[go: up one dir, main page]

TWI787955B - Method and system for detecting abnormal temperature of device online - Google Patents

Method and system for detecting abnormal temperature of device online Download PDF

Info

Publication number
TWI787955B
TWI787955B TW110129929A TW110129929A TWI787955B TW I787955 B TWI787955 B TW I787955B TW 110129929 A TW110129929 A TW 110129929A TW 110129929 A TW110129929 A TW 110129929A TW I787955 B TWI787955 B TW I787955B
Authority
TW
Taiwan
Prior art keywords
temperature
predicted
value
boundary
prediction
Prior art date
Application number
TW110129929A
Other languages
Chinese (zh)
Other versions
TW202307379A (en
Inventor
王福琨
黃長益
曾誠
簡柏旻
Original Assignee
國立臺灣科技大學
台灣瑞琜有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學, 台灣瑞琜有限公司 filed Critical 國立臺灣科技大學
Priority to TW110129929A priority Critical patent/TWI787955B/en
Application granted granted Critical
Publication of TWI787955B publication Critical patent/TWI787955B/en
Publication of TW202307379A publication Critical patent/TW202307379A/en

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Temperature (AREA)

Abstract

A method and system for detecting abnormal temperature of device online are provided. The method includes: receiving a plurality of historical data of a device to be inspected. The historical data is used as a training set, and the training set is input to a prediction model. A number of prediction data and a threshold value are input to the trained prediction model, thereby obtaining a plurality of predicted temperature data and a prediction result.

Description

設備溫度異常的線上檢測方法和系統Online detection method and system for equipment temperature abnormality

本發明是有關於一種使用壽命的預測方法,且特別是有關於一種設備溫度異常的線上檢測方法和系統。The present invention relates to a service life prediction method, and in particular to an online detection method and system for abnormal temperature of equipment.

於工業環境中,電子設備的運行以及環境參數的維持皆對產線和儀器的保存有很大的影響。現今通常以定期維護的方式來減少突發的故障情況,然而定期維護預防突發故障的效果仍不夠有效。In an industrial environment, the operation of electronic equipment and the maintenance of environmental parameters have a great impact on the preservation of production lines and instruments. Nowadays, regular maintenance is usually used to reduce sudden failures. However, the effect of regular maintenance to prevent sudden failures is still not effective enough.

工業用空調系統於長期使用後常有突發故障的發生,然而若空調系統無法及時的被維修與更換,將造成工業環境的溫度無法維持在一設定值之間,導致儀器的損壞以及產品產能的影響。現有的設備診斷或檢測系統為診斷當前的設備狀況,而無預測運行參數及異常時間點的功效,以及無提供可以令操作人員快速地了解設備狀況的數據或圖形。Industrial air-conditioning systems often have sudden failures after long-term use. However, if the air-conditioning system cannot be repaired and replaced in time, the temperature of the industrial environment will not be maintained within a set value, resulting in damage to equipment and product productivity. Impact. Existing equipment diagnosis or detection systems are for diagnosing current equipment conditions, but have no function of predicting operating parameters and abnormal time points, and do not provide data or graphics that allow operators to quickly understand equipment conditions.

本發明提供一種設備溫度異常的線上檢測方法和系統,藉由待測設備運行溫度的多筆歷史資料訓練出預測模型。並且,輸入界線設定值以及預測資料筆數至預測模型,藉此獲得設備的未來運行溫度的預測結果,以提供企業能在設備發生異常或故障前提早實施預防、維修或保養等措施。The present invention provides an online detection method and system for abnormal temperature of equipment, and a prediction model is trained by using multiple historical data of the operating temperature of the equipment to be tested. In addition, the boundary set value and the number of forecast data are input into the forecast model, so as to obtain the forecast result of the future operating temperature of the equipment, so as to provide enterprises with early implementation of preventive, repair or maintenance measures before equipment abnormalities or failures occur.

本發明的設備溫度異常的線上檢測方法,包括:接收待測設備的多筆歷史資料;以該待測設備的歷史資料作為訓練集;依據該訓練集訓練預測模型,其中該預測模型是基於機器學習演算法所訓練;將預測資料筆數以及界線設定值輸入至該預測模型,以獲得該待測設備的多筆預測溫度值以及預測結果。The online detection method for device temperature abnormality of the present invention includes: receiving multiple historical data of the device to be tested; using the historical data of the device to be tested as a training set; training a prediction model according to the training set, wherein the prediction model is based on a machine The learning algorithm is trained; the number of forecast data and the set value of the boundary are input into the forecast model to obtain multiple forecast temperature values and forecast results of the device under test.

在本發明的一實施例中,上述界線設定值包括由使用者設定的溫度上限設定值以及溫度下限設定值。In an embodiment of the present invention, the aforementioned boundary set value includes a temperature upper limit set value and a temperature lower limit set value set by a user.

在本發明的一實施例中,上述將該預測資料筆數以及該界線設定值輸入至該預測模型,以獲得該待測設備的預測溫度值以及該預測結果的步驟,更包括:將該預測資料筆數以及該界線設定值輸入至該預測模型,以獲得預測溫度值;判斷預測溫度值是否超出該界線設定值,以獲得判斷結果;其中若預測溫度值之中有任一預測溫度值超出該界線設定值,則將超出的預測溫度值、該超出的預測溫度值對應的時間以及警示訊息作為該判斷結果;其中若預測溫度值皆介於該界線設定值之間,則將安全訊息作為該判斷結果。In an embodiment of the present invention, the above-mentioned step of inputting the number of forecast data and the boundary setting value into the forecast model to obtain the forecast temperature value of the device under test and the forecast result further includes: the forecast The number of data items and the boundary set value are input into the prediction model to obtain the predicted temperature value; judge whether the predicted temperature value exceeds the boundary set value to obtain the judgment result; wherein if any of the predicted temperature values exceeds the For the boundary set value, the exceeded predicted temperature value, the time corresponding to the exceeded predicted temperature value, and the warning message will be used as the judgment result; if the predicted temperature values are all between the boundary set value, the safety message will be used as The judgment result.

