整兩種目標函數間之權重,由於影響最終設計結果之因素為f c1
與f c2間之比例,因此僅需針對第一邊界條件以外之目標函數加入權重進行調整即可。
Among them, f c 1 and f c 2 are the objective functions calculated by
第二種情況為單一設計區間內具有兩個輸入與輸出,如圖15所示。此時可將其拆分為兩種邊界條件,分別為輸入端#1對應輸出端#1與輸出端#2,與輸入端#2對應輸出端#1與輸出端#2之邊界條件,如圖16A及圖16B所示。同樣分別計算兩種邊界條件之目標函數後再搭配權重形成最終之拓樸最佳化目標函數如式(A-68)所示。
The second case is that there are two inputs and outputs in a single design interval, as shown in Figure 15. At this time, it can be split into two boundary conditions, namely
除了上述所介紹的兩種拆分邊界條件的方式,在實際的撓性機構拓樸最佳化中也可能遇到上述兩種情況之結合,即具有多個輸入與多個輸出,其中又有特定的輸入同時對應到多個輸出,此種情況同樣可依照上述兩種拆分邊界條件之方式並加以結合,並且在多個邊界條件間加入權重以操縱不同邊界條件間的重要性。 In addition to the two ways of splitting boundary conditions introduced above, the combination of the above two situations may also be encountered in the actual topology optimization of flexible mechanisms, that is, there are multiple inputs and multiple outputs, and there are A specific input corresponds to multiple outputs at the same time. In this case, the above two methods of splitting boundary conditions can also be combined, and weights can be added between multiple boundary conditions to manipulate the importance of different boundary conditions.
將穩健性拓樸最佳化、多材料條件設計與多重邊界條件設計均加入SIMP方法拓樸最佳化後,須將原先之拓樸最佳化流程改寫如圖17所示之流程。詳細流程如下: After adding the robust topology optimization, multi-material condition design and multi-boundary condition design into the SIMP method topology optimization, the original topology optimization process must be rewritten as shown in Figure 17. The detailed process is as follows:
步驟一:定義設計區間、邊界條件及拓樸化相關參數。 Step 1: Define the design interval, boundary conditions and topology-related parameters.
步驟二:利用式(A-13)與式(A-14)將元素密度執行濾化演算法及臨界投影法。 Step 2: Use formula (A-13) and formula (A-14) to implement filtering algorithm and critical projection method for element density.
步驟三:利用式(A-14)分別計算原始設計、擴張設計與縮減設計之元素實體密度(使用不同的門檻閥值η)。 Step 3: Use the formula (A-14) to calculate the element entity density of the original design, the expanded design and the reduced design respectively (using different threshold values η).
步驟四:分別對三種設計進行不同邊界條件間之有限元素分析。 Step 4: Carry out finite element analysis between different boundary conditions for the three designs respectively.
步驟五:分別對三種設計以線性疊加方式計算出問題方程式之目標函數。 Step 5: Calculate the objective function of the problem equation for the three designs in a linear superposition manner.
步驟六:利用式(A-18)分別計算三種設計之元素靈敏度。 Step 6: Use formula (A-18) to calculate the element sensitivities of the three designs respectively.
步驟七:利用MMA方法更新三種設計中的三種材料元素密度。 Step 7: Utilize the MMA method to update the element densities of the three materials in the three designs.
步驟八:判別β等相關參數是否需進行更新,是則更新。 Step 8: Determine whether β and other related parameters need to be updated, and update if so.
步驟九:判別是否收斂,是則結束;否則跳至步驟二進行下一次疊代。 Step 9: Determine whether it is converged, if yes, end; otherwise, skip to step 2 for the next iteration.
在程式碼中的拓樸最佳化判斷條件之流程則如圖18所示。其中loopbeta為單一β值的疊代次數,loop為拓樸最佳化過程中的疊代次數,iter則為MMA變數更新中的疊代次數。詳細之程式架構流程如下: The flow of the topology optimization judgment condition in the program code is shown in FIG. 18 . Among them, loopbeta is the number of iterations of a single β value, loop is the number of iterations in the process of topology optimization, and iter is the number of iterations in the update of MMA variables. The detailed program structure flow is as follows:
步驟一:定義相關參數。 Step 1: Define relevant parameters.
步驟二:進入while迴圈中並開始進行疊代直到滿足收斂條件為止。 Step 2: Enter the while loop and start iterating until the convergence condition is met.
步驟三:依序完成濾化演算法、臨界投影法、有限元素分析、元素靈敏度計算及MMA變數更新。 Step 3: Complete the filtering algorithm, critical projection method, finite element analysis, element sensitivity calculation and MMA variable update in sequence.
步驟四:判斷參數是否需進行更新,滿足if判斷式則將β提升一倍、loopbeta與iter設定回0及change設定回1。 Step 4: Determine whether the parameters need to be updated. If the if judgment formula is met, β will be doubled, loopbeta and iter will be set back to 0, and change will be set back to 1.
