TWI770754B - Neural network training method electronic equipment and storage medium - Google Patents
Neural network training method electronic equipment and storage medium Download PDFInfo
- Publication number
- TWI770754B TWI770754B TW110100180A TW110100180A TWI770754B TW I770754 B TWI770754 B TW I770754B TW 110100180 A TW110100180 A TW 110100180A TW 110100180 A TW110100180 A TW 110100180A TW I770754 B TWI770754 B TW I770754B
- Authority
- TW
- Taiwan
- Prior art keywords
- feature extraction
- sample image
- image block
- block
- target area
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24137—Distances to cluster centroïds
- G06F18/2414—Smoothing the distance, e.g. radial basis function networks [RBFN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
本發明關於電腦技術領域,尤其關於一種神經網路訓練方法及電子設備和儲存介質。The invention relates to the field of computer technology, in particular to a neural network training method, electronic equipment and storage medium.
機器學習等方法在圖像處理領域有著廣泛應用,例如,可應用於普通圖像或三維圖像的分類和圖像檢測等領域。例如,在醫學圖像的處理中,可通過機器學習方法來確定患病的類別以及檢測病變區域等。Methods such as machine learning have a wide range of applications in the field of image processing, for example, they can be applied to the classification and image detection of ordinary images or 3D images. For example, in the processing of medical images, machine learning methods can be used to determine the type of disease and detect diseased areas.
在醫學圖像的處理中,肺部醫學圖像(例如,肺部電腦斷層掃描(Computed Tomography,CT))的分類和檢測對肺炎、肺癌等病變的篩查和診斷起著重要作用。在術前及早發現病變特徵在臨床上是極為重要的,可為臨床決策提供指導。但是,由於缺乏早期癌症的典型放射學特徵(氣泡清晰,胸膜回縮等),臨床上,專家或放射科醫生很難準確地從CT圖像上鑒別診斷亞型磨玻璃結節(Ground-Glass Nodule,GGN)類別。In the processing of medical images, the classification and detection of lung medical images (eg, lung computed tomography (CT)) play an important role in the screening and diagnosis of pneumonia, lung cancer and other lesions. Early detection of lesion characteristics before surgery is clinically important and can guide clinical decision-making. However, due to the lack of typical radiological features of early-stage cancer (clear air bubbles, pleural retraction, etc.), it is difficult for specialists or radiologists to accurately differentiate the subtypes of ground-glass nodules (Ground-Glass Nodule) from CT images. , GGN) category.
本發明實施例提供一種神經網路訓練方法及電子設備和儲存介質。Embodiments of the present invention provide a neural network training method, electronic device, and storage medium.
本發明實施例提供一種神經網路訓練方法,所述神經網路訓練方法用於訓練神經網路模型,根據訓練得到的神經網路模型對圖像進行分類,所述方法包括:獲取樣本圖像中目標區域的位置資訊及類別資訊;根據所述樣本圖像中目標區域的位置資訊,分割得到至少一個樣本圖像塊;根據所述類別資訊,將所述至少一個樣本圖像塊進行分類,得到N類樣本圖像塊,N為整數,且N≥1;將所述N類樣本圖像塊輸入至神經網路中進行訓練。An embodiment of the present invention provides a neural network training method, the neural network training method is used for training a neural network model, and images are classified according to the neural network model obtained by training, and the method includes: obtaining a sample image position information and category information of the target area in the sample image; according to the position information of the target area in the sample image, at least one sample image block is obtained by segmentation; according to the category information, the at least one sample image block is classified, N types of sample image blocks are obtained, where N is an integer, and N≥1; the N types of sample image blocks are input into the neural network for training.
根據本發明實施例的神經網路訓練方法,可獲得樣本圖像塊的精細分類,並對神經網路進行訓練,使得神經網路可對圖像進行精細分類,提高分類效率和準確度。According to the neural network training method of the embodiment of the present invention, the fine classification of the sample image blocks can be obtained, and the neural network can be trained, so that the neural network can finely classify the images and improve the classification efficiency and accuracy.
在本發明一些實施例中,所述樣本圖像為醫學影像圖片。In some embodiments of the present invention, the sample image is a medical image picture.
在本發明一些實施例中,所述獲取樣本圖像中目標區域的位置資訊及類別資訊包括:對所述醫學影像圖片上的目標區域進行定位,得到所述目標區域的位置資訊;獲取與所述醫學影像圖片關聯的病理學圖片,所述病理學圖片為經過診斷的包括病理資訊的圖片;根據所述病理學圖片上的各目標區域的病理資訊,確定所述醫學影像圖片上的目標區域的類別資訊。In some embodiments of the present invention, the obtaining the location information and category information of the target area in the sample image includes: locating the target area on the medical image picture to obtain the location information of the target area; the pathological picture associated with the medical image picture, the pathological picture is a diagnosed picture including pathological information; according to the pathological information of each target area on the pathological picture, the target area on the medical image picture is determined category information.
在本發明一些實施例中,將所述N類樣本圖像塊輸入至神經網路中進行訓練,包括:將任一的樣本圖像塊輸入所述神經網路進行處理,獲得樣本圖像塊的類別預測資訊和預測目標區域;至少根據所述類別預測資訊和所述樣本圖像塊的類別資訊,確定分類損失;根據所述預測目標區域和所述樣本圖像塊的位置資訊,確定分割損失;根據所述分類損失和所述分割損失,訓練所述神經網路。In some embodiments of the present invention, inputting the N types of sample image blocks into a neural network for training includes: inputting any sample image block into the neural network for processing to obtain a sample image block The classification prediction information and prediction target area of the loss; train the neural network according to the classification loss and the segmentation loss.
在本發明一些實施例中,根據所述類別預測資訊和所述樣本圖像塊的類別資訊,確定分類損失,包括:根據所述類別預測資訊和所述樣本圖像塊的類別資訊,確定第一分類損失;根據所述類別預測資訊和所述樣本圖像塊所屬類別的類中心的類別資訊,確定第二分類損失;對所述第一分類損失和所述第二分類損失進行加權求和處理,獲得所述分類損失。In some embodiments of the present invention, determining the classification loss according to the category prediction information and the category information of the sample image block includes: determining the first classification loss according to the category prediction information and the category information of the sample image block. a classification loss; a second classification loss is determined according to the class prediction information and the class information of the class center of the class to which the sample image block belongs; weighted summation is performed on the first classification loss and the second classification loss process to obtain the classification loss.
通過這種方式,可在訓練中使相同類別樣本圖像塊的類別特徵更聚集,使不同類別的樣本圖像塊的類別資訊之間的特徵距離更大,有助於提升分類性能,提高分類準確率。In this way, the category features of the sample image blocks of the same category can be more aggregated during training, and the feature distance between the category information of sample image blocks of different categories can be larger, which is helpful to improve the classification performance and improve the classification performance. Accuracy.
在本發明一些實施例中,根據所述預測目標區域和所述樣本圖像塊的位置資訊,確定分割損失,包括:根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述預測目標區域的第一權重和所述樣本圖像塊中樣本背景區域的第二權重;根據所述第一權重、第二權重、所述預測目標區域和所述樣本圖像塊的位置資訊,確定所述分割損失。In some embodiments of the present invention, determining the segmentation loss according to the location information of the prediction target area and the sample image block includes: according to the number of primitives in the prediction target area, the segmentation loss is included in the sample image block. The first weight of the prediction target area and the second weight of the sample background area in the sample image block are determined; according to the first weight, the second weight, the prediction target area and all The location information of the sample image block is used to determine the segmentation loss.
在本發明一些實施例中,根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述預測目標區域的第一權重和所述樣本圖像塊中樣本背景區域的第二權重,包括:根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述樣本圖像塊中樣本背景區域的第二比例;將所述第二比例確定為所述第一權重,並將所述第一比例確定為第二權重。In some embodiments of the present invention, the first weight of the prediction target area and the sample image block are determined according to a first proportion of the number of primitives in the prediction target area in the sample image block The second weight of the sample background area in the sample image block includes: determining the second weight of the sample background area in the sample image block according to the first proportion of the number of primitives in the predicted target area in the sample image block. ratio; determining the second ratio as the first weight, and determining the first ratio as the second weight.
通過這種方式,可平衡目標區域的誤差和非目標區域的誤差,有利於網路參數優化,提升訓練效率和訓練效果。In this way, the error of the target area and the error of the non-target area can be balanced, which is beneficial to the optimization of network parameters and improves the training efficiency and training effect.
在本發明一些實施例中,所述類別資訊包括:浸潤前腺癌非典型腺瘤增生結節、原位腺癌結節、微創腺癌結節和浸潤性腺癌結節。In some embodiments of the present invention, the category information includes: preinvasive adenocarcinoma atypical adenoma hyperplasia nodules, adenocarcinoma in situ nodules, minimally invasive adenocarcinoma nodules, and invasive adenocarcinoma nodules.
在本發明一些實施例中,所述神經網路包括共用特徵提取網路、分類網路和分割網路,所述方法還包括:將待處理圖像塊輸入所述共用特徵提取網路進行處理,獲得所述待處理圖像塊的目標特徵,其中,所述共用特徵提取網路包括M個共用特徵提取塊,第i個共用特徵提取塊的輸入特徵包括前i-1個共用特徵提取塊的輸出特徵,i和M為整數且1<i≤M;將所述目標特徵輸入所述分類網路進行分類處理,獲得所述待處理圖像塊的類別資訊;將所述目標特徵輸入所述分割網路進行分割處理,獲得所述待處理圖像塊中的目標區域。In some embodiments of the present invention, the neural network includes a common feature extraction network, a classification network and a segmentation network, and the method further includes: inputting image blocks to be processed into the common feature extraction network for processing , obtain the target feature of the to-be-processed image block, wherein the common feature extraction network includes M common feature extraction blocks, and the input feature of the i-th common feature extraction block includes the first i-1 common feature extraction blocks. The output feature of , i and M are integers and 1<i≤M; input the target feature into the classification network for classification processing, and obtain the category information of the image block to be processed; input the target feature into the The segmentation network performs segmentation processing to obtain the target area in the to-be-processed image block.
通過這種方式,能夠通過共用特徵提取網路來獲得目標特徵,共用特徵提取網路的共用特徵提取塊可獲得之前所有共用特徵提取塊的輸出特徵,並將自身的輸出特徵輸入至後續所有共用特徵提取塊。可加強網路內的梯度流動,緩解梯度消失現象,同時提高特徵提取和學習能力,有利於對輸入的待處理圖像塊進行更精細地分類和分割處理。並可獲得待處理圖像塊的較精細的類別資訊和目標區域,提升圖像處理效率。In this way, the target feature can be obtained through the shared feature extraction network, and the shared feature extraction block of the shared feature extraction network can obtain the output features of all previous shared feature extraction blocks, and input its own output features to all subsequent shared feature extraction blocks. Feature extraction block. It can strengthen the gradient flow in the network, alleviate the phenomenon of gradient disappearance, and at the same time improve the feature extraction and learning ability, which is conducive to the more fine classification and segmentation of the input image blocks to be processed. And the finer category information and target area of the image block to be processed can be obtained, which improves the image processing efficiency.
在本發明一些實施例中,將待處理圖像塊輸入所述共用特徵提取網路進行處理,獲得所述待處理圖像塊的目標特徵,包括:對所述待處理圖像塊進行第一特徵提取處理,獲得所述待處理圖像塊的第一特徵;將所述第一特徵輸入第一個共用特徵提取塊,獲得所述第一個共用特徵提取塊的輸出特徵,並將所述第一個共用特徵提取塊的輸出特徵輸出至後續的M-1個共用特徵提取塊;將前j-1個共用特徵提取塊的輸出特徵輸入至第j個共用特徵提取塊,獲得所述第j個共用特徵提取塊的輸出特徵,其中,j為整數且1<j<M;將第M個共用特徵提取塊的輸出特徵進行第二特徵提取處理,獲得所述待處理圖像塊的第二特徵;對所述第二特徵進行池化處理,獲得所述目標特徵。In some embodiments of the present invention, inputting the image block to be processed into the common feature extraction network for processing to obtain the target feature of the image block to be processed includes: performing a first step on the image block to be processed. Feature extraction processing to obtain the first feature of the to-be-processed image block; inputting the first feature into a first common feature extraction block to obtain the output feature of the first common feature extraction block, and applying the first feature to the first common feature extraction block The output features of the first common feature extraction block are output to the subsequent M-1 common feature extraction blocks; the output features of the first j-1 common feature extraction blocks are input to the jth common feature extraction block to obtain the Output features of the j shared feature extraction blocks, where j is an integer and 1<j<M; perform the second feature extraction process on the output features of the Mth shared feature extraction block to obtain the first feature of the to-be-processed image block. Second feature; perform pooling processing on the second feature to obtain the target feature.
在本發明一些實施例中,所述方法還包括:對待處理圖像進行預處理,獲得第一圖像;對所述第一圖像上的目標區域進行定位,確定所述第一圖像中的目標區域的位置資訊;根據所述第一圖像中的目標區域的位置資訊,分割得到至少一個所述待處理圖像塊。In some embodiments of the present invention, the method further includes: preprocessing the image to be processed to obtain a first image; locating a target area on the first image to determine The position information of the target area; according to the position information of the target area in the first image, at least one image block to be processed is obtained by segmentation.
本發明實施例提供一種神經網路訓練裝置,所述神經網路訓練裝置用於訓練神經網路模型,根據訓練得到的神經網路模型對圖像進行分類,所述裝置包括:獲取模組,配置為獲取樣本圖像中目標區域的位置資訊及類別資訊;第一分割模組,配置為根據所述樣本圖像中目標區域的位置資訊,分割得到至少一個樣本圖像塊;分類模組,配置為根據所述類別資訊,將所述至少一個樣本圖像塊進行分類,得到N類樣本圖像塊,N為整數,且N≥1;訓練模組,配置為將所述N類樣本圖像塊輸入至神經網路中進行訓練。An embodiment of the present invention provides a neural network training device, the neural network training device is used for training a neural network model, and classifying images according to the neural network model obtained by training, the device includes: an acquisition module, is configured to obtain position information and category information of the target area in the sample image; the first segmentation module is configured to obtain at least one sample image block by segmentation according to the position information of the target area in the sample image; the classification module, is configured to classify the at least one sample image block according to the category information to obtain N types of sample image blocks, where N is an integer and N≥1; the training module is configured to classify the N types of sample image blocks The image patches are fed into the neural network for training.
本發明實施例提供一種電子設備,包括:處理器;配置為儲存處理器可執行電腦程式的記憶體;其中,所述處理器被配置為:通過所述電腦程式執行上述神經網路訓練方法。An embodiment of the present invention provides an electronic device, including: a processor; a memory configured to store a computer program executable by the processor; wherein the processor is configured to execute the above neural network training method through the computer program.
本發明實施例提供一種儲存介質,所述儲存介質中儲存有電腦程式,所述電腦程式被配置為運行時執行上述神經網路訓練方法。An embodiment of the present invention provides a storage medium, where a computer program is stored in the storage medium, and the computer program is configured to execute the above neural network training method when running.
應當理解的是,以上的一般描述和後文的細節描述僅是示例性和解釋性的,而非限制本發明。根據下面參考附圖對示例性實施例的詳細說明,本發明的其它特徵及方面將變得清楚。It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention. Other features and aspects of the present invention will become apparent from the following detailed description of exemplary embodiments with reference to the accompanying drawings.
以下將參考附圖詳細說明本發明的各種示例性實施例、特徵和方面。附圖中相同的附圖標記表示功能相同或相似的組件。儘管在附圖中示出了實施例的各種方面,但是除非特別指出,不必按比例繪製附圖。Various exemplary embodiments, features and aspects of the present invention will be described in detail below with reference to the accompanying drawings. The same reference numbers in the figures denote components that have the same or similar functions. While various aspects of the embodiments are shown in the drawings, the drawings are not necessarily drawn to scale unless otherwise indicated.
在這裡專用的詞“示例性”意為“用作例子、實施例或說明性”。這裡作為“示例性”所說明的任何實施例不必解釋為優於或好於其它實施例。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
本文中術語“和/或”,僅僅是一種描述關聯物件的關聯關係,表示可以存在三種關係,例如,A和/或B,可以表示:單獨存在A,同時存在A和B,單獨存在B這三種情況。另外,本文中術語“至少一種”表示多種中的任意一種或多種中的至少兩種的任意組合,例如,包括A、B、C中的至少一種,可以表示包括從A、B和C構成的集合中選擇的任意一個或多個元素。The term "and/or" in this article is only a relationship to describe related objects, which means that there can be three relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. three conditions. In addition, the term "at least one" herein refers to any combination of any one of a plurality or at least two of a plurality, for example, including at least one of A, B, and C, and may mean including those composed of A, B, and C. Any one or more elements selected in the collection.
另外,為了更好的說明本發明,在下文的實施方式中給出了眾多的細節。本領域技術人員應當理解,沒有某些細節,本發明同樣可以實施。在一些實例中,對於本領域技術人員熟知的方法、手段、組件和電路未作詳細描述,以便於凸顯本發明的主旨。In addition, in order to better illustrate the present invention, numerous details are given in the following embodiments. It will be understood by those skilled in the art that the present invention may be practiced without certain details. In some instances, methods, means, components and circuits well known to those skilled in the art have not been described in detail so as not to obscure the subject matter of the present invention.
對本發明實施例進行進一步詳細說明之前,先對相關技術中的缺陷進行說明。Before further detailed description of the embodiments of the present invention, defects in the related art are described first.
