TWI771602B - Guiding system based on prediction behavior and method thereof - Google Patents
Guiding system based on prediction behavior and method thereof Download PDFInfo
- Publication number
- TWI771602B TWI771602B TW108126091A TW108126091A TWI771602B TW I771602 B TWI771602 B TW I771602B TW 108126091 A TW108126091 A TW 108126091A TW 108126091 A TW108126091 A TW 108126091A TW I771602 B TWI771602 B TW I771602B
- Authority
- TW
- Taiwan
- Prior art keywords
- user
- bank
- data
- behavior
- terminal device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 39
- 230000006399 behavior Effects 0.000 claims description 127
- 230000003542 behavioural effect Effects 0.000 claims description 13
- 235000014510 cooky Nutrition 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000007405 data analysis Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000013475 authorization Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Radar Systems Or Details Thereof (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
本發明涉及一種導向系統及其方法,特別是基於預測行為的導向系統及其方法。The present invention relates to a guidance system and method thereof, in particular to a guidance system and method based on predicted behavior.
隨著科技的進步、教育的普及、社會經濟的發展,使得人對於科技產品具有相當高的接受意願與操作能力,如何以科技技術來提供具有優質便利與舒適安全之生活環境,已經成為各產業關注的課題。With the advancement of science and technology, the popularization of education, and the development of social economy, people have a very high willingness to accept and operate technology products. topics of concern.
目前,各個銀行提供其官方網站或應用程式(Application,App)向使用者提供相關業務項目之資訊頁面,使用者通常需要從中點選或搜尋出自身所需的資訊。可見,目前的資訊提供方式比較依賴使用者自行操作,顯然效率不高也不夠智能。At present, each bank provides its official website or application (Application, App) to provide users with information pages of relevant business items, and users usually need to click or search for the information they need. It can be seen that the current information provision method relies more on the user's own operation, which is obviously not efficient and not intelligent enough.
綜上所述,可知先前技術中長期以來一直存在銀行提供資訊的方式比較依賴使用者自行操作的問題,因此有必要提出改進的技術手段,來解決此一問題。To sum up, it can be seen that there has been a long-standing problem in the prior art that the way in which the bank provides information relies on the user's self-operation. Therefore, it is necessary to propose an improved technical means to solve this problem.
本發明揭露一種基於預測行為的導向系統及其方法。The invention discloses a guidance system and method based on predicted behavior.
首先,本發明揭露一種基於預測行為的導向系統,用於使用者操作終端裝置拜訪銀行官方網頁或執行銀行應用程式時,對終端裝置提供個人化的推播通知或彈跳視窗。基於預測行為的導向系統包括:身分識別模組、訪問模組、行為紀錄模組、分類模組、資料模組與商業邏輯模組。身分識別模組用以當終端裝置開始拜訪銀行官方網頁或執行銀行應用程式時,識別使用者的登入識別輪廓(Unique Individual Identifier,UIID);訪問模組用以取得號碼牌(Session ID),以對應該使用者的登入識別輪廓,其中,號碼牌為隨機且不重複使用;行為紀錄模組用以依據號碼牌以及登入識別輪廓持續接收並儲存終端裝置自開始拜訪銀行官方網頁至離開銀行官方網頁、自執行銀行應用程式至關閉銀行應用程式,或者自開始拜訪銀行官方網頁或執行銀行應用程式至停留單一頁面超出一預設時間的行為資料;連接行為紀錄模組的分類模組用以持續接收行為資料,並依據預設條件對行為資料進行分類,以輸出行為分類資料;連接分類模組與身分識別模組的資料模組用以持續接收來自分類模組的行為分類資料,以儲存成對應登入識別輪廓之歷史分類資料,並且依據登入識別輪廓找到並輸出其對應的該些歷史分類資料;連接資料模組的商業邏輯模組用以依據該些歷史分類資料產出使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置。First of all, the present invention discloses a guidance system based on predictive behavior, which is used to provide a personalized push notification or pop-up window to the terminal device when a user operates a terminal device to visit an official bank webpage or execute a bank application program. The guidance system based on predicted behavior includes: identity recognition module, access module, behavior record module, classification module, data module and business logic module. The identity identification module is used to identify the user's login identification profile (Unique Individual Identifier, UIID) when the terminal device starts to visit the official website of the bank or execute the bank application; the access module is used to obtain the number plate (Session ID) to Corresponding to the user's login identification profile, wherein the number plate is random and not reused; the behavior record module is used to continuously receive and store the terminal device according to the number plate and login identification profile from the beginning of visiting the bank's official website to leaving the bank's official website. , from the execution of the bank application to the closing of the bank application, or the behavior data from the start of visiting the bank's official website or the execution of the bank application to staying on a single page for more than a preset time; the classification module connected to the behavior record module is used to continuously receive Behavior data, and classify the behavior data according to the preset conditions to output the behavior classification data; the data module connecting the classification module and the identity recognition module is used to continuously receive the behavior classification data from the classification module and store it as a corresponding Log in the historical classification data of the identification profile, and find and output the corresponding historical classification data according to the login identification profile; the business logic module connected to the data module is used to generate the predicted transaction data of the user according to the historical classification data , to provide a pop-up window or push notification corresponding to the predicted transaction data to the terminal device.
此外,本發明揭露一種基於預測行為的導向方法,用於使用者操作終端裝置拜訪銀行官方網頁或執行銀行應用程式時,對終端裝置提供個人化的推播通知或彈跳視窗,其步驟包括:當終端裝置開始拜訪銀行官方網頁或執行銀行應用程式時,識別使用者的登入識別輪廓;取得號碼牌,以對應該使用者的登入識別輪廓,其中,號碼牌為隨機且不重複使用;依據號碼牌以及登入識別輪廓持續接收並儲存終端裝置自開始拜訪銀行官方網頁至離開銀行官方網頁、自執行銀行應用程式至關閉銀行應用程式,或者自開始拜訪銀行官方網頁或執行銀行應用程式至停留單一頁面超出一預設時間的行為資料;持續接收行為資料,並依據預設條件對行為資料進行分類,以輸出行為分類資料;持續接收行為分類資料,以儲存成對應登入識別輪廓之歷史分類資料,並且依據登入識別輪廓找到並輸出其對應的該些歷史分類資料;以及依據該些歷史分類資料與/或該些行為資料產出使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置。In addition, the present invention discloses a guidance method based on predicted behavior, which is used for providing a personalized push notification or pop-up window to the terminal device when a user operates a terminal device to visit an official bank webpage or execute a bank application program. The steps include: when When the terminal device starts to visit the official website of the bank or execute the bank application, it recognizes the user's login identification profile; obtains a number plate to correspond to the user's login identification profile, wherein the number plate is random and not reused; according to the number plate And the login identification profile continues to receive and store the terminal device from the start of visiting the bank's official website to leaving the bank's official website, from executing the bank's application to closing the bank's application, or from the beginning of visiting the bank's official website or executing the bank's application to staying on a single page. Behavior data of a preset time; continue to receive behavior data, and classify the behavior data according to preset conditions to output behavior classification data; continue to receive behavior classification data to store as historical classification data corresponding to the login identification profile, and based on Log in the identification profile to find and output the corresponding historical classification data; and generate the user's predicted transaction data according to the historical classification data and/or the behavior data, so as to provide a pop-up window or push broadcast corresponding to the predicted transaction data Notify the terminal device.
