[go: up one dir, main page]

TWI783689B - Method for authenticating user identity based on touch operation - Google Patents

Method for authenticating user identity based on touch operation Download PDF

Info

Publication number
TWI783689B
TWI783689B TW110134891A TW110134891A TWI783689B TW I783689 B TWI783689 B TW I783689B TW 110134891 A TW110134891 A TW 110134891A TW 110134891 A TW110134891 A TW 110134891A TW I783689 B TWI783689 B TW I783689B
Authority
TW
Taiwan
Prior art keywords
touch
training
heat map
processor
test
Prior art date
Application number
TW110134891A
Other languages
Chinese (zh)
Other versions
TW202314547A (en
Inventor
陳佩君
Original Assignee
英業達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW110134891A priority Critical patent/TWI783689B/en
Application granted granted Critical
Publication of TWI783689B publication Critical patent/TWI783689B/en
Publication of TW202314547A publication Critical patent/TW202314547A/en

Links

Images

Landscapes

  • User Interface Of Digital Computer (AREA)

Abstract

A method for authenticating user identity based on touch operation includes a training stage and an authentication stage. The training stage includes: generating, by the a touch interface, a plurality of training touch parameters; and generating, by a processor ,a training heat map according to the plurality of training touch parameters. The authentication stage includes: generating, by the touch interface, a plurality of testing touch parameters; generating, by the processor, a test heat map according to the plurality of testing touch parameters; comparing, by the processor, the testing heat map with the training heat map to generate an error map; and generateing, by the processor, one of an authentication pass signal and an authentication fail signal according to the error map.

Description

基於觸控操作認證使用者身分的方法Method for authenticating user identity based on touch operation

本發明關於使用者身分認證,特別是一種基於觸控操作認證使用者身分的方法。The present invention relates to user identity authentication, in particular to a method for authenticating user identity based on touch operation.

使用者身份認證(authentication)允許運算裝置(如筆記型電腦或智慧型手機)對嘗試使用運算裝置的人的身份進行認證,而認證結果是二元的「通過」或「失敗」。認證通過代表使用者的身分確實是他/她所宣稱的那個人,而認證失敗代表使用者的身分並非是他/她所宣稱的那個人。User authentication allows a computing device (such as a laptop or smartphone) to authenticate the identity of the person attempting to use the computing device, with a binary "pass" or "fail" result. Passing the authentication means that the user is indeed who he/she claims to be, while an authentication failure means that the user is not who he/she claims to be.

密碼是使用者身份認證的常用機制。然而,若密碼被竊取,則取得密碼的使用者將取得帳戶的控制權。即使密碼未被竊取,當已認證的使用者暫時離開他/她已經使用密碼登入的運算裝置時,其他未經授權的使用者可以趁機存取此運算裝置,這種狀況被稱為內部攻擊(insider attack)。Passwords are a common mechanism for user authentication. However, if the password is stolen, the user who obtained the password will gain control of the account. Even if the password has not been compromised, when an authenticated user temporarily leaves the computing device he/she has logged into with the password, other unauthorized users can gain access to the computing device. This situation is called insider attack ( insider attack).

當密碼有被竊取的風險時,可使用生物特徵認證解決此問題。生物特徵認證方法將使用者的生物特徵與資料庫中的記錄進行比對,典型的生物辨識(biometrics)技術包括指紋、臉部、視網膜、虹膜、語音等。由於生物特徵認證使用獨特的生物特徵進行認證,因此難以複製或竊取。When passwords are at risk of being stolen, biometric authentication can be used to solve this problem. The biometric authentication method compares the user's biometrics with the records in the database. Typical biometrics technologies include fingerprints, faces, retinas, iris, and voice. Since biometric authentication uses unique biometrics for authentication, it is difficult to copy or steal.

然而,生物特徵具備高度敏感性和隱私性。生物特徵認證的一個潛在問題是,生物特徵認證系統可能被用於實現超出其原始意圖的功能,這種狀況被稱為功能蠕變(function creep)。舉例來說,工作場所安裝的生物特徵認證系統原本是用來防止一般員工進入機密場所,然而,系統管理員也可利用這個系統在未事先告知員工的情況下追蹤個別員工去過的所有場所,進而侵犯員工的隱私權。However, biometrics are highly sensitive and private. A potential problem with biometric authentication is that biometric authentication systems may be used to perform functions beyond their original intent, a condition known as function creep. For example, the biometric authentication system installed in the workplace was originally used to prevent ordinary employees from entering confidential places. However, system administrators can also use this system to track all the places that individual employees have visited without prior notification to employees. This in turn violates the privacy rights of employees.

此外,以密碼或生物特徵認證使用者身分通常都是一次性,即使需要重複認證也會間隔一定的週期,否則將對使用者帶來額外的困擾。換言之,現有的使用者身分認證方式並不具備連續性及非侵入性(non-intrusive)。In addition, user identity authentication by password or biometric feature is usually one-time, and even if repeated authentication is required, there will be a certain period of time interval, otherwise it will bring additional troubles to the user. In other words, the existing user identity authentication methods are not continuous and non-intrusive.

有鑑於此,本發明提出一種基於觸控操作認證使用者身分的方法。此方法透過觀察使用者的觸控操作的模式,達到連續地、非侵入地對使用者進行身分認證。若新使用者的觸控模式與舊使用者的觸控模式差異過大,則新使用者將被判定為冒名頂替者(imposter),且其存取將被禁止。本發明提出的方法可稱之為「觸控辨識(TouchPrint)」,因為觸控操作的使用動態可以像指紋一樣認證使用者的身分。In view of this, the present invention proposes a method for authenticating a user's identity based on a touch operation. This method achieves continuous and non-intrusive authentication of the user by observing the user's touch operation mode. If the touch pattern of the new user is too different from that of the old user, the new user will be judged as an impostor, and its access will be prohibited. The method proposed by the present invention can be called "TouchPrint", because the use dynamics of the touch operation can authenticate the user's identity like a fingerprint.

依據本發明一實施例的一種基於觸控操作認證使用者身分的方法,包括:一訓練階段,包括:一觸控介面產生多個訓練觸控參數;以及一處理器依據該些訓練觸控參數產生一訓練熱圖;以及一認證階段,包括:該觸控介面產生多個測試觸控參數;該處理器依據該些測試觸控參數產生一測試熱圖;該處理器比對該測試熱圖及該訓練熱圖以產生一誤差圖;以及該處理器依據該誤差圖產生一認證通過訊號及一認證失敗訊號中的一者。A method for authenticating a user's identity based on a touch operation according to an embodiment of the present invention includes: a training phase, including: a touch interface generating a plurality of training touch parameters; and a processor according to the training touch parameters generating a training heat map; and a certification stage, including: the touch interface generates a plurality of test touch parameters; the processor generates a test heat map according to the test touch parameters; the processor compares the test heat map and the training heat map to generate an error map; and the processor generates one of an authentication pass signal and an authentication failure signal according to the error map.

依據本發明一實施例的一種基於基於觸控操作認證使用者身分的方法,包括:一訓練階段,包括:一觸控介面產生多個訓練觸控參數;以及一處理器依據該些訓練觸控參數訓練一神經網路模型;以及一認證階段,包括:該觸控介面產生多個測試觸控參數;該處理器輸入該些測試觸控參數至該神經網路模型以產生一預測值;以及該處理器計算該預測值及一實際值的一誤差值以產生一認證通過訊號及一認證失敗訊號中的一者。A method for authenticating a user's identity based on a touch operation according to an embodiment of the present invention includes: a training phase, including: a touch interface generating a plurality of training touch parameters; and a processor according to the training touch parameters. parameter training a neural network model; and a certification stage, including: the touch interface generates a plurality of test touch parameters; the processor inputs the test touch parameters to the neural network model to generate a prediction value; and The processor calculates an error value between the predicted value and an actual value to generate one of an authentication pass signal and an authentication failure signal.