在相關技術中,機器學習等方法在圖像處理領域有著廣泛應用,例如,可應用於普通圖像或三維圖像的分類和圖像檢測等領域。In the related art, methods such as machine learning are widely used in the field of image processing, for example, they can be applied to the fields of general image or three-dimensional image classification and image detection.
肺癌是我國最常見的惡性腫瘤之一,其死亡率無論是在城市或農村、男性或女性,均居癌症死亡的首位,其中,腺癌約占所有肺癌的40%。使用醫學圖像(例如,肺部CT和低劑量螺旋CT)進行篩查,越來越多的早期肺腺癌被發現並表現為磨玻璃結節(Ground-Glass Nodule,GGN),腺癌分為浸潤前腺癌非典型腺瘤增生(Atypical Adenomatous Hyperplasia Of Preinvasive Adenocarcinoma,AAHOPA),原位腺癌(Adenocarcinoma In Situ,AIS),微創腺癌(Minimally Invasive Adenocarcinoma,MIA)和浸潤性腺癌(Invasive Adenocarcinoma,IA)。腺癌的GGN類別包括浸潤前腺癌非典型腺瘤增生結節、原位腺癌結節、微創腺癌結節和浸潤性腺癌結節。隨著腫瘤大小的增加,生存期會出現顯著下降,這表明早期發現和診斷是降低患者死亡率的有效且至關重要的方法。因此,在手術前及早發現侵襲性特徵在臨床上將是重要的,並可為臨床決策提供指導。Lung cancer is one of the most common malignant tumors in my country, and its mortality rate ranks first in cancer deaths in urban or rural areas, male or female, among which adenocarcinoma accounts for about 40% of all lung cancers. Screening using medical images (eg, lung CT and low-dose helical CT), an increasing number of early-stage lung adenocarcinomas are found and manifest as Ground-Glass Nodule (GGN), adenocarcinomas classified as Atypical Adenomatous Hyperplasia Of Preinvasive Adenocarcinoma (AAHOPA), Adenocarcinoma In Situ (AIS), Minimally Invasive Adenocarcinoma (MIA) and Invasive Adenocarcinoma (Invasive Adenocarcinoma) , IA). GGN categories of adenocarcinoma include atypical adenomatous hyperplastic nodules of preinvasive adenocarcinoma, adenocarcinoma in situ nodules, minimally invasive adenocarcinoma nodules, and invasive adenocarcinoma nodules. Survival decreases significantly with increasing tumor size, suggesting that early detection and diagnosis is an effective and crucial approach to reducing patient mortality. Therefore, early detection of aggressive features before surgery will be clinically important and can guide clinical decision-making.
在醫學圖像處理中,肺部醫學圖像(例如,肺部CT)的分類和檢測在醫學篩查和肺炎、肺癌等診斷的診斷中具有重要作用。在相關技術中,可以通過機器學習等方式來確定患病的類別以及檢測病變區域等,例如預測輸入的結節的圖像屬於惡性腫瘤還是良性腫瘤,但是,相關技術中沒有對預測結果做細分類。並且,由於缺乏早期癌症的典型放射學特徵(氣泡清晰,胸膜回縮等),臨床上,專家或放射科醫生很難準確地從CT圖像上鑒別診斷亞型GGN類別。在這種情況下,基於人工智慧的電腦輔助診斷是評估結節侵襲性的一種更加有效方法,有望在臨床評估任務中發揮重要作用。In medical image processing, the classification and detection of lung medical images (eg, lung CT) plays an important role in the diagnosis of medical screening and diagnosis of pneumonia, lung cancer, etc. In the related art, machine learning and other methods can be used to determine the disease category and detect the lesion area, for example, to predict whether the input image of the nodule belongs to a malignant tumor or a benign tumor. However, the prediction result is not subdivided in the related art. . Moreover, due to the lack of typical radiological features of early-stage cancer (clear bubbles, pleural retraction, etc.), it is clinically difficult for specialists or radiologists to accurately differentiate the subtype GGN categories from CT images. In this context, AI-based computer-aided diagnosis is a more effective method to assess the invasiveness of nodules and is expected to play an important role in clinical assessment tasks.
參見圖1,圖1是本發明實施例提供的神經網路訓練方法的系統架構示意圖,如圖1所示,該系統架構中包括,CT儀100、伺服器200、網路300和終端設備400,為實現支撐一個示例性應用,CT儀100可通過網路300連接終端設備400,終端設備400通過網路300連接伺服器200,CT儀100可用於採集CT圖像,例如可以是X射線CT儀或γ射線CT儀等可對人體某部一定厚度的層面進行掃描的終端。終端設備400可以是筆記型電腦,平板電腦,臺式電腦,專用消息設備等具有螢幕顯示功能的設備。網路300可以是廣域網路或者局域網,又或者是二者的組合,使用無線鏈路實現資料傳輸。Referring to FIG. 1 , FIG. 1 is a schematic diagram of a system architecture of a neural network training method provided by an embodiment of the present invention. As shown in FIG. 1 , the system architecture includes a
伺服器200可以基於本發明實施例提供的神經網路訓練方法,通過設計的三維分類框架,將獲取的訓練醫學影像圖片中每個經過病理證明的肺結節區域剪裁為小的圖像塊,再對圖像塊進行分類,得到訓練資料,將訓練資料登錄至神經網路進行訓練,使得神經網路對訓練醫學影像圖片進行精細分類,訓練完成後得到訓練好的神經網路模型。醫學影像圖片可以是醫院、體檢中心等機構的CT儀100採集的病人或體檢人員的肺部CT圖像。伺服器200可以從終端設備400獲取由CT儀100採集的醫學影像圖片作為訓練醫學影像圖片,也可以從CT儀獲取訓練醫學影像圖片,還可以從網路上獲取訓練醫學影像圖片。Based on the neural network training method provided by the embodiment of the present invention, the
伺服器200可以是獨立的物理伺服器,也可以是多個物理伺服器構成的伺服器集群或者分散式系統,還可以是基於雲技術的雲伺服器。雲技術是指在廣域網路或局域網內將硬體、軟體、網路等系列資源統一起來,實現資料的計算、儲存、處理和共用的一種託管技術。在本發明實施例中,當伺服器200為雲伺服器時,提供的人工智慧雲服務可以包括神經網路模型,並基於精細分類的訓練資料訓練神經網路,以使神經網路對醫學影像圖片進行精細分類。The
作為示例,伺服器200在接收到待處理的醫學影像圖片(如,肺部CT圖像)後,根據訓練好的神經網路對醫學影像圖片進行分類、分割等處理,得到精細分類的病灶區域。然後,伺服器200將得到的精細分類的病灶區域返回給終端設備400進行顯示,以便醫護人員查看。As an example, after receiving the medical image picture (eg, lung CT image) to be processed, the
在本發明一些實施例中,伺服器200訓練完成後,可以將訓練好的神經網路發送至終端設備400,由終端設備400對採集的待處理的醫學影像圖片(如,肺部CT圖像)進行分類、分割等處理,得到精細分類的病灶區域,並將得到的精細分類的病灶區域在自身的顯示幕上進行顯示,以便醫護人員查看。In some embodiments of the present invention, after the training of the
在本發明的一些實施例中,神經網路訓練方法的系統架構中包括CT儀100、網路300和終端設備400,由終端設備400對訓練醫學影像圖片進行訓練,得到訓練好的神經網路,再由終端設備400對採集的待處理的醫學影像圖片(如,肺部CT圖像)進行分類、分割等處理,得到精細分類的病灶區域,並將得到的精細分類的病灶區域在自身的顯示幕上進行顯示,以便醫護人員查看。In some embodiments of the present invention, the system architecture of the neural network training method includes a
本發明實施例提供一種神經網路訓練方法,所述方法應用於神經網路訓練裝置,所述神經網路訓練裝置可以是伺服器,用於訓練神經網路模型,根據訓練得到的神經網路模型對圖像進行分類。本發明實施例提供的方法可以通過電腦程式來實現,該電腦程式在執行的時候,完成本發明實施例提供的神經網路訓練方法中各個步驟。在一些實施例中,該電腦程式可以被處理器執行。圖2是本發明實施例提供的神經網路訓練方法的一種實現流程圖,如圖2所示,所述方法包括: 步驟S11,獲取樣本圖像中目標區域的位置資訊及類別資訊; 步驟S12,根據所述樣本圖像中目標區域的位置資訊,分割得到至少一個樣本圖像塊; 步驟S13,根據所述類別資訊,將所述至少一個樣本圖像塊進行分類,得到N類樣本圖像塊,N為整數,且N≥1; 步驟S14,將所述N類樣本圖像塊輸入至神經網路中進行訓練。An embodiment of the present invention provides a neural network training method, the method is applied to a neural network training device, and the neural network training device may be a server for training a neural network model. The model classifies images. The method provided by the embodiment of the present invention may be implemented by a computer program, and when the computer program is executed, each step in the neural network training method provided by the embodiment of the present invention is completed. In some embodiments, the computer program can be executed by a processor. Fig. 2 is an implementation flowchart of a neural network training method provided by an embodiment of the present invention. As shown in Fig. 2, the method includes: Step S11, obtaining location information and category information of the target area in the sample image; Step S12, according to the location information of the target area in the sample image, segment to obtain at least one sample image block; Step S13, classifying the at least one sample image block according to the category information to obtain N types of sample image blocks, where N is an integer, and N≥1; Step S14, inputting the N types of sample image blocks into a neural network for training.
根據本發明實施例提供的神經網路訓練方法,可獲得樣本圖像塊的精細分類,並對神經網路進行訓練,使得神經網路可對圖像進行精細分類,提高分類效率和準確度。According to the neural network training method provided by the embodiment of the present invention, the fine classification of the sample image blocks can be obtained, and the neural network can be trained, so that the neural network can finely classify the images and improve the classification efficiency and accuracy.
在本發明一些實施例中,所述神經網路訓練方法可以由終端設備或其它處理設備執行,其中,終端設備可以為使用者設備(User Equipment,UE)、移動設備、使用者終端、終端、蜂窩電話、無線電話、個人數位助理(Personal Digital Assistant,PDA)、手持設備、計算設備、車載設備、可穿戴設備等。其它處理設備可為伺服器或雲端伺服器等。在本發明一些實施例中,該神經網路訓練方法可以通過處理器調用記憶體中儲存的電腦程式的方式來實現。In some embodiments of the present invention, the neural network training method may be performed by a terminal device or other processing device, where the terminal device may be a user equipment (User Equipment, UE), a mobile device, a user terminal, a terminal, Cellular phones, wireless phones, Personal Digital Assistants (PDAs), handheld devices, computing devices, in-vehicle devices, wearable devices, etc. Other processing devices may be servers, cloud servers, or the like. In some embodiments of the present invention, the neural network training method can be implemented by the processor calling the computer program stored in the memory.
在本發明一些實施例中,所述樣本圖像為醫學影像圖片,例如,肺部CT圖像等。樣本圖像塊可以是樣本圖像中包括目標區域的圖像塊。在示例中,樣本圖像可以是經過標注(例如,類別標注和分割標注)的三維醫學圖像,樣本圖像塊可以是三維醫學圖像中包含結節的圖像塊。In some embodiments of the present invention, the sample image is a medical image, such as a lung CT image. The sample image block may be an image block in the sample image that includes the target area. In an example, the sample image may be an annotated (eg, category annotation and segmentation annotation) three-dimensional medical image, and the sample image patch may be an image patch containing nodules in the three-dimensional medical image.
在本發明一些實施例中,在步驟S11中,可確定樣本圖像中目標區域的位置資訊和類別資訊,以獲取用於訓練神經網路的樣本圖像塊,並對樣本圖像塊進行標注。步驟S11可包括:對醫學影像圖片上的目標區域進行定位,得到所述目標區域的位置資訊;獲取與所述醫學影像圖片關聯的病理學圖片;根據所述病理學圖片上的各目標區域的病理資訊,確定所述醫學影像圖片上的目標區域的類別資訊。所述病理學圖片為經過診斷的包括病理資訊的圖片,可以從醫學圖像資料庫獲取,或者由醫生等專業人員在終端手動標注後發送給神經網路訓練裝置。In some embodiments of the present invention, in step S11, the location information and category information of the target area in the sample image can be determined to obtain sample image blocks for training the neural network, and the sample image blocks can be labeled . Step S11 may include: locating the target area on the medical image picture to obtain location information of the target area; obtaining a pathology picture associated with the medical image picture; Pathological information, to determine the category information of the target area on the medical image. The pathological picture is a diagnosed picture including pathological information, which may be obtained from a medical image database, or sent to the neural network training device after being manually marked by a professional such as a doctor on the terminal.
在本發明一些實施例中,可對樣本圖像進行重採樣處理,獲得解析度為1×1×1的三維圖像。並對該三維圖像進行分割,例如,在肺部三維醫學圖像中,可能存在部分肺實質以外區域,而肺結節等病灶往往存在肺實質內,故剪裁出(即分割)肺實質所在圖像塊,並將該圖像塊進行歸一化處理。並可對歸一化處理後的三維圖像中的目標區域(例如,病灶區域)進行定位,得到目標區域的位置資訊。例如,可通過用於定位的卷積神經網路確定目標區域的位置資訊,或通過醫生等專業人員確認目標區域的位置資訊等,本發明實施例對定位方式不做限制。In some embodiments of the present invention, the sample image may be resampled to obtain a three-dimensional image with a resolution of 1×1×1. And segment the 3D image. For example, in a 3D medical image of the lungs, there may be some areas outside the lung parenchyma, while lesions such as pulmonary nodules often exist in the lung parenchyma, so the map where the lung parenchyma is located is cut out (ie segmented). image block and normalize the image block. The target area (for example, the lesion area) in the normalized three-dimensional image can be located to obtain the position information of the target area. For example, the location information of the target area may be determined by a convolutional neural network used for localization, or the location information of the target area may be confirmed by a professional such as a doctor, etc. The embodiment of the present invention does not limit the location method.
在本發明一些實施例中,醫學影像圖片可具有相關的病理學圖片,可用於確定醫學影像圖片中病灶的類別,例如,病灶的類別可包括磨玻璃結節(Ground-Glass Nodule,GGN)。腺癌分為浸潤前腺癌非典型腺瘤增生(Atypical Adenomatous Hyperplasia Of Preinvasive Adenocarcinoma,AAHOPA),原位腺癌(Adenocarcinoma In Situ,AIS),微創腺癌(Minimally Invasive Adenocarcinoma,MIA)和浸潤性腺癌(Invasive Adenocarcinoma,IA),本發明實施例對病灶的類別不做限制。In some embodiments of the present invention, the medical image picture may have a related pathology picture, which may be used to determine the category of the lesion in the medical image picture. For example, the category of the lesion may include a ground-glass nodule (GGN). Adenocarcinoma is divided into Atypical Adenomatous Hyperplasia Of Preinvasive Adenocarcinoma (AAHOPA), Adenocarcinoma In Situ (AIS), Minimally Invasive Adenocarcinoma (MIA) and Invasive Adenocarcinoma Cancer (Invasive Adenocarcinoma, IA), the embodiment of the present invention does not limit the types of lesions.
在本發明一些實施例中,可根據病理學圖片,獲得各目標區域的病理資訊,例如,病理學圖片可以是經過專業診斷後的圖片,可具有對各病灶的分析描述,可根據病理學圖片獲得各目標區域的病理資訊,進而確定醫學影像圖片上各目標區域的類別資訊。In some embodiments of the present invention, the pathological information of each target area can be obtained according to the pathological picture. For example, the pathological picture can be a professionally diagnosed picture, which can have an analysis description of each lesion, and can be based on the pathological picture. Obtain the pathological information of each target area, and then determine the category information of each target area on the medical image.
在本發明一些實施例中,可在醫學影像圖片中剪裁出包括病灶區域的圖像塊,即,剪裁出樣本圖像塊,並根據目標區域的類別資訊,獲得N類樣本圖像塊。例如,經過對結節尺寸的統計,可將樣本圖像塊的尺寸確定為64×64×64,經過剪裁和分類,獲得四類(AAHOPA、AIS、MIA和IA)樣本圖像塊。In some embodiments of the present invention, an image block including a lesion area can be cut out in a medical image picture, that is, a sample image block is cut out, and N types of sample image blocks are obtained according to the category information of the target area. For example, after the statistics of the nodule size, the size of the sample image block can be determined as 64 × 64 × 64, and after cropping and classification, four types (AAHOPA, AIS, MIA and IA) sample image blocks are obtained.
在本發明一些實施例中,由於醫學影像圖片數量較少,且標注難度大,成本高,而如果將三維圖像拆分為多個二維圖像,則會損失空間資訊,導致性能下降。可將樣本圖像塊進行旋轉、平移、鏡像、縮放等操作,可擴增樣本數量,並且,使用擴增的樣本圖像塊訓練神經網路,可提升神經網路的泛化能力,防止過擬合。在本發明一些實施例中,還可平衡正負樣本,在示例中,浸潤前腺癌非典型腺瘤增生、原位腺癌、微創腺癌等良性結節和浸潤性腺癌等惡性結節的樣本數量有較大差距,可通過上述方法擴增數量較少的樣本,使得正負樣本數量平衡。本發明實施例對擴增樣本數量的方式不做限制。In some embodiments of the present invention, since the number of medical image pictures is small, the labeling is difficult, and the cost is high, if the three-dimensional image is divided into multiple two-dimensional images, spatial information will be lost, resulting in performance degradation. The sample image blocks can be rotated, translated, mirrored, zoomed, etc., to expand the number of samples, and using the amplified sample image blocks to train the neural network can improve the generalization ability of the neural network and prevent excessive fit. In some embodiments of the present invention, positive and negative samples may also be balanced, in an example, the number of samples of benign nodules such as atypical adenoma hyperplasia, adenocarcinoma in situ, and minimally invasive adenocarcinoma, and malignant nodules such as invasive adenocarcinoma If there is a large gap, a small number of samples can be amplified by the above method to balance the number of positive and negative samples. The embodiments of the present invention do not limit the manner of amplifying the number of samples.