本發明所揭露之系統與方法如上,與先前技術的差異在於本發明是透過在使用者操作終端裝置拜訪銀行官方網頁或執行銀行應用程式時,識別使用者的登入識別輪廓;取得對應登入識別輪廓的號碼牌;依據號碼牌以及登入識別輪廓持續紀錄使用者的行為資料;依據預設條件對行為資料進行分類,並儲存成對應登入識別輪廓之歷史分類資料;依據登入識別輪廓找到並輸出其對應的該些歷史分類資料;依據該些歷史分類資料與/或該些行為資料產出該使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置。The system and method disclosed in the present invention are as above, and the difference from the prior art is that the present invention identifies the user's login identification profile when the user operates the terminal device to access the bank's official website or executes the bank application program, and obtains the corresponding login identification profile. continuous recording of the user's behavior data according to the number plate and the login identification profile; classify the behavior data according to the preset conditions and store it as historical classification data corresponding to the login identification profile; find and output the corresponding login identification profile according to the login identification profile The historical classification data of the user; the predicted transaction data of the user is generated according to the historical classification data and/or the behavior data, so as to provide a pop-up window or push notification corresponding to the predicted transaction data to the terminal device.
透過上述的技術手段,本發明可以達到提升使用者體驗之技術功效。Through the above-mentioned technical means, the present invention can achieve the technical effect of improving user experience.
在說明本發明所揭露之基於預測行為的導向系統及其方法之前,先對本發明所自行定義的名詞作說明,本發明所述的基於預測行為的導向系統所包含的各個模組以及銀行後端系統可以利用各種方式來實現,包含軟體、硬體、韌體或其任意組合。例如,在某些實施方式中,行動裝置可以利用軟體和/或硬體來實現,本發明的範圍在此方面不受限制。在實施中提出的技術使用軟體或韌體可以被儲存在機器可讀儲存媒體上,例如:唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁盤儲存媒體、光儲存媒體、快閃記憶體裝置等等,並且可以由一個或多個通用或專用的可程式化微處理器執行。Before describing the predictive behavior-based guidance system and the method disclosed in the present invention, the terms defined by the present invention will be described first, the modules included in the predictive behavior-based guidance system of the present invention and the back-end of the bank The system can be implemented in various ways, including software, hardware, firmware, or any combination thereof. For example, in some embodiments, the mobile device may be implemented using software and/or hardware, and the scope of the present invention is not limited in this regard. Software or firmware using the techniques proposed in the implementation may be stored on machine-readable storage media, such as: read only memory (ROM), random access memory (RAM), disk storage media, optical storage media, flash storage media Flash memory devices, etc., and may be executed by one or more general purpose or special purpose programmable microprocessors.
本發明所述的各個模組之間可透過由有線或無線的方式相互連通,以進行訊息與資料的傳遞。本發明所述的基於預測行為的導向系統與銀行後端系統之間可透過網路通訊系統相互連通,例如:行動通訊網路、網際網路、局域網路、廣域網路和/或無線網路,以進行訊息與資料的傳遞。The modules described in the present invention can be connected to each other in a wired or wireless manner, so as to transmit information and data. The predictive behavior-based guidance system of the present invention and the bank's back-end system can communicate with each other through a network communication system, such as a mobile communication network, the Internet, a local area network, a wide area network and/or a wireless network, so as to To transmit information and data.
以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。The embodiments of the present invention will be described in detail below in conjunction with the drawings and examples, so as to fully understand and implement the implementation process of how the present invention applies technical means to solve technical problems and achieve technical effects.
請先參閱「第1圖」與「第2圖」,「第1圖」為本發明基於預測行為的導向系統之一實施例系統方塊圖,「第2圖」為「第1圖」之基於預測行為的導向系統執行基於預測行為的導向方法之一實施例方法流程圖。基於預測行為的導向系統100可用於使用者操作終端裝置(未繪製)拜訪銀行官方網頁或執行銀行應用程式時,對終端裝置提供個人化的推播通知或彈跳視窗,提升使用者體驗。Please refer to "Fig. 1" and "Fig. 2" first, "Fig. 1" is a system block diagram of an embodiment of the guidance system based on predictive behavior of the present invention, and "Fig. 2" is the basis of "Fig. 1" A method flow chart of an embodiment of a predictive behavior-based guidance system for executing a predictive behavior-based guidance method. The predictive behavior-based guidance system 100 can be used to provide a personalized push notification or pop-up window to the terminal device to improve user experience when a user operates a terminal device (not shown) to visit an official bank webpage or execute a bank application.
在本實施例中,基於預測行為的導向系統100可包括:身分識別模組110、訪問模組120、行為紀錄模組130、分類模組140、資料模組150與商業邏輯模組160。其中,分類模組140可連接行為紀錄模組130,資料模組150可分別連接分類模組140與身分識別模組110,商業邏輯模組160可連接資料模組150。In this embodiment, the guidance system 100 based on predicted behavior may include: an identity recognition module 110 , an
身分識別模組110可用以當終端裝置開始拜訪銀行官方網頁或執行銀行應用程式時,識別使用者的登入識別輪廓(即步驟210)。更詳細地說,當使用者操作終端裝置以登入狀態拜訪銀行官方網頁或執行銀行應用程式時,以使用者的帳號作為使用者的登入識別輪廓(即使用者的身分);以及當使用者操作終端裝置以未登入狀態拜訪銀行官方網頁或執行銀行應用程式時,依據儲存於終端裝置的瀏覽資訊(Cookie)識別使用者的登入識別輪廓。換句話說,身分識別模組110可利用使用者的帳號或者儲存於終端裝置的瀏覽資訊識別使用者的登入識別輪廓。The identification module 110 can be used to identify the user's login identification profile when the terminal device starts to visit the official website of the bank or execute the bank application (ie, step 210 ). More specifically, when the user operates the terminal device to visit the official bank website or execute the bank application in the logged-in state, the user's account number is used as the user's login identification profile (ie the user's identity); and when the user operates When the terminal device is not logged in to visit the official website of the bank or execute the bank application, the user's login identification profile is identified according to the browsing information (Cookie) stored in the terminal device. In other words, the identity recognition module 110 can use the user's account or the browsing information stored in the terminal device to recognize the user's login profile.