步驟五:判斷是否收斂,若β已提升至512、元素密度變動率均小於0.01且體積率容忍誤差小於0.001則跳出while迴圈並結束疊代;否則令loopbeta=loopbeta+1、loop=loop+1與iter=iter+1並回到步驟三。 Step 5: Judging whether it is converged, if β has increased to 512, element density change rate is less than 0.01 and the tolerance error of volume ratio is less than 0.001, jump out of the while loop and end the iteration; otherwise set loopbeta = loopbeta +1, loop=loop+ 1 and iter = iter +1 and go back to step three.
以下將進一步說明上述設計方法,如何實際用於設計自適性撓性夾爪: The following will further explain how the above design method is actually used to design an adaptive flexible gripper:
關於多材料條件的部分:The section on multi-material conditions:
本實施例後續將採用積層製造(Additive manufacturing,AM)技術(亦即3D列印)進行製作,材料可採用熱塑性彈性體(thermoplastic elastomer,TPE),因TPE材料具備加硫橡膠的彈性性質及在高溫下塑膠的彈性變形特性,但亦可採用其他可撓性材料。 In this embodiment, additive manufacturing (AM) technology (that is, 3D printing) will be used for fabrication in the future. The material can be thermoplastic elastomer (thermoplastic elastomer, TPE), because TPE material has the elastic properties of vulcanized rubber and is Elastic deformation properties of plastics at high temperatures, but other flexible materials can also be used.
為便於3D列印,本實施例所採用的三種材料,是利用同一種材料的在不同填充密度下的機械性質(如等效楊氏係數及密度)組成。詳細而言,是先成形外殼層,再以預設樣式的紋路型態(如方格紋、蜂巢格紋、交叉格紋等型態)及填充密度分布於外殼層內。亦即,本發明所謂的多材料在解釋上可涵蓋本質上為同種材料但機械性質實質上彼此相異的情況,但實施上並不以此為限,亦可直接採用不同本質的材料(如矽膠、TPU材料、PP材料、PE材料等)。 In order to facilitate 3D printing, the three materials used in this embodiment are formed by utilizing the mechanical properties (such as equivalent Young's modulus and density) of the same material at different filling densities. In detail, the shell layer is formed first, and then distributed in the shell layer with a predetermined pattern of texture (such as checkered pattern, honeycomb pattern, cross check pattern, etc.) and filling density. That is to say, the so-called multi-material in the present invention can cover the situation that the material is essentially the same kind but the mechanical properties are substantially different from each other in terms of interpretation, but the implementation is not limited to this, and materials of different nature can also be directly used (such as Silicone, TPU material, PP material, PE material, etc.).
於本實施例中,選擇以填充密度40%、100%之TPE作為低剛性與高剛性之材料,並選擇填充密度80%之TPE作為剛性適中之材料,以提供材料運用上之彈性,詳細內容可參閱三材料設計材料參數表:。 In this example, TPE with a filling density of 40% and 100% is selected as the low-rigidity and high-rigidity materials, and TPE with a filling density of 80% is selected as a material with moderate rigidity to provide flexibility in the use of materials. Details See the material parameter table for three-material design:.
三材料設計材料參數表:
另外,在拓樸最佳化過程中之體積限制式為式(A-69):
其中,為目標體積率,、、則分別為材料一、材料二及材料三之體積率。材料一、材料二及材料三之目標體積率之總和需為原始設定之目標體積率。而在滿足式(A-69)之條件下,材料一、材料二及材料三之目標體積率則無額外之限制,意即最終之設計結果仍可全部使用三種材料之任一種。
in, is the target volume ratio, , , are the volume ratios of
關於多邊界設計條件的部分:The section on Multiple Boundary Design Conditions:
本實施例自適性撓性夾爪的方法中會進一步將設計區間切割以形成多個彼此間具有關聯性的設計區間,如圖19所示。其中四個矩形(10)(20)(30)(40)分別代表四個設計區間,相當於四個指節,但實施上並不以 此為限,亦可為三個指節或四個指節以上,設計目標皆為施加輸入位移於第一指節後,各指節在碰觸被夾取物後能靠著指節間相互推擠產生彎曲進而包覆物體(A),如圖20所示。 In the method of the self-adaptive flexible gripper of this embodiment, the design interval is further cut to form a plurality of design intervals that are related to each other, as shown in FIG. 19 . Among them, four rectangles (10)(20)(30)(40) respectively represent four design intervals, which are equivalent to four knuckles, but the implementation is not based on This is the limit, and it can also be three or more than four knuckles. The design goal is to apply the input displacement behind the first knuckle, and each knuckle can lean against each other after touching the grasped object. Pushing creates a bend that wraps around the object (A), as shown in Figure 20.