依據本發明一實施例的一種基於觸控操作認證使用者身分的方法,包括:一訓練階段,包括:一觸控介面產生多個訓練觸控參數;以及一處理器依據該些訓練觸控參數產生一訓練熱圖及訓練一神經網路模型;以及一認證階段,包括:該觸控介面產生多個測試觸控參數;該處理器依據該些測試觸控參數產生一測試熱圖;該處理器比對該測試熱圖及該訓練熱圖以產生一誤差圖;該處理器依據該誤差圖計算一第一誤差值;該處理器輸入該些測試觸控參數至該神經網路模型以產生一預測值;以及該處理器依據該第一誤差值及一第二誤差值產生一認證通過訊號及一認證失敗訊號中的一者,其中該第二誤差值關聯於該預測值及一實際值。A method for authenticating a user's identity based on a touch operation according to an embodiment of the present invention includes: a training phase, including: a touch interface generating a plurality of training touch parameters; and a processor according to the training touch parameters generating a training heat map and training a neural network model; and a certification stage, including: the touch interface generates a plurality of test touch parameters; the processor generates a test heat map according to the test touch parameters; the processing The device compares the test heat map and the training heat map to generate an error map; the processor calculates a first error value according to the error map; the processor inputs the test touch parameters to the neural network model to generate a predicted value; and the processor generates one of an authentication pass signal and an authentication failure signal based on the first error value and a second error value, wherein the second error value is associated with the predicted value and an actual value .

綜上所述,本發明提出的基於觸控操作認證使用者的方法具有下列功效:In summary, the method for authenticating users based on touch operations proposed by the present invention has the following effects:

1. 連續地且非侵入性地監視和認證當前的使用者;1. Continuously and non-intrusively monitor and authenticate current users;

2. 採資料導向(data-driven),並具有適應性,可適應使用者不斷變化的觸控操作的模式;以及2. It is data-driven and adaptable, and can adapt to users' ever-changing modes of touch operation; and

3. 提高使用者身分認證的頻率,在現有的使用者身分認證機制(如密碼或生物特徵)未進行認證的時間進行認證。3. Increase the frequency of user authentication, at times when existing user authentication mechanisms (such as passwords or biometrics) do not.

值得注意的是,本發明提出的方法並不意味著取代現有的使用者身分認證機制,而是補充及增強現有機制的安全性,避免內部攻擊的狀況。換言之,在運算裝置未鎖定的狀態也能偵測出冒名頂替者。It is worth noting that the method proposed by the present invention does not mean to replace the existing user identity authentication mechanism, but to supplement and enhance the security of the existing mechanism to avoid internal attacks. In other words, an impostor can be detected even when the computing device is unlocked.

以上關於本揭露內容之說明及以下之實施方式說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the implementation are used to demonstrate and explain the spirit and principle of the present invention, and to provide further explanation of the patent application scope of the present invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及特點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之構想及特點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and characteristics of the present invention are described in detail below in the implementation mode, and its content is enough to enable any person familiar with the relevant art to understand the technical content of the present invention and implement it accordingly, and according to the content disclosed in this specification, the scope of the patent application and the drawings , anyone who is familiar with the related art can easily understand the ideas and features related to the present invention. The following examples are to further describe the concept of the present invention in detail, but not to limit the scope of the present invention in any way.

本發明提出的基於觸控操作認證使用者的方法包括九個實施例,其中第一實施例、第二實施例、第三實施例是以觸控操作建立的熱圖(heat map)作為認證依據,第二、三實施例相較於第一實施例增加了認證依據的更新機制,但第二、三實施例中更新機制的執行順序有所不同。第四實施例、第五、六實施例是以觸控操作建立的神經網路模型作為認證依據,第五、六實施例相較於第四實施例增加了認證依據的更新機制,但第五、六實施例中更新機制的執行順序有所不同。第七實施例、第八實施例、第九實施例九是以熱圖及神經網路作為認證依據,第八、九實施例相較於第七實施例增加了認證依據的更新機制,但第八、九實施例中更新機制的執行順序有所不同。The method for authenticating users based on touch operations proposed by the present invention includes nine embodiments, of which the first embodiment, the second embodiment, and the third embodiment use the heat map created by touch operations as the authentication basis Compared with the first embodiment, the second and third embodiments add an authentication basis update mechanism, but the execution sequence of the update mechanism in the second and third embodiments is different. The fourth embodiment, the fifth embodiment, and the sixth embodiment use the neural network model established by the touch operation as the authentication basis. Compared with the fourth embodiment, the fifth and sixth embodiments add an update mechanism for the authentication basis, but the fifth embodiment 6. The execution sequence of the update mechanism in the sixth embodiment is different. The seventh embodiment, the eighth embodiment, and the ninth embodiment use heat maps and neural networks as the authentication basis. Compared with the seventh embodiment, the eighth and ninth embodiments add an update mechanism for the authentication basis, but the The execution sequence of the update mechanism in the eighth and ninth embodiments is different.

圖1是本發明第一實施例的基於觸控操作認證使用者的方法的流程圖,其中:觸控操作定義為使用者在一特定區域中執行的任何操作,觸控操作的類型可包含移動、按壓(及稍後釋放)、捲動中的至少一者,但本發明並不以此為限。如圖1所示,基於觸控操作認證使用者的方法包括訓練階段S1及認證階段S2,並適用於具有觸控介面及處理器的運算裝置。運算裝置例如筆記型電腦或智慧型手機,觸控介面例如實體的觸控面板或觸控螢幕。在一實施例中,觸控介面也可以由實體裝置和顯示介面組成,例如:滑鼠和顯示滑鼠游標的螢幕,動作感測器和將感測到的動作投影至平面的投影機,攝像裝置和將拍攝到的動作轉換為移動軌跡的應用程式,但本發明不以上述範例為限制,凡是可讓使用者在指定範圍內控制標誌符(如游標)移動的任何軟、硬體裝置,都可適用於本發明。FIG. 1 is a flow chart of a method for authenticating a user based on a touch operation according to the first embodiment of the present invention, wherein: a touch operation is defined as any operation performed by the user in a specific area, and the type of touch operation may include movement , pressing (and releasing later), and scrolling, but the present invention is not limited thereto. As shown in FIG. 1 , the method for authenticating a user based on a touch operation includes a training phase S1 and an authentication phase S2 , and is applicable to a computing device with a touch interface and a processor. Computing devices such as notebook computers or smart phones, and touch interfaces such as physical touch panels or touch screens. In one embodiment, the touch interface can also be composed of a physical device and a display interface, such as a mouse and a screen displaying the mouse cursor, a motion sensor and a projector for projecting the sensed motion onto a surface, a camera device and an application program that converts captured actions into movement tracks, but the present invention is not limited to the above-mentioned examples, any software or hardware device that allows the user to control the movement of a marker (such as a cursor) within a specified range, are applicable to the present invention.

圖2是圖1中步驟的細部流程圖,如圖2所示,訓練階段S1包括步驟S11、S13,且認證階段S2包括步驟S21、S23、S25、S27。訓練階段S1用於收集特定使用者透過觸控介面產生的多筆觸控操作的訓練資料,並歸納出該特定使用者的行為模式。認證階段S2用於收集當前使用者透過觸控介面產生的多筆觸控操作的測試資料,並判斷這些資料對應的行為模式是否類似於訓練階段S1中產生的行為模式。Fig. 2 is a detailed flowchart of the steps in Fig. 1. As shown in Fig. 2, the training phase S1 includes steps S11 and S13, and the authentication phase S2 includes steps S21, S23, S25, and S27. The training stage S1 is used to collect training data of multi-touch operations generated by a specific user through the touch interface, and summarize the behavior pattern of the specific user. The authentication stage S2 is used to collect the test data of the multi-touch operation generated by the current user through the touch interface, and determine whether the behavior pattern corresponding to these data is similar to the behavior pattern generated in the training stage S1.

在訓練階段S1,步驟S11是「觸控介面產生多個訓練觸控參數」,步驟S13是「處理器依據這些訓練觸控參數產生訓練熱圖」,步驟S21是「觸控介面產生多個測試觸控參數」,步驟S23是「處理器依據這些測試觸控參數產生測試熱圖」,步驟S25是「處理器比對測試熱圖及訓練熱圖以產生誤差圖」,步驟S27是「處理器依據誤差圖產生認證通過訊號及認證失敗訊號中的一者」。In the training stage S1, step S11 is "the touch interface generates multiple training touch parameters", step S13 is "the processor generates a training heat map according to these training touch parameters", and step S21 is "the touch interface generates multiple test Touch parameters", step S23 is "the processor generates a test heat map according to these test touch parameters", step S25 is "the processor compares the test heat map and the training heat map to generate an error map", step S27 is "the processor one of an authentication pass signal and an authentication failure signal is generated according to the error map".