訪問模組120可用以取得號碼牌(Session ID),以對應該使用者的登入識別輪廓,其中,號碼牌為隨機且不重複使用(即步驟220)。更詳細地說,號碼牌為不會重複的流水序號,當身分識別模組110識別使用者的登入識別輪廓且訪問模組120取得對應該使用者的登入識別輪廓之號碼牌後,基於預測行為的導向系統100可知本次拜訪銀行官方網頁或執行銀行應用程式之使用者的登入識別輪廓及其所取得的號碼牌,因此,基於預測行為的導向系統100可從使用者的登入識別輪廓及其取得號碼牌的數量,得知使用者拜訪銀行官方網頁或執行銀行應用程式的次數。若基於預測行為的導向系統100有紀錄使用者每一次拜訪銀行官方網頁或執行銀行應用程式的時間,即可得知使用者拜訪銀行官方網頁或執行銀行應用程式的頻率。The
行為紀錄模組130可用以依據號碼牌以及登入識別輪廓持續接收並儲存終端裝置自開始拜訪銀行官方網頁至離開銀行官方網頁、自執行銀行應用程式至關閉銀行應用程式,或者自開始拜訪銀行官方網頁或執行銀行應用程式至停留單一頁面超出一預設時間的行為資料(即步驟230)。換句話說,行為紀錄模組130可用以紀錄使用者本次拜訪銀行官方網頁或執行銀行應用程式的瀏覽歷程(停留單一頁面超出預設時間時,行為紀錄模組130可自動終止記錄瀏覽歷程)。其中,瀏覽歷程包括多個行為資料,即行為紀錄模組130可依據設定的時間長度分段記錄瀏覽歷程(瀏覽歷程的每一段對應一個行為資料),每一行為資料可包括至少一操作行為、終端裝置所在的經緯度、每一操作行為的執行時間、終端裝置的類型、終端裝置的作業系統版本與終端裝置的瀏覽器版本,舉例而言,操作行為可為點擊匯率試算表格或站內字詞搜索,上述預設時間以及設定的時間長度可依據實際需求進行調整。The behavior record module 130 can be used to continuously receive and store the terminal device according to the number plate and the login identification profile from the beginning of visiting the bank's official website to leaving the bank's official website, from executing the bank application to closing the bank's application, or from the beginning of visiting the bank's official website. Or execute the bank application to stay on a single page for more than a preset time of behavior data (ie, step 230 ). In other words, the behavior record module 130 can be used to record the browsing history of the user visiting the bank's official website or executing the bank application (when staying on a single page for more than a preset time, the behavior record module 130 can automatically stop recording the browsing history) . The browsing process includes a plurality of behavior data, that is, the behavior recording module 130 can record the browsing process in segments according to the set time length (each segment of the browsing process corresponds to one behavior data), and each behavior data can include at least one operation behavior, The latitude and longitude where the terminal device is located, the execution time of each operation behavior, the type of the terminal device, the operating system version of the terminal device, and the browser version of the terminal device. For example, the operation behavior can be click on the exchange rate spreadsheet or search for words on the site , the preset time and the set time length can be adjusted according to actual needs.
分類模組140可用以持續接收行為資料,並依據預設條件對行為資料進行分類,以輸出行為分類資料(即步驟240)。在本實施例中,由於行為紀錄模組130可用以紀錄使用者每一次拜訪銀行官方網頁或執行銀行應用程式的瀏覽歷程,而使用者的身份之識別有兩種:使用者的帳號或者儲存於終端裝置的瀏覽資訊,因此,基於預測行為的導向系統100可分別基於使用者的帳號或者儲存於終端裝置的瀏覽資訊識別針對其對應的行為資料進行不同預設條件之分類,以輸出行為分類資料。The classification module 140 can be used to continuously receive the behavior data, and classify the behavior data according to a preset condition to output the behavior classification data (ie, step 240 ). In this embodiment, since the behavior record module 130 can be used to record the browsing history of the user visiting the official bank website or executing the bank application, the user's identity can be identified in two ways: the user's account number or the user's account stored in The browsing information of the terminal device, therefore, the guidance system 100 based on the predicted behavior can classify the corresponding behavior data according to different preset conditions based on the user's account or the browsing information stored in the terminal device, respectively, to output the behavior classification data. .
當識別使用者的登入識別輪廓係基於使用者的帳號時,分類模組140可將行為資料依事物的特徵進行分類。舉例而言,預設條件可包括「表格」、「訪問個體」、「個體地域」、「交易目標」與「搜索目標」五大項目,其中,「表格」係為使用者操作終端裝置進行業務申辦時填寫過程之分類項目,可包括「表格識別」、「欄位識別」、「欄位互動」與「表格送出」等細項;「訪問個體」係為使用者的身分與屬性之分類項目,可包括「使用者的登入識別輪廓」與「個體屬性」等細項;「個體地域」係為使用者操作終端裝置時其所在地與時間的分類項目,可包括「終端裝置的IP位址」、「終端裝置所在的經緯度」、「終端裝置所在的城市」與「每一操作行為的執行時間」等細項;「交易目標」係為銀行行銷或可交易目標的分類項目,可包括「外幣」、「外匯」與「儲蓄型保險」等細項;「搜索目標」係為使用者搜索目標的分類項目,可包括「搜索媒體(即作業系統版本、瀏覽器版本與/或載具類型)」與「搜索字詞」等細項,但本實施例並非用以限定本發明,可依據實際需求調整預設條件。在本實施例中,分類模組140可將對應該使用者的帳號之每一行為資料基於這五大項目及其細項目進行分類,以對應輸出一行為分類資料。一般而言,每一行為資料一定會包括對應「訪問個體」與「個體地域」之資料,而是否有包括對應「表格」、「交易目標」與「搜索目標」之資料需依據操作行為與預設條件之設定而定。When the login identification profile that identifies the user is based on the user's account number, the classification module 140 can classify the behavioral data according to the characteristics of the thing. For example, the preset conditions may include five items: "form", "visiting individual", "individual region", "transaction target" and "search target", wherein, "form" is for users to operate the terminal device to apply for business The classification items of the filling process can include details such as "Form Recognition", "Field Recognition", "Field Interaction" and "Form Sending"; It can include details such as "user's login identification profile" and "individual attribute"; "individual region" is the classification item of the user's location and time when operating the terminal device, and can include "the IP address of the terminal device", Details such as "latitude and longitude where the terminal device is located", "city where the terminal device is located", and "execution time of each operation behavior"; "transaction target" is a classification item of bank marketing or tradable target, which may include "foreign currency" , "Foreign Exchange" and "Savings Insurance"; "Search Target" is the classification item of the user's search target, which may include "Search Media (ie operating system version, browser version and/or vehicle type)" However, this embodiment is not intended to limit the present invention, and the preset conditions can be adjusted according to actual needs. In this embodiment, the classification module 140 can classify each behavior data of the user's account based on the five major items and its detailed items, so as to output a corresponding behavior classification data. Generally speaking, each behavioral data must include data corresponding to "visiting individuals" and "individual regions", and whether to include data corresponding to "forms", "transaction targets" and "search targets" depends on operational behaviors and predictions. Depends on the setting of the conditions.
