TWI792240B - Method for adjusting control parameters used in rolling mill process - Google Patents
Method for adjusting control parameters used in rolling mill process Download PDFInfo
- Publication number
- TWI792240B TWI792240B TW110110723A TW110110723A TWI792240B TW I792240 B TWI792240 B TW I792240B TW 110110723 A TW110110723 A TW 110110723A TW 110110723 A TW110110723 A TW 110110723A TW I792240 B TWI792240 B TW I792240B
- Authority
- TW
- Taiwan
- Prior art keywords
- shape
- control parameters
- rolling mill
- input
- parameters
- Prior art date
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
本發明係關於軋延製程的技術領域,特別是關於一種調整用於軋延製程的控制參數的方法。The present invention relates to the technical field of rolling process, in particular to a method for adjusting control parameters for rolling process.
一般的鋼捲產品需要經過軋延製程,例如熱軋與冷軋來形成最終之產品。為了讓產品的機械性質符合預定的規範,在習知技術中是在產品生產完以後量測機械性質,若不符合規範則調整至少一個階段的製程控制參數。單軋機之現行控制方法為考量時間序列之概念,遵循軋機內建之模糊控制系統之決策進行參數調整。單軋機每20毫秒即會傳回一筆資料,其中包含出口板形、機器參數及控制參數等等。系統內建之模糊系統即會傳回之出口板形與目標板形之差距以及內建的數個板形差模板進行比對,根據比例作為調整控制參數之參考。General steel coil products need to go through rolling process, such as hot rolling and cold rolling to form the final product. In order to make the mechanical properties of the product comply with predetermined specifications, in the conventional technology, the mechanical properties are measured after the product is produced, and if the mechanical properties do not meet the specifications, at least one stage of process control parameters is adjusted. The current control method of a single rolling mill considers the concept of time series, and adjusts parameters according to the decision-making of the fuzzy control system built in the rolling mill. The single rolling mill will send back a piece of data every 20 milliseconds, including the exit shape, machine parameters and control parameters, etc. The built-in fuzzy system of the system compares the difference between the returned export shape and the target shape with several built-in shape difference templates, and uses the ratio as a reference for adjusting control parameters.
然而,軋延製程中會同時受到機器參數、鋼帶特性、控制參數、等因素之影響。同時包含許多可控與不可控之因子,無法用現存之物理、數學或是化學模型解釋,受限於問題之長時間、不穩定狀態且包含許多非線性因子等特性,無法運用微分方程處理、常導致最終板形與目標板形不符,因而增加生產成本。However, the rolling process will be affected by machine parameters, steel strip characteristics, control parameters, and other factors at the same time. At the same time, it contains many controllable and uncontrollable factors, which cannot be explained by existing physical, mathematical or chemical models. Due to the long-term, unstable state of the problem, and many nonlinear factors, it cannot be processed by differential equations. This often results in a final shape that does not match the target shape, thus increasing production costs.
因此,如何有效地改善用於軋延製程的控制參數使得出口板形與目標板形一致乃此領域技術人員所關心的議題。Therefore, how to effectively improve the control parameters used in the rolling process so that the exit shape is consistent with the target shape is a topic of concern to those skilled in the art.
本發明之一目的在於提供一種調整用於軋延製程的控制參數的方法,以降低出口板形與目標板形的誤差,進而降低成本並提升製程的效率。An object of the present invention is to provide a method for adjusting the control parameters of the rolling process, so as to reduce the error between the exit shape and the target shape, thereby reducing the cost and improving the efficiency of the process.