在步驟S11、S21中,訓練觸控參數及測試觸控參數中每一者的內容包括:觸控時間點、觸控位置及操作類型。藉由觸控介面的驅動程式或作業系統的軟體開發套件(Software Development Kit,SDK),處理器可存取到下方表格一舉例的觸控操作的日誌檔(Log)。In steps S11 and S21 , the content of each of the training touch parameters and the test touch parameters includes: touch time point, touch position and operation type. Through the driver program of the touch interface or the software development kit (Software Development Kit, SDK) of the operating system, the processor can access the log file (Log) of the touch operation as shown in Table 1 below.

表格一,觸控操作的日誌檔 觸控時間點 操作類型 觸控位置 2020-02-18 10:13:29.735389 移動到 (1284, 568) 2020-02-18 10:13:29.735389 移動到 (1284, 567) 2020-02-18 10:13:29.766641 按壓到 (1284, 567) 2020-02-18 10:13:29.844739 釋放於 (1284, 567) 2020-02-18 10:13:29.922846 移動到 (1283, 567) 2020-02-18 10:13:59.256981 捲動於 (721, 454) Table 1, log file of touch operation touch point operation type touch position 2020-02-18 10:13:29.735389 move to (1284, 568) 2020-02-18 10:13:29.735389 move to (1284, 567) 2020-02-18 10:13:29.766641 press to (1284, 567) 2020-02-18 10:13:29.844739 released on (1284, 567) 2020-02-18 10:13:29.922846 move to (1283, 567) 2020-02-18 10:13:59.256981 scroll to (721, 454)

在步驟S13、S23中,訓練熱圖(heatmap)及測試熱圖中每一者包括位置熱圖及速度熱圖中的至少一者,位置熱圖用以反映觸控位置的累計次數,且處理器產生對應於不同操作類型的多個位置熱圖,如圖3、圖4及圖5所示。圖3是兩個不同的使用者基於移動操作的位置熱圖,圖4是這兩個使用者基於按壓操作的位置熱圖,圖5是這兩個使用者基於捲動操作的位置熱圖。In steps S13 and S23, each of the training heatmap (heatmap) and the test heatmap includes at least one of a position heatmap and a speed heatmap, and the position heatmap is used to reflect the cumulative number of touch positions, and processing The detector generates multiple location heat maps corresponding to different operation types, as shown in Fig. 3, Fig. 4 and Fig. 5. FIG. 3 is a position heat map of two different users based on moving operations, FIG. 4 is a position heat map of these two users based on pressing operations, and FIG. 5 is a position heat map of these two users based on scrolling operations.

圖6是同一使用者基於移動操作的位置熱圖及速度熱圖,其中速度熱圖用以反映移動操作的方向及距離。在一實施例中,處理器先計算多個速度向量再產生速度熱圖,其中每個速度向量由連續兩筆移動操作組成。在圖6右方的速度熱圖中,橫軸為移動操作的方向,單位例如為弳度(radian);縱軸為移動操作的距離,單位例如為像素。例如:移動操作花費3毫秒從座標(0, 0)移動到座標(6, 12),則此移動操作的速度為每毫秒2√5個像素;且此移動操作在X軸的分量為2個像素,在Y軸的分量為4個像素,此移動操作的角度約為1.10714872 弳度(rad)。FIG. 6 is a position heat map and a speed heat map based on a mobile operation of the same user, wherein the speed heat map is used to reflect the direction and distance of the mobile operation. In one embodiment, the processor first calculates a plurality of velocity vectors and then generates a velocity heat map, wherein each velocity vector is composed of two consecutive moving operations. In the speed heat map on the right side of Figure 6, the horizontal axis is the direction of the movement operation, and the unit is radian; the vertical axis is the distance of the movement operation, and the unit is pixel. For example: the movement operation takes 3 milliseconds to move from coordinates (0, 0) to coordinates (6, 12), then the speed of this movement operation is 2√5 pixels per millisecond; and the component of this movement operation on the X axis is 2 Pixels, the component on the Y axis is 4 pixels, the angle of this movement operation is about 1.10714872 degrees (rad).

步驟S25主要是應用模板匹配(template matching)的技術。具體來說,處理器比對訓練熱圖及測試熱圖以產生誤差圖,其中用於比對的訓練熱圖及測試熱圖的類型必須相同,例如二者皆為位置熱圖或二者皆為速度熱圖。在步驟S25的第一種範例中,比對的精確程度例如是像素尺度及區塊尺度中的至少一者。像素尺度的比對例如:計算訓練熱圖及測試熱圖二者在相同位置的像素的灰階值的差值;而區塊尺度的比對例如:計算訓練熱圖及測試熱圖二者的結構相似性指標(structural similarity index measure,SSIM)。在步驟S25的第二種範例中,處理器先將訓練熱圖及測試熱圖各自切割成多個特徵空間(eigenspaces),針對每個特徵空間執行旋轉操作,然後採用第一種範例的方式,隨機選擇訓練熱圖中的一特徵空間與測試熱圖中的一特徵空間進行比對,第二種範例可以找到同一個使用者在不同觸控位置的相同觸控模式。Step S25 is mainly to apply template matching (template matching) technology. Specifically, the processor compares the training heatmap and the test heatmap to generate an error map, wherein the types of the training heatmap and the test heatmap used for comparison must be the same, for example, both are position heatmaps or both are is the velocity heatmap. In a first example of step S25, the accuracy of the comparison is, for example, at least one of a pixel scale and a block scale. The pixel-scale comparison is for example: calculating the difference between the grayscale values of the pixels at the same position in the training heatmap and the test heatmap; and the block-scale comparison is for example: calculating the difference between the training heatmap and the test heatmap Structural similarity index measure (SSIM). In the second example of step S25, the processor first cuts the training heatmap and the test heatmap into multiple feature spaces (eigenspaces), performs a rotation operation for each feature space, and then adopts the method of the first example, A feature space in the training heatmap is randomly selected for comparison with a feature space in the test heatmap. In the second example, the same touch pattern of the same user at different touch positions can be found.

在基於圖2的一個延伸實施例中,處理器在訓練階段S1及認證階段S2中更收集運算裝置當前執行的作業程序(process),例如作業系統中的前景視窗對應的應用程式(如Microsoft Word、Google Chrome等),並依據作業程序的不同分別產生對應的訓練熱圖及測試熱圖。因此,處理器在比對訓練熱圖及測試熱圖時,除了二者的類型必須相同,二者對應的作業程序也必須相同。In an extended embodiment based on FIG. 2, the processor further collects the operating program (process) currently executed by the computing device in the training phase S1 and the authentication phase S2, such as the application program corresponding to the foreground window in the operating system (such as Microsoft Word , Google Chrome, etc.), and generate corresponding training heatmaps and test heatmaps according to different operating procedures. Therefore, when the processor compares the training heatmap and the test heatmap, the types of the two must be the same, and the corresponding operating procedures must also be the same.

值得注意的是,依據多種觸控類型或多種作業程序,在步驟S13中處理器可能產生多個訓練熱圖;在步驟23中,處理器產生對應於多個訓練熱圖的多個測試熱圖;因此在步驟S25中,處理器產生多個誤差圖,本發明並不限制誤差圖的數量上限。It is worth noting that, according to various touch types or various operating procedures, the processor may generate multiple training heat maps in step S13; in step 23, the processor generates multiple test heat maps corresponding to the multiple training heat maps ; Therefore, in step S25, the processor generates a plurality of error maps, and the present invention does not limit the upper limit of the number of error maps.

在步驟S27中,處理器依據一個誤差圖可計算一或多個誤差值,然後處理器比對每一誤差值與其對應的門檻值的大小。若超過指定數量的誤差值大於門檻值,則處理器產生認證失敗訊號;反之,若超過指定數量的誤差值不大於門檻值,則處理器產生認證通過訊號。In step S27, the processor calculates one or more error values according to an error map, and then compares each error value with a corresponding threshold value. If the error value exceeding the specified number is greater than the threshold value, the processor generates an authentication failure signal; otherwise, if the error value exceeding the specified number is not greater than the threshold value, the processor generates an authentication passing signal.

