[go: up one dir, main page]

TWI778772B - System and method for optimizing network - Google Patents

System and method for optimizing network Download PDF

Info

Publication number
TWI778772B
TWI778772B TW110132442A TW110132442A TWI778772B TW I778772 B TWI778772 B TW I778772B TW 110132442 A TW110132442 A TW 110132442A TW 110132442 A TW110132442 A TW 110132442A TW I778772 B TWI778772 B TW I778772B
Authority
TW
Taiwan
Prior art keywords
network
data
optimization
application
module
Prior art date
Application number
TW110132442A
Other languages
Chinese (zh)
Other versions
TW202312709A (en
Inventor
湯凱傑
方敬勻
陳昱安
蔡佳霖
唐之璇
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW110132442A priority Critical patent/TWI778772B/en
Application granted granted Critical
Publication of TWI778772B publication Critical patent/TWI778772B/en
Publication of TW202312709A publication Critical patent/TW202312709A/en

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

A system and a method for optimizing a network are provided. The method includes: storing a plurality of algorithms; receiving network information of the network; determining a optimization target according to the network information; selecting an algorithm from the plurality of algorithms according to the optimization target; generating at least one network configuration according to the network information and the algorithm; and access the network and configuring the network according to the at least one network configuration.

Description

優化網路的系統和方法System and method for optimizing a network

本發明是有關於一種優化網路的系統和方法。The present invention relates to a system and method for optimizing a network.

通訊網路會因多用戶或多種應用的使用需求,導致用戶的接通率或平均速率等參數下降,進而大幅地降低服務品質。然而,現有的端對端(end-to-end,E2E)測試服務管理系統僅能針對單一的優化目標提出不同設備(例如:不同廠牌的設備)的共通解決方案,而無法針對多領域的優化目標提出解決方案。此外,習知的服務品質(quality of service,QoS)保障機制可以保證特定的應用需求具有固定的網路頻寬可以使用。然而,當具有相同的分配和保留優先級(allocation and retention priority,ARP)的用戶設備過多時,現有技術仍可能無法保障每一個用戶設備的服務品質。The communication network will reduce parameters such as the connection rate or average rate of users due to the use requirements of multiple users or multiple applications, thereby greatly reducing the service quality. However, the existing end-to-end (E2E) test service management system can only propose a common solution for different equipment (for example, equipment of different brands) for a single optimization goal, but cannot provide a solution for multiple fields. Optimization goals come up with solutions. In addition, the conventional quality of service (quality of service, QoS) guarantee mechanism can ensure that certain application requirements have a fixed network bandwidth available for use. However, when there are too many user equipments with the same allocation and retention priority (ARP), the existing technology may still fail to guarantee the service quality of each user equipment.

本發明提供一種優化網路的系統和方法,可針對多元的優化目標配置網路。The present invention provides a system and method for optimizing the network, which can configure the network for multiple optimization objectives.

本發明的一種優化網路的系統,包含處理器、儲存媒體以及收發器。儲存媒體儲存多個模組。處理器耦接儲存媒體以及收發器,並且存取和執行多個模組,其中多個模組包含演算法池、資料蒐集模組、資料分析及處理模組、優化方向或目標選擇模組、網路及應用服務聯合優化模組以及網路及應用服務參數設定模組。演算法池儲存多個演算法。資料蒐集模組通過收發器接收網路的網路資訊。資料分析及處理模組根據網路資訊決定優化目標。優化方向或目標選擇模組根據優化目標以從多個演算法中選擇演算法。網路及應用服務聯合優化模組根據網路資訊以及演算法產生至少一網路配置。網路及應用服務參數設定模組通過收發器存取網路,並且根據至少一網路配置來配置網路。A system for optimizing a network of the present invention includes a processor, a storage medium and a transceiver. The storage medium stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes a plurality of modules, wherein the plurality of modules include an algorithm pool, a data collection module, a data analysis and processing module, an optimization direction or a target selection module, Network and application service joint optimization module and network and application service parameter setting module. The algorithm pool stores multiple algorithms. The data collection module receives network information of the network through the transceiver. The data analysis and processing module determines the optimization target according to the network information. The optimization direction or goal selection module selects an algorithm from a plurality of algorithms according to the optimization goal. The network and application service joint optimization module generates at least one network configuration according to the network information and the algorithm. The network and application service parameter setting module accesses the network through the transceiver, and configures the network according to at least one network configuration.

在本發明的一實施例中,上述的網路及應用服務聯合優化模組經配置以執行:基於演算法而根據網路資訊計算至少一預估服務品質以及至少一應用需求值;基於演算法而根據至少一預估服務品質和至少一應用需求值產生目標優化函數;以及根據目標優化函數產生至少一網路配置。In an embodiment of the present invention, the above-mentioned network and application service joint optimization module is configured to perform: calculating at least one estimated service quality and at least one application demand value according to network information based on an algorithm; based on an algorithm and generating an objective optimization function according to at least one estimated service quality and at least one application demand value; and generating at least one network configuration according to the objective optimization function.

在本發明的一實施例中,上述的網路及應用服務聯合優化模組更經配置以執行:根據目標優化函數計算分別對應於多個網路配置的多個目標優化函數值;以及響應於至少一網路配置對應於多個目標優化函數值中的最大目標優化函數值而從多個網路配置中選出至少一網路配置。In an embodiment of the present invention, the above-mentioned network and application service joint optimization module is further configured to perform: calculating a plurality of target optimization function values respectively corresponding to a plurality of network configurations according to the target optimization function; and in response to At least one network configuration is selected from the plurality of network configurations corresponding to the largest target optimization function value among the plurality of target optimization function values.

在本發明的一實施例中,上述的網路及應用服務聯合優化模組更經配置以執行:根據目標優化函數計算分別對應於多個網路配置的多個目標優化函數值,其中多個目標優化函數值包含對應於至少一網路配置的至少一目標優化函數值;以及響應於至少一目標優化函數值大於對應於初始網路配置的目標優化函數值而從多個網路配置中選出至少一網路配置。In an embodiment of the present invention, the above-mentioned network and application service joint optimization module is further configured to perform: calculating a plurality of target optimization function values corresponding to a plurality of network configurations according to the target optimization function, wherein a plurality of The target optimization function value includes at least one target optimization function value corresponding to at least one network configuration; and is selected from a plurality of network configurations in response to the at least one target optimization function value being greater than the target optimization function value corresponding to the initial network configuration At least one network configuration.

在本發明的一實施例中,上述的網路資訊對應於多個用戶設備,其中多個用戶設備包含至少一用戶設備,其中網路及應用服務聯合優化模組更經配置以執行:根據網路資訊計算分別對應於多個用戶設備的多個預估服務品質,其中多個預估服務品質包含對應於至少一用戶設備的至少一預估服務品質;根據網路資訊計算對應於至少一預估服務品質的至少一應用需求值;響應於至少一預估服務品質大於或等於服務品質閾值並且至少一應用需求值大於應用需求閾值而產生至少一用戶設備以及至少一應用需求的至少一組合,其中至少一應用需求對應於至少一應用需求值;以及根據至少一組合產生目標優化函數。In an embodiment of the present invention, the above-mentioned network information corresponds to a plurality of user equipments, wherein the plurality of user equipments include at least one user equipment, wherein the network and application service joint optimization module is further configured to execute: according to the network The calculation of the road information corresponds to a plurality of estimated service qualities of a plurality of user equipments, wherein the plurality of estimated service qualities includes at least one estimated service quality corresponding to at least one user equipment; the calculation according to the network information corresponds to at least one estimated service quality. at least one application demand value of the estimated service quality; at least one combination of at least one user equipment and at least one application demand is generated in response to the at least one estimated service quality being greater than or equal to the service quality threshold and the at least one application demand value being greater than the application demand threshold, Wherein at least one application requirement corresponds to at least one application requirement value; and an objective optimization function is generated according to at least one combination.

在本發明的一實施例中,上述的網路及應用服務聯合優化模組根據演算法決定服務品質閾值以及應用需求閾值,並且根據初始網路配置計算多個預估服務品質。In an embodiment of the present invention, the aforementioned network and application service joint optimization module determines the service quality threshold and the application demand threshold according to an algorithm, and calculates a plurality of estimated service qualities according to the initial network configuration.

在本發明的一實施例中,上述的目標優化函數的目標優化函數值等於滿足服務品質閾值以及應用需求閾值的至少一組合的數量,其中至少一組合包含組合。In an embodiment of the present invention, the objective optimization function value of the above-mentioned objective optimization function is equal to the number of at least one combination that satisfies the service quality threshold and the application requirement threshold, wherein at least one combination includes combinations.

在本發明的一實施例中,上述的目標優化函數的目標優化函數值等於滿足服務品質閾值以及應用需求閾值的至少一組合的應用需求值總和。In an embodiment of the present invention, the objective optimization function value of the above-mentioned objective optimization function is equal to the sum of application demand values satisfying at least one combination of the service quality threshold and the application demand threshold.

在本發明的一實施例中,上述的至少一組合包含第一組合集合中的組合以及第二組合集合中的組合,其中目標優化函數的目標優化函數值等於第一組合集合的第一元素個數與第二組合集合的第二元素個數的線性組合。In an embodiment of the present invention, the above-mentioned at least one combination includes a combination in the first combination set and a combination in the second combination set, wherein the objective optimization function value of the objective optimization function is equal to the first element of the first combination set. A linear combination of the number and the second number of elements of the second combination set.

在本發明的一實施例中,上述的多個模組更包含優化程序啟動模組。優化程序啟動模組響應於通過收發器接收指令而指示資料蒐集模組接收網路資訊以執行網路的優化流程。In an embodiment of the present invention, the above-mentioned modules further include an optimization program startup module. The optimization program activation module instructs the data collection module to receive network information in response to receiving the command through the transceiver to perform an optimization process of the network.

在本發明的一實施例中,上述的多個模組更包含優化程序啟動模組。優化程序啟動模組週期性地指示資料蒐集模組接收網路資訊以執行網路的優化流程。In an embodiment of the present invention, the above-mentioned modules further include an optimization program startup module. The optimizer activation module periodically instructs the data collection module to receive network information to perform network optimization.

在本發明的一實施例中,上述的網路資訊包含下列的至少其中之一:無線電存取網路資料、無線電存取網路用戶識別資料、多元資料、元件預設組態資料、網路訊號資料、核心網路資料、傳輸網路參數、外部輸入資料以及優化系統運作組態資料。In an embodiment of the present invention, the above-mentioned network information includes at least one of the following: radio access network data, radio access network user identification data, multivariate data, component default configuration data, network Signal data, core network data, transmission network parameters, external input data and configuration data for optimizing system operation.