在本發明一些實施例中,可分批將樣本圖像塊輸入神經網路。其中,步驟S14可包括:將任一的樣本圖像塊輸入所述神經網路進行處理,獲得樣本圖像塊的類別預測資訊和預測目標區域;至少根據所述類別預測資訊和所述樣本圖像塊的類別資訊,確定分類損失;根據所述預測目標區域和所述樣本圖像塊的位置資訊,確定分割損失;根據所述分類損失和所述分割損失,訓練所述神經網路。In some embodiments of the invention, the sample image patches may be fed into the neural network in batches. Wherein, step S14 may include: inputting any sample image block into the neural network for processing to obtain category prediction information and prediction target area of the sample image block; at least according to the category prediction information and the sample map The classification loss is determined according to the category information of the image block; the segmentation loss is determined according to the predicted target area and the position information of the sample image block; the neural network is trained according to the classification loss and the segmentation loss.
在本發明一些實施例中,所述神經網路可包括共用特徵提取網路、分類網路和分割網路。可通過共用特徵提取網路對樣本圖像塊進行特徵提取,獲得樣本圖像塊的樣本目標特徵,並通過分類網路獲得樣本圖像塊的類別預測資訊,類別預測資訊可能存在誤差,可通過樣本預測類別資訊和樣本圖像塊的類別標注資訊,確定神經網路的分類損失。In some embodiments of the present invention, the neural network may include a common feature extraction network, a classification network, and a segmentation network. The feature extraction of the sample image block can be performed through the shared feature extraction network to obtain the sample target feature of the sample image block, and the category prediction information of the sample image block can be obtained through the classification network. There may be errors in the category prediction information. The sample prediction category information and the category annotation information of the sample image block determine the classification loss of the neural network.
在本發明一些實施例中,根據所述類別預測資訊和所述樣本圖像塊的標注資訊,確定分類損失,包括:根據所述類別預測資訊和所述樣本圖像塊的標注資訊,確定第一分類損失;根據所述類別預測資訊和所述樣本圖像塊所屬類別的類中心的類別資訊,確定第二分類損失;對所述第一分類損失和所述第二分類損失進行加權求和處理,獲得所述分類損失。In some embodiments of the present invention, determining the classification loss according to the category prediction information and the annotation information of the sample image block includes: determining the first classification loss according to the category prediction information and the annotation information of the sample image block. a classification loss; a second classification loss is determined according to the class prediction information and the class information of the class center of the class to which the sample image block belongs; weighted summation is performed on the first classification loss and the second classification loss process to obtain the classification loss.
在本發明一些實施例中,樣本圖像塊的標注資訊可包括類別標注資訊,例如,類別標注資訊可以是表示樣本圖像塊中的結節的類別的資訊。在示例中,所述類別預測資訊可以是通過向量等形式表示的類別資訊,可通過概率詞典等確定該向量表示的待處理圖像塊屬於各類別的概率分佈,進而確定待處理圖像塊的所屬類別。或者,類別預測資訊的向量可直接表示待處理圖像塊的概率,在示例中,該向量的各元素分別表示待處理圖像塊所屬類別的概率。In some embodiments of the present invention, the annotation information of the sample image block may include category annotation information, for example, the category annotation information may be information indicating the category of the nodule in the sample image block. In an example, the category prediction information may be category information represented by a vector or the like, and a probability dictionary may be used to determine that the to-be-processed image block represented by the vector belongs to the probability distribution of each category, and then the probability distribution of the to-be-processed image block may be determined. category. Alternatively, the vector of the category prediction information may directly represent the probability of the image block to be processed. In an example, each element of the vector represents the probability of the category to which the image block to be processed belongs.
在本發明一些實施例中,可根據類別預測資訊和樣本圖像塊的類別標注資訊,確定第一分類損失,例如,可確定類別預測資訊的向量與類別標注資訊的向量之間特徵距離(例如,歐氏距離、餘弦距離等),並根據特徵距離來確定第一分類損失,例如,可根據softmaxloss損失函數來計算第一分類損失。在示例中,可通過以下公式(1)來確定第一分類損失:(1); 其中,表示第i個樣本圖像塊的類別預測資訊,表示第i個樣本圖像塊所屬的類別,n表示類別數量。表示全連接層中第個類別的權重,表示全連接層中第j個類別的權重,m表示每個批次輸入神經網路的樣本圖像塊的數量,表示第i個樣本圖像塊所屬的類別偏置項,表示第j個類別的偏置項。In some embodiments of the present invention, the first classification loss may be determined according to the category prediction information and the category annotation information of the sample image block, for example, the feature distance between the vector of the category prediction information and the vector of the category annotation information (eg , Euclidean distance, cosine distance, etc.), and determine the first classification loss according to the feature distance , for example, the first classification loss can be calculated according to the softmaxloss loss function . In an example, the first classification loss can be determined by the following formula (1) : (1); wherein, represents the category prediction information of the i-th sample image block, Indicates the category to which the i-th sample image patch belongs, and n represents the number of categories. represents the first in the fully connected layer class weights, represents the weight of the jth category in the fully connected layer, m represents the number of sample image patches input to the neural network in each batch, represents the category bias term to which the i-th sample image block belongs, represents the bias term for the jth class.
在本發明一些實施例中,使用上述第一分類損失進行訓練,可擴大不同類別的類別資訊的類間特徵距離,進而使分類網路可區分不同類別的樣本圖像塊。然而,肺部的多個類別結節之間的差異不明顯(例如,原位腺癌和微創腺癌的結節的形狀差異並不大),二同類結節之間形狀各異(例如,浸潤性腺癌等惡性結節的形狀各異),因此造成了類別資訊類間特徵距離小,類內特徵距離大,導致只使用第一分類損失訓練後的分類網路的分類效果不佳。In some embodiments of the present invention, using the above-mentioned first classification loss for training can expand the inter-class feature distances of class information of different classes, thereby enabling the classification network to distinguish sample image blocks of different classes. However, the differences between multiple classes of nodules in the lung were not significant (eg, nodules in adenocarcinoma in situ and minimally invasive adenocarcinoma did not differ greatly in shape), and the shapes varied between two classes of nodules (eg, invasive glandular Malignant nodules such as cancer have different shapes), thus resulting in a small feature distance between classes and a large feature distance within class information, resulting in only the use of the first classification loss The classification performance of the trained classification network is not good.
在本發明一些實施例中,針對上述問題,可通過第二分類損失訓練分類網路。在示例中,可確定多個樣本圖像塊中各類別的類中心的類別資訊,例如,可對多個樣本圖像塊的類中心的類別信息進行加權平均,或者對樣本圖像塊的類別資訊進行聚類處理,獲得類中心特徵等,本發明實施例對類中心的類別資訊不做限制。In some embodiments of the present invention, aiming at the above problem, the classification network can be trained through the second classification loss. In an example, the class information of the class centers of each of the multiple sample image blocks may be determined, for example, the weighted average of the class information of the class centers of the multiple sample image blocks may be performed, or the class information of the sample image blocks may be determined. The information is clustered to obtain class center features, etc. The embodiment of the present invention does not limit the category information of the class center.
在本發明一些實施例中,可根據樣本圖像塊的類別預測資訊和其所屬類別的類中心的類別標注資訊,確定第二分類損失。例如,可確定類別預測資訊和類中心的類別資訊之間的特徵距離並根據特徵距離來確定第二分類損失,例如,可根據centerloss損失函數來計算第二分類損失。通過第二分類損失訓練分類網路,可縮小同類樣本圖像塊的類別資訊的類內特徵距離,使得同類的特徵資訊在特徵空間中更集中,有利於確定樣本圖像塊的類別。在示例中,可通過以下公式(2)來確定第二分類損失:(2); 其中,為第i個樣本圖像塊所屬的類別的類中心的類別標注資訊。In some embodiments of the present invention, the second classification loss may be determined according to the class prediction information of the sample image block and the class annotation information of the class center of the class to which it belongs. For example, the feature distance between the class prediction information and the class information of the class center can be determined and the second classification loss can be determined according to the feature distance , for example, the second classification loss can be calculated according to the centerloss loss function . Pass the second classification loss Training the classification network can reduce the intra-class feature distance of the category information of the same sample image block, so that the same type of feature information is more concentrated in the feature space, which is beneficial to determine the category of the sample image block. In the example, the second classification loss can be determined by the following formula (2) : (2); wherein, Class annotation information for the class center of the class to which the i-th sample image patch belongs.
在本發明一些實施例中,可通多第一分類損失和第二分類損失來共同確定分類損失。例如,可將第一分類損失和第二分類損失進行加權求和處理,獲得分類損失。例如,第一分類損失和第二分類損失的權重比為1:0.8,按照上述權重比進行加權求和後,可獲得分類損失。本發明實施例對權重比不做限制。In some embodiments of the present invention, the classification loss may be determined jointly by the first classification loss and the second classification loss. For example, the first classification loss and the second classification loss can be weighted and summed to obtain the classification loss. For example, the weight ratio of the first classification loss and the second classification loss is 1:0.8, and the classification loss can be obtained after the weighted summation is performed according to the above weight ratio. This embodiment of the present invention does not limit the weight ratio.
通過這種方式,可在訓練中使相同類別的樣本圖像塊的類別特徵更聚集,使不同類別的樣本圖像塊的類別資訊之間的距離更大,有助於提升分類性能,提高分類準確率。In this way, the category features of the sample image blocks of the same category can be more aggregated during training, so that the distance between the category information of the sample image blocks of different categories is larger, which is helpful to improve the classification performance and improve the classification performance. Accuracy.
在本發明一些實施例中,可通過分割網路對樣本目標特徵進行分割處理,獲得樣本圖像塊中的預測目標區域。該預測目標區域可具有誤差,可根據預測目標區域和所述樣本圖像塊的標注目標區域之間的誤差確定分割損失,進而通過分割損失進行訓練。In some embodiments of the present invention, the target feature of the sample may be segmented through a segmentation network to obtain the prediction target area in the image block of the sample. The prediction target area may have errors, and the segmentation loss may be determined according to the error between the prediction target area and the labeling target area of the sample image block, and then the training is performed through the segmentation loss.
在本發明一些實施例中,根據所述預測目標區域和所述樣本圖像塊的標注資訊,確定分割損失,包括:根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述預測目標區域的第一權重和所述樣本圖像塊中樣本背景區域的第二權重;根據所述第一權重、第二權重、所述預測目標區域和所述樣本圖像塊的標注資訊,確定所述分割損失。In some embodiments of the present invention, determining the segmentation loss according to the prediction target area and the annotation information of the sample image block includes: according to the number of primitives in the prediction target area, the number of pixels in the sample image block The first weight of the prediction target area and the second weight of the sample background area in the sample image block are determined; according to the first weight, the second weight, the prediction target area and all The annotation information of the sample image block is used to determine the segmentation loss.
在本發明一些實施例中,所述標注資訊包括標注的分割區域,可直接根據預測目標區域與標注的分割區域之間的誤差來確定分割損失。但通常結節的直徑為5毫米(millimeter,mm)至30mm之間,樣本圖像塊中結節所在區域和其他區域之間所占比例差距較大,導致目標區域和非目標區域之間的圖元數量不平衡,可使得預測目標區域的誤差在分割損失中所占比例較小,不利於神經網路的優化調節,使得訓練效率較低,訓練效果較差。In some embodiments of the present invention, the annotation information includes annotated segmentation regions, and the segmentation loss can be determined directly according to the error between the predicted target region and the annotated segmentation regions. However, the diameter of the nodule is usually between 5 millimeters (millimeter, mm) and 30 mm, and the proportion of the nodule in the sample image block is different from other areas, resulting in the primitives between the target area and the non-target area. Unbalanced numbers can make the error of predicting the target region account for a small proportion of the segmentation loss, which is not conducive to the optimization and adjustment of the neural network, resulting in low training efficiency and poor training effect.
在本發明一些實施例中,可根據對目標區域的圖元和非目標區域(即,樣本背景區域)的圖元進行加權處理。在示例中,可根據預測目標區域的圖元數量在樣本圖像塊中所占的第一比例,確定預測目標區域的第一權重和樣本圖像塊中樣本背景區域的第二權重。進而在確定分割損失時,對上述兩種區域的圖元進行加權處理,來平衡目標區域的損失和非目標區域的損失。In some embodiments of the present invention, the weighting process may be performed according to the primitives of the target area and the primitives of the non-target area (ie, the sample background area). In an example, the first weight of the prediction target area and the second weight of the sample background area in the sample image block may be determined according to the first proportion of the number of primitives of the prediction target area in the sample image block. Furthermore, when determining the segmentation loss, weighting processing is performed on the primitives of the above two regions to balance the loss of the target region and the loss of the non-target region.
在本發明一些實施例中,根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述預測目標區域的第一權重和所述樣本圖像塊中樣本背景區域的第二權重,包括:根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述樣本圖像塊中樣本背景區域的第二比例;將所述第二比例確定為所述第一權重,並將所述第一比例確定為第二權重。In some embodiments of the present invention, the first weight of the prediction target area and the sample image block are determined according to a first proportion of the number of primitives in the prediction target area in the sample image block The second weight of the sample background area in the sample image block includes: determining the second weight of the sample background area in the sample image block according to the first proportion of the number of primitives in the predicted target area in the sample image block. ratio; determining the second ratio as the first weight, and determining the first ratio as the second weight.
在本發明一些實施例中,樣本圖像塊中可包括預測目標區域和背景區域,可統計預測目標區域的圖元數量所占比例,進而確定樣本背景區域所占比例。例如,預測目標區域圖元數量所占第一比例為0.2,則樣本背景區域圖元數量所占第二比例為0.8。本發明實施例對第一比例和第二比例不做限制。In some embodiments of the present invention, the sample image block may include a predicted target area and a background area, and the proportion of the number of primitives in the predicted target area may be counted to determine the proportion of the sample background area. For example, if the first proportion of the number of primitives in the predicted target area is 0.2, the second proportion of the number of primitives in the sample background area is 0.8. The embodiment of the present invention does not limit the first ratio and the second ratio.
在本發明一些實施例中,為使得預測目標區域和樣本背景區域平衡,將第二比例確定為預測目標區域的第一權重,並將第一比例確定為樣本背景區域的第二權重。例如,預測目標區域圖元數量所占第一比例為0.2,則預測目標區域的第一權重為0.8,樣本背景區域圖元數量所占第二比例為0.8,則樣本背景區域的第二權重為0.2。In some embodiments of the present invention, in order to balance the predicted target area and the sample background area, the second ratio is determined as the first weight of the predicted target area, and the first ratio is determined as the second weight of the sample background area. For example, if the first proportion of the number of primitives in the predicted target area is 0.2, the first weight of the predicted target area is 0.8, and the second proportion of the number of primitives in the sample background area is 0.8, then the second weight of the sample background area is 0.2.
在本發明一些實施例中,可根據第一權重、第二權重、預測目標區域和樣本圖像塊的標注目標區域,確定分割損失。在示例中,可根據預測目標區域和標注資訊中的目標區域的差異,確定分割損失,例如,可將預測目標區域中的圖元點進行加權,權重為第一權重,並將樣本背景區域中的圖元點進行加權,權重為第二權重,並確定加權後的分割損失。例如,可根據weightedDiceloss損失函數來計算分割損失。在示例中,可通過以下公式(3)確定分割損失:(3); 其中,,=1時,表示第k個圖元位置為預測目標區域,=0時,表示第k個圖元位置為樣本背景區域,表示分割網路在第k個圖元位置的輸出,W表示第一權重,Y表示第k個圖元位置的分割標注。In some embodiments of the present invention, the segmentation loss may be determined according to the first weight, the second weight, the prediction target area, and the labeling target area of the sample image block. In an example, the segmentation loss can be determined according to the difference between the predicted target area and the target area in the annotation information. For example, the primitive points in the predicted target area can be weighted, the weight is the first weight, and the sample background area can be weighted. The primitive points are weighted, the weight is the second weight, and the weighted segmentation loss is determined . For example, the segmentation loss can be calculated according to the weightedDiceloss loss function . In the example, the segmentation loss can be determined by the following formula (3) : (3); wherein, , When =1, it means that the k-th primitive position is the prediction target area, When =0, it means that the k-th primitive position is the sample background area, Represents the output of the segmentation network at the kth primitive position, W represents the first weight, and Y represents the segmentation annotation at the kth primitive position.
通過這種方式,可平衡目標區域的誤差和非目標區域的誤差,有利於網路參數優化,提升訓練效率和訓練效果。In this way, the error of the target area and the error of the non-target area can be balanced, which is beneficial to the optimization of network parameters and improves the training efficiency and training effect.
在本發明一些實施例中,可根據分類損失和分割損失確定共用特徵提取網路、分割網路和分類網路的綜合網路損失。例如,可將分類損失和分割損失進行加權求和處理,獲得綜合網路損失,在示例中,可根據以下公式(4)確定綜合網路損失:(4); 其中,表示的權重,表示的權重,表示的權重,例如,=1.2,=0.8,=2,本發明實施例對分類損失和分割損失的權重不做限制。In some embodiments of the invention, the combined network loss for the common feature extraction network, the segmentation network and the classification network may be determined from the classification loss and the segmentation loss. For example, the classification loss and segmentation loss can be weighted and summed to obtain the comprehensive network loss. In the example, the comprehensive network loss can be determined according to the following formula (4) : (4); wherein, express the weight of, express the weight of, express weights, for example, =1.2, =0.8, =2, the weights of the classification loss and the segmentation loss are not limited in this embodiment of the present invention.