為達上述之目的,本發明提供一種用於軋延製程的控制參數的調整方法,所述方法包含以下步驟:(a) 提供虛擬軋機,虛擬軋機係相應於用於軋延製程的軋延機器;(b) 提供相應於輸入板形的複數個控制參數作為虛擬軋機的複數個輸入參數;(c) 透過虛擬軋機根據複數個機器參數、輸入板形以及該等輸入參數以產生一預測板形;(d) 輸入預測板形與相應輸入板形的目標板形至評估函式以產生板形分數;(e) 將板形分數輸入至最佳化模型以產生複數個經調整的控制參數;(f) 將該等經調整的控制參數作為該等輸入參數;以及(g) 重複步驟(c)至(f)直到產生最適於輸入板形的控制參數。To achieve the above-mentioned purpose, the present invention provides a method for adjusting control parameters of a rolling process, said method comprising the following steps: (a) providing a virtual rolling mill, which corresponds to the rolling machine used for the rolling process ; (b) providing a plurality of control parameters corresponding to the input shape as a plurality of input parameters of the virtual rolling mill; (c) generating a predicted shape according to the plurality of machine parameters, the input shape and the input parameters through the virtual rolling mill ; (d) inputting the predicted flatness and the target flatness corresponding to the input flatness into the evaluation function to generate a flatness score; (e) inputting the flatness score into the optimization model to generate a plurality of adjusted control parameters; (f) using the adjusted control parameters as the input parameters; and (g) repeating steps (c) to (f) until the control parameters most suitable for the input shape are produced.
根據本發明的一些實施例,所述調整方法於步驟(d)之後,還包含:(h) 比較板形分數與門檻值,其中當板形分數小於等於門檻值時,不進行步驟(e)至步驟(g)。According to some embodiments of the present invention, after step (d), the adjustment method further includes: (h) comparing the shape score with a threshold value, wherein when the shape score is less than or equal to the threshold value, step (e) is not performed Go to step (g).
根據本發明的一些實施例,所述調整方法於步驟(d)之後,還包含:(h) 比較板形分數與門檻值,其中當板形分數小於等於門檻值時,不進行步驟(e)至步驟(g)。According to some embodiments of the present invention, after step (d), the adjustment method further includes: (h) comparing the shape score with a threshold value, wherein when the shape score is less than or equal to the threshold value, step (e) is not performed Go to step (g).
根據本發明的一些實施例,虛擬軋機係利用集成學習及/或深度學習所建立的機器學習模型。According to some embodiments of the present invention, the virtual rolling mill is a machine learning model established by ensemble learning and/or deep learning.
根據本發明的一些實施例,虛擬軋機係利用極限梯度提升(eXtreme Gradient Boosting,XGBoost)演算法建立。According to some embodiments of the present invention, the virtual rolling mill is established using an extreme gradient boosting (eXtreme Gradient Boosting, XGBoost) algorithm.
根據本發明的一些實施例,虛擬軋機係利用深度神經網路(Deep Neural Networks, DNN)模型來建立。According to some embodiments of the present invention, the virtual rolling mill is established using a deep neural network (Deep Neural Networks, DNN) model.
根據本發明的一些實施例,評估函式係對預測板形與目標板形進行比較以產生反映於預測板形與目標板形之間的誤差情況的板形分數。According to some embodiments of the present invention, the evaluation function compares the predicted shape to the target shape to generate a shape score that reflects an error condition between the predicted shape and the target shape.
根據本發明的一些實施例,評估函式為均方根誤差、R平方、平均絕對百分誤差、平均絕對誤差、以及希爾不等係數中的一者。According to some embodiments of the present invention, the evaluation function is one of root mean square error, R squared, mean absolute percentage error, mean absolute error, and Hill inequality coefficient.
根據本發明的一些實施例,該等控制參數包含溫度、軋延速度、軋延力、以及被軋件張力。According to some embodiments of the present invention, the control parameters include temperature, rolling speed, rolling force, and tension of the rolled piece.
根據本發明的一些實施例,該最佳化模型係利用交叉熵(Cross-Entropy)演算法並根據板形分數以產生該等經調整的控制參數。According to some embodiments of the present invention, the optimization model uses a Cross-Entropy algorithm to generate the adjusted control parameters according to the shape score.