在本發明的一實施例中,上述設備溫度異常的線上檢測方法,更包括:設定預測步數為N,並設定每一步為O小時;以及設定在接收到界線設定值之後未來的N個時間點。在判斷所述預測溫度值是否超出界線設定值之後,更包括:若預測溫度值皆介於該界線設定值之間,則在判斷自該接收到該界線設定值經過N乘以O個小時後的N個時間點,以藉由基於機器學習模型以及設備運行溫度的歷史資料所訓練的預測模型獲得預估異常時間點。In an embodiment of the present invention, the above-mentioned online detection method for abnormal temperature of the equipment further includes: setting the number of predicted steps as N, and setting each step as 0 hours; and setting N times in the future after receiving the boundary set value point. After judging whether the predicted temperature value exceeds the boundary set value, it further includes: if the predicted temperature values are all between the boundary set value, then after judging that the boundary set value has been received after N times O hours The N time points of N time points are used to obtain the estimated abnormal time points by using the prediction model trained based on the machine learning model and the historical data of the equipment operating temperature.

在本發明的一實施例中,上述預測溫度值包括在每一預測溫度值上的時間點以及溫度值。In an embodiment of the present invention, the above-mentioned predicted temperature values include a time point and a temperature value at each predicted temperature value.

在本發明的一實施例中,上述判斷預測溫度值是否超出該界線設定值,以獲得判斷結果的步驟之後,包括:依據預測溫度值以及該界線設定值繪製出該待測設備的運行溫度預測圖形;輸出該運行溫度預測圖形。In an embodiment of the present invention, after the above-mentioned step of judging whether the predicted temperature value exceeds the boundary set value and obtaining the judgment result, it includes: drawing the operating temperature prediction of the device under test according to the predicted temperature value and the boundary set value Graphics; output the running temperature prediction graphics.

本發明實施例的設備溫度異常的線上檢測系統包括(但不僅限於)儲存器、處理器。儲存器儲存有多筆設備溫度資料。處理器經配置用以接收待測設備的多筆歷史資料,以該待測設備的歷史資料作為訓練集。依據該訓練集訓練預測模型。將預測資料筆數以及界線設定值輸入至該預測模型,以獲得該待測設備的多筆預測溫度值以及預測結果。該預測模型是基於機器學習演算法所訓練。The online detection system for abnormal device temperature in the embodiment of the present invention includes (but not limited to) storage and processor. The memory stores multiple pieces of equipment temperature data. The processor is configured to receive multiple pieces of historical data of the device under test, and use the historical data of the device under test as a training set. A predictive model is trained on the training set. The number of forecast data and the boundary setting value are input into the forecast model to obtain multiple forecast temperature values and forecast results of the device under test. The predictive model is trained based on machine learning algorithms.

基於上述,本揭示提出一種設備溫度異常的線上檢測方法和系統,可以利用機器學習模型,搭配滾動式多步數的預測方式,預測設備的溫度異常時間點以及未來故障發生時間點,藉此可提供企業在設備故障或運作異常前提早實施檢測或維修以預防故障的發生。Based on the above, this disclosure proposes an online detection method and system for equipment temperature abnormalities, which can use machine learning models and a rolling multi-step prediction method to predict the time point of abnormal temperature of the equipment and the time point of future failures. Provide enterprises with early detection or maintenance before equipment failure or abnormal operation to prevent failures.

當設備在使用一段時間後,設備會有故障或溫度發生異常等狀況,而藉由設備中的感測器偵測到設備運行溫度的歷史資料等數據並無法令業者或操作人員直接地判斷設備的運行狀況,因此需要透過一個預測方法來預測設備之運行狀況及可能發生異常的時間點,以便操作人員可提前做故障預防的保養動作或檢查維修。據此,本揭示提供一種設備溫度異常的線上檢測方法和系統,可實現線上溫度異常的預測。When the equipment has been used for a period of time, the equipment will malfunction or the temperature will be abnormal, and the historical data of the equipment’s operating temperature detected by the sensors in the equipment cannot allow the operator or operator to directly judge the equipment. Therefore, it is necessary to use a prediction method to predict the operating status of the equipment and the time point when an abnormality may occur, so that the operator can perform fault-preventive maintenance actions or check and repair in advance. Accordingly, the disclosure provides an online detection method and system for abnormal temperature of equipment, which can realize the prediction of abnormal temperature online.

圖1是依據本發明一實施例的設備溫度異常的線上檢測系統的示意圖。在底下實施例中,設備溫度異常的線上檢測方法和系統可由具有運算功能的電子裝置1來實現。此電子裝置1包括處理器110、儲存器120以及通訊收發器130。處理器110可以是具備運算處理能力的硬體(例如晶片組、處理器等)、軟體元件(例如作業系統、應用程式等),或硬體及軟體元件的組合。處理器110例如是中央處理單元(Central processing unit,CPU)、圖形處理單元(Graphics processing unit,GPU),或是其他可程式化之微處理器(Microprocessor)、數位訊號處理器(Digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(Application specific integrated circuits,ASIC)、程式化邏輯裝置(Programmable logic device,PLD)或其他類似裝置。FIG. 1 is a schematic diagram of an online detection system for abnormal temperature of equipment according to an embodiment of the present invention. In the following embodiments, the online detection method and system for abnormal device temperature can be realized by the electronic device 1 with computing functions. The electronic device 1 includes a processor 110 , a storage 120 and a communication transceiver 130 . The processor 110 may be hardware (such as chipset, processor, etc.), software components (such as operating system, application programs, etc.) capable of computing and processing, or a combination of hardware and software components. The processor 110 is, for example, a central processing unit (Central processing unit, CPU), a graphics processing unit (Graphics processing unit, GPU), or other programmable microprocessor (Microprocessor), digital signal processor (Digital signal processor, DSP), programmable controller, Application specific integrated circuits (ASIC), programmable logic device (Programmable logic device, PLD) or other similar devices.

儲存器120耦接處理器。儲存器120例如是任意型式的固定式或可移動式隨機存取記憶體、唯讀記憶體、快閃記憶體、安全數位卡、硬碟或其他類似裝置或這些裝置的組合。儲存器120中儲存有至少一程式碼片段、至少一本地資料庫以及至少一資料表,而上述程式碼片段在被安裝後,由處理器110來執行以實現設備溫度異常的線上檢測方法和系統。The storage 120 is coupled to the processor. The storage 120 is, for example, any type of fixed or removable random access memory, read-only memory, flash memory, secure digital card, hard disk, or other similar devices or a combination of these devices. At least one program code segment, at least one local database, and at least one data table are stored in the storage 120, and the above-mentioned program code segment is executed by the processor 110 after being installed to realize the online detection method and system for device temperature abnormality .