在本發明一些實施例中,可通過綜合網路損失反向調節上述神經網路的網路參數,例如,可通過梯度下降法來調節網路參數,使得網路參數優化,提升分割和分類準確率。In some embodiments of the present invention, the network parameters of the above-mentioned neural network can be adjusted inversely through the integrated network loss. For example, the network parameters can be adjusted through the gradient descent method, so that the network parameters can be optimized and the segmentation and classification accuracy can be improved. accuracy.
在本發明一些實施例中,上述訓練方法可反覆運算執行多次,並根據設定的學習率進行訓練。在示例中,在前20個訓練週期,可使用0.001*1.1x (其中x表示訓練週期)的學習率進行訓練,在隨後的訓練中,可分別在第40、80和120個……訓練週期中使得學習率減半。可在訓練的初始階段,提高訓練效率,使得網路參數大幅優化,並在後續的訓練中逐步降低學習率,精細調節網路參數,提高神經網路的精度,提高分類處理和分割處理的準確率。In some embodiments of the present invention, the above-mentioned training method can be repeatedly performed for many times, and the training is performed according to a set learning rate. In the example, in the first 20 training epochs, training can be performed using a learning rate of 0.001*1.1 x (where x represents the training epoch), and in the subsequent training, the training can be performed at the 40th, 80th and 120th... to halve the learning rate. In the initial stage of training, the training efficiency can be improved, the network parameters can be greatly optimized, and the learning rate can be gradually reduced in the subsequent training, the network parameters can be finely adjusted, the accuracy of the neural network can be improved, and the accuracy of classification processing and segmentation processing can be improved. accuracy.
在本發明一些實施例中,可在滿足訓練條件時,完成訓練,獲得訓練後的共用特徵提取網路、分割網路和分類網路。所述訓練條件可包括訓練次數,即,在達到預設訓練次數時,滿足訓練條件。所述訓練條件可包括綜合網路損失小於或等於預設閾值或收斂於預設區間,即,當綜合網路損失小於或等於預設閾值或收斂於預設區間時,可認為神經網路的精度滿足使用要求,可完成訓練。本發明實施例對訓練條件不做限制。In some embodiments of the present invention, the training can be completed when the training conditions are met, and the shared feature extraction network, segmentation network and classification network after training can be obtained. The training conditions may include training times, that is, when the preset training times are reached, the training conditions are satisfied. The training conditions may include that the comprehensive network loss is less than or equal to a preset threshold or converges in a preset interval, that is, when the comprehensive network loss is less than or equal to a preset threshold or converges in a preset interval, it can be considered that the neural network has The accuracy meets the requirements for use, and the training can be completed. The embodiment of the present invention does not limit the training conditions.
在本發明一些實施例中,可在訓練完成後,對訓練後的神經網路進行測試。例如,可將肺部三維醫學圖像中包括結節區域的三維圖像塊輸入上述神經網路,並統計輸出的分割結果和分類結果的準確率,例如,與三維圖像塊的標注資訊進行比較,確定分割結果和分類結果的準確率,即可確定神經網路的訓練效果。如果準確率高於預設閾值,可認為訓練效果較好,神經網路性能較好,可用於獲取待處理圖像塊的類別並分割出目標區域的處理中。如果準確率未達到預設閾值,可認為訓練效果不佳,可使用其他樣本圖像塊繼續訓練。In some embodiments of the present invention, the trained neural network may be tested after the training is completed. For example, a three-dimensional image block including a nodule region in a three-dimensional medical image of the lung can be input into the above neural network, and the accuracy of the output segmentation results and classification results can be counted, for example, compared with the annotation information of the three-dimensional image block. , to determine the accuracy of the segmentation results and classification results, and then the training effect of the neural network can be determined. If the accuracy rate is higher than the preset threshold, it can be considered that the training effect is good, the performance of the neural network is good, and it can be used in the process of obtaining the category of the image block to be processed and segmenting the target area. If the accuracy rate does not reach the preset threshold, it can be considered that the training effect is not good, and other sample image blocks can be used to continue training.
在本發明一些實施例中,訓練後的神經網路可在待處理圖像塊中目標區域和類別均未知的情況下,獲得待處理圖像塊的類別和目標區域,也可在待處理圖像塊的類別已知的情況下,僅獲取待處理圖像塊中的目標區域,或者還可在待處理圖像塊中目標區域已知的情況下,獲取待處理圖像塊的類別。本發明實施例對神經網路的使用方法不做限制。In some embodiments of the present invention, the trained neural network can obtain the category and target region of the image block to be processed under the condition that the target region and category in the image block to be processed are unknown, or can be obtained in the image block to be processed. When the type of the image block is known, only the target area in the image block to be processed is acquired, or the type of the image block to be processed can also be acquired when the target area in the image block to be processed is known. The embodiments of the present invention do not limit the use method of the neural network.
在本發明一些實施例中,通過上述訓練方法訓練的神經網路可用於確定待處理圖像塊中的病灶區域和病灶類別。所述神經網路包括共用特徵提取網路、分類網路和分割網路,所述方法還包括:將待處理圖像塊輸入共用特徵提取網路進行處理,獲得待處理圖像塊的目標特徵,其中,所述共用特徵提取網路包括M個共用特徵提取塊,第i個共用特徵提取塊的輸入特徵包括前i-1個共用特徵提取塊的輸出特徵,i和M為整數且1<i≤M;將所述目標特徵輸入分類網路進行分類處理,獲得所述待處理圖像塊的類別資訊;將所述目標特徵輸入分割網路進行分割處理,獲得所述待處理圖像塊中的目標區域。In some embodiments of the present invention, the neural network trained by the above training method can be used to determine the lesion area and lesion category in the image block to be processed. The neural network includes a common feature extraction network, a classification network and a segmentation network, and the method further includes: inputting the image blocks to be processed into the common feature extraction network for processing to obtain target features of the image blocks to be processed , wherein the shared feature extraction network includes M shared feature extraction blocks, the input feature of the i-th shared feature extraction block includes the output features of the first i-1 shared feature extraction blocks, i and M are integers and 1< i≤M; input the target feature into the classification network for classification processing to obtain the category information of the image block to be processed; input the target feature into the segmentation network for segmentation processing to obtain the image block to be processed in the target area.
通過這種方式,採用共用特徵提取網路來獲得目標特徵,共用特徵提取網路的共用特徵提取塊可獲得之前所有共用特徵提取塊的輸出特徵,並將自身的輸出特徵輸入至後續所有共用特徵提取塊。可加強網路內的梯度流動,緩解梯度消失現象,同時提高特徵提取和學習能力,有利於對輸入的待處理圖像塊進行更精細分類和分割處理。並可獲得待處理圖像塊的較精細的類別資訊和目標區域,提升圖像處理效率。In this way, a common feature extraction network is used to obtain target features, and the common feature extraction block of the common feature extraction network can obtain the output features of all previous common feature extraction blocks, and input its own output features to all subsequent common features. Extract blocks. It can strengthen the gradient flow in the network, alleviate the phenomenon of gradient disappearance, and at the same time improve the ability of feature extraction and learning, which is conducive to the finer classification and segmentation of the input image blocks to be processed. And the finer category information and target area of the image block to be processed can be obtained, which improves the image processing efficiency.
在本發明一些實施例中,所述待處理圖像塊可以是待處理圖像中的部分區域。在示例中,可從待處理圖像中剪裁出部分區域,例如,剪裁出包括目標物件的區域。例如,待處理圖像是醫學影像圖片,可在醫學影像圖片中剪裁出包括病灶的區域。例如,待處理圖像可以是肺部三維醫學圖像(例如,肺部CT圖像),待處理圖像塊可以是待處理圖像中剪裁出的病灶區域(例如,具有結節的區域)的三維圖像塊。本發明實施例對待處理圖像和待處理圖像塊的類型不做限制。In some embodiments of the present invention, the to-be-processed image block may be a partial area in the to-be-processed image. In an example, a partial area may be cropped from the image to be processed, for example, a cropped area including the target object. For example, the image to be processed is a medical image picture, and a region including the lesion can be cut out in the medical image picture. For example, the image to be processed may be a three-dimensional medical image of the lung (for example, a CT image of the lung), and the image block to be processed may be a region of a lesion (for example, a region with nodules) clipped from the image to be processed 3D image block. The embodiments of the present invention do not limit the types of images to be processed and image blocks to be processed.
在本發明一些實施例中,在醫學影像圖片(例如,肺部三維醫學圖像)中,醫學影像圖片的尺寸和解析度較高,且在醫學影像圖片中,正常組織的區域較多,因此可對醫學影像圖片進行預處理,並對剪裁出包括病灶的區域進行處理,以提高處理效率。In some embodiments of the present invention, in a medical image (for example, a three-dimensional medical image of the lungs), the size and resolution of the medical image are relatively high, and in the medical image, there are many areas of normal tissue, therefore The medical image picture can be preprocessed, and the region including the lesion can be trimmed to improve the processing efficiency.
在本發明一些實施例中,所述方法還包括:對待處理圖像進行預處理,獲得第一圖像;對第一圖像上的目標區域進行定位,確定所述第一圖像中的目標區域的位置資訊;根據所述第一圖像中的目標區域的位置資訊,分割得到至少一個所述待處理圖像塊。In some embodiments of the present invention, the method further includes: preprocessing the image to be processed to obtain a first image; locating a target area on the first image to determine the target in the first image The location information of the area; according to the location information of the target area in the first image, at least one image block to be processed is obtained by segmentation.
在本發明一些實施例中,可首先對待處理圖像進行預處理,以提升處理效率。例如,可進行重採樣、歸一化等預處理。在示例中,可對肺部三維醫學圖像進行重採樣處理,獲得解析度為1×1×1(即,每個圖元表示1mm×1mm×1mm的立方體的內容)的三維圖像。並可將重採樣後的三維圖像的尺寸進行剪裁,例如,在肺部三維醫學圖像中,可能存在部分非肺部區域,可剪裁出肺部所在區域,以節省計算量,提高處理效率。In some embodiments of the present invention, the image to be processed may be preprocessed first to improve processing efficiency. For example, preprocessing such as resampling and normalization can be performed. In an example, a three-dimensional medical image of the lung may be resampled to obtain a three-dimensional image with a resolution of 1×1×1 (ie, each primitive represents the content of a 1mm×1mm×1mm cube). The size of the resampled 3D image can be cropped. For example, in the 3D medical image of the lungs, there may be some non-pulmonary areas, and the area where the lungs are located can be cropped to save computation and improve processing efficiency. .
在示例中,可將剪裁後的三維圖像進行歸一化,將三維圖像中各圖元的圖元值歸一化到0到1的值域範圍內,以提升處理效率。在進行歸一化處理後,獲得所述第一圖像。本發明實施例對預處理的方法不做限制。In an example, the trimmed three-dimensional image may be normalized, and the primitive values of each primitive in the three-dimensional image may be normalized to a value range of 0 to 1, so as to improve processing efficiency. After normalization processing, the first image is obtained. The embodiments of the present invention do not limit the preprocessing method.
在本發明一些實施例中,可檢測第一圖像中的目標區域。例如,可通過用於位置檢測的卷積神經網路來檢測第一圖像中的目標區域。在示例中,可利用卷積神經網路檢測肺部三維醫學圖像中的包括結節的區域。In some embodiments of the invention, the target area in the first image may be detected. For example, the region of interest in the first image may be detected by a convolutional neural network for position detection. In an example, a convolutional neural network may be utilized to detect regions including nodules in a three-dimensional medical image of the lungs.
在本發明一些實施例中,可對目標區域進行剪裁,獲得待處理圖像塊,例如,可對肺部三維醫學圖像中的包括結節的區域進行剪裁,獲得待處理圖像塊。在示例中,可根據結節的尺寸來確定待處理圖像塊的尺寸,並進行剪裁,例如,經過對結節尺寸的統計,可將待處理圖像塊的尺寸確定為64×64×64,經過剪裁,獲得一個或多個待處理圖像塊。In some embodiments of the present invention, the target area may be cropped to obtain image blocks to be processed, for example, a region including nodules in a three-dimensional medical image of the lungs may be cropped to obtain image blocks to be processed. In an example, the size of the image block to be processed can be determined according to the size of the nodule, and then trimmed. Crop to obtain one or more image blocks to be processed.
在本發明一些實施例中,可通過所述神經網路來確定待處理圖像塊的類別資訊,並分割出目標區域,例如,待處理圖像塊為肺部三維醫學圖像中剪裁出的包括結節的圖像塊。可通過神經網路確定待處理圖像塊中結節的種類(例如,AAHOPA、AIS、MIA和IA),並分割出結節所在的區域。In some embodiments of the present invention, the neural network can be used to determine the category information of the image block to be processed, and segment the target area, for example, the image block to be processed is cropped from a three-dimensional medical image of the lungs Image blocks including nodules. The type of nodule in the image block to be processed (eg, AAHOPA, AIS, MIA, and IA) can be determined by a neural network, and the region where the nodule is located can be segmented.
在本發明一些實施例中,可通過共用特徵提取網路來提取待處理圖像塊的目標特徵,以用於分類和分割處理。將待處理圖像塊輸入共用特徵提取網路進行處理,獲得待處理圖像塊的目標特徵,可包括:對待處理圖像塊進行第一特徵提取處理,獲得待處理圖像塊的第一特徵;將第一特徵輸入第一個共用特徵提取塊,獲得第一個共用特徵提取塊的輸出特徵,並將第一個共用特徵提取塊的輸出特徵輸出至後續的M-1個共用特徵提取塊;將前j-1個共用特徵提取塊的輸出特徵輸入至第j個共用特徵提取塊,獲得第j個共用特徵提取塊的輸出特徵;將第M個共用特徵提取塊的輸出特徵進行第二特徵提取處理,獲得待處理圖像塊的第二特徵;對第二特徵進行池化處理,獲得所述目標特徵。In some embodiments of the present invention, a common feature extraction network can be used to extract target features of image blocks to be processed for classification and segmentation processing. Inputting the to-be-processed image block into a shared feature extraction network for processing to obtain the target feature of the to-be-processed image block may include: performing a first feature extraction process on the to-be-processed image block to obtain the first feature of the to-be-processed image block ; Input the first feature into the first common feature extraction block, obtain the output feature of the first common feature extraction block, and output the output feature of the first common feature extraction block to the subsequent M-1 common feature extraction blocks ; Input the output features of the first j-1 common feature extraction blocks to the jth common feature extraction block to obtain the output features of the jth common feature extraction block; Carry out the second output feature of the Mth common feature extraction block The feature extraction process obtains the second feature of the image block to be processed; the second feature is pooled to obtain the target feature.
在本發明一些實施例中,可首先進行第一特徵提取處理,例如,可通過包括三維卷積層(Three Dimensional Convolutional Layer)、批歸一化層(Normalization)和啟動層(Activiation Layer)的網路模組來進行第一特徵提取處理,獲得第一特徵。本發明實施例對進行第一特徵提取處理的網路層級不做限制。In some embodiments of the present invention, the first feature extraction process may be performed first, for example, through a network including a three-dimensional convolutional layer (Three Dimensional Convolutional Layer), a batch normalization layer (Normalization), and an activation layer (Activation Layer) The module performs the first feature extraction process to obtain the first feature. The embodiment of the present invention does not limit the network level for performing the first feature extraction process.
在本發明一些實施例中,共用特徵提取網路可包括多個共用特徵提取塊,共用特徵提取塊可包括多個網路層級,例如,卷積層、啟動層等,本發明實施例對共用特徵提取塊包括的網路層級不做限制。可通過多個共用特徵提取塊對第一特徵進行處理。在示例中,共用特徵提取塊的數量為M個,可將第一特徵輸入第一個共用特徵提取塊,即,第一個共用特徵提取塊可將第一特徵作為輸入特徵,並對輸入特徵進行特徵提取處理,獲得輸出特徵,第一個共用特徵提取塊的輸出特徵可由後續所有共用特徵提取塊共用,即,第一個共用特徵提取塊的輸出特徵可至後續的M-1個共用特徵提取塊,作為後續M-1個共用特徵提取塊的輸入特徵。In some embodiments of the present invention, the common feature extraction network may include multiple common feature extraction blocks, and the common feature extraction block may include multiple network layers, such as convolution layers, startup layers, etc. The network level included in the extraction block is not limited. The first feature may be processed by a plurality of common feature extraction blocks. In an example, the number of common feature extraction blocks is M, and the first feature can be input into the first common feature extraction block, that is, the first common feature extraction block can use the first feature as an input feature, and the input feature Perform feature extraction processing to obtain output features. The output features of the first shared feature extraction block can be shared by all subsequent shared feature extraction blocks, that is, the output features of the first shared feature extraction block can be up to the subsequent M-1 shared features The extraction block is used as the input feature of the subsequent M-1 shared feature extraction blocks.