本發明利用集成學習的XGBoost模型及/或深度學習的整合式神經網路模型打造虛擬軋機,透過數據的整合,可持續地預測設備或系統的狀況。另外,虛擬軋機進一步結合最佳化模型,僅須給定必要參數即可調整並計算最適之控制參數,進而提升整體品質,也可以避免在現實設備中直接測試可能造成的高成本以及高風險。因此可廣泛地應用於製程中未知部分之預測。The present invention utilizes the XGBoost model of integrated learning and/or the integrated neural network model of deep learning to create a virtual rolling mill, and continuously predicts the status of equipment or systems through data integration. In addition, the virtual rolling mill is further combined with an optimization model to adjust and calculate the most appropriate control parameters only by giving necessary parameters, thereby improving the overall quality and avoiding the high cost and high risk that may be caused by direct testing in real equipment. Therefore, it can be widely used in the prediction of unknown parts in the manufacturing process.
為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, preferred embodiments of the present invention will be exemplified below in detail together with the attached drawings.
第1圖是根據本發明一些實施例繪示的用於調整於軋延製程所使用的控制參數的電子裝置100的示意圖。電子裝置100可以是各種形式的電腦、計算機或是伺服器系統。電子裝置100包含儲存單元110以及處理單元120。儲存單元110可為揮發性記憶體或非揮發性記憶體。儲存單元110儲存了先前於軋延製程中所使用的多個歷史資料,其包含多個控制參數、多個機器參數、多個入口板形資料以及多個出口板形資料。另外,儲存單元110還儲存了多個指令,使處理單元120執行這些指令以進行一個調整控制參數的方法。處理單元120可以是中央處理器、微處理器、微控制器、數位信號處理器、特殊應用積體電路等。FIG. 1 is a schematic diagram of an
請一併參考第2圖,第2圖是根據本發明一些實施例繪示的用於調整於軋延製程所使用的控制參數的方法200的流程圖。首先,於步驟S210中,提供一虛擬軋機。虛擬軋機係相應於用於軋延製程的軋延機器。虛擬軋機模擬了實體的軋延機器,以在接收相同的參數以及相應鋼捲的入口板形的情況下預測鋼捲經由軋延機器軋延後的出口板形,其稱為預測板形。具體來說,處理單元120可從儲存單元110存取軋延機器在軋延製程中所使用的多個歷史參數和資料,並根據這些資訊建立機器學習模型,在本發明稱為虛擬軋機。在一些實施例中,可利用集成學習的極限梯度提升(eXtreme Gradient Boosting,XGBoost)演算法來建立虛擬軋機。在一些實施例中,可利用深度學習的深度神經網路(Deep Neural Networks, DNN)模型來建立虛擬軋機。在一些實施例中,可同時併用XGBoost演算法以及DNN模型,並比較這兩者的預測表現以及測試不同超參數的組合,來得到最適的預測模型。Please also refer to FIG. 2 , which is a flowchart of a
以XGBoost演算法為例,XGBoost 是梯度提升決策樹(Gradient Boosting Decision Trees,GBDT)的改進方法。GBDT是一種提升(Boosting)方法,其可以用於迴歸和分類問題。簡言之,GBDT使用損失函式的負梯度作為迴歸問題提升樹演算法中的殘差近似值,以擬合一個迴歸樹。 GBDT 演算法的目標函式只有損失函式這一項,而 XGBoost 在此基礎上進行了改進,增加了正則項以防止模型過度複雜。Taking the XGBoost algorithm as an example, XGBoost is an improved method of Gradient Boosting Decision Trees (GBDT). GBDT is a boosting method that can be used for both regression and classification problems. In short, GBDT uses the negative gradient of the loss function as a residual approximation in the boosting tree algorithm for regression problems to fit a regression tree. The objective function of the GBDT algorithm is only the loss function, and XGBoost has improved on this basis, adding a regular term to prevent the model from being overly complex.