在本發明的一實施例中,上述的無線電存取網路資料包含下列的至少其中之一:一般/進階組態管理、一般/進階性能管理、故障管理、用戶終端回報以及最小路測。In an embodiment of the present invention, the above-mentioned radio access network data includes at least one of the following: general/advanced configuration management, general/advanced performance management, fault management, user terminal reporting, and minimum drive test .

在本發明的一實施例中,上述的無線電存取網路用戶識別資料包含下列的至少其中之一:無線電存取網路用戶設備定位資料、服務類型、訊務需求以及移動路徑。In an embodiment of the present invention, the above-mentioned radio access network user identification data includes at least one of the following: radio access network user equipment location data, service type, traffic demand and moving path.

在本發明的一實施例中,上述的多元資料包含下列的至少其中之一:應用服務品質、物體形狀及數量辨識、場域地圖、物體定位資料以及其他多元資訊。In an embodiment of the present invention, the above-mentioned multivariate data includes at least one of the following: application service quality, object shape and quantity identification, field map, object positioning data, and other multivariate information.

在本發明的一實施例中,上述的元件預設組態資料包含下列的至少其中之一:無線電存取網路組態參數、核心網路參數、天線方向、行動網路終端參數以及應用服務參數。In an embodiment of the present invention, the above-mentioned device default configuration data includes at least one of the following: radio access network configuration parameters, core network parameters, antenna directions, mobile network terminal parameters, and application services parameter.

在本發明的一實施例中,上述的網路訊號資料包含下列的至少其中之一:射頻訊號掃描以及路測手機。In an embodiment of the present invention, the above-mentioned network signal data includes at least one of the following: radio frequency signal scanning and drive test mobile phone.

在本發明的一實施例中,上述的核心網路資料包含下列的至少其中之一:用戶平面功能資料、服務品質管理資料以及核心網路信令資料。In an embodiment of the present invention, the above-mentioned core network data includes at least one of the following: user plane function data, service quality management data, and core network signaling data.

在本發明的一實施例中,上述的傳輸網路參數包含下列的至少其中之一:封包佇列狀態參數、封包處理機制參數以及封包處理表現參數。In an embodiment of the present invention, the above-mentioned transmission network parameters include at least one of the following: a packet queue status parameter, a packet processing mechanism parameter, and a packet processing performance parameter.

在本發明的一實施例中,上述的外部輸入資料包含下列的至少其中之一:無線電存取網路意向、應用服務意向以及場域限制。In an embodiment of the present invention, the above-mentioned external input data includes at least one of the following: radio access network intent, application service intent, and field restriction.

在本發明的一實施例中,上述的優化系統運作組態資料包含下列的至少其中之一:系統設定檔、優化程序觸發條件設定檔以及優化目標設定檔。In an embodiment of the present invention, the above-mentioned optimization system operation configuration data includes at least one of the following: a system configuration file, an optimization program trigger condition configuration file, and an optimization target configuration file.

在本發明的一實施例中,上述的資料分析及處理模組根據網路資訊計算參數,並且根據參數決定優化目標,其中參數包含下列的至少其中之一:網路資料,包含下列的至少其中之一:接通率、保持性、可用性、移動性、完整性、使用率、射頻訊號紋、組態管理、核心網路資料以及傳輸網路資料;多元資訊,包含下列的至少其中之一:服務品質、服務需求、行程表資訊、用戶軌跡以及流量;以及設備穩定度資料,包含下列的至少其中之一:設備穩定度以及設備告警。In an embodiment of the present invention, the above-mentioned data analysis and processing module calculates parameters according to network information, and determines an optimization target according to the parameters, wherein the parameters include at least one of the following: network data, including at least one of the following One: Connectivity, Retention, Availability, Mobility, Integrity, Utilization, RF Signal Pattern, Configuration Management, Core Network Data, and Transmission Network Data; Multiple Information, including at least one of the following: Service quality, service demand, schedule information, user trajectory, and traffic; and device stability data, including at least one of the following: device stability and device alarms.

本發明的一種優化網路的方法,包含:儲存多個演算法;接收網路的網路資訊;根據網路資訊決定優化目標;根據優化目標以從多個演算法中選擇演算法;根據網路資訊以及演算法產生至少一網路配置;以及存取網路,並且根據至少一網路配置來配置網路。A method for optimizing a network of the present invention includes: storing a plurality of algorithms; receiving network information of the network; determining an optimization target according to the network information; selecting an algorithm from a plurality of algorithms according to the optimization target; generating at least one network configuration from the road information and the algorithm; and accessing the network and configuring the network according to the at least one network configuration.

基於上述,本發明可結合應用需求及服務品質等相關資料設定優化目標。本發明可以提高目標優化函數值為目的,準確地針對應用需求配發網路資源,並自動化完成優化工作,達到更細緻精確,亦更貼近用戶需求的優化效果,從而保障用戶對網路或應用服務的體驗品質(quality of experience,QoE)。Based on the above, the present invention can set optimization goals in combination with relevant data such as application requirements and service quality. The invention can improve the target optimization function value, allocate network resources accurately according to the application requirements, and automatically complete the optimization work, so as to achieve a more detailed and accurate optimization effect that is closer to the user's needs, so as to ensure the user's understanding of the network or application. The quality of experience (QoE) of the service.

圖1根據本發明的一實施例繪示一種優化網路的系統100的示意圖。系統100可包含處理器110、儲存媒體120以及收發器130。FIG. 1 is a schematic diagram of a system 100 for optimizing a network according to an embodiment of the present invention. System 100 may include processor 110 , storage medium 120 , and transceiver 130 .

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (micro control unit, MCU), microprocessor (microprocessor), digital signal processing digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processor (graphics processing unit, GPU), image signal processor (image signal processor, ISP) ), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (field programmable gate array) , FPGA) or other similar elements or a combination of the above. The processor 110 may be coupled to the storage medium 120 and the transceiver 130 , and access and execute a plurality of modules and various application programs stored in the storage medium 120 .

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包含優化程序啟動模組121、資料蒐集模組122、資料分析及處理模組123、優化方向或目標選擇模組124、網路及應用服務聯合優化模組125、網路及應用服務參數設定模組126、演算法池127以及資料庫128等多個模組,其功能將於後續說明。The storage medium 120 is, for example, any type of fixed or removable random access memory (random access memory, RAM), read-only memory (ROM), and flash memory (flash memory). , a hard disk drive (HDD), a solid state drive (SSD), or similar components or a combination of the above components for storing a plurality of modules or various application programs executable by the processor 110 . In this embodiment, the storage medium 120 can store an optimization program startup module 121 , a data collection module 122 , a data analysis and processing module 123 , an optimization direction or target selection module 124 , and a joint optimization module for network and application services. The functions of the group 125 , the network and application service parameter setting module 126 , the algorithm pool 127 , and the database 128 and other modules will be described later.

各個模組之間可通過資料庫128交換資料,並且資料庫128可儲存各個模組的輸出。資料庫128可採用一或多種資料庫技術或記憶體存放技術,諸如關聯式資料庫、非關聯式資料庫、記憶體資料庫或記憶體暫存等,本發明不限於此。Data can be exchanged between the various modules through the database 128, and the database 128 can store the outputs of the various modules. The database 128 may adopt one or more database technologies or memory storage technologies, such as associative database, non-associative database, memory database or memory temporary storage, etc., the invention is not limited thereto.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。系統100可通過收發器130存取待優化的網路。The transceiver 130 transmits and receives signals in a wireless or wired manner. Transceiver 130 may also perform operations such as low noise amplification, impedance matching, frequency mixing, up or down frequency conversion, filtering, amplification, and the like. The system 100 can access the network to be optimized through the transceiver 130 .

演算法池127可儲存多個演算法,諸如多領域聯合優化演算法、故障處理演算法或基本參數設定演算法等多種演算法,但本發明不限於此。演算法池127還可儲存與演算法相關的應用需求函數、用於產生目標優化函數的轉換函數、初始網路配置、服務品質閾值或應用需求閾值等資訊。The algorithm pool 127 can store multiple algorithms, such as a multi-domain joint optimization algorithm, a fault handling algorithm, or a basic parameter setting algorithm, but the invention is not limited thereto. The algorithm pool 127 may also store information related to the algorithm, such as application demand functions, conversion functions used to generate the objective optimization function, initial network configuration, service quality thresholds or application demand thresholds.

優化程序啟動模組121可啟動系統100執行網路的優化流程。在一實施例中,優化程序啟動模組121可通過收發器130接收來自用戶設備的指令,並且根據指令指示資料蒐集模組122接收待優化之網路的網路資訊以執行所述網路的優化流程。換句話說,用戶可通過操作用戶設備發送指令以啟動網路的優化流程。在一實施例中,優化程序啟動模組121可週期性地指示資料蒐集模組122接收待優化之網路的網路資訊以執行所述網路的優化流程。換句話說,優化程序啟動模組121可自動化地排程及執行網路的優化流程。The optimization program activation module 121 can activate the system 100 to perform the optimization process of the network. In one embodiment, the optimization program startup module 121 can receive an instruction from the user equipment through the transceiver 130, and instruct the data collection module 122 to receive the network information of the network to be optimized according to the instruction to perform the operation of the network. Optimize the process. In other words, the user can send an instruction by operating the user equipment to start the optimization process of the network. In one embodiment, the optimization program activation module 121 may periodically instruct the data collection module 122 to receive network information of the network to be optimized to perform the optimization process of the network. In other words, the optimization program enabling module 121 can automatically schedule and execute the optimization process of the network.

資料蒐集模組122可通過收發器130存取待優化之網路以取得網路的網路資訊。網路資訊可包含無線電存取網路資料、無線電存取網路用戶識別資料、多元資料、元件預設組態資料、網路訊號資料、核心網路資料、傳輸網路參數、外部輸入資料或優化系統運作組態資料等,但本發明不限於此。資料蒐集模組122可將取得的資料儲存於儲存媒體120中。資料蒐集模組122還可對取得的資料執行資料預處理,其中所述資料預處理可包含資料萃取、資料預分析、資料關聯、資料貼標、資料清洗或資料型別轉換等。資料蒐集模組122可從一或多個資料來源取得初始資料,再對初始資料執行預處理。而後,資料蒐集模組122可將預處理過後的資料存放在儲存媒體120中以供其他模組使用。The data collection module 122 can access the network to be optimized through the transceiver 130 to obtain network information of the network. Network information may include radio access network data, radio access network user identification data, multivariate data, component default configuration data, network signal data, core network data, transmission network parameters, external input data or Optimize system operation configuration data, etc., but the present invention is not limited to this. The data collection module 122 can store the obtained data in the storage medium 120 . The data collection module 122 may further perform data preprocessing on the acquired data, wherein the data preprocessing may include data extraction, data pre-analysis, data association, data labeling, data cleaning, or data type conversion. The data collection module 122 may obtain initial data from one or more data sources, and then perform preprocessing on the initial data. Then, the data collection module 122 can store the preprocessed data in the storage medium 120 for use by other modules.