圖7是本發明第二實施例的基於觸控操作認證使用者的方法的流程圖,相較於第一實施例,第二實施例主要增加了更新階段S3’。圖8是圖7中步驟的細部流程圖,由圖8可知,第二實施例的訓練階段S1’比第一實施例的訓練階段S1更增加步驟S12’,第二實施例的認證階段S2’比第一實施例的認證階段S2更增加步驟S22’。以下只說明第二實施例新增的部分,至於第二實施例與第一實施例相同的步驟則不重複敘述。Fig. 7 is a flowchart of a method for authenticating a user based on a touch operation according to the second embodiment of the present invention. Compared with the first embodiment, the second embodiment mainly adds an update stage S3'. Fig. 8 is a detailed flowchart of the steps in Fig. 7, as can be seen from Fig. 8, the training stage S1' of the second embodiment is more step S12' added than the training stage S1 of the first embodiment, and the authentication stage S2' of the second embodiment A step S22' is added to the authentication stage S2 of the first embodiment. In the following, only the newly added parts of the second embodiment will be described, and the same steps as those of the first embodiment will not be repeated.

步驟S12’為「處理器判斷這些訓練觸控參數的收集量大於第一門檻值」,步驟S22’為「處理器判斷這些測試觸控參數的收集量大於測試門檻值」。收集量可以是時間間隔(例如72小時內收集到的觸控參數)及參數數量(例如十萬筆觸控參數)中的至少一者。在步驟S11’及步驟S21’開始收集觸控參數後,便需要滿足步驟S12’及步驟S22’的判斷機制才可分別進入步驟S13’及步驟S23’。Step S12' is "the processor judges that the collection amount of these training touch parameters is greater than the first threshold", and step S22' is "the processor judges that the collection amount of these test touch parameters is greater than the test threshold". The collection amount may be at least one of a time interval (for example, touch parameters collected within 72 hours) and a number of parameters (for example, one hundred thousand touch parameters). After the touch parameters are collected in step S11' and step S21', the judging mechanism of step S12' and step S22' needs to be met before proceeding to step S13' and step S23' respectively.

請參考圖7及圖8,在第二實施例中,更新階段S3’位於訓練階段S1’及認證階段S2’之間。步驟S31’為「觸控介面產生多個新觸控參數」,步驟S32’為「處理器判斷這些新觸控參數的收集量大於第二門檻值」,步驟S33’為「處理器依據這些新訓練觸控參數產生新訓練熱圖」,且步驟S34’為「處理器依據新訓練熱圖更新訓練熱圖」。基本上,更新階段S3’中的步驟S31’~S33’與訓練階段S1’的步驟S11’~S13’相同。另外,在第二實施例中,步驟S12’的第一門檻值、步驟S32’的第二門檻值、步驟S22’的測試門檻值三者的數值大小並未特別限制。Please refer to FIG. 7 and FIG. 8, in the second embodiment, the updating phase S3' is located between the training phase S1' and the authentication phase S2'. Step S31' is "the touch interface generates a plurality of new touch parameters", step S32' is "the processor judges that the collection amount of these new touch parameters is greater than the second threshold", and step S33' is "the processor Training the touch parameters to generate a new training heat map", and step S34' is "the processor updates the training heat map according to the new training heat map". Basically, steps S31'~S33' in the update stage S3' are the same as steps S11'~S13' in the training stage S1'. In addition, in the second embodiment, the values of the first threshold in step S12', the second threshold in step S32', and the test threshold in step S22' are not particularly limited.

在步驟S34’中,處理器計算新訓練熱圖及訓練熱圖之間的差異量,當差異量小於更新閾值時,處理器依據在步驟S11’收集的訓練參數及在步驟S31’收集的新訓練參數產生一個新訓練熱圖(相異於步驟S1’的訓練熱圖)。當差異量不小於更新閾值時,處理器依據在步驟S33’產生的新訓練熱圖取代原本在步驟S13’產生的的訓練熱圖。In step S34', the processor calculates the difference between the new training heat map and the training heat map. The training parameters generate a new training heatmap (different from the training heatmap of step S1'). When the difference is not less than the update threshold, the processor replaces the original training heatmap generated in step S13' with the new training heatmap generated in step S33'.

整體而言,由於使用者的觸控模式可能隨著時間或當前作業程序的不同而改變,因此,第二實施例先收集一組觸控參數以初始化一個參考用的訓練熱圖,然後再收集另一組觸控參數以更新原本的訓練熱圖。Overall, since the user's touch pattern may change with time or the current operating procedures, therefore, the second embodiment first collects a set of touch parameters to initialize a reference training heat map, and then collects Another set of touch parameters to update the original training heatmap.

圖9是本發明第三實施例的基於觸控操作認證使用者的方法的流程圖,第三實施例的訓練階段S1’及認證階段S2’與第二實施例基本上相同。換言之,第三實施例相當於在第一實施例中增加步驟S12’、步驟S22’,並在認證階段S2’之後增加更新階段S3’。換言之,第三實施例是以第二實施例為基礎,將更新階段S3’的執行順序移動到認證階段S2’之後。9 is a flow chart of a method for authenticating a user based on a touch operation according to a third embodiment of the present invention. The training phase S1' and the authentication phase S2' of the third embodiment are basically the same as those of the second embodiment. In other words, the third embodiment is equivalent to adding steps S12' and S22' in the first embodiment, and adding an update stage S3' after the authentication stage S2'. In other words, the third embodiment is based on the second embodiment, and moves the execution order of the update phase S3' to after the authentication phase S2'.

第三實施例的應用方式如下:一個使用者在訓練階段S1’產生其專屬的訓練熱圖,同一個使用者可繼續在認證階段S2’透過測試熱圖驗證訓練熱圖判斷的準確率,再將此準確率反饋到更新階段S3’中,藉此修正步驟S32’中的第二門檻值。舉例來說,若在認證階段S2’中,步驟S27’的正確率小於特定閾值,則處理器將於步驟S32’中增加第二門檻值去收集更多的新觸控參數,以便提高下一次執行認證階段S2’時的正確率。The application method of the third embodiment is as follows: a user generates its exclusive training heat map in the training stage S1', and the same user can continue to verify the accuracy of the training heat map judgment through the test heat map in the authentication stage S2', and then Feedback the accuracy rate to the update stage S3', thereby modifying the second threshold value in step S32'. For example, if in the authentication phase S2', the correct rate in step S27' is less than a certain threshold, the processor will increase the second threshold in step S32' to collect more new touch parameters, so as to improve the next time Correct rate when performing authentication phase S2'.

在第二實施例及第三實施例中,更新階段S3’也可採用定期執行的方式更新觸控參數以反映使用者觸控模式隨時間的變化,其中更新方式如下方式一:In the second embodiment and the third embodiment, the update stage S3' can also update the touch parameters in a regular manner to reflect the change of the user's touch mode over time, and the update method is as follows: Method 1:

Figure 02_image001
Figure 02_image001

其中

Figure 02_image003
為更新後的觸控參數,
Figure 02_image005
為步驟S31’所述的新觸控參數,
Figure 02_image007
為步驟S11’所述的觸控參數,
Figure 02_image009
Figure 02_image011
是權重。 in
Figure 02_image003
is the updated touch parameter,
Figure 02_image005
is the new touch parameter described in step S31',
Figure 02_image007
is the touch parameter described in step S11',
Figure 02_image009
and
Figure 02_image011
is the weight.

圖10是本發明第四實施例基於觸控操作認證使用者的方法的流程圖,圖11是圖10中步驟的細部流程圖,其中步驟T11為「觸控介面產生多個訓練觸控參數」,步驟T13為「處理器依據這些訓練觸控參數訓練神經網路模型」,步驟T21為「觸控介面產生多個測試觸控參數」,步驟T23為「處理器輸入這些測試觸控參數至神經網路模型以產生預測值」,步驟T25為為「處理器計算預測值及實際值的誤差值以產生認證通過訊號及認證失敗訊號中的一者」。FIG. 10 is a flow chart of a method for authenticating users based on touch operations according to the fourth embodiment of the present invention. FIG. 11 is a detailed flow chart of the steps in FIG. 10, wherein step T11 is "generation of multiple training touch parameters on the touch interface" , step T13 is "the processor trains the neural network model according to these training touch parameters", step T21 is "the touch interface generates a plurality of test touch parameters", and step T23 is "the processor inputs these test touch parameters to the neural network Network model to generate predicted value", step T25 is "the processor calculates the error value between the predicted value and the actual value to generate one of an authentication pass signal and an authentication failure signal".

第四實施例與第一實施例主要的差異是訓練階段T1中的步驟T13及認證階段T2中的步驟T23、T25,故以下只說眀這些差異步驟T13、T23、T25的細節,至於第四實施例與第一實施例相同的步驟則不重複敘述。The main difference between the fourth embodiment and the first embodiment is the step T13 in the training phase T1 and the steps T23, T25 in the authentication phase T2, so the details of these different steps T13, T23, T25 are only mentioned below, as for the fourth The same steps as those in the first embodiment will not be repeated.