通訊收發器130耦接處理器110。通訊收發器130例如是支援乙太網路(Ethernet)、光纖網路、或電纜等有線網路的收發器(其可能包括(但不僅限於)連接介面、訊號轉換器、通訊協定處理晶片等元件),也可能是支援Wi-Fi、第四代(4G)、第五代(5G)或更後世代行動網路等無線網路的收發器(其可能包括(但不僅限於)天線、數位至類比/類比至數位轉換器、通訊協定處理晶片等元件)。在一實施例中,通訊收發器130用以傳送或接收資料。The communication transceiver 130 is coupled to the processor 110 . The communication transceiver 130 is, for example, a transceiver supporting wired networks such as Ethernet (Ethernet), an optical fiber network, or a cable (which may include (but not limited to) components such as connection interfaces, signal converters, and communication protocol processing chips. ), or a transceiver (which may include (but is not limited to) antennas, digital to analog/analog-to-digital converters, protocol processing chips, etc.). In one embodiment, the communication transceiver 130 is used to transmit or receive data.

圖2是依據本發明一實施例的設備溫度異常的線上檢測方法的流程圖。在步驟S210中,接收待測設備的多筆歷史資料。具體而言,本發明之設備溫度異常的線上檢測方法藉由設置於該設備之中的溫度感測器偵測與記錄該設備運行中的多筆溫度值。並且,藉此收集運行溫度值、運行時間且/或設備狀況等設備的歷史資料。FIG. 2 is a flowchart of an online detection method for abnormal temperature of equipment according to an embodiment of the present invention. In step S210, multiple pieces of historical data of the device under test are received. Specifically, the online detection method for equipment temperature abnormality of the present invention detects and records multiple temperature values during the operation of the equipment through the temperature sensor installed in the equipment. And, thereby collecting historical data of equipment such as operating temperature value, operating time and/or equipment status.

圖3是依據本發明一實施例的設備溫度異常的線上檢測系統的示意圖。於此實施例中,本地資料庫DL儲存有多筆歷史資料。其中,多筆歷史資料為溫度時間序列資料,且被構成的資料表的形式儲存於本地資料庫DL之中。Fig. 3 is a schematic diagram of an online detection system for abnormal temperature of equipment according to an embodiment of the present invention. In this embodiment, the local database DL stores multiple pieces of historical data. Wherein, the multiple pieces of historical data are temperature time series data, and the formed data table is stored in the local database DL.

在一實施例中,設備的歷史資料儲存於本地資料庫或儲存器之中。據此,步驟S210中,處理器110自本地資料庫DL中接收與讀取多筆歷史資料。並且,處理器110接收待測設備的多筆歷史資料之後,透過資料前處理程式SP對歷史資料進行資料前處理。舉例來說,假設原始感測器收集到的歷史資料共12730筆,之後透過取平均的方式將資料轉換為以相同的小時或秒為單位。接著,執行資料前處理。於一實施例中,上述的資料前處理為利用局部預估散點平滑(Locally estimated scatterplot smoothly,LOESS)將原始資料平滑化。In one embodiment, the historical data of the device is stored in a local database or storage. Accordingly, in step S210, the processor 110 receives and reads multiple pieces of historical data from the local database DL. Moreover, after the processor 110 receives multiple pieces of historical data of the device under test, it performs data pre-processing on the historical data through the data pre-processing program SP. For example, assume that the original sensor collects 12,730 pieces of historical data, and then the data is converted into the same unit of hours or seconds by taking an average. Next, perform data preprocessing. In one embodiment, the aforementioned data pre-processing is to smooth the original data by using Locally estimated scatterplot smoothing (LOESS).

上述資料前處理也可為將多筆設備運行時的溫度值(即,歷史資料)進行歸一化(Normalization)處理。舉例來說,將多筆歷史資料之中的最大值轉換為1,歷史資料之中的最小值轉換為0,其餘的值按照比例分布在0到1之間。據此,令所述歷史資料的值介於0到1之間。舉例來說,上述歸一化處理可透過最小最大值標準化(MinMaxScaler)執行,然而實際應用中,亦可以採用其他資料前處理的手段,因此本案不應以此為限。The pre-processing of the above data can also be normalization (Normalization) processing of the temperature values (that is, historical data) of multiple pieces of equipment during operation. For example, the maximum value among the multiple historical data is converted to 1, the minimum value among the historical data is converted to 0, and the remaining values are distributed between 0 and 1 according to the proportion. Accordingly, the value of the historical data is set between 0 and 1. For example, the above-mentioned normalization processing can be performed through MinMaxScaler, but in practical applications, other data pre-processing methods can also be used, so this case should not be limited to this.

在步驟S220中,以該待測設備的歷史資料作為訓練集。在此步驟S220中,處理器110將完成資料前處理的歷史資料作為訓練集。接著,在步驟S230中,依據該訓練集訓練預測模型。具體而言,處理器110將訓練集作為預測模型的輸入參數以訓練預測模型程式PMP,並匯出至網頁應用框架WPF之中。於本發明中,這預測模型是基於機器學習演算法所訓練。In step S220, the historical data of the device under test is used as a training set. In this step S220, the processor 110 uses the historical data that has completed data pre-processing as a training set. Next, in step S230, the prediction model is trained according to the training set. Specifically, the processor 110 uses the training set as an input parameter of the predictive model to train the predictive model program PMP, and exports it to the web application framework WPF. In the present invention, the predictive model is trained based on a machine learning algorithm.