無線電存取網路資料可包含一般/進階組態管理、一般/進階性能管理、故障管理、用戶終端回報或最小路測(minimization of drive test,MDT)等資料,但本發明不限於此。進階資料(例如:進階組態管理或進階性能管理)的資料量通常較大,故容易耗費硬體資源或網路傳輸資源,但進階資料可提供較細緻且即時的資料,包含短時間運作情形檔案資料(例如:1分鐘PM檔案或介面)、短時間運作情形串流回報資料(例如:串流PM)或應用服務短時運作狀況回報等。The radio access network data may include general/advanced configuration management, general/advanced performance management, fault management, user terminal reporting or minimum drive test (minimization of drive test, MDT) data, but the invention is not limited thereto . Advanced data (such as advanced configuration management or advanced performance management) usually has a large amount of data, so it is easy to consume hardware resources or network transmission resources, but advanced data can provide more detailed and real-time data, including Short-term operation status file data (for example: 1 minute PM file or interface), short-term operation status streaming report data (eg: streaming PM) or application service short-term operation status report, etc.

無線電存取網路用戶識別資料可包含無線電存取網路用戶設備定位資料、服務類型、訊務需求或移動路徑等資料,但本發明不限於此。The radio access network user identification data may include radio access network user equipment positioning data, service types, traffic requirements or moving paths, etc., but the invention is not limited thereto.

多元資料可包含應用服務品質、物體形狀及數量辨識、場域地圖、物體定位資料或其他多元資訊等資料,但本發明不限於此。The multivariate data may include data such as application service quality, object shape and quantity identification, field map, object positioning data, or other multivariate information, but the present invention is not limited thereto.

元件預設組態資料可包含無線電存取網路組態參數、核心網路參數、天線方向、行動網路(例如:4G/5G網路)終端參數或應用服務參數等資料,但本發明不限於此。The component default configuration data may include radio access network configuration parameters, core network parameters, antenna directions, mobile network (for example: 4G/5G network) terminal parameters or application service parameters and other data, but the present invention does not limited to this.

網路訊號資料可包含射頻訊號掃描或路測手機等資料,但本發明不限於此。The network signal data may include data such as radio frequency signal scanning or mobile phone driving test, but the present invention is not limited thereto.

核心網路資料可包含用戶平面功能資料、服務品質管理資料或核心網路信令資料等資料,但本發明不限於此。The core network data may include user plane function data, service quality management data, or core network signaling data, etc., but the present invention is not limited thereto.

傳輸網路參數可包含封包佇列狀態參數、封包處理機制參數或封包處理表現參數等資料,但本發明不限於此。The transmission network parameters may include data such as packet queue status parameters, packet processing mechanism parameters, or packet processing performance parameters, but the invention is not limited thereto.

外部輸入資料可包含無線電存取網路意向、應用服務意向或場域限制等資料,但本發明不限於此。The external input data may include data such as radio access network intentions, application service intentions, or field restrictions, but the invention is not limited thereto.

優化系統運作組態資料可包含系統設定檔、優化程序觸發條件設定檔或優化目標設定檔等資料,但本發明不限於此。The optimized system operation configuration data may include data such as a system configuration file, an optimization program trigger condition configuration file, or an optimization target configuration file, but the invention is not limited thereto.

資料分析及處理模組123可根據網路資訊決定優化目標。具體來說,資料分析及處理模組123可分析網路資訊以計算參數,並且將參數輸入至機器學習模型以根據機器學習模型的輸出決定優化目標。參數可包含網路資料、多元資訊或設備穩定度資料等。另一方面,在計算完參數後,資料分析及處理模組123也可選擇將優化參數作為優化目標。The data analysis and processing module 123 can determine the optimization target according to the network information. Specifically, the data analysis and processing module 123 can analyze the network information to calculate the parameters, and input the parameters to the machine learning model to determine the optimization target according to the output of the machine learning model. Parameters can include network data, multivariate information, or device stability data, etc. On the other hand, after the parameters are calculated, the data analysis and processing module 123 can also select the optimization parameters as the optimization target.

優化目標可與多個參數有關。舉例來說,優化目標可包含服務品質以及用戶數量。系統100可根據優化目標改善網路,藉以提高網路的服務品質並且增加網路所服務的用戶設備之數量。在一實施例中,資料分析及處理模組123可根據網路的網路資訊計算一目標函數值。若目標函數值小於目標閾值,則資料分析及處理模組123可決定由系統100為網路執行優化流程,從而產生優化目標。舉例來說,目標函數值可為網路所能服務的用戶數量。資料分析及處理模組123可根據網路資訊計算目標函數值為10。也就是說,網路所能服務的用戶設備之最大數量可為10。假設目標閾值為20,則資料分析及處理模組123可響應於目標函數值小於目標閾值而產生用以增加可服務之用戶數量的優化目標。The optimization objective can be related to multiple parameters. For example, optimization goals may include quality of service and number of users. The system 100 can improve the network according to the optimization objective, thereby improving the service quality of the network and increasing the number of user equipments served by the network. In one embodiment, the data analysis and processing module 123 can calculate an objective function value according to the network information of the network. If the objective function value is smaller than the objective threshold, the data analysis and processing module 123 may determine that the system 100 performs an optimization process for the network, thereby generating an optimization objective. For example, the objective function value may be the number of users that the network can serve. The data analysis and processing module 123 can calculate an objective function value of 10 according to the network information. That is, the maximum number of user equipments that the network can serve may be 10. Assuming that the target threshold is 20, the data analysis and processing module 123 may generate an optimization target for increasing the number of users that can be served in response to the target function value being less than the target threshold.

優化目標可關聯於網路負載平衡、網路干擾抑制、網路移動性優化、網路涵蓋範圍調整、網路組態衝突處理、網路鄰細胞優化、網路天線追蹤用戶、網路傳輸可靠度優化、網路封包暫存和佇列機制優化、網路多輸入多輸出(multi-input multi-output,MIMO)機制優化、網路波束成形機制優化、網路資源分配分級處理、開啟/關閉網路進階資料蒐集、網路設備故障處理、應用服務需求資源分級處理、開啟/關閉應用服務進階資料蒐集或應用服務設備故障處理等項目,但本發明不限於此。Optimization goals can be related to network load balancing, network interference mitigation, network mobility optimization, network coverage adjustment, network configuration conflict handling, network neighbor cell optimization, network antenna tracking users, and network transmission reliability optimization, network packet storage and queuing mechanism optimization, network multi-input multi-output (MIMO) mechanism optimization, network beamforming mechanism optimization, network resource allocation hierarchical processing, on/off Network advanced data collection, network equipment fault handling, application service demand resource classification processing, enabling/disabling application service advanced data collection or application service equipment fault handling and other items, but the present invention is not limited to this.

網路資料可包含接通率(accessibility)、保持性(retainability)、可用性(availability)、移動性(mobility)、完整性(integrity)、使用率(utilization)、射頻訊號紋(RF fingerprint)、組態管理(configuration management,CM)、核心網路資料或傳輸網路資料等資料,但本發明不限於此。Network data can include accessibility, retention, availability, mobility, integrity, utilization, RF fingerprint, group configuration management (configuration management, CM), core network data or transmission network data and other data, but the present invention is not limited to this.

多元資訊可包含服務品質、服務需求、行程表資訊、用戶軌跡或流量等資料,但本發明不限於此。The multiple pieces of information may include data such as service quality, service demand, schedule information, user trajectory or traffic, but the invention is not limited thereto.

設備穩定度資料可包含設備穩定度或設備告警等資料,但本發明不限於此。The device stability data may include data such as device stability or device alarm, but the present invention is not limited thereto.

優化方向或目標選擇模組124可根據優化目標以從演算法池127中的多個演算法中選擇特定的演算法。在一實施例中,優化方向或目標選擇模組124可根據查找表來選擇演算法。舉例來說,演算法池127可儲存優化目標與演算法之間的映射關係。優化方向或目標選擇模組124可根據映射關係而從查找表中選出與優化目標相關聯的演算法。在一實施例中,優化方向或目標選擇模組124可將優化目標輸入至機器學習模型中以根據機器學習模型的輸出決定演算法。演算法例如是多領域聯合優化演算法、故障處理演算法或基本參數設定演算法等,其中多領域聯合優化演算法在運算時可考量優化目標。The optimization direction or goal selection module 124 may select a specific algorithm from a plurality of algorithms in the algorithm pool 127 according to the optimization goal. In one embodiment, the optimization direction or target selection module 124 may select the algorithm according to a look-up table. For example, the algorithm pool 127 may store the mapping relationship between optimization objectives and algorithms. The optimization direction or target selection module 124 may select the algorithm associated with the optimization target from the lookup table according to the mapping relationship. In one embodiment, the optimization direction or target selection module 124 may input the optimization target into the machine learning model to determine the algorithm according to the output of the machine learning model. The algorithm is, for example, a multi-domain joint optimization algorithm, a fault handling algorithm, or a basic parameter setting algorithm, among which the multi-domain joint optimization algorithm may consider the optimization objective during operation.

在決定演算法後,網路及應用服務聯合優化模組125可根據網路資訊以及演算法產生至少一網路配置。網路及應用服務聯合優化模組125可根據規則式(rule-based)方法產生至少一網路配置。具體來說,網路及應用服務聯合優化模組125可根據網路資訊計算至少一預估服務品質和至少一應用需求值。接著,網路及應用服務聯合優化模組125可基於演算法而根據至少一預估服務品質和至少一應用需求值產生目標優化函數,並且根據目標優化函數值來產生至少一網路配置。After determining the algorithm, the network and application service joint optimization module 125 can generate at least one network configuration according to the network information and the algorithm. The network and application service joint optimization module 125 can generate at least one network configuration according to a rule-based method. Specifically, the network and application service joint optimization module 125 can calculate at least one estimated service quality and at least one application demand value according to the network information. Next, the network and application service joint optimization module 125 can generate an objective optimization function according to the at least one estimated service quality and at least one application requirement value based on the algorithm, and generate at least one network configuration according to the objective optimization function value.