在步驟T13中,處理器將多個訓練觸控參數轉換為時間序列(time series),然後將時間序列作為神經網路模型的輸入層進行訓練,並得到一個用於預測後續時間序列的預測模型。神經網路模型例如是長短期記憶(Long Short-Term Memory,LSTM)模型。另外,可按照不同觸控類型的觸控參數訓練出多個預測模型。In step T13, the processor converts multiple training touch parameters into time series (time series), and then uses the time series as the input layer of the neural network model for training, and obtains a prediction model for predicting subsequent time series . The neural network model is, for example, a Long Short-Term Memory (LSTM) model. In addition, multiple predictive models can be trained according to touch parameters of different touch types.

時間序列的產生方式可包括但不限於以下列舉的三種方式:The generation methods of time series may include but not limited to the three methods listed below:

1. 時間序列由每個移動操作的時間和位置組成。1. The time series consists of the time and location of each mobile operation.

2. 時間序列由起始時間(或終止時間)及速度向量組成,其中速度向量是處理器以固定時間間隔在連續的多個移動操作中取出兩個計算而得。因為速度向量是二維向量,此種時間序列為多變量統計(multivariate)時間序列。2. The time series consists of a start time (or end time) and a velocity vector, where the velocity vector is calculated by the processor taking out two consecutive multiple moving operations at fixed time intervals. Because the velocity vector is a two-dimensional vector, this time series is a multivariate time series.

3. 時間序列由每個訓練熱圖的一或多個質心(centroid)及每個訓練熱圖對應的時間點組成。例如,將多個訓練觸控參數依照時間順序分割為多組,並針對每一組訓練觸控參數產生一個訓練熱圖,然後計算出每一個訓練熱圖的質心,計算方式例如採用K平均演算法(K-means)。3. The time series consists of one or more centroids of each training heatmap and the time points corresponding to each training heatmap. For example, multiple training touch parameters are divided into multiple groups in chronological order, and a training heat map is generated for each group of training touch parameters, and then the centroid of each training heat map is calculated, such as by using K-mean Algorithms (K-means).

在步驟T23中,處理器可輸入一組測試觸控訊號至步驟T13產生的預測模型以得到一組預測值,這組預測值可包括一或多個測試觸控訊號。In step T23, the processor may input a set of test touch signals to the predictive model generated in step T13 to obtain a set of predicted values, and the set of predicted values may include one or more test touch signals.

步驟T25的第一種範例採用“H Nguyen, Kim Phuc Tran, S Thomassey, M Hamad. Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in Supply Chain Management. International Journal of Information Management, Elsevier, 2020.”所介紹的時間序列的異常偵測(Anomaly detection)機制。The first example of step T25 adopts "H Nguyen, Kim Phuc Tran, S Thomassey, M Hamad. Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in Supply Chain Management. International Journal of Information Management, Elsevier, 2020 The Anomaly detection mechanism of the time series introduced by .

異常偵測機制的說明如下:透過LSTM模型可以預測下一次的觸控參數,如位置。如果實際位置與預測位置相距太遠,則此實際位置被認為是異常。藉由使用自動編碼器(auto-encoder),例如LSTM編碼器或圖像自動編碼器,可學習到作為認證標準的模板(norm),自動編碼器相當於特徵擷取器,無論自動編碼器的輸入是一般圖像、熱圖、時間序列或多變量統計的時間序列/熱圖。以位置熱圖的範例來說,模板代表觸控板的常用觸控區域,並以一個低維度或一個嵌入式空間(embedded space)表示。在認證階段T2,測試熱圖被輸入至自動編碼器並進行重建。一旦測試熱圖和重建後的測試熱圖的差異過大,此測試熱圖被認為是異常。The description of the anomaly detection mechanism is as follows: The next touch parameter, such as the position, can be predicted through the LSTM model. If the actual location is too far from the predicted location, this actual location is considered an anomaly. By using an auto-encoder (auto-encoder), such as an LSTM encoder or an image auto-encoder, the template (norm) as an authentication standard can be learned. The auto-encoder is equivalent to a feature extractor, regardless of the auto-encoder. Inputs are general images, heatmaps, time series or time series/heatmaps of multivariate statistics. Taking the example of a location heatmap, the template represents the commonly touched areas of the touchpad and is represented as a low-dimensional or embedded space. In the certification stage T2, the test heatmap is fed into the autoencoder and reconstructed. Once the difference between the test heatmap and the reconstructed test heatmap is too large, this test heatmap is considered an anomaly.

步驟T25的第二種範例如下:處理器取得時間順序在步驟T23所述的該組測試觸控訊號之後的另一組測試觸控訊號,將其設定為一組實際值,然後計算該組實際值中的每一者與對應的預測值之間的誤差值。處理器比對每一誤差值與其對應的門檻值的大小。若超過指定數量的誤差值大於門檻值,則處理器產生認證失敗訊號;反之,若超過指定數量的誤差值不大於門檻值,則處理器產生認證通過訊號。The second example of step T25 is as follows: the processor obtains another set of test touch signals whose time sequence is after the set of test touch signals described in step T23, sets it as a set of actual values, and then calculates the set of actual values. The error value between each of the values and the corresponding predicted value. The processor compares each error value with its corresponding threshold value. If the error value exceeding the specified number is greater than the threshold value, the processor generates an authentication failure signal; otherwise, if the error value exceeding the specified number is not greater than the threshold value, the processor generates an authentication pass signal.

圖12是本發明第五實施例基於觸控操作認證使用者的方法的流程圖,相較於第四實施例,第五實施例主要增加了更新階段T3’。圖13是圖12中步驟的細部流程圖。由圖13可知,第五實施例的訓練階段T1’比第四實施例的訓練階段T1更增加步驟T12’,第五實施例的認證階段T2’比第四實施例的認證階段T2更增加步驟T22’,以下不重複敘述第五實施例與第四實施例中相同的步驟。另外,第五實施例的更新階段T3’與第二實施的更新階段S3’具有相近的架構,兩者之間的差異處為:步驟T33’是「 處理器依據新訓練觸控參數更新神經網路模型」,反觀步驟S33’則是「處理器依據新訓練觸控參數更新訓練熱圖」。綜上所述,這兩個實施例依據新訓練觸控參數更新不同的認證參考標準。Fig. 12 is a flowchart of a method for authenticating a user based on a touch operation according to a fifth embodiment of the present invention. Compared with the fourth embodiment, the fifth embodiment mainly adds an update stage T3'. FIG. 13 is a detailed flowchart of the steps in FIG. 12 . It can be seen from Fig. 13 that the training stage T1' of the fifth embodiment has more steps T12' than the training stage T1 of the fourth embodiment, and the authentication stage T2' of the fifth embodiment has more steps than the authentication stage T2 of the fourth embodiment T22', the same steps in the fifth embodiment and the fourth embodiment will not be repeated below. In addition, the update stage T3' of the fifth embodiment has a similar structure to the update stage S3' of the second embodiment, the difference between them is: step T33' is "the processor updates the neural network according to the new training touch parameters road model", on the other hand step S33' is "the processor updates the training heat map according to the new training touch parameters". To sum up, these two embodiments update different authentication reference standards according to the new training touch parameters.

圖14是本發明第六實施例基於觸控操作認證使用者的方法的流程圖,第六實施例的訓練階段T1’及認證階段T2’與第五實施例基本上相同。換言之,第六實施例是以第五實施例為基礎,將更新階段T3’的執行順序移動到認證階段T2’之後。14 is a flow chart of a method for authenticating a user based on a touch operation according to a sixth embodiment of the present invention. The training stage T1' and the authentication stage T2' of the sixth embodiment are basically the same as those of the fifth embodiment. In other words, the sixth embodiment is based on the fifth embodiment, and moves the execution sequence of the update phase T3' to after the authentication phase T2'.

圖15是本發明第七實施例基於觸控操作認證使用者的方法的流程圖,包括訓練階段U1以及認證階段U2。圖16是圖15中步驟的細部流程圖。訓練階段U1包括步驟U11、U13,認證階段U2包括步驟U21、U23、U24、U25、U26、U27。FIG. 15 is a flowchart of a method for authenticating a user based on a touch operation according to the seventh embodiment of the present invention, including a training phase U1 and an authentication phase U2. FIG. 16 is a detailed flowchart of the steps in FIG. 15 . The training phase U1 includes steps U11, U13, and the authentication phase U2 includes steps U21, U23, U24, U25, U26, U27.