XGBoost的基本概念為不斷地添加樹,並透過不斷地進行特徵分裂來生長一棵樹。每次添加了一個樹,便是學習了一個新函式,藉以去擬合上次預測的殘差。在每棵樹中會落到對應的一個葉子節點,每個葉子節點就對應一個分數,最後只需要將每棵樹對應的分數加起來就是該樣本的預測值。The basic concept of XGBoost is to continuously add trees and grow a tree by continuously performing feature splits. Every time a tree is added, a new function is learned to fit the last predicted residual. In each tree, it will fall to a corresponding leaf node, and each leaf node corresponds to a score. Finally, you only need to add up the scores corresponding to each tree to get the predicted value of the sample.
具體來說,XGBoost的目標函式(Obj)可如下式(1)所示,其包含兩個部分,第一部分為損失函式,用來衡量預測分數和真實分數的差距,另一部分則是正則化項(如式(2)),這部分也是跟梯度提升演算法不同的地方。正則化項包含了葉子結點的個數T以及葉子節點的分數ω,γ可以控制葉子結點的個數,λ可以控制葉子節點的分數不會過大,防止過擬合。換言之,XGBoost要找到一個f 以最小化目標函式。 Specifically, the objective function (Obj) of XGBoost can be shown in the following formula (1), which consists of two parts. The first part is the loss function, which is used to measure the gap between the predicted score and the real score, and the other part is the regularization The transformation term (such as formula (2)), this part is also different from the gradient boosting algorithm. The regularization term includes the number T of leaf nodes and the score ω of leaf nodes. γ can control the number of leaf nodes, and λ can control the score of leaf nodes from being too large to prevent overfitting. In other words, XGBoost is to find an f that minimizes the objective function.
本發明利用XGBoost演算法來對過往用於軋延製程的多個參數進行訓練以建立虛擬軋機,因其具有多個優點。例如,它使用許多策略去防止過擬合,例如正則化項。另外,目標函式的優化利用了損失函式關於待求函式的二階導數。再者,它支持並行化。雖然樹與樹之間是串行關係,但是同層級節點可並行。具體的對於某個節點,節點內選擇最佳分裂點,候選分裂點計算增益用多線程並行,因此訓練速度快。The present invention uses the XGBoost algorithm to train multiple parameters used in the rolling process in the past to establish a virtual rolling mill, which has multiple advantages. For example, it uses a number of strategies to prevent overfitting, such as regularization terms. In addition, the optimization of the objective function utilizes the second derivative of the loss function with respect to the function to be sought. Furthermore, it supports parallelization. Although there is a serial relationship between trees, nodes at the same level can be parallelized. Specifically, for a certain node, the best split point is selected in the node, and the candidate split point calculation gain is parallelized with multiple threads, so the training speed is fast.
須注意的是,雖然本實施例的虛擬軋機雖然以XGBoost演算法及/或DNN模型為例來實現,但本發明並不以此為限。只要是利用集成學習及/或深度學習來實現虛擬軋機以達到模擬實體軋機的輸出情況皆為本發明的範圍。It should be noted that although the virtual rolling mill in this embodiment is implemented by using the XGBoost algorithm and/or the DNN model as an example, the present invention is not limited thereto. As long as the integrated learning and/or deep learning is used to realize the virtual rolling mill to simulate the output of the physical rolling mill, it is within the scope of the present invention.