如圖19所示,詳細而言,本實施例自適性撓性手指(1)包含一末端指節(10)、至少一中間指節(20)(30)、一第一指節(40)及一位移傳遞模組(50),該位移傳遞模組(50)包含一位移傳遞結構(51)及一致動器(52),該位移傳遞結構(51)以一端連接該第一指節(40),該位移傳遞結構(51)的兩端(亦可稱移動端、固定端)分別固定於該致動器(52)之一移動件(521)與一固定件(522),該移動件(521)經由一作動件(523)(如螺桿、伸縮組件等)朝該固定件(522)移動,可使該位移傳遞結構(51)產生擠壓進而傳遞位移與能量以達成如圖20所示之夾取策略。 As shown in Figure 19, in detail, the self-adaptive flexible finger (1) of this embodiment includes a terminal phalanx (10), at least one middle phalanx (20) (30), a first phalanx (40) and a displacement transmission module (50), the displacement transmission module (50) includes a displacement transmission structure (51) and an actuator (52), the displacement transmission structure (51) is connected to the first phalanx ( 40), the two ends of the displacement transmission structure (51) (also called the moving end and the fixed end) are respectively fixed to a moving part (521) and a fixed part (522) of the actuator (52), the moving The member (521) moves towards the fixed member (522) through an actuator (523) (such as a screw, telescopic assembly, etc.), which can cause the displacement transmission structure (51) to generate extrusion and then transmit displacement and energy to achieve Gripping strategy shown.
此外,該第一指節(40)與所述中間指節(30)之間、所述中間指節(20)與該末端指節(10)之間皆以一對樞紐結構(60A)(60B)相連接。該第一指節(40)、該中間指節(20)(30)及該末端指節(10)於同一側共同界定一夾持面(100),其中一個樞紐結構(60A)位於相鄰該夾持面(100)處,另一個樞紐結構(60B)位於相對遠離該夾持面處(100)。 In addition, a pair of hinge structures (60A) ( 60B) are connected. The first knuckle (40), the middle knuckle (20) (30) and the end knuckle (10) jointly define a clamping surface (100) on the same side, and one of the hinge structures (60A) is located adjacent At the clamping surface (100), another hinge structure (60B) is located relatively away from the clamping surface (100).
為使夾爪達成如圖20的夾取策略,各指節(10)(20)(30)(40)設計區間所採取的邊界條件可分別參閱圖21A、圖21B、圖21C及圖21D。其中末端指節(10)之設計區間所採用的邊界條件如圖21D所示,其中k in 及k out 分別為輸入端及輸出端彈簧之彈簧常數,f in 及f out 則分別為單位輸入及輸出力量;第一指節(40)、中間指節(20)(30)之設計區間所採用的邊界條件則分別如圖21A、圖21B、圖21C所示,其中k in 、k out1及k out2分別為輸入端、第一輸出端及第二輸出端彈簧之彈簧常數,k為附加於第一輸出端x軸方向彈簧之彈簧常數,f in 、f out1及f out2則分別為施加於輸入端、第一輸出端及第二輸出端之單位輸 入及輸出力量。除末端指節之外,其餘指節皆具有一個輸入並同時對應到兩個輸出,目標為期望在輸入端給定輸入位移條件下能同時最大化兩個輸出端之位移。第一輸出端之輸出方向為向下,可使夾爪往被夾取物靠近進而包覆物體,第二輸出端之輸出方向為向左,此輸出位移可做為下一指節之輸入位移以作動下一指節,故下一指節之輸入位移即為上一指節之第二輸出端之位移。另外,在第一輸出端之水平方向可額外設置一彈簧以貼近與下一指節連接之設定。在末端指節的邊界條件設定中,因末端指節並不需要再推動下一指節,故僅具一個輸入與一個輸出,目標為期望在輸入端給定輸入位移的情況下能最大化輸出端位移,以此達成夾爪末端包覆物體之功能。位移傳遞結構(51)之邊界條件則如圖22所示,具有一個輸入端對應到一個輸出端,設計區間之右下方因與夾爪致動器之移動件連接,故該處節點之y方向自由度均受到限制,輸出端所輸出之位移則用作第一指節之輸入位移。而左下角之節點因與致動器的固定件連接,故該節點之x與y方向之自由度均受到限制。 In order to achieve the gripping strategy shown in Figure 20 for the gripper jaws, the boundary conditions adopted in the design intervals of the knuckles (10)(20)(30)(40) can be referred to Figure 21A, Figure 21B, Figure 21C and Figure 21D respectively. The boundary conditions adopted in the design interval of the terminal phalanx (10) are shown in Figure 21D, where k in and k out are the spring constants of the input and output springs respectively, and f in and f out are the unit input and output power; the boundary conditions adopted in the design intervals of the first phalanx (40) and the middle phalanx (20) (30) are then shown in Figure 21A, Figure 21B, and Figure 21C respectively, wherein k in , k out 1 and k out 2 are the spring constants of the springs at the input end, the first output end and the second output end respectively, k is the spring constant of the spring attached to the first output end in the x-axis direction, and f in , f out 1 and f out 2 are respectively is the unit input and output force applied to the input terminal, the first output terminal and the second output terminal. Except for the terminal knuckles, the other knuckles have one input and correspond to two outputs at the same time. The goal is to maximize the displacement of the two output terminals at the same time under the given input displacement condition of the input terminal. The output direction of the first output end is downward, which can make the jaws approach the object to be gripped and then cover the object. The output direction of the second output end is leftward, and this output displacement can be used as the input displacement of the next knuckle To move the next knuckle, so the input displacement of the next knuckle is the displacement of the second output end of the previous knuckle. In addition, an additional spring can be provided in the horizontal direction of the first output end so as to be close to the setting of connecting with the next knuckle. In the boundary condition setting of the terminal phalanx, because the terminal phalanx does not need to push the next phalanx, there is only one input and one output, and the goal is to maximize the output under the given input displacement of the input terminal End displacement, so as to achieve the function of covering the object at the end of the jaw. The boundary conditions of the displacement transfer structure (51) are shown in Figure 22, which has an input port corresponding to an output port. The lower right part of the design interval is connected to the moving part of the jaw actuator, so the y direction of the node at this point The degrees of freedom are restricted, and the displacement output from the output terminal is used as the input displacement of the first knuckle. The node in the lower left corner is connected to the fixed part of the actuator, so the degrees of freedom of the node in the x and y directions are restricted.