步驟U11為「觸控介面產生多個訓練觸控參數」,步驟U13為「處理器依據這些訓練觸控參數產生訓練熱圖及訓練神經網路模型」,步驟U21為「觸控介面產生多個測試觸控參數」,步驟U23為「處理器依據這些測試觸控參數產生測試熱圖」,步驟U24為「處理器比對測試熱圖及訓練熱圖以產生誤差圖 」,步驟U25為「處理器依據誤差圖計算第一誤差值」,步驟U26為「處理器輸入這些測試觸控參數至神經網路模型以產生預測值」,步驟U27為「處理器依據第一誤差值及第二誤差值產生認證通過訊號及認證失敗訊號中的一者」。由上述內容可知,第七實施例是將第一實施例及第四實施例進行整合,同時採用訓練熱圖以及神經網路模型進行使用者的認證。Step U11 is "the touch interface generates multiple training touch parameters", step U13 is "the processor generates a training heat map and training neural network model according to these training touch parameters", and step U21 is "the touch interface generates multiple Test touch parameters", step U23 is "processor generates test heat map according to these test touch parameters", step U24 is "processor compares test heat map and training heat map to generate error map", step U25 is "processing The device calculates the first error value according to the error map", step U26 is "the processor inputs these test touch parameters to the neural network model to generate a predicted value", step U27 is "the processor calculates the first error value and the second error value according to the Generate one of an authentication pass signal and an authentication failure signal". It can be known from the above that the seventh embodiment integrates the first embodiment and the fourth embodiment, and at the same time adopts the training heat map and the neural network model for user authentication.

圖17是本發明第八實施例基於觸控操作認證使用者的方法的流程圖,相較於第七實施例,第八實施例主要增加了更新階段U3’。圖18A及圖18B是圖17中步驟的細部流程圖,由圖18A及圖18B可知,第八實施例的訓練階段U1’比第七實施例的訓練階段U1更增加步驟U12’,第八實施例的認證階段U2’比第七實施例的認證階段U2更增加步驟U22’。以下不重複敘述第八實施例與第七實施例中相同的步驟。此外,第八實施例中相當於整合第二實施例及第五實施例,換言之,步驟U23’、U24’相當於步驟S23’、S25’,步驟U26’相當於T26’。基於整合需求,第八實施例新增步驟U25’及步驟U27’。在步驟U25’中,處理器依據誤差圖計算第一誤差值」。在步驟U27’中,處理器依據第一誤差值及第二誤差值產生認證通過訊號及認證失敗訊號中的一者,其中第二誤差值關聯於步驟S26’中得到的預測值以及從步驟U23’擷取出的實際值。關於預測值、實際值及第二誤差值的細節可參考步驟T27中關於誤差值計算的部分。處理器例如計算第一誤差值及第二誤差值的加權平均值,並判斷此加權平均值是否大於門檻值,據以決定輸出認證通過訊號或認證失敗訊號。Fig. 17 is a flowchart of a method for authenticating a user based on a touch operation according to the eighth embodiment of the present invention. Compared with the seventh embodiment, the eighth embodiment mainly adds an update stage U3'. Fig. 18A and Fig. 18B are detailed flow charts of the steps in Fig. 17. It can be seen from Fig. 18A and Fig. 18B that the training phase U1' of the eighth embodiment is more step U12' than the training phase U1 of the seventh embodiment, and the eighth embodiment In the authentication phase U2' of the example, a step U22' is added to the authentication phase U2 of the seventh embodiment. The same steps in the eighth embodiment and the seventh embodiment will not be repeated below. In addition, the eighth embodiment is equivalent to the integration of the second embodiment and the fifth embodiment, in other words, steps U23', U24' are equivalent to steps S23', S25', and step U26' is equivalent to T26'. Based on integration requirements, the eighth embodiment adds steps U25' and U27'. In step U25', the processor calculates a first error value according to the error map. In step U27', the processor generates one of an authentication pass signal and an authentication failure signal according to the first error value and the second error value, wherein the second error value is associated with the predicted value obtained in step S26' and obtained from step U23 'Retrieve the actual value. For details about the predicted value, the actual value and the second error value, please refer to the part about the calculation of the error value in step T27. For example, the processor calculates a weighted average of the first error value and the second error value, and judges whether the weighted average is greater than a threshold value, so as to decide to output an authentication pass signal or an authentication failure signal.

另外,第八實施例的更新階段U3’相當於整合第二實施例的S3’及第五實施例的T3’。換言之,在步驟U33’中,處理器不僅依據新訓練觸控參數產生新訓練熱圖,更包括依據新訓練觸控參數更新神經網路模型。而在步驟U34’中,處理器依據新訓練熱圖更新訓練熱圖。綜上所述,處理器同時採用兩種不同的認證參考標準。In addition, the update stage U3' of the eighth embodiment is equivalent to integrating S3' of the second embodiment and T3' of the fifth embodiment. In other words, in step U33', the processor not only generates a new training heat map according to the new training touch parameters, but also updates the neural network model according to the new training touch parameters. And in step U34', the processor updates the training heatmap according to the new training heatmap. To sum up, processors use two different certification reference standards at the same time.

圖19是本發明第九實施例基於觸控操作認證使用者的方法的流程圖,第九實施例的訓練階段U1’及認證階段U2’與第八實施例基本上相同。換言之,第九實施例是以第八實施例為基礎,將更新階段U3’的執行順序移動到認證階段U2’之後。Fig. 19 is a flowchart of a method for authenticating a user based on a touch operation according to the ninth embodiment of the present invention. The training phase U1' and the authentication phase U2' of the ninth embodiment are basically the same as those of the eighth embodiment. In other words, the ninth embodiment is based on the eighth embodiment, and the execution sequence of the update phase U3' is moved after the authentication phase U2'.

在第七實施例、第八實施例以及第九實施例中,本發明不僅使用模板匹配的技術進行訓練熱圖與測試熱圖的比對之外,更加入人工智慧(Artificial Intelligence,AI)的技術為使用者獨特的觸控辨識提供額外的比對標準。In the seventh embodiment, the eighth embodiment and the ninth embodiment, the present invention not only uses the template matching technology to compare the training heat map and the test heat map, but also adds artificial intelligence (AI) The technology provides additional comparison criteria for the user's unique touch recognition.

綜上所述,本發明提出的基於觸控操作認證使用者的方法具有下列功效:In summary, the method for authenticating users based on touch operations proposed by the present invention has the following effects:

1. 連續地且非侵入性地監視和認證當前的使用者;1. Continuously and non-intrusively monitor and authenticate current users;

2. 採資料導向(data-driven),並具有適應性,可適應使用者不斷變化的觸控操作的模式;以及2. It is data-driven and adaptable, and can adapt to users' ever-changing modes of touch operation; and

3. 提高使用者身分認證的頻率,在現有的使用者身分認證機制(如密碼或生物特徵)未進行認證的時間進行認證。3. Increase the frequency of user authentication, at times when existing user authentication mechanisms (such as passwords or biometrics) do not.

值得注意的是,本發明提出的方法並不意味著取代現有的使用者身分認證機制,而是補充及增強現有機制的安全性,避免內部攻擊的狀況。換言之,在運算裝置未鎖定的狀態也能偵測出冒名頂替者。It is worth noting that the method proposed by the present invention does not mean to replace the existing user identity authentication mechanism, but to supplement and enhance the security of the existing mechanism to avoid internal attacks. In other words, an impostor can be detected even when the computing device is unlocked.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed by the aforementioned embodiments, they are not intended to limit the present invention. Without departing from the spirit and scope of the present invention, all changes and modifications are within the scope of patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the appended scope of patent application.