在步驟S240中,處理器110將預測資料筆數以及界線設定值輸入至該預測模型,以獲得待測設備的多筆預測溫度值以及預測結果。其中預測溫度值的筆數對應於該預測資料筆數。於一實施例中,設備溫度異常的線上檢測系統透過網頁應用框架連接網路應用程式WAP。於本實施例中,網路應用框架WPF為flask程式,由Python程式語言所編寫的程式,且連接本地資料庫的窗口程式WA為Python程式語言中具有讀取/存取資料功能(function)的應用程式介面。舉例來說,連接本地資料庫的窗口程式WA可為Java資料庫連接(Java Database Connectivity, JDBC)或開放資料庫互連(Open Database Connectivity, ODBC)等,因此本發明不應以此為限。如圖3所示,預測模型程式被訓練完後匯出至網路應用框架WPF。接著,使用者於網路應用程式WAP輸入界線設定值以及欲預測的預測資料筆數(例如,使用者輸入10筆,即輸出未來10筆的預測溫度值)。據此,與網路應用程式WAP相通訊連接的網路應用框架WPF將界線設定值以及預測資料筆數輸入至上述已訓練好的預測模型之中,以根據預測資料筆數預測出對應筆數的預測溫度值。需補充說明的是,圖3的系統架構圖係提供此所屬領域人員的範例架構,以其他架構或程式而達到本發明之線上檢測方法和系統的特徵應屬本發明之範圍,故本發明不應以此範例為限。In step S240, the processor 110 inputs the number of forecast data and the boundary setting value into the forecast model to obtain multiple forecast temperature values and forecast results of the device under test. The number of predicted temperature values corresponds to the number of predicted data. In one embodiment, the online detection system for abnormal device temperature is connected to the web application program WAP through the web application framework. In this embodiment, the web application framework WPF is a flask program, a program written by the Python programming language, and the window program WA connected to the local database is a Python programming language that has the function of reading/accessing data. Application programming interface. For example, the window program WA connected to the local database can be Java Database Connectivity (JDBC) or Open Database Connectivity (ODBC), etc., so the present invention should not be limited thereto. As shown in Figure 3, the prediction model program is exported to the web application framework WPF after being trained. Then, the user enters the boundary setting value and the number of predicted data to be predicted in the web application program WAP (for example, the user inputs 10 data, that is, the predicted temperature value of the next 10 data will be output). Accordingly, the web application framework WPF, which communicates with the web application program WAP, inputs the boundary setting value and the number of predicted data items into the above-mentioned trained forecasting model, so as to predict the corresponding number of items based on the number of predicted data items predicted temperature value. It should be added that the system architecture diagram in Fig. 3 provides an example architecture for those in this field, and the features of the online detection method and system of the present invention should be achieved by other architectures or programs, so the present invention does not include This example should be limited.

於一實施例中,界線設定值包括由使用者所設定溫度上限設定值以及溫度下限設定值。舉例來說,使用者透過網路應用程式WAP輸入此待測設備的溫度上限設定值以及溫度下限設定值。補充說明的是,這溫度上限設定值以及溫度下限設定值可為設備的操作手冊上的建議運行溫度或根據使用者操作經驗的運行溫度。接著,網路應用程式WAP將使用者所輸入的界線設定值以及使用者欲預測的未來筆數(即,預測資料筆數)回傳至網頁應用框架WPF,以及儲存至資料表D與本地資料庫DL之中。In one embodiment, the boundary setting value includes a temperature upper limit setting value and a temperature lower limit setting value set by the user. For example, the user inputs the temperature upper limit setting value and the temperature lower limit setting value of the device under test through the web application program WAP. It is supplemented that the upper temperature limit setting value and the temperature lower limit setting value can be the recommended operating temperature in the operation manual of the device or the operating temperature according to the operating experience of the user. Then, the network application program WAP returns the boundary setting value input by the user and the future number of items that the user wants to predict (that is, the number of predicted data items) to the web application framework WPF, and stores them in the data table D and local data Among the library DL.

圖4是依據本發明一實施例的獲得預測溫度值的流程圖。在步驟S240之中,本發明之設備溫度異常的線上檢測方法更包括:將預測資料筆數以及界線設定值輸入至上述已訓練的預測模型,以獲得預測溫度值(步驟S241)。也就是說,處理器110將預測資料比數以及界線設定值輸入至已訓練好的預測模型,以透過預測模型計算出預測溫度值。接著,在步驟S242之中,判斷預測溫度值是否超出界線設定值,以獲得判斷結果,並且,輸出這判斷結果。具體而言,處理器110將預測溫度值以及使用者所設定的界線設定值進行比對與判斷。若預測溫度值之中有任一預測溫度值超出界線設定值,則將超出的預測溫度值、超出的預測溫度值所對應的時間以及警示訊息作為該判斷結果。反之,若預測溫度值皆介於界線設定值之間,則將安全訊息作為該判斷結果。換句話說,儲存有已訓練好的預測模型程式PMP的網頁應用框架WPF,將前述使用者所輸入的界線設定值以及預測溫度筆數輸入預測模型程式PMP,進而獲得對應預測溫度筆數的預測溫度值以及判斷結果。另一方面,處理器110可透過通訊收發器130將判斷結果輸出至使用者的電子裝置或網路應用程式WAP中,以顯示於對應電子裝置或網路應用程式WAP的顯示器之上。FIG. 4 is a flow chart of obtaining a predicted temperature value according to an embodiment of the present invention. In step S240, the online detection method for equipment temperature abnormality of the present invention further includes: inputting the number of prediction data and the boundary setting value into the above-mentioned trained prediction model to obtain the predicted temperature value (step S241). That is to say, the processor 110 inputs the predicted data ratio and the threshold setting value into the trained prediction model, so as to calculate the predicted temperature value through the prediction model. Next, in step S242, it is judged whether the predicted temperature value exceeds the threshold setting value to obtain a judgment result, and the judgment result is output. Specifically, the processor 110 compares and judges the predicted temperature value and the boundary setting value set by the user. If any of the predicted temperature values exceeds the boundary set value, the exceeded predicted temperature value, the time corresponding to the exceeded predicted temperature value, and the warning message are taken as the judgment result. On the contrary, if the predicted temperature values are all between the boundary set values, the safety message is taken as the judgment result. In other words, the webpage application framework WPF that stores the trained forecasting model program PMP inputs the boundary setting value and the number of predicted temperature items input by the aforementioned user into the forecasting model program PMP, and then obtains the forecast corresponding to the number of predicted temperature items Temperature value and judgment result. On the other hand, the processor 110 can output the judgment result to the user's electronic device or the web application program WAP through the communication transceiver 130 to be displayed on the display of the corresponding electronic device or web application program WAP.