完成上述設定之後,接著就會以拓樸最佳化方法針對每一指節與位移傳遞結構進行設計。除末端指節與位移傳遞結構之外,其餘指節之邊界條件將進一步拆分為如圖23A及圖23B所示之兩個邊界條件。分別為輸入端對應到第一輸出端之邊界條件與輸入端對應到第二輸出端之邊界條件,分別計算其交互位能後再以線性疊加的方式結合。故中間與第一指節之目標函數皆如式(A-70)所示。其中,MPE c1為以圖23A為邊界條件所求出之交互位能,MPE c2為以圖23B為邊界條件所求出之交互位能,ω1為調整MPE c1與MPE c2比例之權重值。末端指節與位移傳遞結構之目標函數則分別為以圖21D及圖22為邊界條件所求出之交互位能,其目標函數如式(A-71)所示。 After the above settings are completed, the topological optimization method will be used to design each knuckle and displacement transfer structure. Except for the terminal knuckle and the displacement transfer structure, the boundary conditions of the other knuckles will be further divided into two boundary conditions as shown in Figure 23A and Figure 23B. Respectively, the boundary condition corresponding to the first output terminal from the input terminal and the boundary condition corresponding to the second output terminal from the input terminal, respectively calculate their interaction potential energies and combine them in a linear superposition manner. Therefore, the objective functions of the middle and first knuckles are both shown in formula (A-70). Among them, MPE c 1 is the interaction potential energy obtained by taking Fig. 23A as the boundary condition, MPE c 2 is the interaction potential energy obtained by taking Fig. 23B as the boundary condition, ω 1 is the adjusted ratio of MPE c 1 and MPE c 2 The weight value. The objective functions of the terminal phalanx and the displacement transfer structure are the interaction potential energy obtained by using Figure 21D and Figure 22 as the boundary conditions respectively, and the objective functions are shown in formula (A-71).
max:f=MPE (A-71) max: f = MPE (A-71)
設計區間與參數設定:各個指節的設計區間可大致呈矩形,尺寸可設定為寬度相同,而高度依序遞減。於此,高度尺寸例如可自最大30mm、40mm起依序遞減,而寬度可為20mm、28mm,且每個指節底部可均有厚度為3mm之實心設計區間作為夾持面。 Design interval and parameter setting: The design interval of each knuckle can be roughly rectangular, and the size can be set to have the same width, while the height decreases in sequence. Here, the height dimension can decrease sequentially from a maximum of 30mm and 40mm, and the width can be 20mm and 28mm, and the bottom of each knuckle can have a solid design area with a thickness of 3mm as a clamping surface.
除末端指節外之指節之邊界條件設定皆具有一個輸入同時對應到兩個輸出,故將其進一步拆分為如圖23A及圖23B所示之邊界條件,分別求出其交互位能後再以權重ω1相加,其拓樸最佳化目標函數如下:
末端指節之邊界條件設定如圖21D所示,其拓樸最佳化目標函數之計算如下:
位移傳遞結構之邊界條件如圖22所示。因位移傳遞結構與末端指節同樣僅具有一個輸入對應一個輸出,故其拓樸最佳化目標函數同樣如式(A-73)所示。 The boundary conditions of the displacement transfer structure are shown in Figure 22. Since the displacement transfer structure has only one input corresponding to one output like the terminal knuckle, its topology optimization objective function is also shown in Equation (A-73).