在本發明一些實施例中,第二個共用特徵提取塊的輸入特徵即為第一個共用特徵提取塊的輸出特徵,第二個共用特徵提取塊對其輸入特徵進行特徵提取處理後,可將其輸出特徵輸出至後續的第3個至第M個共用特徵提取塊,作為第3個至第M個共用特徵提取塊的輸入特徵。In some embodiments of the present invention, the input feature of the second common feature extraction block is the output feature of the first common feature extraction block, and after the second common feature extraction block performs feature extraction on its input feature, the The output features are output to the subsequent 3rd to Mth common feature extraction blocks as input features of the 3rd to Mth common feature extraction blocks.
在本發明一些實施例中,第3個共用特徵提取塊的輸入特徵為第一個共用特徵提取塊的輸出特徵和第二個共用特徵提取塊的輸出特徵,第一個共用特徵提取塊的輸出特徵和第二個共用特徵提取塊的輸出特徵可在特徵融合(例如,通過計算平均值、最大值等方式進行融合,或者保留所有特徵通道)後輸入至第3個共用特徵提取塊(即,第3個共用特徵提取塊的輸入特徵可以是第一個共用特徵提取塊的輸出特徵和第二個共用特徵提取塊的輸出特徵融合後的特徵),或者,第3個共用特徵提取塊可直接將第一個共用特徵提取塊的輸出特徵和第二個共用特徵提取塊的輸出特徵均作為輸入特徵(例如,第3個共用特徵提取塊可包括特徵融合層,可由該層級進行特徵融合處理,或者保留所有特徵通道,並可直接對所有特徵通道的特徵進行後續處理,即,對第一個共用特徵提取塊的輸出特徵和第二個共用特徵提取塊的輸出特徵進行後續處理),並對輸入特徵進行特徵提取處理(例如,直接對所有特徵通道的特徵進行特徵提取處理,或者對融合後的特徵進行特徵提取處理),獲得第3個共用特徵提取塊的輸出特徵。第3個共用特徵提取塊的輸出特徵可輸出至第4個至第M個共用特徵提取塊,作為第4個至第M個共用特徵提取塊的輸入特徵。In some embodiments of the present invention, the input feature of the third common feature extraction block is the output feature of the first common feature extraction block and the output feature of the second common feature extraction block, and the output feature of the first common feature extraction block The features and the output features of the second common feature extraction block can be input to the third common feature extraction block after feature fusion (for example, by computing the mean, maximum, etc., or by keeping all feature channels) The input feature of the third common feature extraction block can be the output feature of the first common feature extraction block and the output feature of the second common feature extraction block after fusion), or the third common feature extraction block can be directly The output features of the first common feature extraction block and the output features of the second common feature extraction block are both used as input features (for example, the third common feature extraction block can include a feature fusion layer, which can be used for feature fusion processing, Or keep all feature channels, and directly perform subsequent processing on the features of all feature channels, that is, perform subsequent processing on the output features of the first common feature extraction block and the output features of the second common feature extraction block), and Perform feature extraction processing on the input features (for example, directly perform feature extraction processing on the features of all feature channels, or perform feature extraction processing on the fused features), and obtain the output features of the third common feature extraction block. The output features of the third common feature extraction block can be output to the fourth to Mth common feature extraction blocks as input features of the fourth to Mth common feature extraction blocks.
在本發明一些實施例中,以第j(j為整數且1<j<M)個共用特徵提取塊為例,前j-1個共用特徵提取塊的輸出特徵可被作為輸入特徵輸入至第j個共用特徵提取塊。可將前j-1個共用特徵提取塊的輸出特徵進行特徵融合後,將融合後的特徵作為第j個共用特徵提取塊的輸入特徵,或者直接將前j-1個共用特徵提取塊的輸出特徵作為第j個共用特徵提取塊的輸入特徵(例如,在第j個共用特徵提取塊內進行融合,或者直接對所有特徵通道的特徵進行後續處理,即,將前j-1個共用特徵提取塊的輸出特徵進行後續處理)。第j個共用特徵提取塊可對其輸入特徵進行特徵提取處理,獲得第j個共用特徵提取塊的輸出特徵,並將該輸出特徵作為第j+1個至第M個共用特徵提取塊的輸入特徵。In some embodiments of the present invention, taking the jth (j is an integer and 1<j<M) common feature extraction block as an example, the output features of the first j-1 common feature extraction blocks can be used as input features to input to the j shared feature extraction blocks. After feature fusion of the output features of the first j-1 common feature extraction blocks, the fused features can be used as the input features of the jth common feature extraction block, or the output of the first j-1 common feature extraction blocks can be directly fused. The feature is used as the input feature of the j-th common feature extraction block (for example, fused within the j-th common feature extraction block, or directly perform subsequent processing on the features of all feature channels, that is, extract the first j-1 common features block output features for subsequent processing). The jth common feature extraction block can perform feature extraction on its input features, obtain the output features of the jth common feature extraction block, and use the output features as the input of the j+1th to Mth common feature extraction blocks feature.
在本發明一些實施例中,第M個共用特徵提取塊可根據前M-1個共用特徵提取塊的輸出特徵,獲得第M個共用特徵提取塊的輸出特徵。並可通過共用特徵提取網路的後續的網路層級進行第二特徵提取處理,例如,可通過包括三維卷積層、批歸一化層和啟動層的網路模組對第N個共用特徵提取塊的輸出特徵進行第二特徵提取處理,獲得第二特徵。本發明實施例對進行第二特徵提取處理的網路層級不做限制。In some embodiments of the present invention, the Mth common feature extraction block may obtain the output features of the Mth common feature extraction block according to the output features of the first M-1 common feature extraction blocks. The second feature extraction process can be performed through subsequent network layers of the shared feature extraction network. For example, the Nth shared feature can be extracted by a network module including a 3D convolution layer, a batch normalization layer, and a startup layer. The output feature of the block is subjected to a second feature extraction process to obtain the second feature. The embodiment of the present invention does not limit the network level for performing the second feature extraction process.
在本發明一些實施例中,可對第二特徵進行池化處理,例如,可通過平均值池化層對第二特徵進行池化處理獲得目標特徵。本發明實施例對池化處理的類型不做限制。In some embodiments of the present invention, the second feature may be pooled, for example, the target feature may be obtained by pooling the second feature through an average pooling layer. This embodiment of the present invention does not limit the type of pooling processing.
在本發明一些實施例中,上述處理可進行多次,例如,可包括多個共用特徵提取網路。第一個共用特徵提取網路可以以第一特徵為輸入特徵,經過共用特徵提取塊的特徵提取處理、第二特徵提取處理和池化處理後,獲得第一個共用特徵提取網路的輸出特徵,第二個共用特徵提取網路可以將第一個共用特徵提取網路的輸出特徵作為輸入特徵,經過共用特徵提取塊的特徵提取處理、第二特徵提取處理和池化處理後,獲得第二個共用特徵提取網路的輸出特徵……可通過多個共用特徵提取網路進行處理,並將最後一個(例如,第4個)共用特徵提取網路的輸出特徵作為目標特徵。本發明實施例對共用特徵提取網路數量不做限制。In some embodiments of the present invention, the above process may be performed multiple times, eg, may include multiple common feature extraction networks. The first common feature extraction network can take the first feature as the input feature, and after the feature extraction process of the common feature extraction block, the second feature extraction process and the pooling process, the output feature of the first common feature extraction network can be obtained. , the second shared feature extraction network can use the output features of the first shared feature extraction network as the input features, and after the feature extraction processing of the shared feature extraction block, the second feature extraction processing and the pooling processing, the second shared feature extraction network can be obtained. The output features of two common feature extraction networks...may be processed by multiple common feature extraction networks, and the output feature of the last (eg, 4th) common feature extraction network is used as the target feature. The embodiment of the present invention does not limit the number of shared feature extraction networks.
通過這種方式,能夠通過共用特徵提取網路來獲得目標特徵,共用特徵提取網路的共用特徵提取塊可獲得之前所有共用特徵提取塊的輸出特徵,並將自身的輸出特徵輸入至後續所有共用特徵提取塊。可加強網路內的梯度流動,緩解梯度消失現象,同時提高特徵提取和學習能力,有利於對輸入的待處理圖像塊進行更精細分類和分割處理。In this way, the target feature can be obtained through the shared feature extraction network, and the shared feature extraction block of the shared feature extraction network can obtain the output features of all previous shared feature extraction blocks, and input its own output features to all subsequent shared feature extraction blocks. Feature extraction block. It can strengthen the gradient flow in the network, alleviate the phenomenon of gradient disappearance, and at the same time improve the ability of feature extraction and learning, which is conducive to the finer classification and segmentation of the input image blocks to be processed.
在本發明一些實施例中,可根據目標特徵來確定待處理圖像塊的類別資訊,例如,待處理圖像塊是肺部三維醫學圖像中包括結節等病灶的圖像塊,可根據目標特徵確定結節的類別。在示例中,可確定結節的類別為浸潤前腺癌非典型腺瘤增生、原位腺癌、微創腺癌還是浸潤性腺癌。In some embodiments of the present invention, the category information of the to-be-processed image block can be determined according to the target feature. For example, the to-be-processed image block is an image block including nodules and other lesions in a three-dimensional medical image of the lung. Features determine the class of the nodule. In an example, it may be determined whether the nodule is classified as preinvasive adenocarcinoma atypical adenoma hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, or invasive adenocarcinoma.
在本發明一些實施例中,可通過分類網路對目標特徵進行分類處理,獲得待處理圖像塊的類別資訊。在示例中,分類網路可包括多個網路層級,例如,卷積層、全域平均池化層(Global Average Pooling)和全連接層(Fully Connected Layer)等,上述網路層級可對目標特徵進行分類處理,並可輸出類別資訊。所述類別資訊可以是通過向量等形式表示的類別資訊,可通過概率詞典等確定該向量表示的待處理圖像塊屬於各類別的概率分佈,進而確定待處理圖像塊的類別資訊。或者,類別資訊的向量可直接表示待處理圖像塊的概率,在示例中,該向量的各元素分別表示待處理圖像塊所屬類別的概率,例如,(0.8、0.1、0.1)可表示待處理圖像塊屬於第一個類別的概率為0.8,屬於第二個類別的概率為0.1,屬於第三個類別的概率為0.1,並可將概率最大的類別確定為待處理圖像塊的類別,即,可將待處理圖像塊的類別資訊確定為第一個類別。本發明實施例對類別資訊的表示方法不做限制。In some embodiments of the present invention, the target feature can be classified and processed through a classification network to obtain the classification information of the image block to be processed. In an example, the classification network may include multiple network layers, such as convolutional layers, global average pooling layers (Global Average Pooling), fully connected layers, etc. Classification processing, and can output category information. The category information may be category information represented by a vector or the like, and a probability dictionary or the like may be used to determine that the image block to be processed represented by the vector belongs to the probability distribution of each category, and then the category information of the to-be-processed image block may be determined. Alternatively, the vector of category information can directly represent the probability of the image block to be processed. In an example, each element of the vector represents the probability of the category to which the image block to be processed belongs. For example, (0.8, 0.1, 0.1) can represent the probability of the image block to be processed The probability of the processed image block belonging to the first category is 0.8, the probability of belonging to the second category is 0.1, and the probability of belonging to the third category is 0.1, and the category with the highest probability can be determined as the category of the image block to be processed , that is, the category information of the image block to be processed can be determined as the first category. The embodiment of the present invention does not limit the representation method of category information.
在本發明一些實施例中,可根據目標特徵來確定待處理圖像塊的類別資訊,例如,待處理圖像塊是肺部三維醫學圖像中包括結節等病灶的圖像塊,可根據目標特徵確定結節的位置,並對其所在區域進行分割。In some embodiments of the present invention, the category information of the to-be-processed image block can be determined according to the target feature. For example, the to-be-processed image block is an image block including nodules and other lesions in a three-dimensional medical image of the lung. Features determine the location of nodules and segment the region where they are located.
在本發明一些實施例中,可通過分割網路進行分割處理,獲得待處理圖像塊中的目標區域,例如,可分割出目標區域。在示例中,分割網路可包括多個網路層級,例如,上採樣層(Upsample)、全連接層等。在示例中,目標特徵為共用特徵提取網路中經過對待處理圖像塊進行特徵提取、池化等處理獲得的特徵圖,目標特徵的解析度可低於待處理圖像塊。可通過上採樣層進行上採樣處理,將目標特徵的特徵通道數量減少,並提升解析度,使分割網路輸出的特徵圖與待處理圖像塊解析度一致。例如,共用特徵提取網路進行四次池化處理,則可通過上採樣層進行四次上採樣處理,以使分割網路的輸出的特徵圖與待處理圖像塊解析度一致。並可在分割網路的輸出的特徵圖中分割出目標區域,例如,通過輪廓線或輪廓面確定出結節所在的目標區域。本發明實施例對分割網路的網路層級不做限制。In some embodiments of the present invention, segmentation processing may be performed through a segmentation network to obtain the target area in the image block to be processed, for example, the target area may be segmented. In an example, the segmentation network may include multiple network levels, eg, upsample layers, fully connected layers, and the like. In an example, the target feature is a feature map obtained by performing feature extraction, pooling, etc. on the image block to be processed in a common feature extraction network, and the resolution of the target feature may be lower than that of the image block to be processed. Upsampling can be performed through the upsampling layer to reduce the number of feature channels of the target feature and improve the resolution, so that the feature map output by the segmentation network has the same resolution as the image block to be processed. For example, if the feature extraction network is shared for four times of pooling, the upsampling layer can be used for four times of upsampling, so that the feature map output by the segmentation network has the same resolution as the image block to be processed. The target area can be segmented in the output feature map of the segmentation network, for example, the target area where the nodule is located can be determined by contour lines or contour surfaces. The embodiment of the present invention does not limit the network level of the divided network.
在本發明一些實施例中,在待處理圖像塊中分割出目標區域後,還可確定目標區域在待處理圖像中的位置。例如,可根據待處理圖像塊在待處理圖像中的位置,以及待處理圖像塊中目標區域的位置,還原出目標區域在待處理圖像中的位置。在示例中,在肺部醫學圖像中,可分割出待處理圖像塊中結節所在位置,並還原出該結節在肺部醫學圖像中的位置。In some embodiments of the present invention, after the target area is segmented in the to-be-processed image block, the position of the target area in the to-be-processed image may also be determined. For example, the position of the target area in the image to be processed can be restored according to the position of the image block to be processed in the image to be processed and the position of the target area in the image block to be processed. In an example, in a lung medical image, the location of the nodule in the image block to be processed can be segmented, and the location of the nodule in the lung medical image can be restored.
根據本發明實施例提供的神經網路訓練方法,可獲得樣本圖像塊的精細分類,並對神經網路進行訓練,使得神經網路可對圖像進行精細分類,提高分類效率和準確度;並可通過共用特徵提取網路來獲得目標特徵,共用特徵提取網路的共用特徵提取塊可獲得之前所有共用特徵提取塊的輸出特徵,將自身的輸出特徵輸入至後續所有共用特徵提取塊,以加強網路內的梯度流動,緩解梯度消失現象,同時提高特徵提取和學習能力,有利於對輸入的待處理圖像塊進行更精細分類和分割處理;並可獲得待處理圖像塊的較精細的類別資訊和目標區域,提升圖像處理效率;並可在訓練中使相同類別的樣本圖像塊的類別資訊更聚集,使不同類別的樣本圖像塊的類別資訊之間的特徵距離更大;並可平衡目標區域的誤差和非目標區域的誤差,有助於提升分類性能,提高分類準確率。According to the neural network training method provided by the embodiment of the present invention, the fine classification of the sample image blocks can be obtained, and the neural network is trained, so that the neural network can finely classify the images, and the classification efficiency and accuracy are improved; The target feature can be obtained through the shared feature extraction network. The shared feature extraction block of the shared feature extraction network can obtain the output features of all the previous shared feature extraction blocks, and input its own output features to all subsequent shared feature extraction blocks. Strengthen the gradient flow in the network, alleviate the phenomenon of gradient disappearance, and improve the feature extraction and learning ability at the same time, which is conducive to more fine classification and segmentation of the input image blocks to be processed; class information and target area, improve image processing efficiency; and can make the class information of sample image blocks of the same class more aggregated during training, so that the feature distance between the class information of sample image blocks of different classes is larger ; It can balance the error of the target area and the error of the non-target area, which helps to improve the classification performance and improve the classification accuracy.
圖3是本發明實施例提供的神經網路訓練方法的一種應用示意圖,如圖3所示,樣本圖像31為醫學影像圖片,樣本圖像塊32為醫學影像圖片中剪裁出的包括病灶(例如,結節)的圖像塊。並且,樣本圖像塊可具有類別標注,例如,樣本圖像塊可包括AAHOPA、AIS、MIA和IA四個類別。FIG. 3 is a schematic diagram of an application of the neural network training method provided by an embodiment of the present invention. As shown in FIG. 3 , the sample image 31 is a medical image picture, and the sample image block 32 is clipped from the medical image picture including a lesion ( For example, nodules) image blocks. Also, the sample image block may have category annotations, for example, the sample image block may include four categories of AAHOPA, AIS, MIA, and IA.