圖5是依據本發明一實施例的運行溫度預測圖形。於另一實施例中,本發明之設備溫度異常的線上檢測方法更包括繪製待測設備的運行溫度預測圖形,令操作人員更加方便地掌握與了解待測設備的運行狀況,並且透過預測圖形令操作人員可以更有效率地讀取待測設備的預測溫度值,進而提升檢測效率與判斷準確度。於上述判斷預測溫度值是否超出該界線設定值,以獲得判斷結果的步驟(步驟S242)之後,本發明之設備溫度異常的線上檢測方法更包括:處理器依據預測溫度值以及界線設定值繪製出待測設備的運行溫度預測圖形(步驟S243),以及處理器輸出運行溫度預測圖形(步驟S244)。若預測溫度值之中有任一預測溫度值超出該界線設定值,則將超出的預測溫度值以及該超出的預測溫度值對應的時間標記於該運行溫度預測圖形之上。據此,若預測溫度值介於界線設定值(即,使用者所輸入的溫度上、下臨界值)之間,網路應用程式的頁面會顯示安全訊號(例如,以綠燈提示使用者),令使用者清楚且快速地知道預測溫度值皆介於正常值範圍內。反之,若預測溫度值大於界線設定值的溫度上限值,或小於界線設定值的溫度下限值,網路應用程式會顯示警示訊號(例如,以紅燈提示使用者)。這警示訊號亦包括超出界線臨界值的預測溫度值以及超出的時間點,令操作人員可以預先對設備進行檢測與維修,進而預防設備於運行中突然故障的情況,以及避免設備的故障造成產線上產能的損失。FIG. 5 is a graph showing a forecasted operating temperature according to an embodiment of the present invention. In another embodiment, the online detection method for equipment temperature abnormality of the present invention further includes drawing the operation temperature prediction graph of the equipment under test, so that the operator can more easily grasp and understand the operation status of the equipment under test, and make the Operators can more efficiently read the predicted temperature value of the device under test, thereby improving detection efficiency and judgment accuracy. After the above-mentioned step of judging whether the predicted temperature value exceeds the boundary set value to obtain the judgment result (step S242), the online detection method for device temperature abnormality of the present invention further includes: the processor draws a graph according to the predicted temperature value and the boundary set value. The operating temperature prediction graph of the device under test (step S243), and the processor outputs the operating temperature prediction graph (step S244). If any of the predicted temperature values exceeds the boundary set value, the exceeded predicted temperature value and the time corresponding to the exceeded predicted temperature value are marked on the operating temperature predicted graph. Accordingly, if the predicted temperature value is between the boundary set value (that is, the temperature upper and lower threshold values input by the user), the web application page will display a safety signal (for example, remind the user with a green light), Let the user know clearly and quickly that the predicted temperature values are all within the normal range. Conversely, if the predicted temperature value is greater than the upper temperature limit of the boundary set value or lower than the lower temperature limit of the boundary set value, the web application will display a warning signal (for example, remind the user with a red light). The warning signal also includes the predicted temperature value and the time point of exceeding the critical value of the boundary, so that the operator can detect and repair the equipment in advance, so as to prevent the sudden failure of the equipment during operation, and avoid the failure of the equipment from causing damage to the production line. Loss of production capacity.

於一實施例中,上述接收該待測設備的歷史資料的步驟(步驟S210)之前,本發明之設備溫度異常的線上檢測方法更包括:偵測與紀錄該待測設備的多筆當前運行溫度,並將當前運行溫度作為歷史資料。當前運行溫度是藉由至少一感測器偵測該待測設備的多筆溫度值所獲得的。In one embodiment, before the above-mentioned step of receiving the historical data of the device under test (step S210), the online detection method for device temperature abnormality of the present invention further includes: detecting and recording multiple current operating temperatures of the device under test , and use the current operating temperature as historical data. The current operating temperature is obtained by at least one sensor detecting multiple temperature values of the device under test.

此外,還可進一步加入滾動式預測(Rolling forecast),以提高預測的準確度以及提供使用者多樣化操作。本發明的設備溫度異常的線上檢測的方法更包括設定預測步數(Prediction step)為N,並設定每一步為O小時。N與O為正整數。接著,設定在接收到界線設定值之後未來的N個時間點。在此,以時間為自變數(Independent variable)來預測出未來資料的因變數(Controlled variable),即,預測溫度值。舉例來說,以N=3、O=1,且接收到界線設定值為第110小時來說明,預測在接收到界線設定值之後未來的3個時間點上的預測參數,即,第111、112、113小時的預測溫度值。於另一實施例中,上述接收到界線設定值亦可為使用者所設定的判斷時間點。In addition, a rolling forecast can be further added to improve the accuracy of the forecast and provide users with diversified operations. The method for online detection of abnormal device temperature of the present invention further includes setting the number of prediction steps (Prediction step) as N, and setting each step as O hours. N and O are positive integers. Next, N time points in the future after receiving the boundary setting value are set. Here, time is used as an independent variable (Independent variable) to predict the dependent variable (Controlled variable) of future data, that is, the predicted temperature value. For example, with N=3, O=1, and the received boundary set value is the 110th hour, it is predicted that the prediction parameters at three future time points after receiving the boundary set value, that is, the 111th, 111th, Predicted temperature values for 112 and 113 hours. In another embodiment, the above-mentioned received boundary setting value may also be a judgment time point set by the user.