為了保持最終設計結果的清晰度,於此將每個設計區間均切分為約1至2萬個元素,拓樸最佳化之相關參數則如「拓樸最佳化設計參數表」所示,濾化半徑可設定為5個單位元素之邊長,蒲松比可為0.45,在執行臨界投影法的步驟中,縮減、原始與擴張設計之門檻閥值可設定為0.7、0.5與0.3。 In order to maintain the clarity of the final design results, each design interval is divided into about 10,000 to 20,000 elements, and the parameters related to topology optimization are shown in the "Topology Optimization Design Parameter Table" , the filtering radius can be set to be the side length of 5 unit elements, the Poisson's ratio can be set to 0.45, and in the step of implementing the critical projection method, the threshold values of the reduced, original and expanded designs can be set to 0.7, 0.5 and 0.3.
拓樸最佳化設計參數表:
經由上述設計條件所得到的最佳設計結果,本實施例之自適性撓性手指(1)的具體型態如圖24所示,各指節(10)(20)(30)(40)大致呈梯形框體而有複數邊框部,而位移傳遞結構(51)則大致呈L型。其中該位移傳遞機構(51)、該第一指節(40)、所述中間指節(20)(30)及該末端指節(10)主要採用第一種撓性材料(M01),該第一指節(40)及所述中間指節(20)(30)皆於該夾持面(100)處採用材料強度相對小於該第一種撓性材料(M01)的第二種撓性材料(M02)。詳細而言,形成該夾持面(100)的所述邊框部皆包含所述第二種撓性材料(M02),此外該第一指節(40)相鄰該位移傳遞機構(51)處的所述邊框部包含所述第二種撓性材料(M02)。 The best design result obtained through the above-mentioned design conditions, the specific pattern of the self-adaptive flexible finger (1) of the present embodiment is as shown in Figure 24, each phalanx (10) (20) (30) (40) roughly It is a trapezoidal frame with multiple frames, and the displacement transmission structure (51) is roughly L-shaped. Wherein the displacement transmission mechanism (51), the first phalanx (40), the middle phalanx (20) (30) and the end phalanx (10) mainly adopt the first kind of flexible material (M01), the Both the first phalanx (40) and the middle phalanx (20) (30) adopt a second flexible material whose strength is relatively smaller than that of the first flexible material (M01) at the clamping surface (100). Material (M02). Specifically, the frame portion forming the clamping surface (100) includes the second flexible material (M02), and the first knuckle (40) is adjacent to the displacement transmission mechanism (51) The frame portion comprises the second flexible material (M02).
較佳的是,在第一種撓性材料(M01)與第二種撓性材料(M02)之間可填充第三種撓性材料(因添加比例較少,故圖未標示)作為緩衝,且該第三種撓性材料的材料強度介於該第一種撓性材料(M01)的第二種撓性材料(M02)之間。於本實施例中,該第一種撓性材料為上述材料一(TPE填充率100%)、該第二種撓性材料為上述材料三(TPE填充率40%)、該第三種撓性材料為上述材料二(TPE填充率80%)。此外,該位移傳遞機構(51)可於遠離固定端處一部分採用第二種撓性材料,所述第二種撓性材料可為上述材料三(TPE填充率40%),而該末端指節(10)則於相對該夾持面(100)處的內框緣處一部分採用第二種撓性材料,所述第二種撓性材料可為上述材料三(TPE填充率40%)。
Preferably, between the first flexible material (M01) and the second flexible material (M02) can be filled with a third flexible material (not shown in the figure due to the small addition ratio) as a buffer, And the material strength of the third flexible material is between the first flexible material (M01) and the second flexible material (M02). In this embodiment, the first flexible material is the above material one (
將此自適性撓性手指進行多項相關效能之測試,以給定輸入位移之設定下測試自適性撓性手指之A.輸入力量、B.輸出位移以及C.輸出力量。 The self-adaptive flexible finger is tested for a number of related performances, and the A. input force, B. output displacement and C. output force of the self-adaptive flexible finger are tested under a given input displacement setting.
A.輸入力量的實驗方式,為將自適性撓性手指設置於線性移動平台上,並透過力量感測器推動自適性撓性手指,以給予輸入位移,並於自適性撓性手指移動過程中記錄力量感測器所顯示之輸入力量。 A. The experimental method of input force is to set the adaptive flexible finger on the linear moving platform, and push the adaptive flexible finger through the force sensor to give the input displacement, and during the movement of the adaptive flexible finger Record the input force displayed by the force sensor.
輸入力量之實驗結果如「輸入力量結果表」所示。 The experimental results of the input force are shown in the "Input Force Result Table".
輸入力量結果表:
B.輸出位移測試之實驗架設方式,與輸入力量測試之實驗架設方式相同,並額外於線性移動平台右側設置方格紙以記錄自適性撓性手指之末端指節輸出端之位置。 B. The experimental set-up method of the output displacement test is the same as that of the input force test, and an additional graph paper is set on the right side of the linear moving platform to record the position of the terminal knuckle output end of the adaptive flexible finger.
輸出位移之實驗結果如「輸出位移結果表」所示。 The experimental results of the output displacement are shown in the "Output Displacement Result Table".