在本發明一些實施例中,可將樣本圖像塊32輸入神經網路33,神經網路33包括的共用特徵提取網路331對每批樣本圖像塊進行特徵提取,獲得樣本圖像塊的樣本目標特徵,並通過神經網路33包括的分類網路332獲得樣本圖像塊的類別預測資訊,通過公式(1)和公式(2),可確定神經網路的分類損失。在本發明一些實施例中,神經網路33包括的分割網路333可獲得樣本圖像塊32中的預測目標區域,並可根據公式(3)確定神經網路的分割損失。可對分割損失和分類損失加權求和,獲得神經網路的綜合網路損失,並通過綜合網路損失訓練神經網路。訓練後的神經網路可用於確定醫學影像的圖像塊中的病灶區域和病灶類別。In some embodiments of the present invention, the sample image blocks 32 may be input into the neural network 33, and the common feature extraction network 331 included in the neural network 33 performs feature extraction on each batch of sample image blocks to obtain the The sample target features are obtained, and the category prediction information of the sample image block is obtained through the classification network 332 included in the neural network 33, and the classification loss of the neural network can be determined by formula (1) and formula (2). In some embodiments of the present invention, the segmentation network 333 included in the neural network 33 can obtain the predicted target area in the sample image block 32, and can determine the segmentation loss of the neural network according to formula (3). The segmentation loss and the classification loss can be weighted and summed to obtain the comprehensive network loss of the neural network, and the neural network can be trained by the comprehensive network loss. The trained neural network can be used to determine lesion regions and lesion categories in image patches of medical images.
在本發明一些實施例中,待處理圖像可以是三維肺部醫學圖像(例如,肺部CT圖像),待處理圖像塊可以是待處理圖像中剪裁出的病例區域(例如,具有結節的區域)的三維圖像塊。In some embodiments of the present invention, the to-be-processed image may be a three-dimensional lung medical image (eg, a lung CT image), and the to-be-processed image block may be a cropped case region in the to-be-processed image (eg, 3D image patch of the region with nodules).
在本發明一些實施例中,可對三維醫學圖像進行重採樣處理,獲得解析度為1×1×1的三維圖像,並剪裁出肺部所在區域,進而可對肺部所在區域進行歸一化。在本發明一些實施例中,可檢測肺部所在區域中的結節所在區域,並按照64×64×64的尺寸剪裁出包括結節所在區域的多個待處理圖像塊。In some embodiments of the present invention, the three-dimensional medical image can be resampled to obtain a three-dimensional image with a resolution of 1×1×1, and the area where the lung is located can be cut out, and then the area where the lung is located can be normalized. unify. In some embodiments of the present invention, the area where the nodule is located in the area where the lung is located can be detected, and a plurality of image blocks to be processed including the area where the nodule is located can be cut out according to the size of 64×64×64.
在本發明一些實施例中,可將多個待處理圖像塊分批進行特徵提取處理,獲得待處理圖像塊的目標特徵。例如,可首先進行第一特徵提取處理,例如,可通過包括三維卷積層、批歸一化層和啟動層的網路模組來進行第一特徵提取處理,獲得第一特徵。In some embodiments of the present invention, feature extraction processing may be performed on multiple image blocks to be processed in batches to obtain target features of the image blocks to be processed. For example, the first feature extraction process may be performed first, for example, the first feature extraction process may be performed through a network module including a three-dimensional convolution layer, a batch normalization layer, and a startup layer to obtain the first feature.
在本發明一些實施例中,可將第一特徵輸入共用特徵提取網路。共用特徵提取網路可包括多個共用特徵提取塊。在示例中,共用特徵提取塊的數量為M個,可將第一特徵輸入第一個共用特徵提取塊進行處理,第一個共用特徵提取塊的輸出特徵可至後續的M-1個共用特徵提取塊。第二個共用特徵提取塊的輸入特徵即為第一個共用特徵提取塊的輸出特徵,並且,第二個共用特徵提取塊可將其輸出特徵輸出至後續的第3個至第M個共用特徵提取塊。第3個共用特徵提取塊的輸入特徵為第一個共用特徵提取塊的輸出特徵和第二個共用特徵提取塊的輸出特徵,並且,第3個共用特徵提取塊的輸出特徵可輸出至第4個至第M個共用特徵提取塊。類似地,前j-1個共用特徵提取塊的輸出特徵可被輸入至第j個共用特徵提取塊,第j個共用特徵提取塊的輸出特徵可輸出至第j+1個至第M個共用特徵提取塊。第M個共用特徵提取塊可根據前M-1個共用特徵提取塊的輸出特徵,獲得第M個共用特徵提取塊的輸出特徵,並進行第二特徵提取處理,例如,可通過包括三維卷積層、批歸一化層和啟動層的網路模組對第N個共用特徵提取塊的輸出特徵進行第二特徵提取處理,獲得第二特徵。在本發明一些實施例中,可對第二特徵進行池化(例如,平均值池化(Average Pooling))處理,獲得目標特徵。In some embodiments of the present invention, the first feature may be input into a common feature extraction network. The common feature extraction network may include multiple common feature extraction blocks. In the example, the number of common feature extraction blocks is M, the first feature can be input into the first common feature extraction block for processing, and the output feature of the first common feature extraction block can be the subsequent M-1 common features Extract blocks. The input features of the second common feature extraction block are the output features of the first common feature extraction block, and the second common feature extraction block can output its output features to the subsequent third to Mth common features Extract blocks. The input features of the third common feature extraction block are the output features of the first common feature extraction block and the output features of the second common feature extraction block, and the output features of the third common feature extraction block can be output to the fourth common feature extraction block. to M-th common feature extraction blocks. Similarly, the output features of the first j-1 common feature extraction blocks can be input to the jth common feature extraction block, and the output features of the jth common feature extraction block can be output to the j+1th to Mth common feature extraction blocks. Feature extraction block. The Mth common feature extraction block can obtain the output features of the Mth common feature extraction block according to the output features of the first M-1 common feature extraction blocks, and perform the second feature extraction process, for example, by including a three-dimensional convolution layer. The network modules of the batch normalization layer and the startup layer perform second feature extraction processing on the output feature of the Nth shared feature extraction block to obtain the second feature. In some embodiments of the present invention, a pooling (eg, average pooling (Average Pooling)) process may be performed on the second feature to obtain the target feature.
在本發明一些實施例中,上述處理可進行多次(例如4次),例如,可包括多個共用特徵提取網路。經過多個級聯的共用特徵提取網路的處理,可獲得目標特徵。In some embodiments of the present invention, the above process may be performed multiple times (eg, 4 times), for example, may include multiple common feature extraction networks. The target features can be obtained through the processing of multiple cascaded shared feature extraction networks.
在本發明一些實施例中,分類網路可對目標特徵進行分類處理,獲得待處理圖像塊的類別資訊。例如,分類網路可通過卷積層、全域平均池化層和全連接層等,獲得待處理圖像塊的類別資訊。In some embodiments of the present invention, the classification network may perform classification processing on the target features to obtain the classification information of the image blocks to be processed. For example, the classification network can obtain the category information of the image blocks to be processed through convolutional layers, global average pooling layers, and fully connected layers.
在本發明一些實施例中,分割網路可對目標特徵進行分割處理,獲得目標區域(即,結節所在區域)。在示例中,分割網路通過上採樣層進行四次上採樣處理,以使分割網路的輸出的特徵圖與待處理圖像塊解析度一致,並可在分割網路的輸出的特徵圖中分割出目標區域。In some embodiments of the present invention, the segmentation network may perform segmentation processing on the target feature to obtain the target area (ie, the area where the nodule is located). In the example, the segmentation network performs up-sampling processing four times through the upsampling layer, so that the output feature map of the segmentation network has the same resolution as the image block to be processed, and can be displayed in the output feature map of the segmentation network. Segment out the target area.
在本發明一些實施例中,上述神經網路可在待處理圖像塊中目標區域和類別均未知的情況下,獲得待處理圖像塊的類別和目標區域(例如,可分割出結節所在區域,並獲得結節的類別),也可在待處理圖像塊的類別已知的情況下,僅獲取待處理圖像塊中的目標區域(例如,分割出結節所在區域),或者可在待處理圖像塊中目標區域已知的情況下,獲取待處理圖像塊的類別(例如,確定結節的類別)。In some embodiments of the present invention, the above-mentioned neural network can obtain the category and target region of the image block to be processed when the target region and category in the image block to be processed are unknown (for example, the region where the nodule is located can be segmented , and obtain the category of the nodule), or if the category of the image block to be processed is known, only the target area in the image block to be processed (for example, the area where the nodule is located) can be obtained, or it can be When the target area in the image block is known, obtain the category of the image block to be processed (eg, determine the category of the nodule).
在本發明一些實施例中,所述圖像處理方法可用於對肺部CT圖像等醫學圖像中的病例區域進行分割和分類,提高臨床工作效率,減少漏診和誤診,也可用於對其他圖像進行分類和目標區域的分割,本發明實施例對所述圖像處理方法的應用領域不做限制。In some embodiments of the present invention, the image processing method can be used to segment and classify case areas in medical images such as lung CT images, improve clinical work efficiency, reduce missed diagnosis and misdiagnosis, and can also be used for other The image is classified and the target area is segmented, and the embodiment of the present invention does not limit the application field of the image processing method.
可以理解,本發明提及的上述各個方法實施例,在不違背原理邏輯的情況下,均可以彼此相互結合形成結合後的實施例。此外,本發明實施例還提供了裝置、電子設備、電腦可讀儲存介質、程式,上述均可用來實現本發明實施例提供的任一種方法,相應技術方案和描述和參見方法部分的相應記載。本領域技術人員可以理解,在上述方法實施例中,各步驟的撰寫順序並不意味著嚴格的執行順序而對實施過程構成任何限定,各步驟的執行順序應當以其功能和可能的內在邏輯確定。It can be understood that the above method embodiments mentioned in the present invention can be combined with each other to form a combined embodiment without violating the principle and logic. In addition, the embodiments of the present invention also provide devices, electronic devices, computer-readable storage media, and programs, all of which can be used to implement any of the methods provided by the embodiments of the present invention. For the corresponding technical solutions and descriptions, refer to the corresponding records in the Methods section. Those skilled in the art can understand that, in the above method embodiments, the writing order of each step does not mean a strict execution order but constitutes any limitation on the implementation process, and the execution order of each step should be determined by its function and possible internal logic .
圖4是本發明實施例提供的神經網路訓練裝置的一種示意圖,如圖4所示,所述裝置包括:獲取模組11,配置為獲取樣本圖像中目標區域的位置資訊及類別資訊;第一分割模組12,配置為根據所述樣本圖像中目標區域的位置資訊,分割得到至少一個樣本圖像塊;分類模組13,配置為根據所述類別資訊,將所述至少一個樣本圖像塊進行分類,得到N類樣本圖像塊,N為整數,且N≥1;訓練模組14,配置為將所述N類樣本圖像塊輸入至神經網路中進行訓練。4 is a schematic diagram of a neural network training apparatus provided by an embodiment of the present invention. As shown in FIG. 4 , the apparatus includes: an
在本發明一些實施例中,所述樣本圖像為醫學影像圖片。In some embodiments of the present invention, the sample image is a medical image picture.
在本發明一些實施例中,所述獲取模組11還配置為:對醫學影像圖片上的目標區域進行定位,得到所述目標區域的位置資訊;獲取與所述醫學影像圖片關聯的病理學圖片;所述病理學圖片為經過診斷的包括病理資訊的圖片;根據所述病理學圖片上的各目標區域的病理資訊,確定所述醫學影像圖片上的目標區域的類別資訊。In some embodiments of the present invention, the
在本發明一些實施例中,所述訓練模組14還配置為:將任一的樣本圖像塊輸入所述神經網路進行處理,獲得樣本圖像塊的類別預測資訊和預測目標區域;至少根據所述類別預測資訊和所述樣本圖像塊的類別資訊,確定分類損失;根據所述預測目標區域和所述樣本圖像塊的位置資訊,確定分割損失;根據所述分類損失和所述分割損失,訓練所述神經網路。In some embodiments of the present invention, the
在本發明一些實施例中,所述訓練模組14還配置為:根據所述類別預測資訊和所述樣本圖像塊的類別資訊,確定第一分類損失;根據所述類別預測資訊和所述樣本圖像塊所屬類別的類中心的類別資訊,確定第二分類損失;對所述第一分類損失和所述第二分類損失進行加權求和處理,獲得所述分類損失。In some embodiments of the present invention, the
在本發明一些實施例中,所述訓練模組14還配置為:根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述預測目標區域的第一權重和所述樣本圖像塊中樣本背景區域的第二權重;根據所述第一權重、第二權重、所述預測目標區域和所述樣本圖像塊的位置資訊,確定所述分割損失。In some embodiments of the present invention, the
在本發明一些實施例中,所述訓練模組14還配置為:根據所述預測目標區域的圖元數量在所述樣本圖像塊中所占的第一比例,確定所述樣本圖像塊中樣本背景區域的第二比例;將所述第二比例確定為所述第一權重,並將所述第一比例確定為第二權重。In some embodiments of the present invention, the
在本發明一些實施例中,所述類別資訊包括:浸潤前腺癌非典型腺瘤增生結節、原位腺癌結節、微創腺癌結節和浸潤性腺癌結節。In some embodiments of the present invention, the category information includes: preinvasive adenocarcinoma atypical adenoma hyperplasia nodules, adenocarcinoma in situ nodules, minimally invasive adenocarcinoma nodules, and invasive adenocarcinoma nodules.
在本發明一些實施例中,所述神經網路包括共用特徵提取網路、分類網路和分割網路,所述裝置還包括:獲得模組,配置為將待處理圖像塊輸入所述共用特徵提取網路進行處理,獲得待處理圖像塊的目標特徵,其中,所述共用特徵提取網路包括M個共用特徵提取塊,第i個共用特徵提取塊的輸入特徵包括前i-1個共用特徵提取塊的輸出特徵,i和M為整數且1<i≤M;分類模組,配置為將所述目標特徵輸入所述分類網路進行分類處理,獲得所述待處理圖像塊的類別資訊;分割模組,配置為將所述目標特徵輸入所述分割網路進行分割處理,獲得所述待處理圖像塊中的目標區域。In some embodiments of the present invention, the neural network includes a common feature extraction network, a classification network and a segmentation network, and the apparatus further includes: an obtaining module configured to input the image block to be processed into the common feature The feature extraction network performs processing to obtain the target feature of the image block to be processed, wherein the common feature extraction network includes M common feature extraction blocks, and the input features of the i-th common feature extraction block include the first i-1 The output features of the shared feature extraction block, i and M are integers and 1<i≤M; the classification module is configured to input the target feature into the classification network for classification processing, and obtain the image block to be processed. Category information; a segmentation module, configured to input the target feature into the segmentation network for segmentation processing to obtain the target area in the to-be-processed image block.
在本發明一些實施例中,所述獲得模組還配置為:對所述待處理圖像塊進行第一特徵提取處理,獲得所述待處理圖像塊的第一特徵;將所述第一特徵輸入第一個共用特徵提取塊,獲得所述第一個共用特徵提取塊的輸出特徵,並將所述第一個共用特徵提取塊的輸出特徵輸出至後續的M-1個共用特徵提取塊;將前j-1個共用特徵提取塊的輸出特徵輸入至第j個共用特徵提取塊,獲得所述第j個共用特徵提取塊的輸出特徵,其中,j為整數且1<j<M;將第M個共用特徵提取塊的輸出特徵進行第二特徵提取處理,獲得所述待處理圖像塊的第二特徵;對所述第二特徵進行池化處理,獲得所述目標特徵。In some embodiments of the present invention, the obtaining module is further configured to: perform a first feature extraction process on the to-be-processed image block to obtain a first feature of the to-be-processed image block; The feature is input to the first common feature extraction block, the output features of the first common feature extraction block are obtained, and the output features of the first common feature extraction block are output to the subsequent M-1 common feature extraction blocks ; Input the output features of the first j-1 common feature extraction blocks to the jth common feature extraction block to obtain the output features of the jth common feature extraction block, where j is an integer and 1<j<M; The second feature extraction process is performed on the output feature of the Mth shared feature extraction block to obtain the second feature of the to-be-processed image block; the second feature is pooled to obtain the target feature.
在本發明一些實施例中,所述裝置還包括:預處理模組,配置為對待處理圖像進行預處理,獲得第一圖像;定位模組,配置為對所述第一圖像上的目標區域進行定位,確定所述第一圖像中的目標區域的位置資訊;第二分割模組,配置為根據所述第一圖像中的目標區域的位置資訊,分割得到至少一個所述待處理圖像塊。In some embodiments of the present invention, the device further includes: a preprocessing module, configured to preprocess the image to be processed to obtain a first image; a positioning module, configured to perform preprocessing on the first image. The target area is positioned to determine the position information of the target area in the first image; the second segmentation module is configured to divide and obtain at least one of the target areas according to the position information of the target area in the first image. Process image blocks.
在一些實施例中,本發明實施例提供的裝置具有的功能或包含的模組可以配置為執行上文方法實施例描述的方法,其實現可以參照上文方法實施例的描述。In some embodiments, the functions or modules included in the apparatus provided in the embodiments of the present invention may be configured to execute the methods described in the above method embodiments, and for implementation, reference may be made to the above method embodiments.
本發明實施例還提供一種電腦可讀儲存介質,其上儲存有電腦程式,所述電腦程式被配置為運行時執行上述方法。電腦可讀儲存介質可以是非易失性電腦可讀儲存介質。Embodiments of the present invention further provide a computer-readable storage medium, on which a computer program is stored, and the computer program is configured to execute the above method when running. The computer-readable storage medium may be a non-volatile computer-readable storage medium.
本發明實施例還提供一種電子設備,包括:處理器;配置為儲存處理器可執行電腦程式的記憶體;其中,所述處理器被配置為通過所述電腦程式執行上述方法。電子設備可以被提供為終端、伺服器或其它形態的設備。An embodiment of the present invention further provides an electronic device, including: a processor; a memory configured to store a computer program executable by the processor; wherein the processor is configured to execute the above method through the computer program. The electronic device may be provided as a terminal, server or other form of device.