當識別使用者的登入識別輪廓係基於儲存於終端裝置的瀏覽資訊時,分類模組140可先將每一行為資料依「系統事件」及「客製化事件」進行情境屬性設定,再依據「行為物件」、「內部搜尋物件」、「目標物件」、「推播物件」及「輪廓物件」等設定值進行分類,以對應輸出行為分類資料,其中,每一設定值可包括多個細項,例如:「行為物件」可包括「頁面載入」、「變數編號」及「變數值」等細項,「內部搜尋物件」可包括「頁面載入」及「內部搜尋名稱屬性」等細項,「目標物件」可包括「頁面載入」、「欄位互動」、「欄位值」、「物件編號」及「目標名稱」等細項,「輪廓物件」可包括「使用者的登入識別輪廓」等細項,「推播物件」可包括「物件階層編號」、「物件聯結」、「物件類型」、「推播名稱」、「推播地點」及「推播分類」等細項。換句話說,在本實施例中,預設條件包括兩大項目(即「系統事件」及「客製化事件」)與五個設定值及其細項,但本實施例並非用以限定本發明,可依據實際需求調整預設條件。而此預設條件之分類結果可作為網站管理人員或產品設計人員深化解析使用者之意圖,舉例而言,當網站管理人員或產品設計人員欲了解使用者搜索關鍵字字詞,在內部搜尋物件中,需先找尋系統事件中頁面載入及內部搜尋名稱屬性(即頁面搜索的物件編號或名稱),資訊流會依續將符合的條件串流至搜索物件,便可進行關鍵字詞及搜索次數呈現。When the login identification profile for identifying the user is based on the browsing information stored in the terminal device, the classification module 140 can first set the context attribute of each behavior data according to the "system event" and "customized event", and then according to the " Behavior Objects, Internal Search Objects, Target Objects, Push Objects, and Outline Objects are classified to correspond to output behavior classification data. Each setting value can include multiple items. , for example: "Behavior Object" can include details such as "Page Load", "Variable ID" and "Variable Value", and "Internal Search Object" can include details such as "Page Load" and "Internal Search Name Attribute" , "Target Object" may include details such as "Page Load", "Field Interaction", "Field Value", "Object ID" and "Target Name", and "Outline Object" may include "User's Login ID" Outline and other details, and "Push Object" can include such details as "Object Hierarchy Number", "Object Link", "Object Type", "Push Name", "Push Location" and "Push Category". In other words, in this embodiment, the preset conditions include two major items (namely, “system events” and “customized events”) and five setting values and their detailed items, but this embodiment is not intended to limit the The invention can adjust the preset conditions according to actual needs. The classification result of this preset condition can be used by website administrators or product designers to further analyze the user's intention. , you need to find the page loading and internal search name attributes in the system event (that is, the object number or name of the page search), the information flow will continue to stream the matching conditions to the search object, and then you can perform keyword and search number of times presented.
需注意的是,在本實施例中,基於使用者的帳號或者儲存於終端裝置的瀏覽資訊識別針對其對應的行為資料進行不同預設條件之分類,可用以針對不同客戶(既有客戶,即使用者的帳號作為使用者的登入識別輪廓,以及新戶,即儲存於終端裝置的瀏覽資訊作為使用者的登入識別輪廓)進行行為資料分類,以供後續數據分析,進而針對官方網頁或應用程序之設計進行調整,以提升使用者(既有客戶與/或新戶)的體驗。It should be noted that, in this embodiment, based on the user's account or the browsing information stored in the terminal device, different preset conditions are used to classify the corresponding behavior data, which can be used for different customers (existing customers, namely The user's account is used as the user's login identification profile, and the new account (that is, the browsing information stored in the terminal device is used as the user's login identification profile) to classify the behavior data for subsequent data analysis, and then target the official webpage or application. The design is adjusted to enhance the user (existing and/or new) experience.
資料模組150可用以持續接收行為分類資料,以儲存成對應登入識別輪廓之歷史分類資料,並且依據登入識別輪廓找到並輸出其對應的該些歷史分類資料(即步驟250)。換句話說,資料模組150可將對應使用者的登入識別輪廓之該些歷史分類資料輸出予商業邏輯模組160。The
商業邏輯模組160可用以依據該些歷史分類資料與/或該些行為資料產出使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置(即步驟260)。換句話說,商業邏輯模組160可利用使用者過去與當前的瀏覽歷程估計使用者之下一步可能進行的操作行為,產出使用者之預測交易資料,並透過推播通知或彈跳視窗方式導引使用者至商業邏輯模組160所估計使用者預計進行的操作行為之相關頁面,以提升使用者的體驗,解決先前技術所存在因銀行提供資訊的方式比較依賴使用者自行操作所造成效率不高也不夠智能的問題。其中,商業邏輯模組160利用使用者過去與當前的瀏覽歷程估計使用者預計進行的操作行為之方法可包含以下三種方式。The business logic module 160 can be used to generate the predicted transaction data of the user according to the historical classification data and/or the behavior data, so as to provide a pop-up window or push notification corresponding to the predicted transaction data to the terminal device (ie, step 260 ). . In other words, the business logic module 160 can use the user's past and current browsing history to estimate the user's next possible operation behavior, generate the user's predicted transaction data, and guide the user through push notifications or pop-up windows. The user is directed to the relevant page of the expected operation behavior estimated by the business logic module 160, so as to improve the user's experience and solve the inefficiency caused by the fact that the method of providing information by the bank relies on the user's own operation in the prior art. Too high is not smart enough. The method for the business logic module 160 to use the user's past and current browsing history to estimate the user's expected operation behavior may include the following three methods.