當建立好虛擬軋機後,本發明會進一步對已建立的虛擬軋機進行最佳化的處理,以試圖得到更適的控制參數。回到第2圖,接著,在步驟S220中,提供多個控制參數作為虛擬軋機的多個輸入參數。然後於步驟S230中,透過虛擬軋機根據多個機器參數、輸入板形以及多個輸入參數以產生預測板形。須了解的是,在這兩步驟中,輸入板形以及機器參數為定值,而控制參數則是變數。輸入板形是鋼帶在進行軋延製程前已知的形狀。機器參數則是虛擬軋機對應於實體軋延機器的機器特性,例如輥徑、輥軋機的硬性或材料、拉伸強度(tensile strength)、降伏強度(yield stress)、以及伸長率(elongation)等等。控制參數可例如為溫度、軋延速度、軋延力、以及被軋件張力等等。After the virtual rolling mill is established, the present invention further optimizes the established virtual rolling mill to try to obtain more suitable control parameters. Returning to Fig. 2, next, in step S220, a plurality of control parameters are provided as a plurality of input parameters of the virtual rolling mill. Then in step S230, a predicted shape is generated through the virtual rolling mill according to a plurality of machine parameters, an input shape and a plurality of input parameters. It should be understood that in these two steps, the input shape and machine parameters are fixed values, while the control parameters are variables. The input shape is the known shape of the steel strip before rolling process. The machine parameters are the machine characteristics of the virtual rolling mill corresponding to the physical rolling machine, such as roll diameter, hardness or material of the rolling mill, tensile strength, yield stress, and elongation, etc. . The control parameters may be, for example, temperature, rolling speed, rolling force, and tension of the workpiece to be rolled, and so on.
接著,在步驟S240中,輸入預測板形與相應輸入板形的目標板形至評估函式以產生板形分數。目標板形即代表將入口板形透過軋延製程後藉由實體軋延機器所產生的實際的出口板形,而本發明的目的即在於將虛擬軋機所產生(模擬)的預設板形與實體軋延機器在相同的參數下所產生的出口板形一致。為此,可透過評估函式係對預測板形與目標板形進行比較以產生板形分數,板形分數可反映出虛擬軋機模擬的預測板形與實際的目標板形之間的誤差情況。Next, in step S240, the predicted flat shape and the target flat shape corresponding to the input flat shape are input into the evaluation function to generate a flat shape score. The target strip shape represents the actual exit strip shape produced by the physical rolling machine after passing the entry strip shape through the rolling process, and the purpose of the present invention is to combine the preset strip shape produced (simulated) by the virtual rolling mill with the The exit plate shape produced by the solid rolling machine under the same parameters is consistent. Therefore, the evaluation function can be used to compare the predicted flatness with the target flatness to generate a flatness score. The flatness score can reflect the error between the predicted flatness simulated by the virtual rolling mill and the actual target flatness.
在一些實施例中,用來評估誤差的評估函式可包含均方根誤差(Root-Mean-Square Error,RMSE)、R平方(R square)、平均絕對百分誤差(Mean Absolute Percentage Error ,MAPE)、平均絕對誤差(Mean Absolute Error,MAE)、以及希爾不等係數(Theil Inequality Coefficient,TIC)等等。在本實施例中,評估函式為均方根誤差,但本發明並不以此為限。In some embodiments, the evaluation function used to evaluate the error may include root mean square error (Root-Mean-Square Error, RMSE), R square (R square), mean absolute percentage error (Mean Absolute Percentage Error, MAPE ), mean absolute error (Mean Absolute Error, MAE), and Hill inequality coefficient (Theil Inequality Coefficient, TIC) and so on. In this embodiment, the evaluation function is root mean square error, but the invention is not limited thereto.
接著,在步驟S250中,判斷評估函式所產生的板形分數是否小於等於一門檻值。如先前所述,板形分數代表著虛擬軋機模擬的預測板形與實際的目標板形之間的誤差情況。因此若板形分數小於等於門檻值,代表著預測板形與目標板形的誤差很小,也就是虛擬軋機所預測的出口板形與實際的出口板形幾乎一致,因此完成對應此入口板形的控制參數的調整。Next, in step S250, it is determined whether the shape score generated by the evaluation function is less than or equal to a threshold value. As mentioned earlier, the flatness score represents the error between the predicted flatness of the virtual mill simulation and the actual target flatness. Therefore, if the shape score is less than or equal to the threshold value, it means that the error between the predicted shape and the target shape is very small, that is, the exit shape predicted by the virtual rolling mill is almost consistent with the actual exit shape, so the corresponding entry shape is completed. adjustment of the control parameters.