輸出位移結果表:
C.輸出力量測試之實驗方式,為在輸出端受到固定之情形下給予自適性撓性手指輸入位移並記錄輸出力量(於輸出端設置力量感測器以記錄自適性撓性手指之輸出力量)。測試方式可分為實驗方式一及實驗方式二,實驗方式一及實驗方式二的不同之處在於:實驗方式一是由自適性撓性手指之原始狀態開始給予輸入位移,而實驗方式二則預先給予自適性撓性手指反向20mm之輸入位移後,以此狀態作為起始位置,才開始給予自適性撓性手指輸入位移。
C. The experimental method of the output force test is to give the adaptive flexible finger an input displacement and record the output force under the condition that the output end is fixed (set a force sensor at the output end to record the output force of the adaptive flexible finger) . The test methods can be divided into
輸出力量之實驗結果如「實驗方法一之輸出力量結果表」、「實驗方法二之輸出力量結果表」所示。
The experimental results of the output force are shown in the "Table of Output Force Result of
實驗方法一之輸出力量結果表:
實驗方法二之輸出力量結果表:
以下將以本實施例之自適性撓性手指(1)呈對地裝配於水平線性移動之致動器,所構成的自適性撓性夾爪(如圖25所示),來與市售自適性撓性夾爪(型號為Adaptive gripper finger DHAS)進行測試比較:FESTO公司的市售自適性撓性夾爪,其可用於夾取物體之夾持面約95mm,厚度為1至2公分,而本實施例之自適性撓性手指(1)之夾持面則為 83mm。於此,將FESTO公司之夾爪裝配於水平線性移動之致動器,致動器採用的是TOYO公司的伺服電動缸控制器,型號為TC-100。搭配連接治具可使致動器向外擴張至極限位置時夾爪末端間相距76mm,向內壓縮至極限位置後則相距18mm。 The self-adaptive flexible gripper (as shown in Figure 25 ) constituted by the self-adaptive flexible finger (1) of this embodiment is assembled on the actuator of horizontal linear movement, and the commercially available from Adaptive flexible grippers (model: Adaptive gripper finger DHAS) were tested and compared: the commercially available adaptive flexible grippers of FESTO Company, which can be used to grip objects with a gripping surface of about 95 mm and a thickness of 1 to 2 cm, while The clamping surface of the self-adaptive flexible finger (1) of the present embodiment is 83mm. Here, the grippers of FESTO Company are assembled on the horizontal linear movement actuator, and the actuator adopts the servo electric cylinder controller of TOYO Company, the model is TC-100. With the connecting jig, the distance between the ends of the jaws is 76mm when the actuator expands outward to the limit position, and the distance between the ends of the jaws is 18mm when it is compressed inward to the limit position.
為了比較本實施例之夾爪與FESTO公司所開發之夾爪於夾取物體時所表現之自適性,於此挑選四種形狀不同之物件進行夾取實驗,四種物件分別為圓形工件、方形工件、梯形物件及引擎腳彈性體。測試結果如「自適性效能比較表」所示,於此,以夾爪夾取物件時與物件表面接觸之長度作為自適性之量化標準,以此標準可觀察出本實施例夾爪於夾取四種物件時所表現之自適性皆優於FESTO公司之夾爪。在夾取方形工件時,本實施例夾爪能有效將其包覆並成功夾取,FESTO公司所開發之夾爪則無法將其包覆,也無法成功夾取,在夾取梯形物件及引擎腳彈性體時,本實施例夾爪可使夾持面完整貼附物體之表面以增加夾持過程中之穩定性,而FESTO公司所開發之夾爪雖能成功夾取兩物體卻無法使夾爪夾持面貼合物體之表面,僅能透過接觸物件的特定位置以此進行夾取。 In order to compare the adaptability of the grippers of this embodiment and the grippers developed by FESTO when gripping objects, four objects with different shapes were selected for gripping experiments. The four objects were circular workpieces, Square workpieces, trapezoidal objects and elastic bodies for engine feet. The test results are shown in the "Adaptiveness Performance Comparison Table". Here, the length of the gripper that is in contact with the surface of the object when gripping the object is used as the quantitative standard for self-adaptation. Based on this standard, it can be observed that the gripper of this embodiment is better at gripping The self-adaptability of the four kinds of objects is better than that of the grippers of FESTO company. When clamping a square workpiece, the clamping jaws of this embodiment can effectively cover it and successfully clamp it. The clamping jaw developed by FESTO cannot cover it or successfully clamp it. When clamping trapezoidal objects and engines When the foot is made of elastic body, the clamping jaw of this embodiment can make the clamping surface completely attached to the surface of the object to increase the stability during the clamping process, while the clamping jaw developed by FESTO can successfully clamp two objects but cannot clamp The clamping surface of the claw is attached to the surface of the object, and can only be gripped by contacting a specific position of the object.