第一種方式如下所述:預設條件可包括交易目標項目,商業邏輯模組160可依據交易目標項目統計對應使用者的身份之該些歷史分類資料中不同交易目標出現的次數,以調整每一交易目標對應的加權指數(即交易目標出現的次數越多,該交易目標對應的加權指數越大),當某一該交易目標對應的加權指數超出一預定值時,透過推播通知或彈跳視窗之方式導引使用者至該交易目標的對應頁面(即彈跳視窗或推播通知之內容包括該交易目標對應的頁面之連結,以供使用者點選該連結而導向該頁面)。需注意的是,由於預設條件可包括交易目標項目,因此,此方式適用於使用者操作終端裝置以登入狀態拜訪銀行官方網頁或執行銀行應用程式時的頁面導向。The first method is as follows: the preset condition may include a transaction target item, and the business logic module 160 may count the number of occurrences of different transaction targets in the historical classification data corresponding to the user's identity according to the transaction target item, so as to adjust each transaction target item. The weighted index corresponding to a trading target (that is, the more times the trading target appears, the greater the weighted index corresponding to the trading target). The window method guides the user to the corresponding page of the transaction target (that is, the content of the pop-up window or push notification includes the link of the page corresponding to the transaction target, so that the user can click the link to navigate to the page). It should be noted that, since the preset conditions may include transaction target items, this method is suitable for page guidance when the user operates the terminal device to access the official website of the bank or execute the bank application in the logged-in state.
此外,此方式也可應用於使用者下一次操作該終端裝置開始拜訪銀行官方網頁或執行銀行應用程式時的頁面導向,更詳細地說,商業邏輯模組160可找到並儲存出現的次數最高/加權指數最大之交易目標的頁面,使基於預測行為的導向系統100在該使用者下一次操作該終端裝置開始拜訪銀行官方網頁或執行銀行應用程式時,直接導向該頁面(即基於預測行為的導向系統100在該使用者下一次操作該終端裝置開始拜訪銀行官方網頁或執行銀行應用程式後,先進行使用者的身份辨識,再將該終端裝置的畫面直接導向對應出現的次數最高/加權指數最大之交易目標的頁面)。In addition, this method can also be applied to the page guidance when the user operates the terminal device next time to visit the official website of the bank or execute the bank application program. More specifically, the business logic module 160 can find and store the highest occurrence/ The page of the transaction target with the largest weighted index enables the predictive behavior-based guidance system 100 to directly lead to this page when the user operates the terminal device next time to visit the official bank website or execute the bank application (that is, the predictive behavior-based guidance After the user operates the terminal device next time to visit the bank's official website or execute the bank application program, the system 100 first performs the user's identification, and then directly guides the screen of the terminal device to the highest number of occurrences/maximum weighting index. the transaction target page).
第二種方式如下所述:基於預測行為的導向系統100還可包括學習模組170,連接行為紀錄模組130與商業邏輯模組160,用以依據該使用者的登入識別輪廓對應的該些行為資料取得該使用者較常使用的前N名瀏覽路徑,以使商業邏輯模組160依據該使用者較常使用的該前N名瀏覽路徑產出該使用者之預測交易資料(即商業邏輯模組160可用以依據該些行為資料產出該使用者之預測交易資料),以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置,其中,N為大於零的正整數。換句話說,商業邏輯模組160可依據該使用者較常使用的該前N名瀏覽路徑及當前終端裝置的畫面(可基於最新的該歷史分類資料或行為資料所包括交易目標或頁面載入等細項判斷)評估使用者接下來可能進行的操作行為,進而依據評估結果找到對應的頁面,以在彈跳視窗或推播通知之內容包括該頁面之連結,以供使用者點選該連結而導向該頁面。需注意的是,此方式適用於使用者操作終端裝置以登入狀態或未登入狀態拜訪銀行官方網頁或執行銀行應用程式時的頁面導向。The second method is as follows: the guidance system 100 based on the predicted behavior may further include a
第三種方式可結合第一種與第二種方式,即商業邏輯模組160可依據該使用者的登入識別輪廓對應的該些歷史分類資料中不同交易目標出現的次數與其較常使用的該前N名瀏覽路徑產出該使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置。需注意的是,此方式適用於使用者操作終端裝置以登入狀態拜訪銀行官方網頁或執行銀行應用程式時的頁面導向。The third method can be combined with the first method and the second method, that is, the business logic module 160 can be based on the number of occurrences of different transaction objects in the historical classification data corresponding to the user's login identification profile and the more commonly used The top N browsing paths generate the predicted transaction data of the user, so as to provide a pop-up window or push notification corresponding to the predicted transaction data to the terminal device. It should be noted that this method is suitable for page guidance when the user operates the terminal device to access the official website of the bank or execute the bank application in the logged-in state.
透過上述該些步驟,即可依據使用者現行或過往拜訪銀行官方網頁或執行銀行應用程式之操作行為,預測其欲使用之目標物件,提供相關頁面予使用者,使其在最少操作步驟的情況下(即最短路徑時間內),將使用者所操作的終端裝置之顯示頁面導向其目標物件之頁面,可避免使用者因複雜、冗長、繁瑣的操作流程,中斷、放棄使用的可能性,以提升使用率及使用者良好體驗。Through the above steps, users can predict the target object they want to use according to the user's current or past operation behavior of visiting the bank's official website or executing the bank's application, and provide relevant pages to the user, so that the user can perform the least operation steps. (ie, within the shortest path time), direct the display page of the terminal device operated by the user to the page of the target object, so as to avoid the possibility of interruption and abandonment of use by the user due to complicated, lengthy and cumbersome operation procedures, and Improve usage rate and good user experience.