接著,判斷上述預測溫度值是否超出界線設定值。倘若所述預測溫度值皆介於界線設定值之間,則重複預測下N個時間點上的預測溫度值。繼續滾動式預測,直到預測出來的預測溫度值超出界線設定值時停止滾動式預測。即,以N=3、O=1且接收到界線設定值為第110小時來說明,重新設定自接收到界線設定值經過3×1小時後的未來3個時間點(即114、115、116小時)。舉例來說,如圖5為未來10個時間點(即111至120小時)的溫度預測圖形,若界線設定值的上限溫度值為30,下限設定值為10,則溫度預測圖形將把超出上限溫度值30的第116小時的溫度值以即對應時間(第116小時)透過網路應用程式或透過通訊收發器傳送至使用者的設備,以通知使用者警示訊息以及超出界線設定值的溫度值(32°C)以及其對應的時間(第116小時)。補充說明的是,本發明中所提及的時間其單位可根據使用者實際情況,設定時間單位為秒、小時、數秒、或數小時等,因此本案不應以此為限。Next, it is judged whether the predicted temperature value exceeds the threshold setting value. If the predicted temperature values are all between the boundary set values, the predicted temperature values at the next N time points are repeatedly predicted. Continue the rolling forecast until the predicted temperature value exceeds the boundary set value and stop the rolling forecast. That is to say, by taking N=3, O=1 and receiving the boundary set value at the 110th hour, reset the next 3 time points after receiving the boundary set value after 3×1 hour (i.e. 114, 115, 116 Hour). For example, as shown in Figure 5, the temperature forecast graph for the next 10 time points (that is, 111 to 120 hours), if the upper limit temperature value of the boundary set value is 30, and the lower limit set value is 10, then the temperature forecast graph will exceed the upper limit. The temperature value of the 116th hour of the temperature value 30 and the corresponding time (116th hour) are sent to the user's device through the web application or through the communication transceiver to notify the user of the warning message and the temperature value exceeding the limit set value (32°C) and its corresponding time (116th hour). It should be added that the unit of time mentioned in the present invention can be set as seconds, hours, seconds, or hours according to the actual situation of the user, so this case should not be limited thereto.

若迴圈停止,即,其中一個預測溫度值超出界線設定值,則在這超出界線設定值的預測溫度值所對應的時間點作為預估異常時間點。據此,令使用者透過本發明之設備溫度異常的線上檢測方法和系統,可以預測且繪製出待測設備於一時間點之後的運行預測溫度值,進而達到有效率地掌控設備的運行狀況與運行溫度的效果。如此一來,操作人員根據預測溫度值以及運行溫度預測圖形預先檢測與維修設備,以預防設備的故障。If the loop stops, that is, one of the predicted temperature values exceeds the boundary set value, the time point corresponding to the predicted temperature value exceeding the boundary set value is used as the predicted abnormal time point. Accordingly, through the online detection method and system for abnormal device temperature of the present invention, the user can predict and draw the predicted operating temperature value of the device under test after a certain time point, thereby achieving efficient control of the device's operating status and Effect of operating temperature. In this way, the operator detects and repairs the equipment in advance according to the predicted temperature value and the operating temperature forecast graph, so as to prevent the failure of the equipment.

於本發明之中,所述機器學習模型採用支持向量迴歸(Support vector regression,SVR)演算法。舉例而言,本發明的預測模型可以是基於機器學習演算法(例如,支持向量迴歸(Support vector regression,SVR)、卷積神經網絡(Convolutional Neural Network,CNN)、深度神經網路(Deep Neural Network,DNN)、遞歸神經網路(recurrent neural networks,RNN)、長短期記憶(Long Short-Term Memory ,LSTM)、或其他演算法)所訓練。機器學習演算法可分析訓練樣本以自中獲得規律,從而透過規律對未知資料預測。而預測模型即是經學習後所建構出的機器學習模型,並據以對待評估資料推論。並且,上述滾動式預測可透過(Exponentially Weighted Moving Average, EWMA)管制圖建立EWMA統計量以進行設備溫度的平滑化與監測。In the present invention, the machine learning model adopts a support vector regression (SVR) algorithm. For example, the predictive model of the present invention can be based on machine learning algorithms (for example, support vector regression (Support vector regression, SVR), convolutional neural network (Convolutional Neural Network, CNN), deep neural network (Deep Neural Network) , DNN), recurrent neural networks (recurrent neural networks, RNN), long short-term memory (Long Short-Term Memory, LSTM), or other algorithms) training. Machine learning algorithms can analyze training samples to obtain patterns from them, so as to predict unknown data through patterns. The prediction model is a machine learning model constructed after learning, and inferences are made based on the evaluation data. Moreover, the above-mentioned rolling forecast can establish EWMA statistics through the (Exponentially Weighted Moving Average, EWMA) control chart to smooth and monitor the equipment temperature.

綜上所述,在本發明實施例的設備溫度異常的線上檢測方法和系統中,藉助於機器學習演算法而訓練出符合多種設備的界線設定值(即,不同設備的運行正常溫度值)的預測模型,從而提供使用者更加精準且適用於不同設備的預測溫度值。To sum up, in the online detection method and system for abnormal equipment temperature in the embodiment of the present invention, by means of a machine learning algorithm, the machine learning algorithm is used to train the boundary setting values (that is, the normal operating temperature values of different equipment) that meet the various equipment. Prediction model, so as to provide users with more accurate and suitable predicted temperature values for different devices.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

1:電子裝置 110:處理器 120:儲存器 130:通訊收發器 S210~S240、S241~S244:步驟 DL:本地資料庫 WA:連接本地資料庫的窗口程式 SP:資料前處理程式 PMP:預測模型程式 D:資料表 WAP:網路應用程式 WPF:網頁應用框架 1: Electronic device 110: Processor 120: storage 130: Communication transceiver S210~S240, S241~S244: steps DL: local database WA: Windows program to connect to local database SP: data preprocessing program PMP: Predictive Modeling Program D: data sheet WAP: Web Application WPF: Web Application Framework

圖1是依據本發明一實施例的設備溫度異常的線上檢測系統的示意圖。 圖2是依據本發明一實施例的設備溫度異常的線上檢測方法的流程圖。 圖3是依據本發明一實施例的設備溫度異常的線上檢測系統的示意圖。 圖4是依據本發明一實施例的獲得預測溫度值的流程圖。 圖5是依據本發明一實施例的運行溫度預測圖形。 FIG. 1 is a schematic diagram of an online detection system for abnormal temperature of equipment according to an embodiment of the present invention. FIG. 2 is a flowchart of an online detection method for abnormal temperature of equipment according to an embodiment of the present invention. Fig. 3 is a schematic diagram of an online detection system for abnormal temperature of equipment according to an embodiment of the present invention. FIG. 4 is a flow chart of obtaining a predicted temperature value according to an embodiment of the present invention. FIG. 5 is a graph showing a forecasted operating temperature according to an embodiment of the present invention.