假設網路資訊包含多個用戶設備的相關資訊,其中所述多個用戶設備包含至少一用戶設備。網路及應用服務聯合優化模組125可基於演算法而根據網路資訊計算分別對應於多個用戶設備的多個預估服務品質,其中多個預估服務品質可包含對應於至少一用戶設備的至少一預估服務品質。方程式(1)代表一預估服務品質,其中n為用戶設備的索引,

Figure 02_image001
為與用戶設備n相關的第m個應用需求的索引,並且
Figure 02_image003
為對應於演算法的初始網路配置。在一實施例中,網路及應用服務聯合優化模組125可根據機器學習模型計算預估服務品質
Figure 02_image005
Figure 02_image005
…(1) It is assumed that the network information includes related information of a plurality of user equipments, wherein the plurality of user equipments include at least one user equipment. The network and application service joint optimization module 125 can calculate a plurality of estimated service qualities corresponding to a plurality of user equipments according to network information based on an algorithm, wherein the plurality of estimated service qualities can include corresponding to at least one user equipment at least one estimated quality of service. Equation (1) represents an estimated quality of service, where n is the index of the user equipment,
Figure 02_image001
is the index of the mth application requirement related to user equipment n, and
Figure 02_image003
is the initial network configuration corresponding to the algorithm. In one embodiment, the network and application service joint optimization module 125 can calculate the estimated service quality according to the machine learning model
Figure 02_image005
.
Figure 02_image005
…(1)

接著,網路及應用服務聯合優化模組125可基於演算法而根據網路資訊計算對應於至少一預估服務品質的至少一應用需求值。方程式(2)代表對應於方程式(1)的應用需求值。網路及應用服務聯合優化模組125可從演算法池127中選出與演算法相對應的應用需求函數R。在一實施例中,網路及應用服務聯合優化模組125可根據機器學習模型計算應用需求值

Figure 02_image007
Figure 02_image007
…(2) Next, the network and application service joint optimization module 125 may calculate at least one application demand value corresponding to at least one estimated service quality according to the network information based on the algorithm. Equation (2) represents the application demand value corresponding to Equation (1). The network and application service joint optimization module 125 can select the application requirement function R corresponding to the algorithm from the algorithm pool 127 . In one embodiment, the network and application service joint optimization module 125 can calculate the application demand value according to the machine learning model
Figure 02_image007
.
Figure 02_image007
…(2)

網路及應用服務聯合優化模組125可從用戶設備以及應用需求的多個組合中選出符合特定條件的組合之集合,如方程式(3)所示,其中S為符合特定條件的組合之集合,NM為用戶設備以及應用需求的所有組合的集合,

Figure 02_image009
為用戶設備n與應用需求
Figure 02_image001
的組合,
Figure 02_image011
為對應於用戶設備n與應用需求
Figure 02_image001
的服務品質閾值,並且X為應用需求閾值。網路及應用服務聯合優化模組125可從演算法池127中選出與演算法相對應的服務品質閾值
Figure 02_image011
以及應用需求閾值X。
Figure 02_image013
…(3) The network and application service joint optimization module 125 can select a set of combinations that meet specific conditions from multiple combinations of user equipment and application requirements, as shown in equation (3), where S is a set of combinations that meet specific conditions, NM is a collection of all combinations of user equipment and application requirements,
Figure 02_image009
For user equipment n and application requirements
Figure 02_image001
The combination,
Figure 02_image011
To correspond to user equipment n and application requirements
Figure 02_image001
and X is the application demand threshold. The network and application service joint optimization module 125 can select the service quality threshold corresponding to the algorithm from the algorithm pool 127
Figure 02_image011
and the application requirement threshold X.
Figure 02_image013
…(3)

在取得集合S後,網路及應用服務聯合優化模組125可根據集合S產生目標優化函數

Figure 02_image015
,如方程式(4)所示,其中
Figure 02_image017
為對應於網路配置
Figure 02_image019
的目標優化函數值,並且
Figure 02_image021
為轉換函數。網路及應用服務聯合優化模組125可從演算法池127中選出與演算法相對應的轉換函數
Figure 02_image021
。網路及應用服務聯合優化模組125可通過調整轉換函數
Figure 02_image021
來使系統100產生的網路配置能兼具公平性與效能的考量。
Figure 02_image023
…(4) After obtaining the set S, the network and application service joint optimization module 125 can generate an objective optimization function according to the set S
Figure 02_image015
, as shown in equation (4), where
Figure 02_image017
to correspond to the network configuration
Figure 02_image019
the objective optimization function value of , and
Figure 02_image021
is the conversion function. The network and application service joint optimization module 125 can select the conversion function corresponding to the algorithm from the algorithm pool 127
Figure 02_image021
. The network and application service joint optimization module 125 can adjust the conversion function by
Figure 02_image021
This enables the network configuration generated by the system 100 to have both fairness and performance considerations.
Figure 02_image023
…(4)

在一實施例中,轉換函數

Figure 02_image025
。如此,則目標優化函數
Figure 02_image015
的目標優化函數值
Figure 02_image017
可等於滿足服務品質閾值
Figure 02_image011
以及應用需求閾值X的至少一組合的數量(即:集合S中的元素的數量),如方程式(5)所示。
Figure 02_image027
…(5) In one embodiment, the conversion function
Figure 02_image025
. So, the objective optimization function
Figure 02_image015
The objective optimization function value of
Figure 02_image017
may be equal to meeting the quality of service threshold
Figure 02_image011
and the number of at least one combination of the application requirement threshold X (ie: the number of elements in the set S), as shown in equation (5).
Figure 02_image027
…(5)

在一實施例中,轉換函數

Figure 02_image029
。如此,則目標優化函數
Figure 02_image015
的目標優化函數值
Figure 02_image017
可等於滿足服務品質閾值
Figure 02_image011
以及應用需求閾值X的至少一組合的應用需求值總和,如方程式(6)所示。
Figure 02_image031
…(6) In one embodiment, the conversion function
Figure 02_image029
. So, the objective optimization function
Figure 02_image015
The objective optimization function value of
Figure 02_image017
may be equal to meeting the quality of service threshold
Figure 02_image011
and the sum of application demand values for at least one combination of application demand thresholds X, as shown in equation (6).
Figure 02_image031
…(6)

在一實施例中,用戶設備與應用需求的組合可包含組合集合A中的組合以及組合集合B中的組合,並且轉換函數

Figure 02_image033
如方程式(7)所示。如此,則目標優化函數
Figure 02_image015
的目標優化函數值
Figure 02_image017
可等於組合集合A的元素個數
Figure 02_image035
與組合集合B的元素個數
Figure 02_image037
的線性組合,如方程式(8)所示。網路及應用服務聯合優化模組125可通過將方程式(7)中的常數a和常數b調整為相同而使系統100產生的網路配置可公平地兼顧組合集合A和組合集合B中的組合之網路效能。
Figure 02_image039
…(7)
Figure 02_image041
…(8) In one embodiment, the combination of user equipment and application requirements may include combinations in combination set A and combinations in combination set B, and the conversion function
Figure 02_image033
As shown in equation (7). So, the objective optimization function
Figure 02_image015
The objective optimization function value of
Figure 02_image017
Can be equal to the number of elements in the combined set A
Figure 02_image035
and the number of elements in the combined set B
Figure 02_image037
A linear combination of , as shown in Equation (8). The network and application service joint optimization module 125 can adjust the constant a and the constant b in equation (7) to be the same, so that the network configuration generated by the system 100 can fairly take into account the combinations in the combination set A and the combination set B network performance.
Figure 02_image039
…(7)
Figure 02_image041
…(8)

網路及應用服務聯合優化模組125可根據上述的方法取得分別對應於多個網路配置的多個目標優化函數值。舉例來說,網路及應用服務聯合優化模組125可將

Figure 02_image019
Figure 02_image043
Figure 02_image045
、…、
Figure 02_image047
等k個網路配置作為目標優化函數
Figure 02_image015
的自變數(argument)以產生
Figure 02_image017
Figure 02_image049
Figure 02_image051
、…、
Figure 02_image053
等k個目標優化函數值。網路及應用服務聯合優化模組125可根據
Figure 02_image017
Figure 02_image049
Figure 02_image051
、…、
Figure 02_image053
等k個目標優化函數值以從
Figure 02_image019
Figure 02_image043
Figure 02_image045
、…、
Figure 02_image047
等k個網路配置中選出至少一網路配置。 The network and application service joint optimization module 125 can obtain a plurality of objective optimization function values corresponding to a plurality of network configurations according to the above method. For example, the joint network and application services optimization module 125 may
Figure 02_image019
,
Figure 02_image043
,
Figure 02_image045
, …,
Figure 02_image047
Wait for k network configurations as the objective optimization function
Figure 02_image015
the arguments to produce
Figure 02_image017
,
Figure 02_image049
,
Figure 02_image051
, …,
Figure 02_image053
Wait for k objective optimization function values. The network and application service joint optimization module 125 can be based on
Figure 02_image017
,
Figure 02_image049
,
Figure 02_image051
, …,
Figure 02_image053
etc. k objective optimization function values to get from
Figure 02_image019
,
Figure 02_image043
,
Figure 02_image045
, …,
Figure 02_image047
At least one network configuration is selected from among the k network configurations.

在一實施例中,網路及應用服務聯合優化模組125可從

Figure 02_image019
Figure 02_image043
Figure 02_image045
、…、
Figure 02_image047
等k個網路配置中選出對應於最大目標優化函數值
Figure 02_image055
的網路配置
Figure 02_image057
,如方程式(9)所示。
Figure 02_image059
…(9) In one embodiment, the network and application services joint optimization module 125 can be
Figure 02_image019
,
Figure 02_image043
,
Figure 02_image045
, …,
Figure 02_image047
Select the optimal function value corresponding to the maximum objective among the k network configurations
Figure 02_image055
network configuration
Figure 02_image057
, as shown in Equation (9).
Figure 02_image059
…(9)

在一實施例中,網路及應用服務聯合優化模組125可從

Figure 02_image019
Figure 02_image043
Figure 02_image045
、…、
Figure 02_image047
等k個網路配置中選出對應於目標優化函數值
Figure 02_image055
的網路配置
Figure 02_image057
,其中目標優化函數值
Figure 02_image055
大於對應於初始網路配置
Figure 02_image003
的目標優化函數值
Figure 02_image061
,如方程式(10)所示。
Figure 02_image063
…(10) In one embodiment, the network and application services joint optimization module 125 can be
Figure 02_image019
,
Figure 02_image043
,
Figure 02_image045
, …,
Figure 02_image047
Select the value corresponding to the objective optimization function from the k network configurations
Figure 02_image055
network configuration
Figure 02_image057
, where the objective optimization function value
Figure 02_image055
greater than that corresponds to the initial network configuration
Figure 02_image003
The objective optimization function value of
Figure 02_image061
, as shown in Equation (10).
Figure 02_image063
…(10)

在選出網路配置

Figure 02_image057
後,網路及應用服務參數設定模組126可通過收發器130存取網路,並且根據網路配置
Figure 02_image057
來配置網路。舉例來說,網路及應用服務參數設定模組126可通過收發器130通訊連接至諸如網路服務元件、應用服務元件或應用程式介面(application programming interface,API)端點等網路中的元件,並且根據網路配置
Figure 02_image057
來配置所述元件。 Select the network configuration
Figure 02_image057
After that, the network and application service parameter setting module 126 can access the network through the transceiver 130, and according to the network configuration
Figure 02_image057
to configure the network. For example, the web and application service parameter setting module 126 may communicate through the transceiver 130 to elements in the network such as web service elements, application service elements, or application programming interface (API) endpoints. , and according to the network configuration
Figure 02_image057
to configure the element.