自適性效能比較表:
而本實施例夾爪在自適性方面能優於FESTO公司所開發之夾爪推測為以下之原因,首先是夾爪位移輸入方式的不同,本實施例夾爪之位移輸入方式能使夾爪於觸碰物體後仍能持續傳遞位移至每一個指節以此貼適物體 表面,其次是本實施例夾爪之結構之變形能力優於FESTO公司所開發之夾爪,因此更能夠適應不同外形物體之表面。 The grippers of this embodiment are better than the grippers developed by FESTO in adaptability for the following reasons. First, the displacement input method of the grippers is different. After touching the object, it can continue to transmit the displacement to each knuckle to fit the object Surface, secondly, the deformability of the structure of the gripper of this embodiment is better than that of the gripper developed by FESTO, so it is more able to adapt to the surface of objects with different shapes.
在FESTO公司之夾爪之負載測試方面,測試方法為夾爪夾持物體後逐漸增加下方托盤所乘載之重量直到物體滑落為止。FESTO公司所開發之夾爪所能乘載之最大重量為2.64公斤重,而本實施例夾爪所能承載之最大重量約為6.71公斤重。綜合實驗結果可知,本實施例之自適性撓性夾爪無論是在自適性效能或最大負載上均優於市售FESTO自適性撓性夾爪。 In terms of the load test of the grippers of FESTO, the test method is to gradually increase the weight of the lower tray after the grippers hold the object until the object slides down. The maximum weight that the jaws developed by FESTO can carry is 2.64 kilograms, and the maximum weight that the jaws of this embodiment can carry is about 6.71 kilograms. From the comprehensive experimental results, it can be seen that the adaptive flexible gripper of this embodiment is superior to the commercially available FESTO adaptive flexible gripper in terms of adaptive performance and maximum load.
要補充說明的是,如圖25所示,雖上述自適性撓性夾爪是以一對自適性撓性手指(1)的組合作為例示,但並不以此為限,如圖26、圖27所示,可由環狀分布的三個、四個或更多的自適性撓性手指(1)組成自適性撓性夾爪。又或者如圖28所示,可由一對以上的自適性撓性手指(1)組成自適性撓性夾爪,主要目的皆在於利用複數個自適性撓性手指(1)共同界定夾持空間。 It should be added that, as shown in Figure 25, although the above-mentioned self-adaptive flexible gripper is an example of a pair of self-adaptive flexible fingers (1), it is not limited to this, as shown in Figure 26, Figure As shown in 27, the self-adaptive flexible gripper can be composed of three, four or more self-adaptive flexible fingers (1) distributed in a ring. Or as shown in FIG. 28 , the adaptive flexible gripper can be composed of more than one pair of adaptive flexible fingers ( 1 ), the main purpose of which is to use a plurality of adaptive flexible fingers ( 1 ) to jointly define the clamping space.
應注意的是,上述內容僅為本發明的較佳實施例,目的在於使所屬領域的通常知識者能夠瞭解本發明而據以實施,並非用來限定本發明的申請專利範圍;故涉及本發明所為的均等變化或修飾,均為申請專利範圍所涵蓋。 It should be noted that the above content is only a preferred embodiment of the present invention, the purpose is to enable those skilled in the art to understand and implement the present invention, and is not used to limit the scope of the patent application of the present invention; therefore, it relates to the present invention All equivalent changes or modifications are covered by the scope of the patent application.
(S01):步驟一
(S01):
(S02):步驟二
(S02):
(S03):步驟三 (S03): Step 3
(S04):步驟四
(S04):
(S05):步驟五 (S05): Step five
(S06):步驟六 (S06): Step 6
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110145901A TWI795114B (en) | 2021-12-08 | 2021-12-08 | Multimaterial topology optimization method of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110145901A TWI795114B (en) | 2021-12-08 | 2021-12-08 | Multimaterial topology optimization method of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI795114B true TWI795114B (en) | 2023-03-01 |
| TW202324170A TW202324170A (en) | 2023-06-16 |
Family
ID=86692187
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110145901A TWI795114B (en) | 2021-12-08 | 2021-12-08 | Multimaterial topology optimization method of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI795114B (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201833800A (en) * | 2017-03-14 | 2018-09-16 | 國立成功大學 | Flexible gripping jaws, method, computer program product and computer readable recording medium for designing such |
| CN208231825U (en) * | 2018-05-09 | 2018-12-14 | 杭州职业技术学院 | A kind of adaptive structure of grasping mechanism |
| CN109807917A (en) * | 2019-03-15 | 2019-05-28 | 浙江大学 | The coupling machinery hand of self-adapting grasping object |
| CN110774308A (en) * | 2019-11-07 | 2020-02-11 | 歌尔科技有限公司 | Clamping jaw and manipulator using same |
| WO2020082923A1 (en) * | 2018-10-26 | 2020-04-30 | 太原理工大学 | Flexible adaptive mechanical hand |
| CN111993304A (en) * | 2020-08-05 | 2020-11-27 | 五邑大学 | Flexible three-finger clamp |
| WO2021139468A1 (en) * | 2020-01-09 | 2021-07-15 | 江南大学 | Four-finger underactuated manipulator with rigid-flexible coupling finger and driven by flexible shaft |
-
2021
- 2021-12-08 TW TW110145901A patent/TWI795114B/en active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201833800A (en) * | 2017-03-14 | 2018-09-16 | 國立成功大學 | Flexible gripping jaws, method, computer program product and computer readable recording medium for designing such |