在本實施例中,當預測交易資料包括需臨櫃辦理之業務項目時,商業邏輯模組160可連線銀行後端系統(未繪製)並基於最新的該歷史分類資料所包括的該終端裝置之所在位置資訊(因為行為紀錄模組130持續記錄瀏覽歷程, 而每一行為資料一定會包括對應「個體地域」之資料,因此,最新生成的歷史分類資料之終端裝置所在的經緯度(即該終端裝置之所在位置資訊)即為當前終端裝置所在的位置)找到該終端裝置附近的服務據點、每一該服務據點目前等待人數與辦理該業務所需的證件及所需時間,以使該推播通知或該彈跳視窗之顯示內容包括需臨櫃辦理之該業務項目、該終端裝置附近的服務據點、每一該服務據點目前等待人數與辦理該業務所需的證件及所需時間。其中,銀行後端系統係為掌握各個服務據點的地址以及當前服務大廳的等待人數之系統,且具有辦理銀行每一項業務的平均花費時間以及所需的證件之資料庫。因此,商業邏輯模組160可連線銀行後端系統取得其評估使用者欲進行臨櫃辦理之業務的相關資訊(辦理該業務所需的證件及所需時間)以及找到該終端裝置附近的服務據點、每一該服務據點目前等待人數,使該推播通知或該彈跳視窗之顯示內容包括需臨櫃辦理之該業務項目、該終端裝置附近的服務據點、每一該服務據點目前等待人數與辦理該業務所需的證件及所需時間,當商業邏輯模組160評估使用者欲進行臨櫃辦理之業務無誤時,可讓使用者在當下決定是否前往附近的服務據點辦理該業務,進而提供使用者良好的體驗。In this embodiment, when the predicted transaction data includes business items that need to be handled over the counter, the business logic module 160 can be connected to the bank's back-end system (not shown) and based on the terminal device included in the latest historical classification data (because the behavior record module 130 continuously records the browsing history, and each behavior data must include the data corresponding to the "individual region", therefore, the latitude and longitude of the terminal device of the newly generated historical classification data (that is, the terminal The location information of the device) is the location of the current terminal device) to find the service bases near the terminal device, the current number of people waiting for each service base, the certificates and the required time for handling the business, so that the push broadcast The notification or the displayed content of the pop-up window includes the business item that needs to be handled at the counter, the service locations near the terminal device, the current number of people waiting at each service location, the certificates required for the business, and the required time. Among them, the bank's back-end system is a system that grasps the address of each service point and the number of people waiting in the current service hall, and has a database of the average time spent for each transaction of the bank and the required documents. Therefore, the business logic module 160 can connect to the bank's back-end system to obtain relevant information for evaluating the business that the user wants to perform over-the-counter (the certificates and time required to handle the business) and find services near the terminal device. Base, the current number of people waiting at each service base, so that the content displayed in the push notification or the pop-up window includes the business item that needs to be handled at the counter, the service bases near the terminal device, the current number of people waiting at each service base, and When the business logic module 160 evaluates that the business that the user wants to perform over-the-counter is correct, it can allow the user to decide whether to go to a nearby service location to handle the business at the moment, and then provide Good user experience.
此外,推播通知或彈跳視窗之顯示內容還可提供使用者選擇是否前往附近的服務據點辦理該業務,若使用者選擇前往附近的服務據點辦理該業務,可提供使用者線上取號之服務;若使用者放棄前往附近的服務據點辦理該業務,可提供後續進行數據分析,判斷是否很多使用者放棄臨櫃辦理,進而使銀行考慮將該項業務的辦理改為線上處理之可能性。In addition, the display content of the push notification or pop-up window can also provide the user with the option of whether to go to a nearby service location to handle the business, and if the user chooses to go to a nearby service location to handle the business, the user can get an online number service; If users give up going to a nearby service location to handle the business, follow-up data analysis can be provided to determine whether many users give up on-the-counter processing, so that the bank may consider the possibility of changing the processing of the business to online processing.
在本實施例中,基於預測行為的導向系統100為了提升使用者的體驗,除了利用上述預測使用者的操作行為以外,還可藉由既有客戶與/或新戶的歷史分類資料與/或瀏覽歷程(即行為資料)之數據分析,取得官方網頁或應用程序之設計可加以調整之處,進一步提升使用者的體驗。在本實施例中,可基於既有客戶與/或新戶的歷史分類資料與/或瀏覽歷程(即行為資料)針對流量來源、載具、流量、功能頁面、最新消息及廣告點擊與交易轉換率等方面進行分析,詳細的分析說明如下所示,但實際數據分析的項目可針對實際需求進行調整,不以本實施例之流量來源、載具、流量、功能頁面、最新消息及廣告點擊與交易轉換率的分析為限。In this embodiment, in order to improve the user's experience, the guidance system 100 based on the predicted behavior can use the above-mentioned predicted user's operation behavior, and can also use the historical classification data of existing customers and/or new customers and/or The data analysis of browsing history (that is, behavioral data), to obtain the design of the official website or application can be adjusted to further enhance the user experience. In this embodiment, based on the historical classification data and/or browsing history (ie behavior data) of existing customers and/or new customers, the conversion of traffic sources, vehicles, traffic, function pages, latest news, and advertisement clicks and transactions can be performed. The detailed analysis is as follows, but the actual data analysis items can be adjusted according to actual needs, and the traffic sources, vehicles, traffic, function pages, latest news and advertisement clicks in this embodiment are not related to Analysis of transaction conversion rates is limited.
在流量來源分析之部分,每一行為資料可包括終端裝置所在的經緯度與每一操作行為的執行時間之資料,根據該些行為資料中對應每一操作行為的執行時間之資料可判斷使用者是否在某些頁面停留時間過長,即代表使用者對某項產品有高度興趣或者是該頁面的設定流程不佳,例如:產品申請頁面填寫資訊過多,導致使用者的體驗不佳,可提供給官方網頁或應用程序之開發人員及產品管理者作為往後優化產品與官方網頁或應用程序的數據。In the part of traffic source analysis, each behavior data can include the latitude and longitude of the terminal device and the data of the execution time of each operation behavior. According to the data corresponding to the execution time of each operation behavior in the behavior data, it can be determined whether the user is Staying on some pages for too long means that the user is highly interested in a certain product or the setting process of the page is not good. For example, the product application page fills in too much information, resulting in a poor user experience. It can be provided to Developers and product managers of official webpages or applications are used as data for future optimization of products and official webpages or applications.
在載具分析之部分,由於現今終端裝置的類型、作業系統版本與瀏覽器版本過於多元,例如:作業系統版本可為Windows或Mac;瀏覽器版本可為IE、Chrome、Firefox或Safari;終端裝置的類型可為電腦、智慧型手機或平板電腦,使得官方網頁或應用程序之開發人員在排除問題時,較不易快速取得使用者所操作的終端裝置之資訊,因此,當每一行為資料記錄有使用者所操作之終端裝置的類型、作業系統版本與瀏覽器版本時,透過解析該些資料,再搭配其他數據分析所取得的相關問題,即可了解使用者所操作的終端裝置之資訊及其遇到的問題,使得官方網頁或應用程序之開發人員可排除相關問題。In the part of vehicle analysis, because the types, operating system versions and browser versions of current terminal devices are too diverse, for example: the operating system version can be Windows or Mac; the browser version can be IE, Chrome, Firefox or Safari; The type can be a computer, smart phone or tablet, which makes it difficult for developers of official web pages or applications to quickly obtain information about the terminal device operated by the user when troubleshooting problems. Therefore, when each behavioral data record contains When the type, operating system version and browser version of the terminal device operated by the user, by analyzing the data and analyzing the related questions obtained by other data analysis, the information of the terminal device operated by the user and its information can be understood. Problems encountered so that developers of official web pages or applications can troubleshoot related problems.