儲存媒體120中的各個模組可分別部屬於相同或相異的元件(例如:硬體元件、軟體元件或虛擬元件)。以開放式無線電存取網路(open radio access network,O-RAN)架構為例,圖2根據本發明的一實施例繪示O-RAN架構的示意圖,其中End-to-End為端對端(E2E),OAM為營運管理與維護,SMO為服務管理編排器(service management orchestrator,SMO),Non-RT RIC為非實時網路智能控制器(non-real time radio access network intelligent controller),Near-RT RIC為近實時網路智能控制器(near-real time radio access network controller),O-CU為開放式網路中央單元(O-RAN central unit),O-DU為開放式網路分散單元(O-RAN distributed unit),O-RU為開放式網路無線電單元(O-RAN radio unit),O-Cloud為開放式網路雲端(O-RAN cloud)並且MEC為多接取邊緣運算(multi-access edge computing)。Each module in the storage medium 120 may belong to the same or different components (eg, hardware components, software components or virtual components). Taking an open radio access network (O-RAN) architecture as an example, FIG. 2 is a schematic diagram of an O-RAN architecture according to an embodiment of the present invention, wherein End-to-End is end-to-end (E2E), OAM is operation management and maintenance, SMO is service management orchestrator (SMO), Non-RT RIC is non-real time radio access network intelligent controller, Near -RT RIC is near-real time radio access network controller, O-CU is O-RAN central unit, O-DU is open network decentralized unit (O-RAN distributed unit), O-RU is O-RAN radio unit, O-Cloud is O-RAN cloud and MEC is multi-access edge computing ( multi-access edge computing).

優化程序啟動模組121可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The optimizer startup module 121 may be part of the End-to-End management and control module, SMO, Non-RT RIC, or Near-RT RIC and other components.

資料蒐集模組122可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The data collection module 122 may be part of an End-to-End management and control module, SMO, Non-RT RIC, or Near-RT RIC, among other components.

資料分析及處理模組123可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The data analysis and processing module 123 may be part of the End-to-End management and control module, SMO, Non-RT RIC or Near-RT RIC and other components.

優化方向或目標選擇模組124可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The optimization direction or target selection module 124 may be part of an End-to-End management and control module, SMO, Non-RT RIC or Near-RT RIC, among other components.

網路及應用服務聯合優化模組125可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The network and application service joint optimization module 125 may be part of an End-to-End management and control module, SMO, Non-RT RIC or Near-RT RIC, among other components.

網路及應用服務參數設定模組126可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The network and application service parameter setting module 126 may be part of the End-to-End management and control module, SMO, Non-RT RIC or Near-RT RIC and other components.

資料庫128可部屬於End-to-End管理及控制模組、SMO、Non-RT RIC或Near-RT RIC等元件中。The database 128 may be part of an End-to-End Management and Control Module, SMO, Non-RT RIC or Near-RT RIC, among other components.

前述的用於優化網路之網路資訊的來源可例如是O-RAN OAM、5G RAN網元管理系統、4G RAN網元管理系統、MEC網元管理系統、應用服務參數及指引控制器、傳輸網路管理系統、核心網路網元管理系統或其他外部資料。The aforementioned sources of network information for optimizing the network can be, for example, O-RAN OAM, 5G RAN network element management system, 4G RAN network element management system, MEC network element management system, application service parameters and guidance controllers, transmission Network management system, core network element management system or other external information.

前述的網路服務元件、應用服務元件或API端點等網路元件可包含O-RAN OAM,Non-RT RIC,4G RAN網元管理系統,5G RAN網元管理系統,MEC網元管理系統,傳輸網路管理系統,核心網路網元管理系統,應用服務參數及指引控制器,End-to-End管理及控制模組,在Near-RT RIC上的A1或O1介面端點,或在O-CU或O-DU上的E2或O1介面端點。The aforementioned network elements such as network service elements, application service elements or API endpoints may include O-RAN OAM, Non-RT RIC, 4G RAN network element management system, 5G RAN network element management system, MEC network element management system, Transport Network Management System, Core Network Element Management System, Application Service Parameter and Directive Controller, End-to-End Management and Control Module, A1 or O1 interface endpoint on Near-RT RIC, or on O - E2 or O1 interface endpoint on CU or O-DU.

圖3根據本發明的一實施例繪示優化O-RAN架構下的網路的方法的流程圖。在本實施例中,假設優化程序啟動模組121、資料蒐集模組122、資料分析及處理模組123、優化方向或目標選擇模組124、網路及應用服務聯合優化模組125以及網路及應用服務參數設定模組126部屬於網路元件31,並且演算法池127分散地或集中地部屬於網路元件31的rApp或網路元件32的xApp,其中網路元件31可為Non-RT RIC,並且網路元件32可為Near-RT RIC。多領域資料來源33可包含O-RAN OAM、5G RAN網元管理系統、4G RAN網元管理系統、MEC網元管理系統、應用服務參數及指引控制器、傳輸網路管理系統、核心網路網元管理系統或其他外部資料。網路及應用服務元件管理及控制模組或API端點34可包含O-RAN OAM,Non-RT RIC,4G RAN網元管理系統,5G RAN網元管理系統,MEC網元管理系統,傳輸網路管理系統,核心網路網元管理系統,應用服務參數及指引控制器,End-to-End管理及控制模組,在Near-RT RIC上的A1或O1介面端點,或在O-CU或O-DU上的E2或O1介面端點。3 is a flowchart illustrating a method for optimizing a network under an O-RAN architecture according to an embodiment of the present invention. In this embodiment, it is assumed that the optimization program activation module 121, the data collection module 122, the data analysis and processing module 123, the optimization direction or target selection module 124, the network and application service joint optimization module 125, and the network And the application service parameter setting module 126 belongs to the network element 31, and the algorithm pool 127 belongs to the rApp of the network element 31 or the xApp of the network element 32 distributedly or centrally, wherein the network element 31 can be Non- RT RIC, and network element 32 may be a Near-RT RIC. Multi-domain data sources 33 may include O-RAN OAM, 5G RAN network element management system, 4G RAN network element management system, MEC network element management system, application service parameter and guidance controller, transmission network management system, core network network Meta management system or other external sources. Network and application service element management and control modules or API endpoints 34 may include O-RAN OAM, Non-RT RIC, 4G RAN network element management system, 5G RAN network element management system, MEC network element management system, transport network Road Management System, Core Network Element Management System, Application Service Parameter and Guidance Controller, End-to-End Management and Control Module, A1 or O1 interface endpoint on Near-RT RIC, or on O-CU or E2 or O1 interface endpoint on O-DU.

在步驟S301中,部屬在網路元件31的優化程序啟動模組121可定期觸發或根據事件觸發網路的優化流程之執行。In step S301 , the optimization program activation module 121 deployed in the network element 31 can periodically trigger or trigger the execution of the optimization process of the network according to an event.

在步驟S302中,部屬在網路元件31的資料蒐集模組122可自多領域資料來源33取得網路資訊,其中網路資訊可包含無線電存取網路相關PM資料(例如:用戶速率、用戶數量、基地台空中介面資源使用率、網路訊號品質或用戶回報資料)、信令資料(例如服務品質流量通知的相關資料)或應用服務資料(例如:服務品質、服務使用率、用戶軌跡、分區域形體辨識或數量辨識)。In step S302 , the data collection module 122 attached to the network element 31 can obtain network information from the multi-domain data source 33 , wherein the network information may include radio access network-related PM data (eg, user rate, user quantity, base station air medium resource utilization, network signal quality or user report data), signaling data (such as data related to QoS traffic notifications) or application service data (such as service quality, service utilization, user trajectory, Sub-regional shape identification or quantity identification).

在步驟S303中,資料蒐集模組122可將取得的網路資訊儲存至資料庫128中。In step S303 , the data collection module 122 may store the obtained network information in the database 128 .

在步驟S304中,部屬在網路元件31的資料分析及處理模組123可分析在步驟S302所取得的網路資訊以產生優化目標。舉例來說,資料分析及處理模組123可根據機器學習模型預測各個用戶及服務網路需求流量、預測用戶網路訊號品質或分析各個用戶及應用服務組合。In step S304, the data analysis and processing module 123 attached to the network element 31 can analyze the network information obtained in step S302 to generate an optimization target. For example, the data analysis and processing module 123 can predict network demand traffic of each user and service, predict user network signal quality, or analyze each user and application service combination according to the machine learning model.

在步驟S305中,資料分析及處理模組123可將產生的優化目標儲存至資料庫128中。In step S305 , the data analysis and processing module 123 may store the generated optimization target in the database 128 .

在步驟S306中,部屬在網路元件31的優化方向或目標選擇模組124可根據在步驟S304產生的優化目標等資訊判斷是否需要執行優化,並從演算法池127中選擇相應的演算法。優化方向或目標選擇模組124可將應用服務需求納入考慮,協作應用服務及網路服務,並對參數或指引做綜合調整。例如,當某細胞涵蓋範圍或是某區域將發生網路壅塞而無法滿足QoS要求情形,標註對應優化方向或目標,諸如負載平衡、干擾抑制、涵蓋範圍調整、組態衝突處理、RAN資源分級處理、應用服務分級處理、啟動網路進階資料蒐集或啟動應用服務進階資料蒐集。In step S306 , the optimization direction or target selection module 124 assigned to the network element 31 can determine whether optimization needs to be performed according to the information such as the optimization target generated in step S304 , and select a corresponding algorithm from the algorithm pool 127 . The optimization direction or target selection module 124 can take application service requirements into consideration, cooperate with application services and network services, and make comprehensive adjustments to parameters or guidelines. For example, when a cell coverage area or a certain area will experience network congestion and cannot meet QoS requirements, mark the corresponding optimization direction or goal, such as load balancing, interference suppression, coverage adjustment, configuration conflict processing, RAN resource classification processing , Application service classification processing, start network advanced data collection or start application service advanced data collection.

演算法池127可由部屬在網路元件31的一或多個rApp或部屬在網路元件32的一或多個xApp共同組成。rApp或xApp可單獨地或綜合地支持演算法運作。xApp運作需要資料可以從資料庫128中取得,由Near-RT RIC平台提供,或是透過O-RAN A1-EI(A1-enrichment information)標準介面取得。rApp運作需要資料可以從Non-RT RIC平台或SMO平台取得,或是介接外部資料庫取得。The algorithm pool 127 may be composed of one or more rApps deployed on the network element 31 or one or more xApps deployed on the network element 32 . An rApp or xApp can support algorithmic operations individually or in combination. The data required for the operation of the xApp can be obtained from the database 128, provided by the Near-RT RIC platform, or obtained through the O-RAN A1-EI (A1-enrichment information) standard interface. The data required for rApp operation can be obtained from the Non-RT RIC platform or the SMO platform, or through an external database.