S1, S1’, T1, T1’, U1, U1’:訓練階段 S2, S2’, T2, T2’, U2, U2’:認證階段 S3, S3’, T3, T3’, U3, U3’:更新階段 S11, S13, S21, S23, S25, S27:步驟 S11’, S12’, S13’, S21’, S22’, S23’, S25’, S27’, S31, S32’S33’, S34:步驟 T11, T13, T21, T23, T25:步驟 T11’, T12’, T13’, T21’, T22’, T23’, T25’, T31, T32’T33’:步驟 U11, U13, U21, U23, U24, U25, U26, U27:步驟 U11’, U12’, U13’, U21’, U22’, U23’, U24, U25’, U26, U27’:步驟 U31, U32’U33’, U34:步驟 S1, S1’, T1, T1’, U1, U1’: training phase S2, S2’, T2, T2’, U2, U2’: authentication phase S3, S3’, T3, T3’, U3, U3’: update phase S11, S13, S21, S23, S25, S27: steps S11’, S12’, S13’, S21’, S22’, S23’, S25’, S27’, S31, S32’S33’, S34: steps T11, T13, T21, T23, T25: steps T11’, T12’, T13’, T21’, T22’, T23’, T25’, T31, T32’T33’: steps U11, U13, U21, U23, U24, U25, U26, U27: Steps U11’, U12’, U13’, U21’, U22’, U23’, U24, U25’, U26, U27’: steps U31, U32'U33', U34: steps

圖1是本發明第一實施例的基於觸控操作認證使用者的方法的流程圖; 圖2是圖1中步驟的細部流程圖; 圖3是兩個不同的使用者基於移動操作位置的位置熱圖; 圖4是兩個不同的使用者基於按壓操作的位置熱圖; 圖5是兩個不同的使用者基於捲動操作的位置熱圖; 圖6是同一使用者基於移動操作的位置熱圖及速度熱圖; 圖7是本發明第二實施例的基於觸控操作認證使用者的方法的流程圖; 圖8是圖7中步驟的細部流程圖; 圖9是本發明第三實施例的基於觸控操作認證使用者的方法的流程圖; 圖10是本發明第四實施例基於觸控操作認證使用者的方法的流程圖; 圖11是圖10中步驟的細部流程圖; 圖12是本發明第五實施例基於觸控操作認證使用者的方法的流程圖; 圖13是圖12中步驟的細部流程圖; 圖14是本發明第六實施例基於觸控操作認證使用者的方法的流程圖; 圖15是本發明第七實施例基於觸控操作認證使用者的方法的流程圖; 圖16是圖15中步驟的細部流程圖; 圖17是本發明第八實施例基於觸控操作認證使用者的方法的流程圖; 圖18A及圖18B是圖17中步驟的細部流程圖;以及 圖19是本發明第九實施例基於觸控操作認證使用者的方法的流程圖。 FIG. 1 is a flowchart of a method for authenticating a user based on a touch operation according to a first embodiment of the present invention; Fig. 2 is the detailed flowchart of step among Fig. 1; Figure 3 is a location heat map of two different users based on the mobile operation location; Fig. 4 is a position heat map based on pressing operations of two different users; Fig. 5 is a location heat map of two different users based on the scrolling operation; Fig. 6 is the position heat map and speed heat map based on the mobile operation of the same user; 7 is a flow chart of a method for authenticating a user based on a touch operation according to a second embodiment of the present invention; Fig. 8 is a detailed flowchart of steps among Fig. 7; 9 is a flow chart of a method for authenticating a user based on a touch operation according to a third embodiment of the present invention; 10 is a flow chart of a method for authenticating a user based on a touch operation according to a fourth embodiment of the present invention; Figure 11 is a detailed flowchart of the steps in Figure 10; FIG. 12 is a flowchart of a method for authenticating a user based on a touch operation according to a fifth embodiment of the present invention; Figure 13 is a detailed flowchart of the steps in Figure 12; 14 is a flowchart of a method for authenticating a user based on a touch operation according to the sixth embodiment of the present invention; 15 is a flow chart of a method for authenticating a user based on a touch operation according to the seventh embodiment of the present invention; Figure 16 is a detailed flowchart of the steps in Figure 15; 17 is a flow chart of a method for authenticating a user based on a touch operation according to the eighth embodiment of the present invention; 18A and 18B are detailed flowcharts of the steps in FIG. 17; and FIG. 19 is a flowchart of a method for authenticating a user based on a touch operation according to the ninth embodiment of the present invention.

S1:訓練階段 S1: training stage

S2:認證階段 S2: Authentication stage

S11~S13,S21~S27:步驟 S11~S13, S21~S27: steps

Claims (7)

一種基於觸控操作認證使用者身分的方法,包括:一訓練階段,包括:一觸控介面產生多個訓練觸控參數;以及一處理器依據該些訓練觸控參數產生一訓練熱圖;以及一認證階段,包括:該觸控介面產生多個測試觸控參數;該處理器依據該些測試觸控參數產生一測試熱圖;該處理器比對該測試熱圖及該訓練熱圖以產生一誤差圖;以及該處理器依據該誤差圖產生一認證通過訊號及一認證失敗訊號中的一者,其中該些訓練觸控參數及該些測試觸控參數中每一者的內容包括:觸控時間點、觸控位置及操作類型,該操作類型包括:移動、按壓及捲動中的至少一者。 A method for authenticating a user's identity based on a touch operation, comprising: a training phase, including: a touch interface generating a plurality of training touch parameters; and a processor generating a training heat map according to the training touch parameters; and A certification stage, including: the touch interface generates a plurality of test touch parameters; the processor generates a test heat map according to the test touch parameters; the processor compares the test heat map and the training heat map to generate an error graph; and the processor generates one of an authentication pass signal and an authentication failure signal according to the error graph, wherein the contents of each of the training touch parameters and the test touch parameters include: touch Control time point, touch position and operation type, the operation type includes: at least one of moving, pressing and scrolling. 如請求項1所述基於觸控操作認證使用者身分的方法,其中該訓練熱圖及測試熱圖中每一者包括位置熱圖及速度熱圖中的至少一者,該位置熱圖用以反映觸控位置的累計次數,該速度熱圖用以反映一移動操作的方向及距離。 The method for authenticating user identity based on touch operation as described in claim 1, wherein each of the training heat map and the test heat map includes at least one of a position heat map and a speed heat map, and the position heat map is used for Reflecting the accumulated times of touch positions, the speed heat map is used to reflect the direction and distance of a moving operation. 如請求項1所述基於觸控操作認證使用者身分的方法,其中:該訓練階段更包括:在該處理器產生該訓練熱圖之前,該處理器判斷該些訓練觸控參數的收集量大於第一門檻值; 該認證階段更包括:在該處理器產生該測試熱圖之前,該處理器判斷該些測試觸控參數的收集量大於測試門檻值;以及所述方法更包括一更新階段,該更新階段包括:該觸控介面產生多個新觸控參數;該處理器判斷該些新觸控參數的收集量大於第二門檻值;該處理器依據該些新訓練觸控參數產生一新訓練熱圖;以及該處理器依據該新訓練熱圖更新該訓練熱圖。 The method for authenticating user identity based on touch operation as described in claim 1, wherein: the training phase further includes: before the processor generates the training heat map, the processor determines that the collection amount of the training touch parameters is greater than the first threshold; The authentication stage further includes: before the processor generates the test heat map, the processor determines that the collection amount of the test touch parameters is greater than a test threshold; and the method further includes an update stage, the update stage includes: The touch interface generates a plurality of new touch parameters; the processor determines that the collection amount of the new touch parameters is greater than a second threshold; the processor generates a new training heat map according to the new training touch parameters; and The processor updates the training heatmap according to the new training heatmap. 一種基於基於觸控操作認證使用者身分的方法,包括:一訓練階段,包括:一觸控介面產生多個訓練觸控參數;以及一處理器依據該些訓練觸控參數訓練一神經網路模型;以及一認證階段,包括:該觸控介面產生多個測試觸控參數;該處理器輸入該些測試觸控參數至該神經網路模型以產生一預測值;以及該處理器計算該預測值及一實際值的一誤差值以產生一認證通過訊號及一認證失敗訊號中的一者,其中該些訓練觸控參數及該些測試觸控參數中每一者的內容包括:觸控時間點、觸控位置及操作類型,該操作類型包括:移動、按壓及捲動中的至少一者。 A method for authenticating user identity based on touch operation, comprising: a training phase, comprising: a touch interface generates a plurality of training touch parameters; and a processor trains a neural network model according to the training touch parameters ; and a certification stage, comprising: the touch interface generates a plurality of test touch parameters; the processor inputs the test touch parameters to the neural network model to generate a predicted value; and the processor calculates the predicted value and an error value of an actual value to generate one of an authentication pass signal and an authentication failure signal, wherein the contents of each of the training touch parameters and the test touch parameters include: touch time point . Touch position and operation type, the operation type includes: at least one of moving, pressing and scrolling. 如請求項4所述基於觸控操作認證使用者身分的方法,其中: 該訓練階段更包括:在該處理器產生該神經網路模型之前,該處理器判斷該些訓練觸控參數的收集量大於第一門檻值;該認證階段更包括:在該處理器輸入該些測試觸控參數至該神經網路模型之前,該處理器判斷該些測試觸控參數的收集量大於測試門檻值;以及所述方法更包括一更新階段,該更新階段包括:該觸控介面產生多個新觸控參數;該處理器判斷該些新觸控參數的收集量大於第二門檻值;以及該處理器依據該些新訓練觸控參數更新該神經網路模型。 The method for authenticating user identity based on touch operation as described in claim 4, wherein: The training phase further includes: before the processor generates the neural network model, the processor judges that the collection amount of the training touch parameters is greater than a first threshold; the authentication phase further includes: inputting the Before testing the touch parameters to the neural network model, the processor determines that the collection amount of the test touch parameters is greater than the test threshold; and the method further includes an update stage, the update stage includes: the touch interface generates A plurality of new touch parameters; the processor determines that the collection amount of the new touch parameters is greater than a second threshold; and the processor updates the neural network model according to the new training touch parameters. 一種基於觸控操作認證使用者身分的方法,包括:一訓練階段,包括:一觸控介面產生多個訓練觸控參數;以及一處理器依據該些訓練觸控參數產生一訓練熱圖及訓練一神經網路模型;以及一認證階段,包括:該觸控介面產生多個測試觸控參數;該處理器依據該些測試觸控參數產生一測試熱圖;該處理器比對該測試熱圖及該訓練熱圖以產生一誤差圖;該處理器依據該誤差圖計算一第一誤差值;該處理器輸入該些測試觸控參數至該神經網路模型以產生一預測值;以及該處理器依據該第一誤差值及一第二誤差值產生一認證通過訊號及一認證失敗訊號中的一者,其中該第二誤差值關聯於該預測值及一實際值, 其中該訓練熱圖及測試熱圖中每一者包括位置熱圖及速度熱圖中的至少一者,該位置熱圖用以反映觸控位置的累計次數,該速度熱圖用以反映一移動操作的方向及距離。 A method for authenticating a user's identity based on a touch operation, comprising: a training phase, including: a touch interface generating a plurality of training touch parameters; and a processor generating a training heat map and training based on the training touch parameters A neural network model; and a certification stage, including: the touch interface generates a plurality of test touch parameters; the processor generates a test heat map according to the test touch parameters; the processor compares the test heat map and the training heat map to generate an error map; the processor calculates a first error value according to the error map; the processor inputs the test touch parameters to the neural network model to generate a predicted value; and the processing The device generates one of an authentication pass signal and an authentication failure signal according to the first error value and a second error value, wherein the second error value is associated with the predicted value and an actual value, Each of the training heat map and the test heat map includes at least one of a position heat map and a speed heat map, the position heat map is used to reflect the cumulative number of touch positions, and the speed heat map is used to reflect a movement Direction and distance of operation. 如請求項6所述基於觸控操作認證使用者身分的方法,其中:該訓練階段更包括:在該處理器產生該訓練熱圖及訓練該神經網路模型之前,該處理器判斷該些訓練觸控參數的收集量大於第一門檻值;該認證階段更包括:在該處理器產生該測試熱圖及訓練該神經網路模型之前,該處理器判斷該些測試觸控參數的收集量大於測試門檻值;以及所述方法更包括一更新階段,該更新階段包括:該觸控介面產生多個新觸控參數;該處理器判斷該些新觸控參數的收集量大於第二門檻值;該處理器依據該些新訓練觸控參數產生一新訓練熱圖及更新該神經網路模型;以及該處理器依據該新訓練熱圖更新該訓練熱圖。 The method for authenticating user identity based on touch operation as described in claim 6, wherein: the training stage further includes: before the processor generates the training heat map and trains the neural network model, the processor determines the training The collection amount of touch parameters is greater than the first threshold; the certification stage further includes: before the processor generates the test heat map and trains the neural network model, the processor determines that the collection amount of these test touch parameters is greater than A threshold value is tested; and the method further includes an update stage, the update stage includes: the touch interface generates a plurality of new touch parameters; the processor determines that the collection amount of these new touch parameters is greater than a second threshold value; The processor generates a new training heat map and updates the neural network model according to the new training touch parameters; and the processor updates the training heat map according to the new training heat map.
TW110134891A 2021-09-17 2021-09-17 Method for authenticating user identity based on touch operation TWI783689B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110134891A TWI783689B (en) 2021-09-17 2021-09-17 Method for authenticating user identity based on touch operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134891A TWI783689B (en) 2021-09-17 2021-09-17 Method for authenticating user identity based on touch operation

Publications (2)

Publication Number Publication Date
TWI783689B true TWI783689B (en) 2022-11-11
TW202314547A TW202314547A (en) 2023-04-01

Family

ID=85794432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134891A TWI783689B (en) 2021-09-17 2021-09-17 Method for authenticating user identity based on touch operation

Country Status (1)

Country Link
TW (1) TWI783689B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479142A (en) * 2010-11-30 2012-05-30 英业达股份有限公司 Rack server system and monitoring method thereof
TW201610745A (en) * 2012-11-21 2016-03-16 蘋果公司 Electronic device, method for establishing and enforcing a security policy associated with an access control element, and secure element
TWI528205B (en) * 2009-06-30 2016-04-01 英特爾股份有限公司 Human presence detection techniques
EP3770776A1 (en) * 2015-06-03 2021-01-27 PayPal, Inc. Authentication through multiple pathways based on device capabilities and user requests
EP3792795A1 (en) * 2019-09-16 2021-03-17 Telefonica Cibersecurity & Cloud Tech S.L.U. A system and a method for user authentication and/or authorization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI528205B (en) * 2009-06-30 2016-04-01 英特爾股份有限公司 Human presence detection techniques
CN102479142A (en) * 2010-11-30 2012-05-30 英业达股份有限公司 Rack server system and monitoring method thereof
TW201610745A (en) * 2012-11-21 2016-03-16 蘋果公司 Electronic device, method for establishing and enforcing a security policy associated with an access control element, and secure element
EP3770776A1 (en) * 2015-06-03 2021-01-27 PayPal, Inc. Authentication through multiple pathways based on device capabilities and user requests
EP3792795A1 (en) * 2019-09-16 2021-03-17 Telefonica Cibersecurity & Cloud Tech S.L.U. A system and a method for user authentication and/or authorization

Also Published As

Publication number Publication date
TW202314547A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
Feher et al. User identity verification via mouse dynamics
US12047773B2 (en) System and method for implicit authentication
Fierrez et al. Benchmarking touchscreen biometrics for mobile authentication
Gascon et al. Continuous authentication on mobile devices by analysis of typing motion behavior
Impedovo et al. Automatic signature verification in the mobile cloud scenario: survey and way ahead
US9788203B2 (en) System and method for implicit authentication
US20250285471A1 (en) Method and system for preventing identity spoofing using artificial intelligence driven pattern recognition
Shi et al. Fine-grained and context-aware behavioral biometrics for pattern lock on smartphones
Cao et al. Data-augmentation-enabled continuous user authentication via passive vibration response
CN119150270B (en) An e-commerce platform security authentication method and system
WO2023069719A1 (en) System and method for continuous privacy-preserving facial-based authentication and feedback
WO2016045225A1 (en) Password fault tolerance method based on mouse behaviour
Shen et al. CT-Auth: Capacitive touchscreen-based continuous authentication on smartphones
Mahfouz et al. M2auth: A multimodal behavioral biometric authentication using feature-level fusion
TWI783689B (en) Method for authenticating user identity based on touch operation
US20250328605A1 (en) Multi-Computer System for Providing Continuous Authentication and Secure Access Control
JP7710520B2 (en) Spatio-temporal deep learning for behavioral biometrics
Li et al. Hand in motion: Enhanced authentication through wrist and mouse movement
Jancok et al. Security aspects of behavioral biometrics for strong user authentication
Rashid et al. Clicking your way to security: a review of continuous authentication with mouse dynamics
US11861933B2 (en) Touch-based method for user authentication
Barone et al. Advancing continuous authentication using smart real-time user activity fingerprinting
Kulkarni et al. Accuracy comparison of classification techniques for mouse dynamics-based biometric CaRP
Pilankar et al. Multi-phase mouse dynamics authentication system using behavioural biometrics
Gaffarov et al. A Multi-Device Framework For Continuous Authentication