若板形分數大於門檻值,代表著預測板形與目標板形之間仍具有一定的誤差,此時則進行步驟S260,調整原先的控制參數。在步驟S260中,將板形分數輸入至最佳化模型以產生多個經調整的控制參數。最佳化模型可根據板形分數(亦即,預測板形與目標板形的誤差)來調整原先提供給虛擬軋機的控制參數,藉此來改善虛擬軋機的預測結果。在一些實施例中,最佳化模型利用交叉熵(Cross-Entropy)演算法根據板形分數以產生經調整的控制參數,但本發明並不以此為限。If the shape score is greater than the threshold value, it means that there is still a certain error between the predicted shape and the target shape. At this time, step S260 is performed to adjust the original control parameters. In step S260, the shape score is input into the optimization model to generate a plurality of adjusted control parameters. The optimization model can adjust the control parameters originally provided to the virtual rolling mill according to the flatness score (that is, the error between the predicted flatness and the target flatness), thereby improving the prediction result of the virtual rolling mill. In some embodiments, the optimization model uses a cross-entropy (Cross-Entropy) algorithm to generate adjusted control parameters according to the shape score, but the invention is not limited thereto.
具體來說,熵代表的是隨機變量或整個系統的不確定性,熵越大,隨機變量或系統的不確定性就越大。而交叉熵用來衡量在給定的真實分布下,使用非真實分布所指定的策略消除系統的不確定性所需要付出成本的大小。交叉意味著真實分布與非真實分布的交叉。在本發明中,最佳化模型利用交叉熵作為損失函式並以板形分數做為參考,其目的在於最小化交叉熵。Specifically, entropy represents the uncertainty of a random variable or the entire system, and the greater the entropy, the greater the uncertainty of the random variable or system. The cross entropy is used to measure the cost of eliminating the uncertainty of the system by using the strategy specified by the non-real distribution under the given real distribution. Crossover means the intersection of the true distribution with the non-true distribution. In the present invention, the optimization model uses cross-entropy as a loss function and uses the shape score as a reference, and its purpose is to minimize the cross-entropy.
因此,在透過最佳化模型所產生的控制參數之後,進行步驟S270,將這些經調整的控制參數作為輸入參數,然後回到步驟S230,透過虛擬軋機根據這些經調整的控制參數、原先的機器參數對入口板形再進行預測以產生新的預測板形,然後進行步驟S240至S270,重複這些步驟直到預測板形與出口板形的誤差小於等於門檻值。Therefore, after the control parameters generated by the optimization model, proceed to step S270, using these adjusted control parameters as input parameters, and then return to step S230, through the virtual rolling mill according to these adjusted control parameters, the original machine The parameter predicts the shape of the entrance to generate a new predicted shape, and then proceeds to steps S240 to S270, repeating these steps until the error between the predicted shape and the shape of the exit is less than or equal to the threshold value.
本發明以集成學習的XGBoost模型及/或深度學習的整合式神經網路模型打造虛擬軋機,透過數據的整合,可持續地預測設備或系統的狀況。另外,虛擬軋機進一步結合最佳化模型,僅須給定必要參數即可調整並計算最適之控制參數,進而提升整體品質,也可以避免在現實設備中直接測試可能造成的高成本以及高風險。因此可廣泛地應用於製程中未知部分之預測。The present invention builds a virtual rolling mill with an XGBoost model of integrated learning and/or an integrated neural network model of deep learning, and continuously predicts the status of equipment or systems through data integration. In addition, the virtual rolling mill is further combined with an optimization model to adjust and calculate the most appropriate control parameters only by giving necessary parameters, thereby improving the overall quality and avoiding the high cost and high risk that may be caused by direct testing in real equipment. Therefore, it can be widely used in the prediction of unknown parts in the manufacturing process.
雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者爲準。Although the present invention has been disclosed with preferred embodiments, it is not intended to limit the present invention. Anyone skilled in this art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the attached patent application.
100:電子裝置 110:儲存單元 120:處理單元 200:調整方法 S210~S270:步驟 100: Electronic device 110: storage unit 120: processing unit 200: Adjustment method S210~S270: Steps
第1圖是根據本發明一些實施例繪示的用於調整於軋延製程所使用的控制參數的電子裝置的示意圖。 第2圖是根據本發明一些實施例繪示的用於調整於軋延製程所使用的控制參數的方法的流程圖。 FIG. 1 is a schematic diagram of an electronic device for adjusting control parameters used in a rolling process according to some embodiments of the present invention. FIG. 2 is a flowchart illustrating a method for adjusting control parameters used in a rolling process according to some embodiments of the present invention.
200:調整方法 200: Adjustment method
S210~S270:步驟 S210~S270: steps
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110110723A TWI792240B (en) | 2021-03-24 | 2021-03-24 | Method for adjusting control parameters used in rolling mill process |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110110723A TWI792240B (en) | 2021-03-24 | 2021-03-24 | Method for adjusting control parameters used in rolling mill process |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202238425A TW202238425A (en) | 2022-10-01 |
| TWI792240B true TWI792240B (en) | 2023-02-11 |
Family
ID=85460563
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110110723A TWI792240B (en) | 2021-03-24 | 2021-03-24 | Method for adjusting control parameters used in rolling mill process |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI792240B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI891324B (en) * | 2024-04-11 | 2025-07-21 | 中國鋼鐵股份有限公司 | Method for adjusting flatness dynamically and rolling control system |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116984381A (en) * | 2023-07-10 | 2023-11-03 | 首钢智新迁安电磁材料有限公司 | Strip shape control method, device, medium and reversible rolling mill |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5331565A (en) * | 1989-03-17 | 1994-07-19 | Hitachi, Ltd. | Control system having optimality decision means |
| TW200806984A (en) * | 2006-07-26 | 2008-02-01 | Toshiba Mitsubishi Elec Inc | Rolling line material quality prediction and control apparatus |
| JP4047875B2 (en) * | 2005-06-30 | 2008-02-13 | 株式会社神戸製鋼所 | Method for determining optimum values of design parameters and method for determining rolling pass schedule using this method |
| TW201609283A (en) * | 2014-09-10 | 2016-03-16 | 東芝三菱電機產業系統股份有限公司 | Rolling simulation device |
| TW201615297A (en) * | 2014-09-16 | 2016-05-01 | 新日鐵住金股份有限公司 | Rolling control method for metal plate, rolling control device, and method for manufacturing rolled metal plate |
| TW201805080A (en) * | 2016-07-21 | 2018-02-16 | 日新製鋼股份有限公司 | Tapered-shape determining method and passage schedule setting method |
| TW201936282A (en) * | 2017-11-22 | 2019-09-16 | 日商日新製鋼股份有限公司 | Shape control method, computation device, information processing program, and recording medium |
| TWI708128B (en) * | 2019-09-04 | 2020-10-21 | 中國鋼鐵股份有限公司 | Method and electrical device for adjusting process parameter |
| TW202102319A (en) * | 2019-07-03 | 2021-01-16 | 日商東芝三菱電機產業系統股份有限公司 | Rolling shape control apparatus |
-
2021
- 2021-03-24 TW TW110110723A patent/TWI792240B/en active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5331565A (en) * | 1989-03-17 | 1994-07-19 | Hitachi, Ltd. | Control system having optimality decision means |
| JP4047875B2 (en) * | 2005-06-30 | 2008-02-13 | 株式会社神戸製鋼所 | Method for determining optimum values of design parameters and method for determining rolling pass schedule using this method |
| TW200806984A (en) * | 2006-07-26 | 2008-02-01 | Toshiba Mitsubishi Elec Inc | Rolling line material quality prediction and control apparatus |