本發明實施例還提供一種電腦程式產品,包括電腦可讀代碼,當電腦可讀代碼在設備上運行時,設備中的處理器執行如上所述任一實施例提供的神經網路訓練方法的指令。Embodiments of the present invention further provide a computer program product, including computer-readable codes. When the computer-readable codes are run on a device, a processor in the device executes the instructions of the neural network training method provided in any of the foregoing embodiments. .
本發明實施例還提供另一種電腦程式產品,配置為儲存電腦可讀指令,指令被執行時使得電腦執行上述任一實施例提供的神經網路訓練方法的操作。Embodiments of the present invention further provide another computer program product configured to store computer-readable instructions, which, when executed, cause the computer to perform the operations of the neural network training method provided by any of the above embodiments.
圖5是本發明實施例提供的一種電子設備的示意圖。例如,電子設備800可以是行動電話,電腦,數位廣播終端,消息收發設備,遊戲控制台,平板設備,醫療設備,健身設備,個人數位助理等終端。參照圖5,電子設備800可以包括以下一個或多個組件:處理組件802,記憶體804,電源組件806,多媒體組件808,音頻組件810,輸入/輸出(Input/Output,I/O)的介面812,感測器組件814,以及通信組件816。FIG. 5 is a schematic diagram of an electronic device provided by an embodiment of the present invention. For example, the
處理組件802通常控制電子設備800的整體操作,諸如與顯示,電話呼叫,資料通信,相機操作和記錄操作相關聯的操作。處理組件802可以包括一個或多個處理器820來執行指令,以完成上述的方法的全部或部分步驟。此外,處理組件802可以包括一個或多個模組,便於處理組件802和其他組件之間的交互。例如,處理組件802可以包括多媒體模組,以方便多媒體組件808和處理組件802之間的交互。The
記憶體804被配置為儲存各種類型的資料以支援在電子設備800的操作。這些資料的示例包括用於在電子設備800上操作的任何應用程式或方法的指令,連絡人資料,電話簿資料,消息,圖片,視頻等。記憶體804可以由任何類型的易失性或非易失性存放裝置或者它們的組合實現,如靜態隨機存取記憶體(Static Random Access Memory,SRAM),電可擦除可程式設計唯讀記憶體(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可程式設計唯讀記憶體(Erasable Programmable Read Only Memory,EPROM),可程式設計唯讀記憶體(Programmable Read Only Memory,PROM),唯讀記憶體(Read Only Memory,ROM),磁記憶體,快閃記憶體,磁片或光碟。The
電源組件806為電子設備800的各種組件提供電力,可包括電源管理系統,一個或多個電源,及其他與為電子設備800生成、管理和分配電力相關聯的組件。
多媒體組件808包括在所述電子設備800和使用者之間的提供一個輸出介面的螢幕。在一些實施例中,螢幕可以包括液晶顯示器(Liquid Crystal Display,LCD)和觸摸面板(TouchPanel,TP)。如果螢幕包括觸摸面板,螢幕可以被實現為觸控式螢幕,以接收來自使用者的輸入信號。觸摸面板包括一個或多個觸摸感測器以感測觸摸、滑動和觸摸面板上的手勢。所述觸摸感測器可以不僅感測觸摸或滑動動作的邊界,而且還檢測與所述觸摸或滑動操作相關的持續時間和壓力。在一些實施例中,多媒體組件808包括一個前置攝影頭和/或後置攝影頭。當電子設備800處於操作模式,如拍攝模式或視訊模式時,前置攝影頭和/或後置攝影頭可以接收外部的多媒體資料。每個前置攝影頭和後置攝影頭可以是一個固定的光學透鏡系統或具有焦距和光學變焦能力。
音頻組件810被配置為輸出和/或輸入音頻信號。例如,音頻組件810包括一個麥克風(Microphone,MIC),當電子設備800處於操作模式,如呼叫模式、記錄模式和語音辨識模式時,麥克風被配置為接收外部音頻信號。所接收的音頻信號可以被儲存在記憶體804或經由通信組件816發送。在一些實施例中,音頻組件810還包括一個揚聲器,配置為輸出音頻信號。
I/O介面812為處理組件802和周邊介面模組之間提供介面,上述周邊介面模組可以是鍵盤,點擊輪,按鈕等。這些按鈕可包括但不限於:主頁按鈕、音量按鈕、啟動按鈕和鎖定按鈕。The I/
感測器組件814包括一個或多個感測器,配置為為電子設備800提供各個方面的狀態評估。例如,感測器組件814可以檢測到電子設備800的打開/關閉狀態,組件的相對定位,例如所述組件為電子設備800的顯示器和小鍵盤,感測器組件814還可以檢測電子設備800或電子設備800一個組件的位置改變,使用者與電子設備800接觸的存在或不存在,電子設備800方位或加速/減速和電子設備800的溫度變化。感測器組件814可以包括接近感測器,被配置用來在沒有任何的物理接觸時檢測附近物體的存在。感測器組件814還可以包括光感測器,如互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)或電荷耦合器件(Charge Coupled Device,CCD)圖像感測器,可在成像應用中使用。在一些實施例中,該感測器組件814還可以包括加速度感測器,陀螺儀感測器,磁感測器,壓力感測器或溫度感測器。
通信組件816被配置為便於電子設備800和其他設備之間有線或無線方式的通信。電子設備800可以接入基於通信標準的無線網路,如WiFi,2G或3G,或它們的組合。在本發明一些實施例中,通信組件816經由廣播通道接收來自外部廣播管理系統的廣播信號或廣播相關資訊。在本發明一些實施例中,所述通信組件816還包括近場通信(Near Field Communication,NFC)模組,以促進短程通信。例如,在NFC模組可基於射頻識別(Radio Frequency Identification,RFID)技術,紅外資料協會(Infrared Data Association,IrDA)技術,超寬頻(Ultra Wide Band,UWB)技術,藍牙(Bluetooth,BT)技術和其他技術來實現。
在本發明一些實施例中,電子設備800可以被一個或多個應用專用積體電路(Application Specific Integrated Circuit,ASIC)、數位信號處理器(Digital Signal Process,DSP)、數位信號處理設備(Digital Signal Process Device,DSPD)、可程式設計邏輯器件(Programmable Logic Device,PLD)、現場可程式設計閘陣列(Field Programmable Gate Array,FPGA)、控制器、微控制器、微處理器或其他電子組件實現,配置為執行上述方法。In some embodiments of the present invention, the
在本發明一些實施例中,還提供一種非易失性電腦可讀儲存介質,例如包括電腦程式指令的記憶體804,上述電腦程式指令可由電子設備800的處理器820執行以完成上述方法。In some embodiments of the present invention, a non-volatile computer-readable storage medium, such as a
圖6是本發明實施例提供的另一種電子設備的示意圖。例如,電子設備1900可以被提供為一伺服器。參照圖6,電子設備1900包括處理組件1922,還可以包括一個或多個處理器,以及由記憶體1932所代表的記憶體資源,配置為儲存可由處理組件1922的執行的指令,例如應用程式。記憶體1932中儲存的應用程式可以包括一個或一個以上的每一個對應於一組指令的模組。此外,處理組件1922被配置為執行指令,以執行上述方法。FIG. 6 is a schematic diagram of another electronic device provided by an embodiment of the present invention. For example, the
電子設備1900還可以包括一個電源組件1926被配置為執行電子設備1900的電源管理,一個有線或無線網路介面1950被配置為將電子設備1900連接到網路,和一個輸入輸出(I/O)介面1958。電子設備1900可以操作基於儲存在記憶體1932的作業系統,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或類似。The
在本發明一些實施例中,還提供一種非易失性電腦可讀儲存介質,例如包括電腦程式指令的記憶體1932,上述電腦程式指令可由電子設備1900的處理組件1922執行以完成上述方法。In some embodiments of the present invention, a non-volatile computer-readable storage medium, such as a
本發明可以是系統、方法和/或電腦程式產品。電腦程式產品可包括電腦可讀儲存介質,其上載有配置為使處理器實現本發明的各個方面的電腦可讀程式指令。The present invention may be a system, method and/or computer program product. A computer program product may include a computer-readable storage medium having computer-readable program instructions loaded thereon configured to cause a processor to implement various aspects of the present invention.
電腦可讀儲存介質可以是保持和儲存由指令執行設備使用的指令的有形設備。電腦可讀儲存介質例如可以是但不限於:電存放裝置、磁存放裝置、光存放裝置、電磁存放裝置、半導體存放裝置或者上述的任意合適的組合。電腦可讀儲存介質可以包括:可擕式電腦盤、硬碟、隨機存取記憶體(Random Access Memory,RAM)、ROM、可擦式可程式設計唯讀記憶體(EPROM或快閃記憶體)、SRAM、可擕式壓縮磁碟唯讀記憶體(Compact Disk-Read Only Memory,CD-ROM)、數位多功能盤(Digital Video Disc,DVD)、記憶棒、軟碟、機械編碼設備、例如其上儲存有指令的打孔卡或凹槽內凸起結構、以及上述的任意合適的組合。這裡所使用的電腦可讀儲存介質不被解釋為暫態信號本身,諸如無線電波或者其他自由傳播的電磁波、通過波導或其他傳輸媒介傳播的電磁波(如,通過光纖電纜的光脈衝)、或者通過電線傳輸的電信號。A computer-readable storage medium may be a tangible device that holds and stores instructions for use by an instruction execution device. The computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the above. Computer-readable storage media may include: portable computer disks, hard disks, random access memory (Random Access Memory, RAM), ROM, erasable programmable read-only memory (EPROM or flash memory) , SRAM, Compact Disk-Read Only Memory (CD-ROM), Digital Video Disc (DVD), Memory Sticks, Floppy Disks, Mechanical Encoding Devices, such as A punched card or a raised structure in a groove with instructions stored thereon, and any suitable combination of the above. As used herein, computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or Electrical signals carried by wires.
這裡所描述的電腦可讀程式指令可以從電腦可讀儲存介質下載到各個計算/處理設備,或者通過網路、例如網際網路、局域網、廣域網路和/或無線網下載到外部電腦或外部存放裝置。網路可以包括銅傳輸電纜、光纖傳輸、無線傳輸、路由器、防火牆、交換機、閘道電腦和/或邊緣伺服器。每個計算/處理設備中的網路介面卡或者網路介面從網路接收電腦可讀程式指令,並轉發該電腦可讀程式指令,以供儲存在各個計算/處理設備中的電腦可讀儲存介質中。The computer-readable program instructions described herein may be downloaded from computer-readable storage media to various computing/processing devices, or downloaded to external computers or external storage over a network, such as the Internet, a local area network, a wide area network, and/or a wireless network device. Networks may include copper transmission cables, fiber optic transmissions, wireless transmissions, routers, firewalls, switches, gateway computers and/or edge servers. A network interface card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for computer-readable storage stored in each computing/processing device in the medium.
配置為執行本發明操作的電腦程式指令可以是彙編指令、指令集架構(Instruction Set Architecture,ISA)指令、機器指令、機器相關指令、微代碼、固件指令、狀態設置資料、或者以一種或多種程式設計語言的任意組合編寫的原始程式碼或目標代碼,所述程式設計語言包括物件導向的程式設計語言,諸如Smalltalk、C++等,以及常規的過程式程式設計語言,諸如“C”語言或類似的程式設計語言。電腦可讀程式指令可以完全地在使用者電腦上執行、部分地在使用者電腦上執行、作為一個獨立的套裝軟體執行、部分在使用者電腦上部分在遠端電腦上執行、或者完全在遠端電腦或伺服器上執行。在涉及遠端電腦的情形中,遠端電腦可以通過任意種類的網路(包括局域網或廣域網路)連接到使用者電腦,或者,可以連接到外部電腦(例如利用網際網路服務提供者來通過網際網路連接)。在一些實施例中,通過利用電腦可讀程式指令的狀態資訊來個性化定制電子電路,例如可程式設計邏輯電路、FPGA或可程式設計邏輯陣列(Programmable Logic Array,PLA),該電子電路可以執行電腦可讀程式指令,從而實現本發明的各個方面。The computer program instructions configured to perform the operations of the present invention may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or in one or more programs Source or object code written in any combination of design languages, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or the like programming language. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely remotely. run on a client computer or server. In the case of a remote computer, the remote computer can be connected to the user's computer through any kind of network, including a local area network or a wide area network, or it can be connected to an external computer (for example, using an Internet service provider to Internet connection). In some embodiments, by utilizing the state information of computer readable program instructions to personalize custom electronic circuits, such as programmable logic circuits, FPGAs, or Programmable Logic Arrays (PLAs), the electronic circuits can execute Computer readable program instructions to implement various aspects of the present invention.
這裡參照根據本發明實施例的方法、裝置(系統)和電腦程式產品的流程圖和/或方塊圖描述了本發明的各個方面。應當理解,流程圖和/或方塊圖的每個方塊以及流程圖和/或方塊圖中各方塊的組合,都可以由電腦可讀程式指令實現。Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
這些電腦可讀程式指令可以提供給通用電腦、專用電腦或其它可程式設計資料處理裝置的處理器,從而生產出一種機器,使得這些指令在通過電腦或其它可程式設計資料處理裝置的處理器執行時,產生了實現流程圖和/或方塊圖中的一個或多個方塊中規定的功能/動作的裝置。也可以把這些電腦可讀程式指令儲存在電腦可讀儲存介質中,這些指令使得電腦、可程式設計資料處理裝置和/或其他設備以特定方式工作,從而,儲存有指令的電腦可讀介質則包括一個製造品,其包括實現流程圖和/或方塊圖中的一個或多個方塊中規定的功能/動作的各個方面的指令。These computer readable program instructions may be provided to the processor of a general purpose computer, special purpose computer or other programmable data processing device to produce a machine for execution of the instructions by the processor of the computer or other programmable data processing device When, means are created that implement the functions/acts specified in one or more of the blocks in the flowchart and/or block diagrams. These computer readable program instructions may also be stored on a computer readable storage medium, the instructions causing the computer, programmable data processing device and/or other equipment to operate in a particular manner, so that the computer readable medium storing the instructions Included is an article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
也可以把電腦可讀程式指令載入到電腦、其它可程式設計資料處理裝置、或其它設備上,使得在電腦、其它可程式設計資料處理裝置或其它設備上執行一系列操作步驟,以產生電腦實現的過程,從而使得在電腦、其它可程式設計資料處理裝置、或其它設備上執行的指令實現流程圖和/或方塊圖中的一個或多個方塊中規定的功能/動作。Computer readable program instructions can also be loaded into a computer, other programmable data processing device, or other equipment, so that a series of operational steps are performed on the computer, other programmable data processing device, or other equipment to generate a computer Processes of implementation such that instructions executing on a computer, other programmable data processing apparatus, or other device implement the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
附圖中的流程圖和方塊圖顯示了根據本發明的多個實施例的系統、方法和電腦程式產品的可能實現的體系架構、功能和操作。在這點上,流程圖或方塊圖中的每個方塊可以代表一個模組、程式段或指令的一部分,所述模組、程式段或指令的一部分包含一個或多個配置為實現規定的邏輯功能的可執行指令。在有些作為替換的實現中,方塊中所標注的功能也可以以不同於附圖中所標注的順序發生。例如,兩個連續的方塊實際上可以基本並行地執行,它們有時也可以按相反的循序執行,這依所涉及的功能而定。也要注意的是,方塊圖和/或流程圖中的每個方塊、以及方塊圖和/或流程圖中的方塊的組合,可以用執行規定的功能或動作的專用的基於硬體的系統來實現,或者可以用專用硬體與電腦指令的組合來實現。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions that contains one or more logic configured to implement the specified Executable instructions for the function. In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by dedicated hardware-based systems that perform the specified functions or actions. implementation, or may be implemented in a combination of special purpose hardware and computer instructions.
該電腦程式產品可以通過硬體、軟體或其結合的方式實現。在本發明實施例一實施方式中,所述電腦程式產品可以體現為電腦儲存介質,在另一實施方式中,電腦程式產品可以體現為軟體產品,例如軟體發展包(Software Development Kit,SDK)等等。The computer program product can be implemented in hardware, software or a combination thereof. In one embodiment of the embodiment of the present invention, the computer program product may be embodied as a computer storage medium, and in another embodiment, the computer program product may be embodied as a software product, such as a software development kit (Software Development Kit, SDK), etc. Wait.
以上已經描述了本發明的各實施例,上述說明是示例性的,並非窮盡性的,並且也不限於所披露的各實施例。在不偏離所說明的各實施例的範圍和精神的情況下,對於本技術領域的普通技術人員來說許多修改和變更都是顯而易見的。本文中所用術語的選擇,旨在最好地解釋各實施例的原理、實際應用或對相關技術的技術改進,或者使本技術領域的其它普通技術人員能理解本文披露的各實施例。Various embodiments of the present invention have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the various embodiments, the practical application or technical improvement over the related art, or to enable others of ordinary skill in the art to understand the various embodiments disclosed herein.
工業實用性 本發明涉及一種神經網路訓練方法、電子設備和儲存介質,所述方法包括:獲取樣本圖像中目標區域的位置資訊及類別資訊;根據目標區域的位置資訊,分割得到至少一個樣本圖像塊;根據類別資訊,將至少一個樣本圖像塊進行分類,得到N類樣本圖像塊;將N類樣本圖像塊輸入至神經網路中進行訓練。根據本發明的實施例的神經網路訓練方法,可獲得樣本圖像塊的精細分類,並對神經網路進行訓練,使得神經網路可對圖像進行精細分類,提高分類效率和準確度。Industrial Applicability The invention relates to a neural network training method, electronic equipment and storage medium. The method includes: acquiring position information and category information of a target area in a sample image; dividing and obtaining at least one sample image block according to the position information of the target area ; According to the category information, classify at least one sample image block to obtain N types of sample image blocks; Input the N types of sample image blocks into the neural network for training. According to the neural network training method of the embodiment of the present invention, the fine classification of the sample image blocks can be obtained, and the neural network can be trained, so that the neural network can finely classify the images and improve the classification efficiency and accuracy.