S210~S240:步驟 S210~S240: steps

Claims (9)

一種設備溫度異常的線上檢測方法,包括:接收一待測設備的多筆歷史資料;以該待測設備的該些歷史資料作為一訓練集;依據該訓練集訓練一預測模型,其中該預測模型是基於一機器學習演算法所訓練;以及將一預測資料筆數以及一界線設定值輸入至該預測模型,以獲得該待測設備的多筆預測溫度值以及一預測結果;其中該些預測溫度值的筆數對應於該預測資料筆數;其中將該預測資料筆數以及該界線設定值輸入至該預測模型,以獲得該待測設備的該些預測溫度值以及該預測結果的步驟包括:將該預測資料筆數以及該界線設定值輸入至該預測模型,以獲得該些預測溫度值;以及判斷該些預測溫度值是否超出該界線設定值,以獲得一判斷結果;其中該判斷該些預測溫度值是否超出該界線設定值,以獲得一判斷結果的步驟之後,包括:依據該些預測溫度值以及該界線設定值繪製出該待測設備的一運行溫度預測圖形;輸出該運行溫度預測圖形;其中若該些預測溫度值之中有任一預測溫度值超出該界線設 定值,則將超出的該些預測溫度值以及該超出的預測溫度值對應的時間標記於該運行溫度預測圖形之上。 An online detection method for abnormal temperature of equipment, comprising: receiving a plurality of historical data of a device under test; using the historical data of the device under test as a training set; training a prediction model according to the training set, wherein the prediction model It is trained based on a machine learning algorithm; and a number of prediction data and a boundary setting value are input into the prediction model to obtain multiple prediction temperature values and a prediction result of the device under test; wherein the prediction temperature The number of values corresponds to the number of prediction data; wherein the number of prediction data and the boundary setting value are input into the prediction model to obtain the predicted temperature values of the device under test and the steps of the prediction results include: Inputting the number of forecast data and the boundary setting value into the forecasting model to obtain the predicted temperature values; and judging whether the predicted temperature values exceed the boundary setting value to obtain a judgment result; After the step of predicting whether the temperature value exceeds the boundary set value and obtaining a judgment result, it includes: drawing an operating temperature prediction graph of the device under test according to the predicted temperature values and the boundary set value; outputting the operating temperature prediction graph; wherein if any of the predicted temperature values exceeds the limit set If the value is fixed, the exceeding predicted temperature values and the time corresponding to the exceeding predicted temperature value are marked on the operating temperature prediction graph. 如請求項1所述的設備溫度異常的線上檢測方法,其中該界線設定值包括由使用者設定的一溫度上限設定值以及一溫度下限設定值。 The online detection method for equipment temperature abnormality as described in Claim 1, wherein the boundary set value includes a temperature upper limit set value and a temperature lower limit set value set by a user. 如請求項1所述的設備溫度異常的線上檢測方法,其中若該些預測溫度值之中有任一預測溫度值超出該界線設定值,則將超出的該些預測溫度值、該超出的預測溫度值對應的時間以及一警示訊息作為該判斷結果;其中若該些預測溫度值皆介於該界線設定值之間,則將一安全訊息作為該判斷結果。 The online detection method for equipment temperature abnormality as described in claim item 1, wherein if any of the predicted temperature values exceeds the boundary set value, the exceeded predicted temperature values, the exceeded predicted The time corresponding to the temperature value and a warning message are used as the judgment result; wherein if the predicted temperature values are all between the boundary set values, a safety message is used as the judgment result. 如請求項1所述的設備溫度異常的線上檢測方法,其中該接收該待測設備的該些歷史資料的步驟之前,包括:偵測與紀錄該待測設備的多筆當前運行溫度,並將該些當前運行溫度作為該些歷史資料,其中該些當前運行溫度是藉由至少一感測器偵測該待測設備的多筆溫度值所獲得的。 The online detection method for device temperature abnormality as described in claim 1, wherein before the step of receiving the historical data of the device under test, it includes: detecting and recording multiple current operating temperatures of the device under test, and The current operating temperatures are used as the historical data, wherein the current operating temperatures are obtained by at least one sensor detecting a plurality of temperature values of the device under test. 如請求項1所述的設備溫度異常的線上檢測方法,其中該些預測溫度值包括在每一該些預測溫度值上的一時間點以及一溫度值。 The online detection method for device temperature abnormality according to claim 1, wherein the predicted temperature values include a time point and a temperature value on each of the predicted temperature values. 如請求項1所述的設備溫度異常的線上檢測方法,更包括:設定一預測步數為N,並設定每一步為O小時; 設定在接收到該界線設定值之後未來的N個時間點;其中,在該判斷該些預測溫度值是否超出該界線設定值之後,更包括:若該些預測溫度值皆介於該界線設定值之間,則在判斷自該接收到該界線設定值經過N乘以O個小時後的N個時間點,以獲得一預估異常時間點。 The online detection method of equipment temperature abnormality as described in claim item 1 further includes: setting a prediction step number as N, and setting each step as O hours; Set N time points in the future after receiving the boundary set value; wherein, after judging whether the predicted temperature values exceed the boundary set value, it further includes: if the predicted temperature values are all within the boundary set value In between, it is judged that N time points after N times O hours have elapsed since receiving the boundary setting value, so as to obtain an estimated abnormal time point. 一種設備溫度異常的線上檢測系統,包括:一儲存器,儲存一待測設備的多筆歷史資料;一處理器,經配置用以:接收該些歷史資料;以該待測設備的該些歷史資料作為一訓練集;依據該訓練集訓練一預測模型,其中該預測模型是基於一機器學習演算法所訓練;將一預測資料筆數以及一界線設定值輸入至該預測模型,以獲得該待測設備的多筆預測溫度值以及一預測結果;其中該些預測溫度值的筆數對應於該預測資料筆數;其中將該預測資料筆數以及該界線設定值輸入至該預測模型,以獲得該待測設備的該些預測溫度值以及該預測結果的步驟之中,該處理器更經配置用以:將該預測資料筆數以及該界線設定值輸入至該預測模型,以獲得該些預測溫度值;以及判斷該些預測溫度值是否超出該界線設定值,以獲得一判斷 結果;其中該判斷該些預測溫度值是否超出該界線設定值,以獲得一判斷結果的步驟之後,該處理器更經配置用以:依據該些預測溫度值以及該界線設定值繪製出該待測設備的一運行溫度預測圖形;輸出該運行溫度預測圖形;其中若該些預測溫度值之中有任一預測溫度值超出該界線設定值,則將超出的該些預測溫度值以及該超出的預測溫度值對應的時間標記於該運行溫度預測圖形之上。 An online detection system for abnormal temperature of equipment, comprising: a storage device storing a plurality of historical data of a device under test; a processor configured to: receive the historical data; use the historical data of the device under test The data is used as a training set; a prediction model is trained according to the training set, wherein the prediction model is trained based on a machine learning algorithm; a number of prediction data and a boundary setting value are input into the prediction model to obtain the expected The number of predicted temperature values of the measuring equipment and a predicted result; wherein the number of predicted temperature values corresponds to the number of predicted data; wherein the number of predicted data and the boundary setting value are input into the prediction model to obtain In the steps of the predicted temperature values of the device under test and the predicted results, the processor is further configured to: input the number of predicted data and the set value of the boundary into the predicted model to obtain the predicted values temperature value; and judging whether the predicted temperature values exceed the boundary set value to obtain a judgment Result; wherein after the step of judging whether the predicted temperature values exceed the boundary set value to obtain a judgment result, the processor is further configured to: draw the expected temperature value and the boundary set value according to the predicted temperature values and the boundary set value An operating temperature prediction graph of the measuring equipment; output the operating temperature prediction graph; wherein if any of the predicted temperature values exceeds the boundary set value, the exceeded predicted temperature values and the exceeded The time mark corresponding to the predicted temperature value is on the running temperature predicted graph. 如請求項7所述的設備溫度異常的線上檢測系統,其中該界線設定值包括由使用者設定的一溫度上限設定值以及一溫度下限設定值。 The online detection system for abnormal temperature of equipment as described in claim 7, wherein the boundary set value includes a temperature upper limit set value and a temperature lower limit set value set by the user. 如請求項7所述的設備溫度異常的線上檢測系統,其中若該些預測溫度值之中有任一預測溫度值超出該界線設定值,則將超出的該些預測溫度值、該超出的預測溫度值對應的時間以及一警示訊息作為該判斷結果;其中若該些預測溫度值皆介於該界線設定值之間,則將一安全訊息作為該判斷結果。 The online detection system for abnormal equipment temperature as described in claim item 7, wherein if any of the predicted temperature values exceeds the boundary set value, the exceeded predicted temperature values, the exceeded predicted The time corresponding to the temperature value and a warning message are used as the judgment result; wherein if the predicted temperature values are all between the boundary set values, a safety message is used as the judgment result.
TW110129929A 2021-08-13 2021-08-13 Method and system for detecting abnormal temperature of device online TWI787955B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110129929A TWI787955B (en) 2021-08-13 2021-08-13 Method and system for detecting abnormal temperature of device online