| CN208231825U (en) * | 2018-05-09 | 2018-12-14 | 杭州职业技术学院 | A kind of adaptive structure of grasping mechanism |
| WO2020082923A1 (en) * | 2018-10-26 | 2020-04-30 | 太原理工大学 | Flexible adaptive mechanical hand |
| CN109807917A (en) * | 2019-03-15 | 2019-05-28 | 浙江大学 | The coupling machinery hand of self-adapting grasping object |
| CN110774308A (en) * | 2019-11-07 | 2020-02-11 | 歌尔科技有限公司 | Clamping jaw and manipulator using same |
| WO2021139468A1 (en) * | 2020-01-09 | 2021-07-15 | 江南大学 | Four-finger underactuated manipulator with rigid-flexible coupling finger and driven by flexible shaft |
| CN111993304A (en) * | 2020-08-05 | 2020-11-27 | 五邑大学 | Flexible three-finger clamp |
Non-Patent Citations (2)
| Title |
|---|
| 網路文獻 Che-Ming Chang et al., On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands, Frontiers in Neurorobotics, Nov. 2019, https://www.frontiersin.org/articles/10.3389/fnbot.2019.00091/full |
| 網路文獻 Chih-Hsing Liu et al., Topology Optimization and Prototype of a Multimaterial-Like Compliant Finger by Varying the Infill Density in 3D Printing, Soft Robotics, October 2021, DOI: 10.1089/soro.2020.0212,https://www.researchgate.net/publication/355133825_Topology_Optimization_and_Prototype_of_a_Multimaterial-Like_Compliant_Finger_by_Varying_the_Infill_Density_in_3D_Printing;網路文獻 Che-Ming Chang et al., On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands, Frontiers in Neurorobotics, Nov. 2019, https://www.frontiersin.org/articles/10.3389/fnbot.2019.00091/full * |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202324170A (en) | 2023-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Liu et al. | Topology and size–shape optimization of an adaptive compliant gripper with high mechanical advantage for grasping irregular objects | |
| Malvezzi et al. | SynGrasp: A MATLAB toolbox for grasp analysis of human and robotic hands | |
| Van Diepen et al. | A spatial grammar method for the computational design synthesis of virtual soft locomotion robots | |
| US20220004670A1 (en) | Flexible Manipulation Device and Method for Fabricating the Same | |
| Conlan-Smith et al. | Optimal design of compliant mechanisms using functionally graded materials | |
| Essahbi et al. | Soft material modeling for robotic manipulation | |
| JP2024114672A (en) | Gradient-Based Optimization for Robot Design | |
| You et al. | Kinematic design optimization for anthropomorphic robot hand based on interactivity of fingers | |
| Xu et al. | Effective enhanced model for a large deformable soft pneumatic actuator | |
| Sun et al. | A matlab-based framework for designing 3d topology optimized soft robotic grippers | |
| Radaelli et al. | Gravity balanced compliant shell mechanisms | |
| TWI795114B (en) | Multimaterial topology optimization method of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such | |
| Saxena et al. | An optimality criteria approach for the topology synthesis of compliant mechanisms | |
| Yi et al. | Co-Design of Soft Gripper with Neural Physics | |
| WO2006009026A1 (en) | Optimum design support device, optimum setting support method, and optimum design support program | |
| TWI630499B (en) | Flexible gripping jaws, method, computer program product and computer readable recording medium for designing such | |
| Smith et al. | A seamless workflow for design and fabrication of multimaterial pneumatic soft actuators | |
| Zimmerling et al. | Deep neural networks as surrogate models for time-efficient manufacturing process optimisation | |
| TW202321950A (en) | Multiple boundary conditions topology optimization of adaptive compliant actuator, grippers , method, computer program product and computer readable recording medium for designing such | |
| JP7045150B2 (en) | Global search device and program for continuous optimization problems | |
| WO2025049273A1 (en) | Isogeometric convolution hierarchical deep-learning neural network: isogeometric analysis with versatile adaptivity | |
| TWI886620B (en) | A multi-objective and multi-material topology optimization method for designing adaptive compliant fingers, grippers, and computer readable recording medium | |
| Pinskier et al. | Towards bespoke soft grippers through voxel-scale metamaterial topology optimisation | |
| TWI857434B (en) | Topology optimization method for design of compliant constant-force mechanisms, end-effectors, computer program products and computer readable recording medium for designing such | |
| Bletzinger et al. | Variation of Reference Strategy-A novel approach for generating optimized cutting patterns of membrane structures |