100:CT儀 200:伺服器 300:網路 400:終端設備 11:獲取模組 12:第一分割模組 13:分類模組 14:訓練模組 31:樣本圖像 32:樣本圖像塊 33:神經網路 331:共用特徵提取網路 332:分類網路 333:分割網路 800:電子設備 802:處理組件 804:記憶體 806:電源組件 808:多媒體組件 810:音頻組件 812:輸入/輸出介面100: CT instrument 200: Server 300: Internet 400: Terminal Equipment 11: Get the mod 12: The first segmentation module 13: Classification module 14: Training module 31: Sample Image 32: Sample image block 33: Neural Networks 331: Shared Feature Extraction Network 332: Classification Network 333: Divide the network 800: Electronics 802: Process component 804: memory 806: Power Components 808: Multimedia Components 810: Audio Components 812: Input/Output Interface
814:感測器組件 814: Sensor Assembly
816:通信組件 816: Communication Components
820:處理器 820: Processor
1900:電子設備 1900: Electronic equipment
1922:處理組件 1922: Processing components
1926:電源組件 1926: Power Components
1932:記憶體 1932: Memory
1950:網路介面 1950: Web Interface
1958:輸入輸出介面 1958: Input and output interface
S11~S14:步驟 S11~S14: Steps
此處的附圖被併入說明書中並構成本說明書的一部分,這些附圖示出了符合本發明的實施例,並與說明書一起用於說明本發明的技術方案。 圖1是本發明實施例提供的神經網路訓練方法的系統架構示意圖; 圖2是本發明實施例提供的神經網路訓練方法的一種實現流程圖; 圖3是本發明實施例提供的神經網路訓練方法的一種應用示意圖; 圖4是本發明實施例提供的神經網路訓練裝置的一種示意圖; 圖5是本發明實施例提供的一種電子設備的示意圖 圖6是本發明實施例提供的另一種電子設備的示意圖。The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate embodiments consistent with the present invention, and together with the description, serve to explain the technical solutions of the present invention. 1 is a schematic diagram of a system architecture of a neural network training method provided by an embodiment of the present invention; Fig. 2 is a kind of realization flow chart of the neural network training method provided by the embodiment of the present invention; 3 is a schematic diagram of an application of a neural network training method provided by an embodiment of the present invention; 4 is a schematic diagram of a neural network training device provided by an embodiment of the present invention; FIG. 5 is a schematic diagram of an electronic device provided by an embodiment of the present invention FIG. 6 is a schematic diagram of another electronic device provided by an embodiment of the present invention.
S11~S14:步驟S11~S14: Steps
Claims (13)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010148544.8A CN111368923B (en) | 2020-03-05 | 2020-03-05 | Neural network training methods and devices, electronic equipment and storage media |
| CN202010148544.8 | 2020-03-05 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202133787A TW202133787A (en) | 2021-09-16 |
| TWI770754B true TWI770754B (en) | 2022-07-11 |
Family
ID=71208701
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110100180A TWI770754B (en) | 2020-03-05 | 2021-01-04 | Neural network training method electronic equipment and storage medium |
Country Status (5)
| Country | Link |
|---|---|
| JP (1) | JP2022537974A (en) |
| KR (1) | KR20220009451A (en) |
| CN (1) | CN111368923B (en) |
| TW (1) | TWI770754B (en) |
| WO (1) | WO2021174739A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI822370B (en) * | 2022-08-02 | 2023-11-11 | 敏九 金 | Natural language processing system and method using a synapper model unit |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111368923B (en) * | 2020-03-05 | 2023-12-19 | 上海商汤智能科技有限公司 | Neural network training methods and devices, electronic equipment and storage media |
| CN111767708A (en) * | 2020-07-09 | 2020-10-13 | 北京猿力未来科技有限公司 | Training method and device of problem solving model and generation method and device of problem solving formula |
| CN112017162B (en) * | 2020-08-10 | 2022-12-06 | 上海杏脉信息科技有限公司 | Pathological image processing method, pathological image processing device, storage medium and processor |
| CN112241760A (en) * | 2020-08-25 | 2021-01-19 | 浙江大学 | Automatic black intermediary mining method and system in network petty loan service |
| US20220084677A1 (en) * | 2020-09-14 | 2022-03-17 | Novocura Tech Health Services Private Limited | System and method for generating differential diagnosis in a healthcare environment |
| CN112328398B (en) * | 2020-11-12 | 2024-09-27 | 清华大学 | Task processing method and device, electronic device and storage medium |
| CN112561893B (en) * | 2020-12-22 | 2024-09-06 | 平安银行股份有限公司 | Picture matching method and device, electronic equipment and storage medium |
| CN112785565B (en) * | 2021-01-15 | 2024-01-05 | 上海商汤智能科技有限公司 | Target detection method and device, electronic equipment and storage medium |
| CN112749801A (en) * | 2021-01-22 | 2021-05-04 | 上海商汤智能科技有限公司 | Neural network training and image processing method and device |
| CN112907517B (en) * | 2021-01-28 | 2024-07-19 | 上海商汤善萃医疗科技有限公司 | Image processing method, device, computer equipment and storage medium |
| CN112925938B (en) * | 2021-01-28 | 2024-11-29 | 上海商汤智能科技有限公司 | Image labeling method and device, electronic equipment and storage medium |
| CN114943260B (en) * | 2021-02-08 | 2025-09-05 | 中兴通讯股份有限公司 | Traffic scene identification method, device, equipment and storage medium |
| US11967084B2 (en) * | 2021-03-09 | 2024-04-23 | Ping An Technology (Shenzhen) Co., Ltd. | PDAC image segmentation method, electronic device and storage medium |
| CN113139471A (en) * | 2021-04-25 | 2021-07-20 | 上海商汤智能科技有限公司 | Target detection method and device, electronic equipment and storage medium |
| AU2021204563A1 (en) * | 2021-06-17 | 2023-01-19 | Sensetime International Pte. Ltd. | Target detection methods, apparatuses, electronic devices and computer-readable storage media |
| CN113702719B (en) * | 2021-08-03 | 2022-11-29 | 北京科技大学 | Broadband near-field electromagnetic positioning method and device based on neural network |
| CN113688975A (en) * | 2021-08-24 | 2021-11-23 | 北京市商汤科技开发有限公司 | Training method, device, electronic device and storage medium for neural network |
| CN113793323A (en) * | 2021-09-16 | 2021-12-14 | 云从科技集团股份有限公司 | Component detection method, system, equipment and medium |
| CN114283114B (en) * | 2021-09-24 | 2025-08-29 | 腾讯科技(深圳)有限公司 | Image processing method, device, equipment and storage medium |
| CN114037925A (en) * | 2021-09-27 | 2022-02-11 | 北京百度网讯科技有限公司 | Training and detecting method and device of target detection model and electronic equipment |
| PH12021552459A1 (en) * | 2021-09-27 | 2023-06-05 | Sensetime Int Pte Ltd | Methods and apparatuses for classifying game props and training neural network |
| CN113995430A (en) * | 2021-10-21 | 2022-02-01 | 昆明同心医联科技有限公司 | Apparatus and method for evaluating large vessel occlusion based on CTA imaging |
| CN113989845A (en) * | 2021-10-29 | 2022-01-28 | 北京百度网讯科技有限公司 | Posture classification method and training method and device of posture classification model |
| CN113989721A (en) * | 2021-10-29 | 2022-01-28 | 北京百度网讯科技有限公司 | Target detection method and training method and device for target detection model |
| CN114049315B (en) * | 2021-10-29 | 2023-04-18 | 北京长木谷医疗科技有限公司 | Joint recognition method, electronic device, storage medium, and computer program product |
| CN114240747A (en) * | 2021-11-29 | 2022-03-25 | 苏州涟漪信息科技有限公司 | A kind of automatic puzzle method, device, server and storage medium |
| CN116363042A (en) * | 2021-12-27 | 2023-06-30 | 中移(苏州)软件技术有限公司 | A method, device, and computer-readable storage medium for detecting elevator operating conditions |
| CN116433948A (en) * | 2021-12-28 | 2023-07-14 | 芯视界(北京)科技有限公司 | Sediment type identification method and device, electronic equipment and storage medium |
| CN113989407B (en) * | 2021-12-30 | 2022-03-25 | 青岛美迪康数字工程有限公司 | Training method and system for limb part recognition model in CT image |
| CN114429608B (en) * | 2022-01-27 | 2025-04-15 | 上海商汤智能科技有限公司 | A behavior recognition method, device, equipment and storage medium |
| CN114581708A (en) * | 2022-03-02 | 2022-06-03 | 深圳硅基智能科技有限公司 | Model training device and recognition device for target recognition in medical images |
| CN114612824B (en) * | 2022-03-09 | 2024-12-03 | 清华大学 | Target recognition method and device, electronic device and storage medium |
| CN114332547B (en) * | 2022-03-17 | 2022-07-08 | 浙江太美医疗科技股份有限公司 | Medical object classification method and apparatus, electronic device, and storage medium |
| CN114610851B (en) * | 2022-03-30 | 2025-07-25 | 苏州科达科技股份有限公司 | Training method of intention recognition model, intention recognition method, equipment and medium |
| CN114743055B (en) * | 2022-04-18 | 2025-06-27 | 北京理工大学 | A method to improve image classification accuracy using partition decision mechanism |
| CN114839340A (en) * | 2022-04-27 | 2022-08-02 | 芯视界(北京)科技有限公司 | Water quality biological activity detection method and device, electronic equipment and storage medium |
| CN114821537A (en) * | 2022-05-16 | 2022-07-29 | 北京京东乾石科技有限公司 | Activity intention prediction method and device and unmanned vehicle |
| CN115019032A (en) * | 2022-05-31 | 2022-09-06 | 中邮信息科技(北京)有限公司 | Image processing method, image processing device, electronic equipment and storage medium |
| CN115564985B (en) * | 2022-09-06 | 2025-09-05 | 广州金域医学检验中心有限公司 | Image classification model training method, device, computer equipment and storage medium |
| CN115965785B (en) * | 2023-01-05 | 2025-09-05 | 腾讯医疗健康(深圳)有限公司 | Image segmentation method, device, equipment, program product and medium |
| CN116109674A (en) * | 2023-02-02 | 2023-05-12 | 天翼云科技有限公司 | A target tracking method, device, equipment and storage medium |
| CN116077066A (en) * | 2023-02-10 | 2023-05-09 | 北京安芯测科技有限公司 | ECG signal classification model training method, device and electronic equipment |
| CN116310637A (en) * | 2023-02-17 | 2023-06-23 | 杭州医策科技有限公司 | Dataset generation, model training, and image recognition system for cervical liquid-based cell images |
| CN116524266A (en) * | 2023-04-28 | 2023-08-01 | 阿里云计算有限公司 | Image classification method, training method and device for model, and storage medium |
| CN116822614A (en) * | 2023-06-27 | 2023-09-29 | 重庆中科云从科技有限公司 | Neural network training method, target detection method and control device |
| CN117078948A (en) * | 2023-08-04 | 2023-11-17 | 中汽创智科技有限公司 | Target detection method, device, equipment and storage medium for target objects in images |
| KR20250104837A (en) * | 2023-12-29 | 2025-07-08 | 한국기계연구원 | Laser-waterjet processing device and laser beam control method thereof |
| CN118781440B (en) * | 2024-09-11 | 2024-12-03 | 杭州新中大科技股份有限公司 | Construction progress identification method and device based on multi-task joint optimization |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109919961A (en) * | 2019-02-22 | 2019-06-21 | 北京深睿博联科技有限责任公司 | A kind of processing method and processing device for aneurysm region in encephalic CTA image |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6031921B2 (en) * | 2012-09-28 | 2016-11-24 | ブラザー工業株式会社 | Image processing apparatus and program |
| US9953425B2 (en) * | 2014-07-30 | 2018-04-24 | Adobe Systems Incorporated | Learning image categorization using related attributes |
| CN108229267B (en) * | 2016-12-29 | 2020-10-16 | 北京市商汤科技开发有限公司 | Object attribute detection, neural network training, area detection method and device |
| CN107330263B (en) * | 2017-06-26 | 2020-07-28 | 成都知识视觉科技有限公司 | Computer-assisted breast invasive ductal carcinoma histological grading method |
| SG10202108020VA (en) * | 2017-10-16 | 2021-09-29 | Illumina Inc | Deep learning-based techniques for training deep convolutional neural networks |
| CN108335313A (en) * | 2018-02-26 | 2018-07-27 | 阿博茨德(北京)科技有限公司 | Image partition method and device |
| CN108520518A (en) * | 2018-04-10 | 2018-09-11 | 复旦大学附属肿瘤医院 | A method and device for ultrasonic image recognition of thyroid tumors |
| CN109285142B (en) * | 2018-08-07 | 2023-01-06 | 广州智能装备研究院有限公司 | A head and neck tumor detection method, device and computer-readable storage medium |
| CN109447169B (en) * | 2018-11-02 | 2020-10-27 | 北京旷视科技有限公司 | Image processing method, training method and device of model thereof and electronic system |
| CN110245657B (en) * | 2019-05-17 | 2021-08-24 | 清华大学 | Pathological image similarity detection method and detection device |
| CN110210535B (en) * | 2019-05-21 | 2021-09-10 | 北京市商汤科技开发有限公司 | Neural network training method and device and image processing method and device |
| CN110705555B (en) * | 2019-09-17 | 2022-06-14 | 中山大学 | Method, system and medium for abdominal multi-organ MRI image segmentation based on FCN |
| CN110705626A (en) * | 2019-09-26 | 2020-01-17 | 北京市商汤科技开发有限公司 | Image processing method and device, electronic equipment and storage medium |
| CN110796656A (en) * | 2019-11-01 | 2020-02-14 | 上海联影智能医疗科技有限公司 | Image detection method, image detection device, computer equipment and storage medium |
| CN111368923B (en) * | 2020-03-05 | 2023-12-19 | 上海商汤智能科技有限公司 | Neural network training methods and devices, electronic equipment and storage media |
-
2020
- 2020-03-05 CN CN202010148544.8A patent/CN111368923B/en active Active
- 2020-07-07 JP JP2021574781A patent/JP2022537974A/en not_active Withdrawn
- 2020-07-07 KR KR1020217041454A patent/KR20220009451A/en not_active Abandoned
- 2020-07-07 WO PCT/CN2020/100715 patent/WO2021174739A1/en not_active Ceased
-
2021
- 2021-01-04 TW TW110100180A patent/TWI770754B/en active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109919961A (en) * | 2019-02-22 | 2019-06-21 | 北京深睿博联科技有限责任公司 | A kind of processing method and processing device for aneurysm region in encephalic CTA image |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI822370B (en) * | 2022-08-02 | 2023-11-11 | 敏九 金 | Natural language processing system and method using a synapper model unit |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202133787A (en) | 2021-09-16 |
| KR20220009451A (en) | 2022-01-24 |
| CN111368923B (en) | 2023-12-19 |
| WO2021174739A1 (en) | 2021-09-10 |
| JP2022537974A (en) | 2022-08-31 |
| CN111368923A (en) | 2020-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI770754B (en) | Neural network training method electronic equipment and storage medium | |
| CN112785565B (en) | Target detection method and device, electronic equipment and storage medium | |
| CN112767329B (en) | Image processing method and device and electronic equipment | |
| TWI755853B (en) | Mage processing method, electronic device and computer-readable storage medium | |
| CN110458127B (en) | Image processing method, device, equipment and system | |
| TWI743931B (en) | Network training, image processing method, electronic device and storage medium | |
| CN111091576B (en) | Image segmentation method, device, equipment and storage medium | |
| CN111739035B (en) | Image processing method, device and equipment based on artificial intelligence and storage medium | |
| CN110059744B (en) | Method for training neural network, method and equipment for processing image and storage medium | |
| CN113222038B (en) | Breast lesion classification and positioning method and device based on nuclear magnetic image | |
| CN114820584A (en) | Lung focus positioner | |
| CN107833219B (en) | Image recognition method and device | |
| TW202209254A (en) | Image segmentation method, electronic equipment and computer-readable storage medium thereof | |
| CN110909209B (en) | Live video searching method and device, equipment, server and storage medium | |
| CN115423819B (en) | Lung vessel segmentation method and device, electronic equipment and storage medium | |
| JP2022548453A (en) | Image segmentation method and apparatus, electronic device and storage medium | |
| CN111598896B (en) | Image detection method, device, equipment and storage medium | |
| CN114332554A (en) | Training method of image segmentation model, image segmentation method, device and equipment | |
| CN113902730A (en) | Image processing and neural network training method and device | |
| CN110009599A (en) | Liver masses detection method, device, equipment and storage medium | |
| CN111369512A (en) | Image processing method and device, electronic device and storage medium | |
| WO2023050690A1 (en) | Image processing method and apparatus, electronic device, storage medium, and program | |
| CN114943723B (en) | A method for segmenting and counting irregular cells and related equipment | |
| CN113724191B (en) | Image recognition method, device, equipment and storage medium | |
| HK40023108A (en) | Neural network training method and device, electronic equipment and storage medium |