在步驟S307中,優化方向或目標選擇模組124可將選擇的演算法儲存至資料庫128中。In step S307 , the optimization direction or target selection module 124 may store the selected algorithm in the database 128 .

在步驟S308中,部屬在網路元件31的網路及應用服務聯合優化模組125可執行受選演算法,從而根據規則式方法產生至少一網路配置。若是執行多領域聯合優化演算法,網路及應用服務聯合優化模組125可考慮針對目標優化函數執行優化。優化的結果可以指示系統100對網路參數調整建議、對應用服務參數調整建議、對網路設備下達指引(Policy)或是對應用服務下達指引。In step S308, the network and application service joint optimization module 125 deployed in the network element 31 can execute the selected algorithm to generate at least one network configuration according to the rule-based method. If the multi-domain joint optimization algorithm is executed, the network and application service joint optimization module 125 may consider performing optimization for the target optimization function. The optimization result may instruct the system 100 to adjust the network parameters, adjust the application service parameters, issue a policy to the network device, or issue a policy to the application service.

在一實施例中,執行演算法的網路及應用服務聯合優化模組125可與部屬在網路元件31中的rApp相互搭配,藉以取得運算資料並執行運算後產出結果。結果可以包含對網路參數調整建議、對應用服務參數調整建議、對網路設備下達指引或是對應用服務下達指引。In one embodiment, the network and application service joint optimization module 125 that executes the algorithm can cooperate with the rApp deployed in the network element 31 to obtain calculation data and perform the calculation to generate results. The results may include suggestions for network parameter adjustment, suggestions for adjustment of application service parameters, instructions for network devices, or instructions for application services.

在一實施例中,執行演算法的網路及應用服務聯合優化模組125可與部屬在網路元件32中的xApp相互搭配,藉以取得運算資料並執行運算後產出結果。結果可以包含對網路參數調整建議、對應用服務參數調整建議、對網路設備下達指引或是對應用服務下達指引。In one embodiment, the network and application service joint optimization module 125 that executes the algorithm can cooperate with the xApp deployed in the network element 32 to obtain calculation data and perform the calculation to generate results. The results may include suggestions for network parameter adjustment, suggestions for adjustment of application service parameters, instructions for network devices, or instructions for application services.

在一實施例中,執行演算法的網路及應用服務聯合優化模組125可與部屬網路元件31中的rApp以及部屬在網路元件32中的xApp相互搭配,藉以取得運算資料並執行運算後產出結果。結果可以包含對網路參數調整建議、對應用服務參數調整建議、對網路設備下達指引或是對應用服務下達指引。In one embodiment, the network and application service joint optimization module 125 that executes the algorithm can cooperate with the rApp deployed in the network element 31 and the xApp deployed in the network element 32 to obtain calculation data and execute the calculation. post results. The results may include suggestions for network parameter adjustment, suggestions for adjustment of application service parameters, instructions for network devices, or instructions for application services.

在步驟S309中,部屬在網路元件31中的網路及應用服務參數設定模組126可根據取得的網路配置來配置網路及應用服務元件管理及控制模組或API端點34。舉例來說,網路及應用服務參數設定模組126可呼叫Non-RT RIC執行O-RAN A1標準介面網路指引設定(例如:指引Near-RT RIC改變用戶空中介面資源使用優先度),呼叫O-RAN OAM執行O-RAN O1標準介面設定(例如:網路移動參數或基地台發射功率的設定),呼叫Near-RT RIC執行O-RAN E2標準介面參數設定或指引(例如:天線波束方向調整或是用戶排程優先度相關指引)、呼叫應用服務參數及指引控制器執行應用服務標準/客製參數設定或下達服務指引(例如:調整特定應用服務需求頻寬或開啟應用服務節省頻寬傳輸機制)。In step S309, the network and application service parameter setting module 126 deployed in the network element 31 can configure the network and application service element management and control module or the API endpoint 34 according to the obtained network configuration. For example, the network and application service parameter setting module 126 can call the Non-RT RIC to perform the O-RAN A1 standard interface network guide setting (eg, direct the Near-RT RIC to change the user air interface resource usage priority), call O-RAN OAM executes O-RAN O1 standard interface settings (eg: network mobility parameters or base station transmit power settings), and calls Near-RT RIC to execute O-RAN E2 standard interface parameter settings or guidance (eg: antenna beam direction) Adjustment or user scheduling priority related guidelines), call application service parameters and instruct the controller to execute application service standard/custom parameter settings or issue service guidelines (for example: adjust specific application service demand bandwidth or enable application service to save bandwidth transport mechanism).

圖4根據本發明的一實施例繪示系統100的應用情境的示意圖。基地台410的覆蓋範圍411可包含具有應用需求A和應用需求B的用戶設備41、具有應用需求B的用戶設備42以及具有應用需求C的用戶設備43。基地台420的覆蓋範圍421可包含具有應用需求D的用戶設備44、具有應用需求A的用戶設備45以及具有應用需求B的用戶設備46。FIG. 4 is a schematic diagram illustrating an application scenario of the system 100 according to an embodiment of the present invention. The coverage area 411 of the base station 410 may include user equipment 41 with application requirements A and B, user equipment 42 with application requirements B, and user equipment 43 with application requirements C. The coverage area 421 of the base station 420 may include user equipment 44 with application requirement D, user equipment 45 with application requirement A, and user equipment 46 with application requirement B.

假設優化網路的目的在於提升具有高應用需求以及良好QoS的用戶設備的網路品質。系統100可根據前述的方程式(3)找出符合條件的用戶設備以及應用需求之組合的集合S。若集合S僅包含對應於用戶設備41的組合以及對應於用戶設備44的組合,系統100可配置基地台410以及基地台420的網路以改善用戶設備41或用戶設備44的網路使用狀況。It is assumed that the purpose of optimizing the network is to improve the network quality of user equipment with high application requirements and good QoS. The system 100 can find a set S of combinations of user equipments and application requirements that meet the conditions according to the aforementioned equation (3). If the set S only includes the combination corresponding to the user equipment 41 and the combination corresponding to the user equipment 44 , the system 100 can configure the network of the base station 410 and the base station 420 to improve the network usage of the user equipment 41 or the user equipment 44 .

系統100可提高用戶設備41或用戶設備44的資源排程優先度。舉例來說,系統100可對應用服務參數及指引控制器下達指令以提高對應於用戶設備41或用戶設備44之組合的網路頻寬。The system 100 can increase the resource scheduling priority of the user equipment 41 or the user equipment 44 . For example, the system 100 may instruct the application service parameter and direction controller to increase the network bandwidth corresponding to the combination of user equipment 41 or user equipment 44 .

在一實施例中,系統100可通過降低用戶設備42、43、45或46的網路頻寬來提升用戶設備41或44的網路頻寬。In one embodiment, the system 100 can increase the network bandwidth of the user equipment 41 or 44 by reducing the network bandwidth of the user equipment 42 , 43 , 45 or 46 .

在一實施例中,系統100可通過調整基地台410或基地台420的波束以提高用戶設備41或用戶設備44的資源排程優先度。舉例來說,系統100可將基地台410的全向性波束調整為指向用戶設備41的指向性波束。In one embodiment, the system 100 can improve the resource scheduling priority of the user equipment 41 or the user equipment 44 by adjusting the beam of the base station 410 or the base station 420 . For example, the system 100 may adjust the omnidirectional beam of the base station 410 to be a directional beam directed at the user equipment 41 .

圖5根據本發明的一實施例繪示系統100的另一應用情境的示意圖。基地台510的覆蓋範圍511可包含無人機(或巡檢機器人)51、無人機52以及無人機53。基地台520的覆蓋範圍521可包含無人機54以及無人機55。FIG. 5 is a schematic diagram illustrating another application scenario of the system 100 according to an embodiment of the present invention. The coverage area 511 of the base station 510 may include the UAV (or inspection robot) 51 , the UAV 52 and the UAV 53 . The coverage area 521 of the base station 520 may include the drone 54 and the drone 55 .

本實施例主要是要提升飛行在特定區域之無人機的網路品質,以完善地監視特定區域。系統100可根據無人機的位置計算無人機的應用需求值。換句話說,無人機的位置資訊可作為如方程式(2)所示的應用需求函數R的自變數。系統100可將如方程式(3)所示的應用需求閾值X設為0,以使圖5中的所有無人機都屬於集合S。換句話說,所有的無人機都可與目標優化函數值

Figure 02_image017
相關。 This embodiment mainly aims to improve the network quality of the UAV flying in a specific area, so as to monitor the specific area perfectly. The system 100 can calculate the application demand value of the UAV according to the position of the UAV. In other words, the location information of the UAV can be used as the independent variable of the application demand function R as shown in Equation (2). The system 100 may set the application demand threshold X, as shown in equation (3), to 0, so that all drones in FIG. 5 belong to the set S. In other words, all UAVs can be optimized with the objective function value
Figure 02_image017
related.

在一實施例中,系統100可根據如方程式(6)所使用的轉換函數

Figure 02_image029
來計算目標優化函數值
Figure 02_image017
。系統100可根據目標優化函數值
Figure 02_image017
產生網路配置,並可根據網路配置來設定各個基地台或用戶設備的參數,藉以優化網路。 In one embodiment, the system 100 may be based on a transfer function as used in Equation (6)
Figure 02_image029
to calculate the objective optimization function value
Figure 02_image017
. The system 100 can optimize the function value according to the objective
Figure 02_image017
The network configuration is generated, and the parameters of each base station or user equipment can be set according to the network configuration, so as to optimize the network.

在一實施例中,若無人機處於的位置越重要,則無人機的應用需求值越高。相對來說,若無人機處於的位置越不重要,則無人機的應用需求值越低。系統100可根據如方程式(7)所示的轉換函數

Figure 02_image033
來計算目標優化函數值
Figure 02_image017
。方程式(7)中的組合集合A可對應於具有高應用需求值的無人機,並且組合集合B可對應於具有低應用需求值的無人機。系統100可設定方程式(7)中的常數a以及常數b,以使常數a大於常數b,藉以調整無人機對目標優化函數值
Figure 02_image017
的權重。如此,在計算目標優化函數值
Figure 02_image017
時,具有高應用需求之無人機的影響將會高於具有低應用需求之無人機的影響。由系統100根據目標優化函數值
Figure 02_image017
所產生的網路配置將會著重於改善具有高應用需求之無人機的網路使用狀況。 In one embodiment, the more important the location of the drone is, the higher the application demand value of the drone is. Relatively speaking, if the location of the drone is less important, the application demand value of the drone is lower. The system 100 can be based on a transfer function as shown in equation (7)
Figure 02_image033
to calculate the objective optimization function value
Figure 02_image017
. Combination set A in equation (7) may correspond to drones with high application demand values, and combination set B may correspond to drones with low application demand values. The system 100 can set the constant a and the constant b in Equation (7), so that the constant a is greater than the constant b, so as to adjust the value of the UAV to the target optimization function
Figure 02_image017
the weight of. In this way, when calculating the objective optimization function value
Figure 02_image017
, the impact of UAVs with high application requirements will be higher than the impact of UAVs with low application requirements. The function value is optimized by the system 100 according to the objective
Figure 02_image017
The resulting network configuration will focus on improving the network usage of drones with high application requirements.