在流量分析之部分,每一行為資料可包括終端裝置所在的經緯度與每一操作行為的執行時間之資料,根據該些行為資料中對應「每一操作行為的執行時間」之資料可依日期分析各時段整體流量及平均流量,並識別官方網頁或應用程序之尖峰日期及尖峰時段,從歷史統計角度作為資源分流的依據,可在未來估計為尖峰日期及尖峰時段之時間啟動備援設備減緩官方網頁或應用程序之負載流量。In the part of traffic analysis, each behavior data can include the latitude and longitude of the terminal device and the data of the execution time of each operation behavior. According to the data corresponding to the "execution time of each operation behavior" in the behavior data, the data can be analyzed by date The overall traffic and average traffic of each period, and identify the peak date and peak period of the official website or application, which can be used as the basis for resource diversion from the perspective of historical statistics. Load traffic of web pages or applications.
在功能頁面分析之部分,可基於所有使用者(即既有客戶與新戶)的瀏覽歷程計算取得所有使用者較常使用的前M名瀏覽路徑,可作為官方網頁或應用程序之開發人員未來調整頁面設計的依據。其中,M為大於零之正整數。In the part of functional page analysis, the top M browsing paths most frequently used by all users can be calculated based on the browsing history of all users (ie existing customers and new users), which can be used by developers of official web pages or applications in the future. Adjust the basis for page design. Among them, M is a positive integer greater than zero.
在最新消息及廣告點擊分析之部分,可基於所有使用者(即既有客戶與新戶)的歷史分類資料與/或瀏覽歷程(即行為資料)取得各業務上架的產品優惠活動最新消息及頁面廣告區的關注數量,並利用分類模組140中的目標物件的設定,蒐集一定時間區間內每一目標物件的點擊次數,進而取得各目標物件高頻點擊次數之操作頁面。因此,可提供產品管理者未來設計新產品的參考依據。In the section of latest news and advertisement click analysis, you can obtain the latest news and pages of product promotions on the shelves of each business based on the historical classification data and/or browsing history (ie behavior data) of all users (ie, existing customers and new customers). The number of attentions in the advertisement area, and the setting of the target object in the classification module 140 is used to collect the number of clicks of each target object within a certain time interval, and then obtain the operation page of the high frequency clicks of each target object. Therefore, it can provide a reference for product managers to design new products in the future.
在交易轉換率分析之部分,可基於既有客戶的歷史分類資料與/或瀏覽歷程(即行為資料)取得對應「表格」項目之資料進行數據分析,例如:目前各銀行提供使用者線上繳費的服務,整個申辦服務之繳費流程包含申請頁面填寫、通路授權驗證、授權回覆、回傳申請結果,在其中任何一個步驟中止,皆可能造成交易失敗,因此,可基於每一既有客戶的歷史分類資料與/或瀏覽歷程(即行為資料)取得每一階段的中止次數(即沒有完成次數)與完成次數,並利用每一階段的中止次數與完成次數取得每一階段的轉換率(每一階段的轉換率為每一階段的中止次數與完成次數之比值),以了解各階段的轉換率。In the part of transaction conversion rate analysis, data analysis can be performed based on the historical classification data and/or browsing history (ie behavior data) of existing customers to obtain the data corresponding to the "form" items. service, the payment process of the entire application service includes filling in the application page, channel authorization verification, authorization reply, and returning the application result. If any of these steps are suspended, the transaction may fail. Therefore, it can be classified based on the history of each existing customer. Data and/or browsing history (i.e. behavioral data) to obtain the number of suspensions (i.e. not completed) and completions for each stage, and use the number of suspensions and completions for each stage to obtain the conversion rate for each stage (each stage The conversion rate for each stage is the ratio of aborts to completions) to get an idea of the conversion rate for each stage.
綜上所述,可知本發明之基於預測行為的導向系統在使用者操作終端裝置拜訪銀行官方網頁或執行銀行應用程式時,識別使用者的登入識別輪廓;取得對應登入識別輪廓的號碼牌;依據號碼牌以及登入識別輪廓持續紀錄使用者的行為資料;依據預設條件對行為資料進行分類,並儲存成對應登入識別輪廓之歷史分類資料;依據登入識別輪廓找到並輸出其對應的該些歷史分類資料;依據該些歷史分類資料與/或該些行為資料產出該使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置,藉由此一技術手段可以解決先前技術所存在的問題,進而達到提升使用者體驗之技術功效。To sum up, it can be seen that the guidance system based on the predicted behavior of the present invention recognizes the user's login identification profile when the user operates the terminal device to visit the bank's official website or executes the bank application program; obtains a number plate corresponding to the login identification profile; The number plate and the login identification profile continuously record the behavior data of the user; classify the behavior data according to the preset conditions, and store it as historical classification data corresponding to the login identification profile; find and output the corresponding historical classification according to the login identification profile data; according to the historical classification data and/or the behavior data, the predicted transaction data of the user is generated, so as to provide a pop-up window or push notification corresponding to the predicted transaction data to the terminal device, which can be solved by this technical means The problems existing in the prior art, and then achieve the technical effect of improving the user experience.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。Although the present invention is disclosed above by the aforementioned embodiments, it is not intended to limit the present invention. Anyone who is familiar with the similar arts can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of patent protection shall be determined by the scope of the patent application attached to this specification.