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110129929A TWI787955B (en) 2021-08-13 2021-08-13 Method and system for detecting abnormal temperature of device online

Publications (2)

Publication Number Publication Date
TWI787955B true TWI787955B (en) 2022-12-21
TW202307379A TW202307379A (en) 2023-02-16

Family

ID=85795140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110129929A TWI787955B (en) 2021-08-13 2021-08-13 Method and system for detecting abnormal temperature of device online

Country Status (1)

Country Link
TW (1) TWI787955B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10671131B2 (en) * 2015-06-05 2020-06-02 Apple Inc. Predictive control systems and methods
CN112862222A (en) * 2021-03-26 2021-05-28 中国建设银行股份有限公司 Air conditioner return air temperature prediction method, abnormality monitoring method and related device
CN113052399A (en) * 2021-04-21 2021-06-29 浙江中控技术股份有限公司 Temperature monitoring system, method and device, storage medium and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10671131B2 (en) * 2015-06-05 2020-06-02 Apple Inc. Predictive control systems and methods
CN112862222A (en) * 2021-03-26 2021-05-28 中国建设银行股份有限公司 Air conditioner return air temperature prediction method, abnormality monitoring method and related device
CN113052399A (en) * 2021-04-21 2021-06-29 浙江中控技术股份有限公司 Temperature monitoring system, method and device, storage medium and electronic equipment

Also Published As

Publication number Publication date
TW202307379A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
KR102618023B1 (en) Failure prediction diagnosis system and method through pattern analysis according to failure type
CN114065613B (en) Multi-working-condition process industrial fault detection and diagnosis method based on deep migration learning
US11521105B2 (en) Machine learning device and machine learning method for learning fault prediction of main shaft or motor which drives main shaft, and fault prediction device and fault prediction system including machine learning device
KR102408426B1 (en) Method for detecting anomaly using equipment age index and apparatus thereof
CN108829933A (en) A kind of method of the predictive maintenance and health control of semiconductor manufacturing facility
JP2009053938A (en) Equipment diagnosis system and equipment diagnosis method based on multiple models
CN108604360A (en) Facility method for monitoring abnormality and its system
CN113671917A (en) Detection method, system and equipment for abnormal state of multi-modal industrial process
Zhang et al. A fault early warning method for auxiliary equipment based on multivariate state estimation technique and sliding window similarity
JP6540531B2 (en) Monitoring device and control method of monitoring device
CN118035814A (en) Equipment status fault early warning method and system based on digital twin field data analysis
CN114002597A (en) Motor fault diagnosis method and system based on GRU network stator current analysis
CN118783441B (en) A smart grid online security operation and maintenance management system
CN118731529B (en) A fault diagnosis method and system for large-scale phase regulator
CN117911012A (en) Equipment health management system based on equipment ecological detection and running state evaluation
CN118445170B (en) An intelligent error prevention system based on the Internet of Things
JP2019016039A (en) Method for diagnosing abnormal state of process and abnormal state diagnosis apparatus
CN112132394A (en) Power plant circulating water pump prediction state assessment method and system
CN119249281B (en) Hydrogen long-distance pipeline sensor optimization method based on artificial intelligence algorithm
CN116351545A (en) A LSTM-based coal mill fault warning method
CN117350710A (en) Mining hoisting wire rope intelligent detection system
CN118861682A (en) Disconnector fault risk assessment method, system and storage medium based on logistic regression
CN117923331B (en) A load control system and method based on crane hoisting
CN112580858A (en) Equipment parameter prediction analysis method and system
CN111400850B (en) Equipment fault analysis method, device, equipment and storage medium