圖6根據本發明的一實施例繪示一種優化網路的方法的流程圖,其中所述方法可由如圖1所示的系統100實施。在步驟S601中,儲存多個演算法。在步驟S602中,接收網路的網路資訊。在步驟S603中,根據網路資訊決定優化目標。在步驟S604中,根據優化目標以從多個演算法中選擇演算法。在步驟S605中,根據網路資訊以及演算法產生至少一網路配置。在步驟S606中,存取網路,並且根據至少一網路配置來配置網路。FIG. 6 is a flowchart illustrating a method for optimizing a network according to an embodiment of the present invention, wherein the method can be implemented by the system 100 shown in FIG. 1 . In step S601, a plurality of algorithms are stored. In step S602, network information of the network is received. In step S603, the optimization target is determined according to the network information. In step S604, an algorithm is selected from a plurality of algorithms according to the optimization objective. In step S605, at least one network configuration is generated according to the network information and the algorithm. In step S606, the network is accessed, and the network is configured according to at least one network configuration.

綜上所述,本發明具有以下的特點以及功效:本發明可聯合考量多元資料及網路資料,並能對網路及應用服務聯合參數設定或建立指引。本發明可透過多領域聯合資料應用及優化達到更細緻的優化手法。本發明之系統可以自動化完成優化相關工作;本發明可考量應用需求及目標優化函數,準確地針對應用需求配發網路資源,達到綜合考量公平性及運作效能,並且更貼近用戶需求的優化效果;本發明可適用於O-RAN架構,且特別能用在應用服務內容可控度高的專網場域中,諸如智慧工廠、智慧醫療、智慧健康、智慧物流、智慧監控、高清影音串流直播、擴增實境服務、虛擬實境服務或無人機等專網場景中發揮實際效益,大幅改善用戶的體驗品質。To sum up, the present invention has the following features and effects: the present invention can jointly consider multiple data and network data, and can jointly set parameters or establish guidelines for network and application services. The present invention can achieve a more detailed optimization method by combining data application and optimization in multiple fields. The system of the present invention can automatically complete the optimization-related work; the present invention can consider application requirements and target optimization functions, and allocate network resources accurately according to application requirements, so as to comprehensively consider fairness and operation efficiency, and optimize the effect closer to user requirements. The present invention can be applied to O-RAN architecture, and can be used in special network fields with high controllability of application service content, such as smart factories, smart medical care, smart health, smart logistics, smart monitoring, and high-definition video streaming It can play practical benefits in private network scenarios such as live broadcast, augmented reality services, virtual reality services or drones, and greatly improve the quality of user experience.

100:系統100: System

110:處理器110: Processor

120:儲存媒體120: Storage Media

121:優化程序啟動模組121: Optimizer startup module

122:資料蒐集模組122: Data collection module

123:資料分析及處理模組123: Data analysis and processing module

124:優化方向或目標選擇模組124:Optimize the direction or target selection module

125:網路及應用服務聯合優化模組125: Network and application service joint optimization module

126:網路及應用服務參數設定模組126: Network and application service parameter setting module

127:演算法池127: Algorithm Pool

128:資料庫128:Database

130:收發器130: Transceiver

31、32:網路元件31, 32: Network Components

33:多領域資料來源33: Multidisciplinary Sources

34:網路及應用服務元件管理及控制模組或API端點34: Network and application service element management and control modules or API endpoints

410、420、510、520:基地台410, 420, 510, 520: base station

411、421、511、521:覆蓋範圍411, 421, 511, 521: Coverage

41、42、43、44、45、46、51、52、53、54、55:用戶設備41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55: User Equipment

S601、S602、S603、S604、S605、S606:步驟S601, S602, S603, S604, S605, S606: Steps

圖1根據本發明的一實施例繪示一種優化網路的系統的示意圖。 圖2根據本發明的一實施例繪示O-RAN架構的示意圖。 圖3根據本發明的一實施例繪示優化O-RAN架構下的網路的方法的流程圖。 圖4根據本發明的一實施例繪示系統的應用情境的示意圖。 圖5根據本發明的一實施例繪示系統的另一應用情境的示意圖。 圖6根據本發明的一實施例繪示一種優化網路的方法的流程圖。 FIG. 1 is a schematic diagram illustrating a system for optimizing a network according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating an O-RAN architecture according to an embodiment of the present invention. FIG. 3 is a flowchart illustrating a method for optimizing a network under an O-RAN architecture according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating an application context of the system according to an embodiment of the present invention. FIG. 5 is a schematic diagram illustrating another application scenario of the system according to an embodiment of the present invention. FIG. 6 is a flowchart illustrating a method for optimizing a network according to an embodiment of the present invention.

S601、S602、S603、S604、S605、S606:步驟 S601, S602, S603, S604, S605, S606: Steps

Claims (21)