| TW201609283A (en) * | 2014-09-10 | 2016-03-16 | 東芝三菱電機產業系統股份有限公司 | Rolling simulation device |
| TW201615297A (en) * | 2014-09-16 | 2016-05-01 | 新日鐵住金股份有限公司 | Rolling control method for metal plate, rolling control device, and method for manufacturing rolled metal plate |
| TW201805080A (en) * | 2016-07-21 | 2018-02-16 | 日新製鋼股份有限公司 | Tapered-shape determining method and passage schedule setting method |
| TW201936282A (en) * | 2017-11-22 | 2019-09-16 | 日商日新製鋼股份有限公司 | Shape control method, computation device, information processing program, and recording medium |
| TW202102319A (en) * | 2019-07-03 | 2021-01-16 | 日商東芝三菱電機產業系統股份有限公司 | Rolling shape control apparatus |
| TWI708128B (en) * | 2019-09-04 | 2020-10-21 | 中國鋼鐵股份有限公司 | Method and electrical device for adjusting process parameter |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI891324B (en) * | 2024-04-11 | 2025-07-21 | 中國鋼鐵股份有限公司 | Method for adjusting flatness dynamically and rolling control system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202238425A (en) | 2022-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Gao et al. | Different states of multi-block based forecast engine for price and load prediction | |
| Lin et al. | Short-term load forecasting based on LSTM networks considering attention mechanism | |
| Zhang et al. | An improved Elman neural network with piecewise weighted gradient for time series prediction | |
| CN114897227B (en) | Mechanical properties prediction method for multiple steel grades based on improved random forest algorithm | |
| CN104834215B (en) | A kind of BP neural network pid control algorithm of mutation particle swarm optimization | |
| Wang et al. | Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system | |
| US9934470B2 (en) | Production equipment including machine learning system and assembly and test unit | |
| Son et al. | A study on genetic algorithm to select architecture of a optimal neural network in the hot rolling process | |
| CN113641907B (en) | A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm | |
| Zhong et al. | Density-based evolutionary framework for crowd model calibration | |
| TWI792240B (en) | Method for adjusting control parameters used in rolling mill process | |
| WO2021044516A1 (en) | Calculation device, calculation method, and non-transitory computer-readable medium storing program | |
| CN112991091A (en) | Short-term power load prediction method and device based on Stacking algorithm | |
| CN114707712A (en) | Method for predicting requirement of generator set spare parts | |
| CN118734701A (en) | Optimization method of process parameters for turbine disk die forging based on multi-objective optimization problem modeling | |
| Karlov et al. | Application of high-speed algorithms for training neural networks for forecasting financial markets | |
| CN107274016A (en) | The strip exit thickness Forecasting Methodology of the random symmetrical extreme learning machine of algorithm optimization that leapfrogs | |
| Ciancio et al. | Design of a high performance predictive tool for forging operation | |
| CN111814963A (en) | An Image Recognition Method Based on Parameter Modulation of Deep Neural Network Model | |
| CN110991604A (en) | A Time Series Financial Data Prediction Method Based on Wavelet Recurrent Neural Network | |
| CN115329911A (en) | Safety correction method for UPFC-containing power system based on SAE two-classification model | |
| Sespajayadi et al. | Technical data analysis for movement prediction of Euro to USD using Genetic Algorithm-Neural Network | |
| Araujo et al. | Hybrid differential evolutionary system for financial time series forecasting | |
| M John et al. | Predicting House Prices using Machine Learning and LightGBM. | |
| CN118245869A (en) | Method for predicting strip deviation in cold rolling continuous annealing furnace based on SMOTE algorithm and deep neural network |