100:基於預測行為的導向系統 110:身分識別模組 120:訪問模組 130:行為紀錄模組 140:分類模組 150:資料模組 160:商業邏輯模組 170:學習模組 步驟210:當終端裝置開始拜訪銀行官方網頁或執行銀行應用程式時,識別使用者的登入識別輪廓 步驟220:取得號碼牌,以對應該使用者的登入識別輪廓,其中,號碼牌為隨機且不重複使用 步驟230:依據號碼牌以及登入識別輪廓持續接收並儲存終端裝置自開始 拜訪銀行官方網頁至離開銀行官方網頁、自執行銀行應用程式至 關閉銀行應用程式,或者自開始拜訪銀行官方網頁或執行銀行應 用程式至停留單一頁面超出一預設時間的行為資料 步驟240:持續接收行為資料,並依據預設條件對行為資料進行分類,以輸 出行為分類資料 步驟250:持續接收行為分類資料,以儲存成對應登入識別輪廓之歷史分類 資料,並且依據登入識別輪廓找到並輸出其對應的該些歷史分類 資料 步驟260:依據該些歷史分類資料與/或該些行為資料產出使用者之預測交易資料,以提供對應預測交易資料的彈跳視窗或推播通知予終端裝置100: Guidance Systems Based on Predicted Behavior 110: Identity Module 120:Access Mods 130: Behavior record module 140: Classification Module 150:Data module 160: Business Logic Module 170: Learning Mods Step 210: When the terminal device starts to visit the official website of the bank or execute the bank application, identify the user's login identification profile Step 220: Obtain a number plate to correspond to the user's login identification profile, wherein the number plate is random and not reused Step 230: Continuously receive and store the terminal device according to the number plate and the login identification profile since the beginning Visit the bank's official website to leave the bank's official website, self-execute the bank's application to Close the bank application, or visit the bank's official website or execute the bank's application Behavioral data of the application to stay on a single page beyond a preset time Step 240: Continuously receive behavioral data, and classify the behavioral data according to preset conditions to input Travel Behavior Classification Data Step 250: Continuously receive behavior classification data to store as historical classification corresponding to the login identification profile data, and find and output the corresponding historical classifications according to the login identification profile material Step 260: Generate predicted transaction data of the user according to the historical classification data and/or the behavior data, so as to provide a pop-up window or push notification corresponding to the predicted transaction data to the terminal device
第1圖為本發明基於預測行為的導向系統之一實施例系統方塊圖。 第2圖為第1圖之基於預測行為的導向系統執行基於預測行為的導向方法之一實施例方法流程圖。FIG. 1 is a system block diagram of an embodiment of the guidance system based on predictive behavior of the present invention. FIG. 2 is a flow chart of an embodiment of a method for implementing the predictive behavior-based guidance system of the predictive behavior-based guidance system of FIG. 1 .
100:基於預測行為的導向系統 100: Guidance Systems Based on Predicted Behavior
110:身分識別模組 110: Identity Module
120:訪問模組 120:Access Mods
130:行為紀錄模組 130: Behavior record module
140:分類模組 140: Classification Module
150:資料模組 150:Data module
160:商業邏輯模組 160: Business Logic Module
170:學習模組 170: Learning Mods
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108126091A TWI771602B (en) | 2019-07-24 | 2019-07-24 | Guiding system based on prediction behavior and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108126091A TWI771602B (en) | 2019-07-24 | 2019-07-24 | Guiding system based on prediction behavior and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202105267A TW202105267A (en) | 2021-02-01 |
| TWI771602B true TWI771602B (en) | 2022-07-21 |
Family
ID=75745382
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108126091A TWI771602B (en) | 2019-07-24 | 2019-07-24 | Guiding system based on prediction behavior and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI771602B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103440259A (en) * | 2013-07-31 | 2013-12-11 | 亿赞普(北京)科技有限公司 | Network advertisement push method and device |
| TWI456518B (en) * | 2008-03-18 | 2014-10-11 | 雅虎股份有限公司 | Personalized sponsored search ad layout using user behavior history |
| CN106599107A (en) * | 2016-11-28 | 2017-04-26 | 北京小米移动软件有限公司 | Method, device and server for obtaining user behavior |
| TWM586408U (en) * | 2019-07-24 | 2019-11-11 | 彰化商業銀行股份有限公司 | Guidance system based on predictive behavior |
-
2019
- 2019-07-24 TW TW108126091A patent/TWI771602B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI456518B (en) * | 2008-03-18 | 2014-10-11 | 雅虎股份有限公司 | Personalized sponsored search ad layout using user behavior history |
| CN103440259A (en) * | 2013-07-31 | 2013-12-11 | 亿赞普(北京)科技有限公司 | Network advertisement push method and device |
| CN106599107A (en) * | 2016-11-28 | 2017-04-26 | 北京小米移动软件有限公司 | Method, device and server for obtaining user behavior |
| TWM586408U (en) * | 2019-07-24 | 2019-11-11 | 彰化商業銀行股份有限公司 | Guidance system based on predictive behavior |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202105267A (en) | 2021-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7682268B2 (en) | Ensemble of machine learning models to calculate the probability that an entity does not satisfy the target parameters | |
| CN109272396A (en) | Customer risk method for early warning, device, computer equipment and medium | |
| US20150006294A1 (en) | Targeting rules based on previous recommendations | |
| US20190311395A1 (en) | Estimating click-through rate | |
| US20180276543A1 (en) | Intelligent visual object management system | |
| US10475044B1 (en) | Method and system for question prioritization based on analysis of the question content and predicted asker engagement before answer content is generated | |
| CN110147925B (en) | A risk decision-making method, device, equipment and system | |
| US12393878B2 (en) | Systems and methods for managing, distributing and deploying a recursive decisioning system based on continuously updating machine learning models | |
| US20230316106A1 (en) | Method and apparatus for training content recommendation model, device, and storage medium | |
| Poulos et al. | Assessing stationarity in web analytics: A study of bounce rates | |
| US20170364965A1 (en) | Method and apparatus for facilitating a provisioning of advertisements to customers | |
| CN113672797A (en) | Content recommendation method and device | |
| CN110889716A (en) | Method and apparatus for identifying potential registered users | |
| Abdul-Rahman et al. | Enhancing churn forecasting with sentiment analysis of steam reviews | |
| CN114003567A (en) | Data acquisition method and related device | |
| US20240249201A1 (en) | Systems and methods for managing, distributing and deploying a recursive decisioning system based on continuously updating machine learning models | |
| US10394804B1 (en) | Method and system for increasing internet traffic to a question and answer customer support system | |
| US20210295379A1 (en) | System and method for detecting fraudulent advertisement traffic | |
| US20170124085A1 (en) | Website navigation path analysis | |
| KR20220085631A (en) | Apparatus, system and method for providing information of advertisement | |
| TWI771602B (en) | Guiding system based on prediction behavior and method thereof | |
| US11741505B2 (en) | System and method for predicting an anticipated transaction | |
| TWM586408U (en) | Guidance system based on predictive behavior | |
| O’Regan | Introduction to data science | |
| CN114444682A (en) | Training method and device of neural network model |