一種優化網路的系統,包括:收發器;儲存媒體,儲存多個模組;以及處理器,耦接所述儲存媒體以及所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括:演算法池,儲存多個演算法;資料蒐集模組,通過所述收發器接收所述網路的網路資訊;資料分析及處理模組,根據所述網路資訊決定優化目標;優化方向或目標選擇模組,根據所述優化目標以從所述多個演算法中選擇演算法;網路及應用服務聯合優化模組,基於所述演算法而根據所述網路資訊計算至少一預估服務品質以及至少一應用需求值,基於所述演算法而根據所述至少一預估服務品質和所述至少一應用需求值產生目標優化函數,根據所述目標優化函數計算分別對應於多個網路配置的多個目標優化函數值,以及響應於所述至少一網路配置對應於所述多個目標優化函數值中的最大目標優化函數值而從所述多個網路配置中選出所述至少一網路配置;以及網路及應用服務參數設定模組,通過所述收發器存取所述網路,並且根據所述至少一網路配置來配置所述網路。 A system for optimizing a network, comprising: a transceiver; a storage medium storing a plurality of modules; and a processor coupled to the storage medium and the transceiver, and accessing and executing the plurality of modules, wherein The multiple modules include: an algorithm pool, storing multiple algorithms; a data collection module, receiving network information of the network through the transceiver; a data analysis and processing module, according to the network The information determines the optimization goal; the optimization direction or goal selection module selects an algorithm from the plurality of algorithms according to the optimization goal; the network and application service joint optimization module, based on the algorithm and according to the Network information calculates at least one estimated service quality and at least one application demand value, generates an objective optimization function according to the at least one estimated service quality and the at least one application demand value based on the algorithm, and optimizes according to the objective The function computes a plurality of objective optimization function values corresponding to a plurality of network configurations, respectively, and calculates a plurality of objective optimization function values from the multiple network configurations in response to the at least one network configuration corresponding to the largest objective optimization function value among the plurality of objective optimization function values. The at least one network configuration is selected from the network configurations; and a network and application service parameter setting module accesses the network through the transceiver, and configures the network according to the at least one network configuration network. 如請求項1所述的系統,其中所述網路及應用服務聯合優化模組更經配置以執行: 響應於所述至少一目標優化函數值大於對應於初始網路配置的目標優化函數值而從所述多個網路配置中選出所述至少一網路配置。 The system of claim 1, wherein the network and application services joint optimization module is further configured to perform: The at least one network configuration is selected from the plurality of network configurations in response to the at least one target optimization function value being greater than the target optimization function value corresponding to the initial network configuration. 如請求項1所述的系統,其中所述網路資訊對應於多個用戶設備,其中所述多個用戶設備包括至少一用戶設備,其中所述網路及應用服務聯合優化模組更經配置以執行:根據所述網路資訊計算分別對應於所述多個用戶設備的多個預估服務品質,其中所述多個預估服務品質包括對應於所述至少一用戶設備的所述至少一預估服務品質;根據所述網路資訊計算對應於所述至少一預估服務品質的所述至少一應用需求值;響應於所述至少一預估服務品質大於或等於服務品質閾值並且所述至少一應用需求值大於應用需求閾值而產生所述至少一用戶設備以及至少一應用需求的至少一組合,其中所述至少一應用需求對應於所述至少一應用需求值;以及根據所述至少一組合產生所述目標優化函數。 The system of claim 1, wherein the network information corresponds to a plurality of user equipments, wherein the plurality of user equipments include at least one user equipment, wherein the network and application services joint optimization module is further configured to perform: calculating, according to the network information, a plurality of estimated quality of service corresponding to the plurality of user equipments, wherein the plurality of estimated service qualities include the at least one quality of service corresponding to the at least one user equipment estimating service quality; calculating the at least one application demand value corresponding to the at least one estimated service quality according to the network information; in response to the at least one estimated service quality being greater than or equal to a service quality threshold and the at least one application requirement value is greater than an application requirement threshold value to generate at least one combination of the at least one user equipment and at least one application requirement, wherein the at least one application requirement corresponds to the at least one application requirement value; and according to the at least one application requirement value Combining produces the objective optimization function. 如請求項3所述的系統,其中所述網路及應用服務聯合優化模組根據所述演算法決定所述服務品質閾值以及所述應用需求閾值,並且根據初始網路配置計算所述多個預估服務品質。 The system of claim 3, wherein the network and application service joint optimization module determines the service quality threshold and the application demand threshold according to the algorithm, and calculates the plurality of thresholds according to an initial network configuration Estimated service quality. 如請求項3所述的系統,其中所述目標優化函數的目標優化函數值等於滿足所述服務品質閾值以及所述應用需求閾值的所述至少一組合的數量,其中所述至少一組合包括所述組合。 The system of claim 3, wherein an objective optimization function value of the objective optimization function is equal to a number of the at least one combination that satisfies the quality of service threshold and the application demand threshold, wherein the at least one combination includes all said combination. 如請求項3所述的系統,其中所述目標優化函數的目標優化函數值等於滿足所述服務品質閾值以及所述應用需求閾值的所述至少一組合的應用需求值總和。 The system of claim 3, wherein an objective optimization function value of the objective optimization function is equal to a sum of application demand values satisfying the at least one combination of the service quality threshold and the application demand threshold. 如請求項3所述的系統,其中所述至少一組合包括第一組合集合中的組合以及第二組合集合中的組合,其中所述目標優化函數的目標優化函數值等於所述第一組合集合的第一元素個數與所述第二組合集合的第二元素個數的線性組合。 The system of claim 3, wherein the at least one combination includes a combination in a first set of combinations and a combination in a second set of combinations, wherein the objective optimization function value of the objective optimization function is equal to the first combination set The linear combination of the first element number of and the second element number of the second combination set. 如請求項1所述的系統,其中所述多個模組更包括:優化程序啟動模組,響應於通過所述收發器接收指令而指示所述資料蒐集模組接收所述網路資訊以執行所述網路的優化流程。 The system of claim 1, wherein the plurality of modules further comprises: an optimizer startup module, in response to receiving an instruction through the transceiver, instructing the data collection module to receive the network information for execution The optimization process of the network. 如請求項1所述的系統,其中所述多個模組更包括:優化程序啟動模組,週期性地指示所述資料蒐集模組接收所述網路資訊以執行所述網路的優化流程。 The system of claim 1, wherein the modules further comprise: an optimization program startup module, which periodically instructs the data collection module to receive the network information to perform an optimization process of the network . 如請求項1所述的系統,其中所述網路資訊包括下列的至少其中之一:無線電存取網路資料、無線電存取網路用戶識別資料、多元資料、元件預設組態資料、網路訊號資料、核心網路資料、傳輸網路參數、外部輸入資料以及優化系統運作組態資料。 The system of claim 1, wherein the network information includes at least one of the following: radio access network data, radio access network user identification data, multivariate data, component default configuration data, network Signal data, core network data, transmission network parameters, external input data and configuration data for optimizing system operation. 如請求項10所述的系統,其中所述無線電存取網路資料包括下列的至少其中之一:一般/進階組態管理、一般/進階性能管理、故障管理、用戶終端回報以及最小路測。 The system of claim 10, wherein the radio access network data includes at least one of: general/advanced configuration management, general/advanced performance management, fault management, user terminal reporting, and minimum path Measurement. 如請求項10所述的系統,其中所述無線電存取網路用戶識別資料包括下列的至少其中之一:無線電存取網路用戶設備定位資料、服務類型、訊務需求以及移動路徑。 The system of claim 10, wherein the radio access network user identification data includes at least one of the following: radio access network user equipment location data, service type, traffic demand, and travel path. 如請求項10所述的系統,其中所述多元資料包括下列的至少其中之一:應用服務品質、物體形狀及數量辨識、場域地圖、物體定位資料以及其他多元資訊。 The system of claim 10, wherein the multivariate data includes at least one of the following: application service quality, object shape and quantity identification, field map, object location data, and other multivariate information. 如請求項10所述的系統,其中所述元件預設組態資料包括下列的至少其中之一:無線電存取網路組態參數、核心網路參數、天線方向、行動網路終端參數以及應用服務參數。 The system of claim 10, wherein the element default configuration data includes at least one of the following: radio access network configuration parameters, core network parameters, antenna directions, mobile network terminal parameters, and applications service parameters. 如請求項10所述的系統,其中所述網路訊號資料包括下列的至少其中之一:射頻訊號掃描以及路測手機。 The system of claim 10, wherein the network signal data includes at least one of the following: a radio frequency signal scan and a drive test mobile phone. 如請求項10所述的系統,其中所述核心網路資料包括下列的至少其中之一:用戶平面功能資料、服務品質管理資料以及核心網路信令資料。 The system of claim 10, wherein the core network data includes at least one of the following: user plane function data, quality of service management data, and core network signaling data. 如請求項10所述的系統,其中所述傳輸網路參數包括下列的至少其中之一:封包佇列狀態參數、封包處理機制參數以及封包處理表現參 數。 The system of claim 10, wherein the transport network parameters include at least one of the following: a packet queue status parameter, a packet processing mechanism parameter, and a packet processing performance parameter number. 如請求項10所述的系統,其中所述外部輸入資料包括下列的至少其中之一:無線電存取網路意向、應用服務意向以及場域限制。 The system of claim 10, wherein the external input data includes at least one of the following: radio access network intent, application service intent, and field restrictions. 如請求項10所述的系統,其中所述優化系統運作組態資料包括下列的至少其中之一:系統設定檔、優化程序觸發條件設定檔以及優化目標設定檔。 The system of claim 10, wherein the optimization system operation configuration data includes at least one of the following: a system configuration file, an optimization program trigger condition configuration file, and an optimization target configuration file. 如請求項1所述的系統,其中所述資料分析及處理模組根據所述網路資訊計算參數,並且根據所述參數決定所述優化目標,其中所述參數包括下列的至少其中之一:網路資料,包括下列的至少其中之一:接通率、保持性、可用性、移動性、完整性、使用率、射頻訊號紋、組態管理、核心網路資料以及傳輸網路資料;多元資訊,包括下列的至少其中之一:服務品質、服務需求、行程表資訊、用戶軌跡以及流量;以及設備穩定度資料,包括下列的至少其中之一:設備穩定度以及設備告警。 The system of claim 1, wherein the data analysis and processing module calculates parameters according to the network information, and determines the optimization goal according to the parameters, wherein the parameters include at least one of the following: Network data, including at least one of the following: Connectivity, Retention, Availability, Mobility, Integrity, Utilization, RF Signal Patterns, Configuration Management, Core Network Data, and Transmission Network Data; Multiple Information , including at least one of the following: service quality, service demand, schedule information, user trajectory, and traffic; and device stability data, including at least one of the following: device stability and device alarms. 一種優化網路的方法,包括:儲存多個演算法;接收所述網路的網路資訊;根據所述網路資訊決定優化目標;根據所述優化目標以從所述多個演算法中選擇演算法; 基於所述演算法而根據所述網路資訊計算至少一預估服務品質以及至少一應用需求值,基於所述演算法而根據所述至少一預估服務品質和所述至少一應用需求值產生目標優化函數,根據所述目標優化函數計算分別對應於多個網路配置的多個目標優化函數值,以及響應於所述至少一網路配置對應於所述多個目標優化函數值中的最大目標優化函數值而從所述多個網路配置中選出所述至少一網路配置;以及存取所述網路,並且根據所述至少一網路配置來配置所述網路。 A method for optimizing a network, comprising: storing a plurality of algorithms; receiving network information of the network; determining an optimization target according to the network information; selecting from the plurality of algorithms according to the optimization target algorithm; At least one estimated service quality and at least one application demand value are calculated according to the network information based on the algorithm, and generated according to the at least one estimated service quality and the at least one application demand value based on the algorithm an objective optimization function, calculating a plurality of objective optimization function values corresponding to a plurality of network configurations according to the objective optimization function, and in response to the at least one network configuration corresponding to the maximum value of the plurality of objective optimization function values selecting the at least one network configuration from the plurality of network configurations by optimizing a function value with an objective; and accessing the network and configuring the network according to the at least one network configuration.
TW110132442A 2021-09-01 2021-09-01 System and method for optimizing network TWI778772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110132442A TWI778772B (en) 2021-09-01 2021-09-01 System and method for optimizing network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132442A TWI778772B (en) 2021-09-01 2021-09-01 System and method for optimizing network

Publications (2)

Publication Number Publication Date
TWI778772B true TWI778772B (en) 2022-09-21
TW202312709A TW202312709A (en) 2023-03-16

Family

ID=84958230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132442A TWI778772B (en) 2021-09-01 2021-09-01 System and method for optimizing network

Country Status (1)

Country Link
TW (1) TWI778772B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822474B (en) * 2022-11-18 2023-11-11 中華電信股份有限公司 Mobile network management system and method for private network
WO2024171062A1 (en) * 2023-02-13 2024-08-22 Amdocs Development Limited System, method, and computer program for a model driven non-real time radio intelligent controller (ric) for o-ran management and orchestration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022211A2 (en) * 2012-07-31 2014-02-06 Dali Systems Co. Ltd. Optimization of traffic load in a distributed antenna system
US20140040473A1 (en) * 2010-08-26 2014-02-06 Adobe Systems Incorporated Optimization scheduler for deploying applications on a cloud
TW201834491A (en) * 2017-03-08 2018-09-16 索尼股份有限公司 Electronic device and method in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140040473A1 (en) * 2010-08-26 2014-02-06 Adobe Systems Incorporated Optimization scheduler for deploying applications on a cloud
WO2014022211A2 (en) * 2012-07-31 2014-02-06 Dali Systems Co. Ltd. Optimization of traffic load in a distributed antenna system
TW201834491A (en) * 2017-03-08 2018-09-16 索尼股份有限公司 Electronic device and method in wireless communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822474B (en) * 2022-11-18 2023-11-11 中華電信股份有限公司 Mobile network management system and method for private network
WO2024171062A1 (en) * 2023-02-13 2024-08-22 Amdocs Development Limited System, method, and computer program for a model driven non-real time radio intelligent controller (ric) for o-ran management and orchestration

Also Published As

Publication number Publication date
TW202312709A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US20240373258A1 (en) Data Sharing Between a Non-RT-RIC and a NEARRT-RIC for Radio Resource Management
Ku et al. Adaptive computation partitioning and offloading in real-time sustainable vehicular edge computing
US11716161B2 (en) Systems and methods for modification of radio access network parameters based on channel propagation models generated using machine learning techniques
US20250203401A1 (en) Artificial Intelligence/Machine Learning Model Management Between Wireless Radio Nodes
US20170272380A1 (en) Virtual Network Function State Scaling
CN114339971A (en) Base station energy saving control method, device, storage medium and electronic device
TWI778772B (en) System and method for optimizing network
CN118202712A (en) Reconfiguration process in wireless communication networks
US20250063429A1 (en) Systems and methods for machine learning based radio resource usage for improving coverage and capacity
Zheng et al. Joint optimization of the deployment and resource allocation of UAVs in vehicular edge computing and networks
WO2023177333A1 (en) Method for performance management in a heterogenous terrestrial network-non- terrestrial network (tn-ntn).
Grasso et al. Tailoring fanet-based 6g network slices in remote areas for low-latency applications
CN117793657A (en) Air-ground integrated network architecture and implementation method based on SDN and AI technology
Gupta et al. RAN Intelligence
US20250081010A1 (en) Group machine learning (ml) models across a radio access network
Li et al. Adaptive handover based on traffic balancing and multi-dimensional collaborative resource management in MEC environment
WO2018205301A1 (en) Mobile computing offload cooperative control system and method
US12284082B1 (en) Systems and methods for radio access network service feasibility assessment
US20250293941A1 (en) Intent based automation for predictive route performance
Yahia et al. Managing the Unmanageable: How to Control Open and Distributed 6G Networks
Wang et al. Mobile Edge Computing in FANET
TWI816074B (en) System and method for integrated access and backhaul management
WO2025212024A1 (en) Ai/ml assisted network slicing
KR20250076314A (en) Cooperative scheduling method of radio and computing resources to ensure application-level performance
WO2025104739A1 (en) Systems and methods for effective conflict resolution between intents

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent