[go: up one dir, main page]

TWI769370B - Focus detection apparatus and method thereof - Google Patents

Focus detection apparatus and method thereof Download PDF

Info

Publication number
TWI769370B
TWI769370B TW108107925A TW108107925A TWI769370B TW I769370 B TWI769370 B TW I769370B TW 108107925 A TW108107925 A TW 108107925A TW 108107925 A TW108107925 A TW 108107925A TW I769370 B TWI769370 B TW I769370B
Authority
TW
Taiwan
Prior art keywords
lesion
distance
medical image
group
detection method
Prior art date
Application number
TW108107925A
Other languages
Chinese (zh)
Other versions
TW202034349A (en
Inventor
陳榮泰
徐振峰
蕭皓原
陳鴻豪
賴信宏
Original Assignee
太豪生醫股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太豪生醫股份有限公司 filed Critical 太豪生醫股份有限公司
Priority to TW108107925A priority Critical patent/TWI769370B/en
Publication of TW202034349A publication Critical patent/TW202034349A/en
Application granted granted Critical
Publication of TWI769370B publication Critical patent/TWI769370B/en

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A focus detection apparatus and a method thereof are provided. In the method, a medical image at a first location is obtained, and a first focus is identified on the medical image of the first location. Another medical image at a second location is obtained, and a second focus is identified on the medical image of the second location. Then, whether the second focus is the first focus is determined. If the second focus is the first focus, the first and second focus is combined as a single focus to be presented. Accordingly, every medical image can be determined whether is the same focus as the previously identified focus in order, so as to provide more complete information for instant aided detection technology.

Description

病灶偵測裝置及其方法Lesion detection device and method thereof

本發明是有關於一種醫療影像偵測,且特別是有關於一種即時病灶偵測裝置及其方法。The present invention relates to a medical image detection, and more particularly, to a real-time lesion detection device and a method thereof.

現今臨床上已廣泛使用電腦輔助偵測(Computer Aided Detection;CADe)系統來自動辨識腫瘤、腫塊或鈣化點等病灶,以輔助醫生診療之判斷。一般而言,電腦輔助偵測技術需要先取得對於某物體之目標部位的所有掃描影像,再從所有掃描影像中辨識出病灶。而隨著科技進步,在掃瞄物體的過程中,部分電腦輔助偵測系統甚至可即時辨識病灶。然而,現有即時辨識技術僅能得知有沒有存在病灶,而無法即時判斷剛辨識出的病灶與先前已辨識的病灶是否為相同病灶,從而影響醫生診療之判斷。由此可知,有必要改善針對醫療影像的病灶偵測技術。Nowadays, Computer Aided Detection (CADe) systems have been widely used in clinical practice to automatically identify lesions such as tumors, masses or calcifications to assist doctors in their diagnosis and treatment. Generally speaking, the computer-aided detection technology needs to obtain all the scanned images of the target part of an object first, and then identify the lesions from all the scanned images. With the advancement of technology, some computer-aided detection systems can even identify lesions in real time during the process of scanning objects. However, the existing real-time identification technology can only know whether there is a lesion, but cannot immediately determine whether the newly identified lesion and the previously identified lesion are the same lesion, thus affecting the doctor's diagnosis and treatment judgment. It can be seen that it is necessary to improve the lesion detection technology for medical images.

有鑑於此,本發明提供一種病灶偵測裝置及其方法,可每隔一張醫療影像依序判斷是否為相同病灶,從而提供資料較為完整的即時偵測技術。In view of this, the present invention provides a lesion detection device and a method thereof, which can sequentially determine whether every other medical image is the same lesion, thereby providing a real-time detection technology with relatively complete data.

本發明的病灶偵測方法,其包括下列步驟。取得第一位置之醫療影像。辨識第一位置之醫療影像存在第一病灶。取得第二位置之醫療影像,而第一位置不同於第二位置。辨識第二位置之醫療影像存在第二病灶。判斷第二病灶是否為第一病灶。若第二病灶為第一病灶,則將第一病灶與第二病灶合併成為單一病灶來呈現。The lesion detection method of the present invention includes the following steps. Obtain the medical image of the first position. There is a first lesion in the medical image identifying the first position. A medical image of a second location is obtained, and the first location is different from the second location. There is a second lesion in the medical image identifying the second position. Determine whether the second lesion is the first lesion. If the second lesion is the first lesion, the first lesion and the second lesion are combined into a single lesion for presentation.

在本發明的一實施例中,上述判斷第二病灶是否為第一病灶包括下列步驟。依據第二病灶至第一病灶所屬病灶群組之位置重心的距離,決定第二病灶為第一病灶。In an embodiment of the present invention, the above-mentioned determining whether the second lesion is the first lesion includes the following steps. According to the distance from the second lesion to the centroid of the position of the lesion group to which the first lesion belongs, the second lesion is determined as the first lesion.

在本發明的一實施例中,上述決定第二病灶為第一病灶包括下列步驟。取得第二病灶分別至數個病灶群組之位置重心的第一距離,而第一病灶屬於那些病灶群組中的一者,且各病灶群組之位置重心是各自所包含之所有病灶在位置上的重心。判斷這些第一距離中的最小第一距離是否小於距離門檻值。若此最小第一距離未小於距離門檻值,則將第二病灶加入至不同於那些病灶群組的新病灶群組。若此最小第一距離小於距離門檻值,則將此第二病灶加入至最小第一距離對應的第k病灶群組,k是正整數。取得第k病灶群組所包含之所有病灶至第k病灶群組之位置重心的第二距離。判斷那些第二距離中的最大第二距離是否小於距離門檻值。若此最大第二距離小於距離門檻值,則結束分組。In an embodiment of the present invention, the above-mentioned determining that the second lesion is the first lesion includes the following steps. Obtain the first distances from the second lesions to the centroid of the positions of several lesion groups, and the first lesion belongs to one of those lesion groups, and the centroid of the position of each lesion group is the position of all the lesions contained in each of them. on the center of gravity. It is judged whether the smallest first distance among these first distances is smaller than the distance threshold value. If the minimum first distance is not less than the distance threshold, the second lesion is added to a new lesion group different from those of the lesion group. If the minimum first distance is smaller than the distance threshold, the second lesion is added to the kth lesion group corresponding to the minimum first distance, where k is a positive integer. Obtain the second distance from all the lesions included in the k-th lesion group to the centroid of the position of the k-th lesion group. It is determined whether the largest second distance among those second distances is less than the distance threshold value. If the maximum second distance is less than the distance threshold, the grouping is ended.

在本發明的一實施例中,上述判斷那些第二距離中的最大第二距離是否小於距離門檻值之後,更包括下列步驟。若此最大第二距離未小於距離門檻值,則將此最大第二距離對應的第y病灶移出第k病灶群組,並更新第k病灶群組之位置重心,y是正整數。In an embodiment of the present invention, after judging whether the largest second distance among those second distances is smaller than the distance threshold, the following steps are further included. If the maximum second distance is not less than the distance threshold, move the yth lesion corresponding to the maximum second distance out of the kth lesion group, and update the position center of gravity of the kth lesion group, where y is a positive integer.

在本發明的一實施例中,上述取得第一位置之醫療影像包括下列步驟。透過掃描器掃瞄並錄製醫療影像。記錄掃描器的位置以作為醫療影像之位置。In an embodiment of the present invention, obtaining the medical image of the first position includes the following steps. Scan and record medical images with a scanner. The position of the scanner is recorded as the position of the medical image.

在本發明的一實施例中,上述的病灶偵測方法更包括下列步驟。若掃描器未接觸時,則暫停醫療影像之錄製與此掃描器的移動軌跡之顯示。In an embodiment of the present invention, the above-mentioned method for detecting a lesion further includes the following steps. If the scanner is not in contact, the recording of the medical image and the display of the movement track of the scanner will be suspended.

在本發明的一實施例中,上述的病灶偵測方法更包括下列步驟。依據數個不同位置之醫療影像對應的三維位置資訊,以三維方式呈現之每一不同位置之醫療影像對應位置所形成的移動軌跡。形成三維虛擬物體,並於此三維虛擬物體上呈現所有可疑病灶位置。In an embodiment of the present invention, the above-mentioned method for detecting a lesion further includes the following steps. According to the three-dimensional position information corresponding to the medical images of several different positions, the movement track formed by the corresponding positions of the medical images of each different positions is presented in a three-dimensional manner. A three-dimensional virtual object is formed, and the positions of all suspicious lesions are presented on the three-dimensional virtual object.

在本發明的一實施例中,上述的病灶偵測方法更包括下列步驟。依據數個不同位置之醫療影像對應的位置資訊,產生虛擬部位範圍。In an embodiment of the present invention, the above-mentioned method for detecting a lesion further includes the following steps. The virtual part range is generated according to the position information corresponding to the medical images at several different positions.

在本發明的一實施例中,上述的病灶偵測方法更包括下列步驟。取得過往病灶資訊,並呈現此過往病灶資訊。In an embodiment of the present invention, the above-mentioned method for detecting a lesion further includes the following steps. Obtain past lesion information and present the past lesion information.

而本發明實施例的病灶偵測裝置包括儲存器及處理器。儲存器記錄數個模組及醫療影像。處理器耦接儲存器,且存取並載入儲存器所記錄的那些模組。那些模組包括病灶辨識模組及同病灶判斷模組。病灶辨識模組辨識第一位置之醫療影像存在第一病灶,辨識第二位置之醫療影像存在第二病灶,而第一位置不同於第二位置。同病灶判斷模組判斷第二病灶是否為第一病灶,而若第二病灶為第一病灶,則將第一病灶與第二病灶合併成為單一病灶來呈現。The lesion detection device according to the embodiment of the present invention includes a storage device and a processor. The memory records several modules and medical images. The processor is coupled to the storage, and accesses and loads those modules recorded by the storage. Those modules include the lesion identification module and the same lesion judgment module. The lesion identification module identifies a first lesion in the medical image at the first position, and a second lesion in the medical image at the second position, and the first position is different from the second position. The same lesion determination module determines whether the second lesion is the first lesion, and if the second lesion is the first lesion, the first lesion and the second lesion are combined into a single lesion for presentation.

基於上述,本發明實施例的病灶偵測裝置及其方法,可在掃描的過程中,循序判斷當前辨識出的病灶是否與先前辨識出的病灶為相同病灶。此外,結合暫停功能、三維呈現、虛擬部位範圍呈現及過往病灶資訊呈現,將能提供豐富且完整的掃描輔助技術。Based on the above, the lesion detection device and the method according to the embodiments of the present invention can sequentially determine whether the currently identified lesion is the same lesion as the previously identified lesion during the scanning process. In addition, combined with the pause function, 3D rendering, virtual part range rendering and past lesion information rendering, it will be able to provide a rich and complete scanning assistance technology.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

圖1是依據本發明一實施例之病灶偵測裝置1之元件方塊圖。請參照圖1,病灶偵測裝置1至少包括但不僅限於儲存器110、顯示器130及處理器150。此病灶偵測裝置1可能是電腦主機、伺服器、甚至是裝備在即時醫學成像之掃描器(例如,具有基於超音波技術之探頭、光學成像鏡頭、或任何移動式探頭等)上。FIG. 1 is a block diagram of components of a lesion detection device 1 according to an embodiment of the present invention. Referring to FIG. 1 , the lesion detection apparatus 1 includes at least but not limited to a storage 110 , a display 130 and a processor 150 . The lesion detection device 1 may be a computer host, a server, or even a scanner for real-time medical imaging (eg, a probe based on ultrasound technology, an optical imaging lens, or any mobile probe, etc.).

儲存器110可以是任何型態的固定或可移動隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體(flash memory)、傳統硬碟(hard disk drive)、固態硬碟(solid-state drive)或類似元件,並用以記錄病灶辨識模組111、同病灶判斷模組112、位置處理模組113、三維呈現模組114、部位標記模組115、與過往資訊提供模組116等軟體程式、二維或三維醫療影像(例如,自動乳房超音波(automated breast ultrasound;ABUS)、斷層層析(tomosynthesis)、磁共振顯影(magnetic resonance imaging:MRI)等各種影像)、病灶、病灶位置相關資訊、病灶群組、過往病灶資訊及其他資料。前述模組、資料、檔案及資訊待後續實施例再詳細說明。The storage 110 may be any type of fixed or removable random access memory (RAM), read only memory (ROM), flash memory, conventional hard disk drive, solid state drive A solid-state drive or similar device is used to record the lesion identification module 111, the same lesion determination module 112, the position processing module 113, the three-dimensional presentation module 114, the site marking module 115, and the past information providing module Group 116 and other software programs, two-dimensional or three-dimensional medical images (eg, automated breast ultrasound (ABUS), tomosynthesis, magnetic resonance imaging (MRI) and other images), lesions , information on lesion location, lesion group, past lesion information and other information. The aforementioned modules, data, files and information will be described in detail in subsequent embodiments.

顯示器130可以是液晶顯示器(Liquid-Crystal Display,LCD)、發光二極體(Light-Emitting Diode,LED)、有機發光二極體(Organic Light-Emitting Diode,OLED)等各類顯示技術的顯示器。The display 130 may be a display of various display technologies such as Liquid-Crystal Display (LCD), Light-Emitting Diode (LED), and Organic Light-Emitting Diode (OLED).

處理器150與儲存器110、顯示器130連接,並可以是中央處理單元(CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位信號處理器(DSP)、可程式化控制器、特殊應用積體電路(ASIC)或其他類似元件或上述元件的組合。在本發明實施例中,處理器150用以執行病灶偵測裝置1的所有作業,且可存取並執行上述儲存器110中記錄的模組。The processor 150 is connected to the storage 110 and the display 130, and can be a central processing unit (CPU), or other programmable general-purpose or special-purpose microprocessors (Microprocessors), digital signal processors (DSPs), Programmable controller, application specific integrated circuit (ASIC) or other similar element or a combination of the above. In the embodiment of the present invention, the processor 150 is used to execute all operations of the lesion detection apparatus 1 , and can access and execute the modules recorded in the above-mentioned storage 110 .

為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中病灶偵測裝置1對醫療影像的病灶偵測流程。下文中,將搭配病灶偵測裝置1的各項元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。In order to facilitate the understanding of the operation process of the embodiment of the present invention, the following will describe in detail the process of detecting the lesion of the medical image by the lesion detection apparatus 1 in the embodiment of the present invention by referring to several embodiments. Hereinafter, the method according to the embodiment of the present invention will be described in conjunction with various elements and modules of the lesion detection device 1 . Each process of the method can be adjusted according to the implementation situation, and is not limited to this.

圖2是依據本發明一實施例說明一種病灶偵測方法之流程圖。請參照圖2,經擷取網路封包、用戶上傳、透過外部或內建儲存媒介(例如,隨身碟、光碟、外接硬碟等)取得醫療影像,甚至是直接透過外部或內建掃描器(例如,超音波探頭、照相機、攝影機等)掃描特定物體(例如,人或其他動物)而錄製醫療影像,並使醫療影像儲存於儲存器110中。值得注意的是,每一張醫療影像會對應到位置資訊(例如,掃描器相對於待掃物體的位置(例如,與特定部位的距離及角度、自定義座標等)、或醫療影像對應於待掃物體上的特定區域等),下文即將此位置資訊作為醫療影像之位置(可能是某一點或區域)。FIG. 2 is a flow chart illustrating a method for detecting a lesion according to an embodiment of the present invention. Please refer to FIG. 2 , after capturing network packets, uploading by users, obtaining medical images through external or built-in storage media (eg, flash drives, CD-ROMs, external hard drives, etc.), or even directly through external or built-in scanners ( For example, an ultrasound probe, a camera, a video camera, etc.) scan a specific object (eg, a person or other animals) to record a medical image, and store the medical image in the storage 110 . It is worth noting that each medical image will correspond to position information (for example, the position of the scanner relative to the object to be scanned (for example, the distance and angle to a specific part, custom coordinates, etc.), or the medical image corresponds to the object to be scanned. Scanning a specific area on an object, etc.), this location information will be used as the location of the medical image (may be a certain point or area).

而首先,病灶辨識模組111會取得第一位置之醫療影像(步驟S210),表示掃描器在相對於待掃物體的第一位置錄製取得此醫療影像,或是醫療影像是針對待掃物體上的第一位置。接著,病灶辨識模組111會辨識此第一位置之醫療影像是否存在第一病灶。病灶辨識模組111可利用諸如紋理特徵分析、分類器、深度學習技術或其他任何電腦輔助診斷技術來辨識病灶,本發明實施例不加以限制。而若病灶辨識模組111辨識此第一位置之醫療影像存在第一病灶(步驟S220),則記錄第一病灶的位置。例如,圖3A為一範例顯示第一位置對應影像區塊FL存在病灶FF。此外,假設第一位置之醫療影像是第一張分析的醫療影像,則病灶辨識模組111會將此醫療影像歸類至第一病灶群組。First, the lesion identification module 111 obtains the medical image at the first position (step S210 ), which means that the scanner records and obtains the medical image at the first position relative to the object to be scanned, or the medical image is for the object to be scanned. the first position. Next, the lesion identification module 111 identifies whether there is a first lesion in the medical image of the first position. The lesion identification module 111 can identify the lesions by using, for example, texture feature analysis, classifier, deep learning technology or any other computer-aided diagnosis technology, which is not limited in the embodiment of the present invention. And if the lesion identification module 111 identifies that the medical image of the first location has a first lesion (step S220 ), the location of the first lesion is recorded. For example, FIG. 3A is an example showing that there is a lesion FF in the image block FL corresponding to the first position. In addition, assuming that the medical image at the first position is the first analyzed medical image, the lesion identification module 111 will classify the medical image into the first lesion group.

接著,病灶辨識模組111再透過與步驟S210相同或相似的方式取得第二位置之醫療影像(即,掃描器在相對於待掃物體的第二位置錄製取得此醫療影像,或是醫療影像是針對待掃物體上的第二位置)(步驟S230),並透過與步驟S220相同或相似的方式判斷此第二位置之醫療影像是否存在第二病灶(步驟S240),記錄第二病灶的位置,並將此第二病灶歸類為尚未分群病灶(即,尚未屬於任何分群病灶,可能暫存於佇列(queue)或其他暫存區中)。例如,在圖3B中,圖3A所辨識之影像區塊FL旁的第二位置對應影像區塊SL偵測到存在病灶SF。值得注意的是,此第二位置不同於前述第一位置,且此第二位置之醫療影像是接續在第一位置之醫療影像的下一張影像。也就是說,掃描器自第一位置到第二位置之間未生成其他掃描的醫療影像。Next, the lesion identification module 111 obtains the medical image at the second position in the same or similar manner as in step S210 (that is, the scanner records and obtains the medical image at the second position relative to the object to be scanned, or the medical image is For the second position on the object to be scanned) (step S230), and in the same or similar manner as step S220, it is judged whether the medical image of the second position has a second lesion (step S240), and the position of the second lesion is recorded, This second lesion is classified as a non-clustered lesion (ie, not yet belonging to any clustered lesion, and may be temporarily stored in a queue or other staging area). For example, in FIG. 3B , the second position next to the image block FL identified in FIG. 3A corresponds to the image block SL where the presence of the lesion SF is detected. It should be noted that the second position is different from the aforementioned first position, and the medical image at the second position is the next image following the medical image at the first position. That is, the scanner does not generate other scanned medical images from the first position to the second position.

接著,同病灶判斷模組112會判斷此第二病灶是否為第一位置之醫療影像所辨識出的第一病灶(步驟S250)。在一實施例中,同病灶判斷模組112會依據第二病灶至第一病灶所屬病灶群組之位置重心的距離,決定第二病灶為第一病灶。例如,請參照圖4是病灶分群的流程圖,同病灶判斷模組112自佇列或其他暫存區中取得尚未分群病灶(例如是第二病灶)(步驟S410)。同病灶判斷模組112接著計算以取得尚未分群病灶分別至尚未加入過之各病灶群組之位置重心的第一距離Di (1≤i≤KiK 皆為正整數,K 是病灶群組的數量,例如,尚未分群病灶至第3病灶群組之位置重心的第一距離為D3 )(步驟S420)。各病灶群組之位置重心是各自所包含之所有病灶在位置上的重心。而同病灶判斷模組112會判斷這些第一距離D1 ~DK 當中最小距離Dk (1≤k≤Kk 為正整數)是否小於距離門檻值DT (即,min(D1 , D2 , …, DK )=Dk <DT ?)(步驟S425)。若最小第一距離Dk 未小於距離門檻值DT ,則同病灶判斷模組112將此尚未分群病灶標示為創群病灶並加入至新病灶群組,且K 加一(步驟S430),並結束對於此病灶的分群作業(步驟S480) (若佇列中有其他尚未分群病灶,則返回步驟S410)。假設第二病灶歸類至新病灶群組,同病灶判斷模組112則會分別顯示第一病灶與第二病灶(即,第二病灶不為第一病灶)。Next, the same lesion determination module 112 determines whether the second lesion is the first lesion identified by the medical image at the first position (step S250 ). In one embodiment, the same lesion determination module 112 determines that the second lesion is the first lesion according to the distance from the second lesion to the center of gravity of the position of the lesion group to which the first lesion belongs. For example, referring to FIG. 4 , which is a flowchart of lesion grouping, the same lesion determination module 112 obtains ungrouped lesions (eg, second lesions) from the queue or other temporary storage areas (step S410 ). The same lesion determination module 112 then calculates to obtain the first distance Di ( 1≤i≤K , i and K are both positive integers, K is the lesion The number of groups, for example, the first distance from the ungrouped lesions to the centroid of the position of the third lesion group is D 3 ) (step S420 ). The center of gravity of each lesion group is the center of gravity of all the lesions contained in each group. The same lesion determination module 112 will determine whether the minimum distance Dk ( 1≤k≤K , k is a positive integer) among the first distances D1 ~ DK is smaller than the distance threshold value D T (ie, min (D1, D 2 , ···, D K )=D k <D T ?) (step S425). If the minimum first distance Dk is not smaller than the distance threshold value D T , the same lesion determination module 112 marks the ungrouped lesion as an invasive lesion and adds it to the new lesion group, and K is incremented by one (step S430 ), and End the grouping operation for this lesion (step S480) (if there are other lesions that have not been grouped in the queue, return to step S410). Assuming that the second lesion is classified into the new lesion group, the same lesion determination module 112 will display the first lesion and the second lesion respectively (ie, the second lesion is not the first lesion).

另一方面,若最小第一距離Dk 小於距離門檻值DT ,則同病灶判斷模組112將此尚未分群病灶加入至最小第一距離Dk 對應的第k 病灶群組(步驟S440)。假設第一病灶屬於第k 病灶群組,則第一、第二病灶同屬相同病灶群組(即,第二病灶為第一病灶),且同病灶判斷模組112會透過顯示器130而將第一病灶與第二病灶合併成為單一病灶來呈現(步驟S260)。需說明的是,此處合併顯示可能是兩病灶輪廓結合、以相同視覺樣式標示等方式呈現。例如,請同時參照圖3A~3C,同病灶判斷模組112將圖3A與圖3B所辨識出的病灶FF, SF合併為病灶PF,並在顯示器130上顯示合併的病灶PF (如圖3C所示)。需說明的是,此病灶PF的輪廓可能會依據病灶FF, SF的輪廓調整,而圖3A~3C所示病灶形狀僅是方便範例說明。On the other hand, if the minimum first distance Dk is smaller than the distance threshold D T , the same lesion determination module 112 adds the ungrouped lesions to the kth lesion group corresponding to the minimum first distance Dk (step S440 ). Assuming that the first lesion belongs to the kth lesion group, the first and second lesions both belong to the same lesion group (ie, the second lesion is the first lesion), and the same lesion determination module 112 will display the kth lesion through the display 130 . The first lesion and the second lesion are combined into a single lesion for presentation (step S260). It should be noted that the combined display here may be the combination of the outlines of the two lesions and the presentation in the same visual style. For example, referring to FIGS. 3A to 3C at the same time, the same lesion determination module 112 merges the lesions FF and SF identified in FIGS. 3A and 3B into a lesion PF, and displays the combined lesion PF on the display 130 (as shown in FIG. 3C ). Show). It should be noted that the contour of the lesion PF may be adjusted according to the contours of the lesions FF and SF, and the shape of the lesion shown in Figures 3A-3C is only a convenient example.

由於醫學影像可一張張依序判斷是否與先前辨識之病灶為相同病灶,因此應用在即時掃描技術上,掃描器移動掃描的過程中,病灶偵測裝置1便可即時將屬於相同病灶的複數個病灶合併顯示,從而提升診斷的效率。此外,即便醫療影像並非即時自掃描器取得(例如,透過網路下載、隨身碟輸入等),本發明實施例仍可應用。Since the medical images can be judged sequentially one by one whether it is the same lesion as the previously identified lesion, it is applied to the real-time scanning technology. During the scanning process of the scanner moving, the lesion detection device 1 can instantly identify a plurality of lesions belonging to the same lesion. Combined display, thereby improving the efficiency of diagnosis. In addition, even if the medical image is not obtained from the scanner in real time (eg, downloaded through the network, imported from a pen drive, etc.), the embodiments of the present invention can still be applied.

此外,為了提升同病灶判斷的準確率,請參照圖4,若有病灶加入至既有的病灶群組(此範例是第k 病灶群組),同病灶判斷模組112會計算以取得第k 病灶群組除創群病灶以外所包含之所有病灶至第k 病灶群組之位置重心的第二距離Dk,j (1≤j≤YjY 皆為正整數,Y是第k 病灶群組中病灶的數量,例如,第k 病灶群組中第5病灶至第k 病灶群組之位置重心的第二距離為Dk,5 )(步驟S450),且判斷那些第二距離Dk,1 ~Dk,Y 中的最大第二距離Dk,y (1≤y≤Yy 為正整數)是否小於距離門檻值DT (即,max(Dk,1 , Dk,2 , …, Dk,Y )=Dk,y <DT ?)(步驟S455)。若此最大第二距離Dk,y 小於距離門檻值DT ,則同病灶判斷模組112結束分組(步驟S480)(若佇列中有其他尚未分群病灶,則返回步驟S410)。而若此最大第二距離Dk,y 未小於距離門檻值DT ,則同病灶判斷模組112將此最大第二距離Dk,y 對應的第y 病灶移出第k 病灶群組(步驟S460)(Y減一)(於其他實施例中,同病灶判斷模組112亦可能是直接將所有第二距離大於距離門檻值DT 的病灶自第k 病灶群組中移除),並更新第k 病灶群組之位置重心。而步驟S460中所移除的第y 病灶將重新作為尚未分群病灶(步驟S470),而同病灶判斷模組112會以前述更新的位置重心重新計算第k 病灶群組的第二距離Dk,1 ~Dk,Y (返回步驟S420)。In addition, in order to improve the accuracy of the same lesion determination, please refer to FIG. 4 , if a lesion is added to the existing lesion group (in this example, the kth lesion group), the same lesion determination module 112 will calculate to obtain the kth lesion The second distance D k,j ( 1 ≤j≤Y , j and Y are positive integers, and Y is the kth lesion The number of lesions in the group, for example, the second distance from the 5th lesion in the kth lesion group to the position center of gravity of the kth lesion group is Dk ,5 ) (step S450), and determine those second distances Dk ,1 ~ D k,Y whether the largest second distance D k,y (1 ≤ y≤Y , y is a positive integer) is less than the distance threshold D T (ie, max(D k,1 , D k,2 , ..., D k,Y )=D k,y <D T ?) (step S455). If the maximum second distance D k,y is smaller than the distance threshold D T , the same lesion determination module 112 ends the grouping (step S480 ) (if there are other ungrouped lesions in the queue, return to step S410 ). And if the maximum second distance Dk ,y is not smaller than the distance threshold value D T , the same lesion determination module 112 removes the yth lesion corresponding to the maximum second distance Dk ,y out of the kth lesion group (step S460 ). ) (Y minus one) (in other embodiments, the same lesion determination module 112 may directly remove all the lesions whose second distance is greater than the distance threshold DT from the kth lesion group), and update the k The location center of gravity of the lesion group. The yth lesion removed in step S460 will be re-identified as an ungrouped lesion (step S470), and the same lesion determination module 112 will recalculate the second distance Dk of the kth lesion group based on the updated position center of gravity, 1 to D k,Y (return to step S420).

需說明的是,除了前述以病灶群組的位置重心的相距來進行同病灶判斷,於其他實施例中,同病灶判斷模組112還可能是直接將第二病灶與相鄰最近的另一個病灶合併,或是與特定距離範圍內紋理特徵相似度最高的另一個病灶合併,諸如此類,待應用者依據需求自行調整。It should be noted that, in addition to the aforementioned determination of the same lesion based on the distance of the center of gravity of the lesion group, in other embodiments, the same lesion determination module 112 may also directly determine the second lesion and another adjacent and nearest lesion. Merge, or merge with another lesion with the highest texture feature similarity within a specific distance range, and so on, to be adjusted by the user according to their needs.

除了前述同病灶即時判斷的功能之外,病灶偵測裝置1還具有其他功能。在一實施例中,病灶偵測裝置1結合分離式或內建掃描器的應用,位置處理模組113可透過顯示器130同步呈現掃描器的移動軌跡,並基於影像辨識、掃描器上的感測器(例如,紅外線、開關、近接感測器等)等方式判斷掃描器接觸或離開物體表面(例如,皮膚表面等)。而若位置處理模組113偵測到掃描器未接觸物體表面時,則會暫停掃描器對醫療影像之錄製與此掃描器的移動軌跡之顯示。In addition to the aforementioned functions of instant determination of lesions, the lesion detection device 1 also has other functions. In one embodiment, the lesion detection device 1 is combined with the application of a separate or built-in scanner, and the position processing module 113 can synchronously present the movement track of the scanner through the display 130, and based on image recognition and sensing on the scanner A scanner (eg, infrared, switch, proximity sensor, etc.) is used to determine whether the scanner contacts or leaves the object surface (eg, skin surface, etc.). If the position processing module 113 detects that the scanner is not in contact with the surface of the object, it will suspend the recording of the medical image by the scanner and the display of the movement track of the scanner.

在一實施例中,為了提升視覺體驗並增進輔助診斷的準確性,三維呈現模組114依據位置處理模組113所取得數個不同位置之醫療影像對應的三維位置資訊(例如,在待掃物體上的座標、相對位置等),並透過顯示器130而以三維方式呈現之每一不同位置之醫療影像對應位置所形成的移動軌跡(即,掃描器掃描過程中的移動軌跡)。此外,三維呈現模組114還能依據待測物體的特定部位形成三維虛擬物體,並基於病灶辨識模組111的辨識結果,且透過顯示器130而於此三維虛擬物體上呈現所有可疑病灶位置。In one embodiment, in order to enhance the visual experience and improve the accuracy of auxiliary diagnosis, the three-dimensional presentation module 114 obtains the three-dimensional position information corresponding to several medical images at different positions (for example, in the object to be scanned) according to the position processing module 113. coordinates, relative positions, etc.) on the display 130, and the movement track formed by the corresponding position of the medical image of each different position (ie, the movement track during the scanning process of the scanner) is presented through the display 130 in a three-dimensional manner. In addition, the three-dimensional presentation module 114 can also form a three-dimensional virtual object according to a specific part of the object to be measured, and based on the identification result of the lesion identification module 111 , and through the display 130 , all suspicious lesion positions are displayed on the three-dimensional virtual object.

在一實施例中,部位標記模組115會標記掃描器於待掃物體上特定位置定位的位置資訊,並依據數個不同位置之醫療影像對應的位置資訊,產生虛擬部位範圍。例如,請參照圖5是顯示器130所呈現之畫面500,部位標記模組115基於掃描器定位所得的四個定位點L1,依據目標部位(本範例是乳房)的外觀推算出虛擬部位範圍PA。值得注意的是,此實施例不多加限制定位點的數量,只要大於二即可。In one embodiment, the part marking module 115 marks the position information of the scanner at a specific position on the object to be scanned, and generates a virtual part range according to the position information corresponding to the medical images of several different positions. For example, referring to FIG. 5 , which is a screen 500 displayed by the display 130 , the part marking module 115 calculates the virtual part range PA according to the appearance of the target part (the breast in this example) based on the four positioning points L1 obtained by the scanner positioning. It is worth noting that this embodiment does not limit the number of positioning points, as long as it is greater than two.

除此之外,現有即時掃描技術通常都只會呈現當前掃描所得之醫療影像,在本發明一實施例中,過往資訊提供模組116可自外部來源(例如,網路、資料庫(例如,醫學影像存檔與通信系統(Picture Archiving and Communication System,PACS)、醫院資訊系統(Hospital Information System,HIS)、放射資訊系統(Radiology Information System,RIS)、本地資料庫等)、隨身碟等)或儲存器110中取得待掃物體的過往病灶資訊(例如,過往的病灶位置、影像、影像報告、病理報告等),並透過顯示器130在顯示當前取得或掃描的醫療影像上同時呈現此過往病灶資訊。例如,請參照圖6是顯示器130所呈現之畫面600,畫面600呈現當前病灶辨識模組111所辨識出的病灶CF、過往病灶資訊中的過往病灶PF及其過往記錄時間資訊D1。藉此,診斷人員可輕鬆地比對當前與過往病灶,有效提升判斷的準確性。Besides, the existing real-time scanning technology usually only presents the medical image obtained by the current scanning. Medical image archiving and communication system (Picture Archiving and Communication System, PACS), hospital information system (Hospital Information System, HIS), radiology information system (Radiology Information System, RIS), local database, etc.), flash drive, etc.) or storage The past lesion information of the object to be scanned (eg, past lesion location, image, image report, pathology report, etc.) is obtained from the device 110 , and the past lesion information is simultaneously displayed on the currently acquired or scanned medical image through the display 130 . For example, please refer to FIG. 6 , which is a screen 600 displayed by the display 130 , the screen 600 presents the current focus CF identified by the focus identification module 111 , the past focus PF in the past lesion information, and the past recorded time information D1 . In this way, the diagnostic staff can easily compare the current and past lesions, effectively improving the accuracy of judgment.

而針對病灶資訊整合,處理器150在使用者閱片前/時透過顯示器130而在介面上呈現受檢人過往病灶資訊,這些載入的過往病灶資訊可自動與當前病灶做比對。此外,反應於使用者對於特定區域的選取,過往資訊提供模組116可載入選取區域同病人於不同時間的醫療影像與相關病灶資訊。若結合多畫面瀏覽模式(顯示器130同時呈顯多張醫療影像),即能幫助使用者快速瀏覽複數張錄製的醫療影像。過往資訊提供模組116還可提供以掃描方向依序呈現不同醫療影像,例如,由乳頭放射狀往12點鐘方向瀏覽。或者,過往資訊提供模組116可提供以掃描影像平面檢視影像,例如,以徑向視角(sagittal view)瀏覽播放。For the lesion information integration, the processor 150 displays the subject's past lesion information on the interface through the display 130 before/when the user reads the image, and the loaded past lesion information can be automatically compared with the current lesion. In addition, in response to the user's selection of a specific area, the past information providing module 116 may load medical images and related lesion information of the selected area and the patient at different times. If combined with the multi-screen browsing mode (the display 130 simultaneously displays multiple medical images), the user can quickly browse the multiple recorded medical images. The past information providing module 116 can also provide different medical images sequentially displayed in the scanning direction, for example, browsing from the nipple radially to the 12 o'clock direction. Alternatively, the past information providing module 116 can provide the scanned image plane to view the image, for example, to browse and play in a sagittal view.

綜上所述,本發明實施例的病灶偵測裝置及其方法,可依序地判斷是否將同病灶合併,應用在即時掃描技術上,能隨著掃描器的移動而即時同病灶呈現,提升輔助診斷的效率。而為了提供豐富且完整的掃描輔助技術,本發明實施例更結合暫停功能、三維呈現、虛擬部位範圍呈現及過往病灶資訊呈現。To sum up, the lesion detection device and method according to the embodiments of the present invention can sequentially determine whether to merge the same lesion or not, and when applied to the real-time scanning technology, the same lesion can be displayed in real time with the movement of the scanner, improving the Efficiency of auxiliary diagnosis. In order to provide a rich and complete scanning assistance technology, the embodiments of the present invention further combine a pause function, three-dimensional presentation, virtual part range presentation, and past lesion information presentation.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

1:病灶偵測裝置 110:儲存器 111:病灶辨識模組 112:同病灶判斷模組 113:位置處理模組 114:三維呈現模組 115:部位標記模組 116:過往資訊提供模組 130:顯示器 150:處理器 S210~S260、S410~S480:步驟 FL、SL:影像區塊 FF、SF、PF、CF:病灶 L1:定位點 PA:虛擬部位範圍 500、600:畫面 D1:過往記錄時間資訊 1: Lesion detection device 110: Storage 111: Lesion identification module 112: The same lesion judgment module 113: Position processing module 114: 3D rendering module 115: Part Marking Module 116: Past information supply module 130: Display 150: Processor S210~S260, S410~S480: Steps FL, SL: Image block FF, SF, PF, CF: lesions L1: Anchor point PA: virtual part range 500, 600: Screen D1: Past record time information

圖1是依據本發明一實施例之病灶偵測裝置的元件方塊圖。 圖2是依據本發明一實施例之病灶偵測方法的流程圖。 圖3A~3C是一範例說明同病灶判斷分析。 圖4是依據本發明一實施例之病灶分群的流程圖。 圖5是一範例說明虛擬部位範圍。 圖6是一範例說明過往病灶資訊。FIG. 1 is a block diagram of components of a lesion detection device according to an embodiment of the present invention. FIG. 2 is a flowchart of a lesion detection method according to an embodiment of the present invention. 3A-3C are an example illustrating the same lesion judgment analysis. FIG. 4 is a flowchart of lesion grouping according to an embodiment of the present invention. FIG. 5 is an example illustrating a virtual part range. FIG. 6 is an example illustrating past lesion information.

S210~S260:步驟 S210~S260: Steps

Claims (10)

一種病灶偵測方法,包括:取得一第一位置之醫療影像;辨識該第一位置之醫療影像存在一第一病灶;取得一第二位置之醫療影像,其中該第一位置不同於該第二位置;辨識該第二位置之醫療影像存在一第二病灶;判斷該第二病灶是否為該第一病灶,包括:依據該第二病灶至該第一病灶的距離,決定該第二病灶為該第一病灶;以及若該第二病灶為該第一病灶,則將該第一病灶與該第二病灶合併顯示成單一病灶。 A lesion detection method, comprising: obtaining a medical image of a first position; identifying that a first lesion exists in the medical image of the first position; obtaining a medical image of a second position, wherein the first position is different from the second position position; identifying the presence of a second lesion in the medical image at the second position; determining whether the second lesion is the first lesion, comprising: determining the second lesion as the first lesion according to the distance from the second lesion to the first lesion a first lesion; and if the second lesion is the first lesion, the first lesion and the second lesion are combined and displayed as a single lesion. 如申請專利範圍第1項所述的病灶偵測方法,其中判斷該第二病灶是否為該第一病灶的步驟,包括:依據該第二病灶至該第一病灶所屬病灶群組之位置重心的距離,決定該第二病灶為該第一病灶。 The lesion detection method according to item 1 of the claimed scope, wherein the step of judging whether the second lesion is the first lesion comprises: according to the center of gravity of the position of the second lesion to the lesion group to which the first lesion belongs distance to determine the second lesion as the first lesion. 如申請專利範圍第2項所述的病灶偵測方法,其中決定該第二病灶為該第一病灶的步驟,包括:取得該第二病灶分別至尚未加入過之多個病灶群組之位置重心的第一距離,其中該第一病灶屬於該些病灶群組中的一者,且各該病灶群組之位置重心是各自所包含之所有病灶在位置上的重心; 判斷該些第一距離中一最小第一距離是否小於一距離門檻值;若該最小第一距離未小於該距離門檻值,則將該第二病灶加入至不同於該些病灶群組的新病灶群組並標示其為創群病灶;若該最小第一距離小於該距離門檻值,則將該第二病灶加入至該最小第一距離對應的第k病灶群組,k是正整數;取得該第k病灶群組除創群病灶以外之所有病灶至該第k病灶群組之位置重心的第二距離;判斷該些第二距離中一最大第二距離是否小於該距離門檻值;以及若該最大第二距離小於該距離門檻值,則結束分組。 The lesion detection method according to item 2 of the scope of the application, wherein the step of determining the second lesion as the first lesion comprises: obtaining the center of gravity of the position of the second lesion to a plurality of lesion groups that have not yet been added. The first distance of , wherein the first lesion belongs to one of the lesion groups, and the positional center of gravity of each of the lesion groups is the positional center of gravity of all the lesions included in each of them; Determine whether a minimum first distance among the first distances is less than a distance threshold; if the minimum first distance is not less than the distance threshold, add the second lesion to a new lesion different from the lesion groups group and mark it as a invasive lesion; if the minimum first distance is less than the distance threshold, add the second lesion to the kth lesion group corresponding to the minimum first distance, where k is a positive integer; obtain the The second distance from all the lesions in the k-th lesion group except the trauma group to the centroid of the position of the k-th lesion group; judging whether a largest second distance among the second distances is less than the distance threshold; and if the largest second distance If the second distance is smaller than the distance threshold, the grouping is ended. 如申請專利範圍第3項所述的病灶偵測方法,其中判斷該些第二距離中一最大第二距離是否小於該距離門檻值的步驟之後,更包括:若該最大第二距離未小於該距離門檻值,則將該最大第二距離對應的第y病灶移出該第k病灶群組,並更新該第k病灶群組之位置重心,其中y是正整數。 The lesion detection method according to item 3 of the scope of application, wherein after the step of judging whether a maximum second distance among the second distances is smaller than the distance threshold value, further comprising: if the maximum second distance is not smaller than the distance threshold If the distance threshold is set, the yth lesion corresponding to the maximum second distance is moved out of the kth lesion group, and the position center of gravity of the kth lesion group is updated, where y is a positive integer. 如申請專利範圍第1項所述的病灶偵測方法,其中取得該第一位置之醫療影像的步驟,包括:透過一掃描器掃瞄並錄製該醫療影像;以及記錄該掃描器的位置以作為該醫療影像之位置。 The lesion detection method as described in item 1 of the claimed scope, wherein the step of obtaining the medical image of the first position includes: scanning and recording the medical image through a scanner; and recording the position of the scanner as a The location of the medical image. 如申請專利範圍第5項所述的病灶偵測方法,更包括: 若該掃描器未接觸時,則暫停該醫療影像之錄製與該掃描器的移動軌跡之顯示。 The lesion detection method as described in item 5 of the patent application scope further includes: If the scanner is not in contact, the recording of the medical image and the display of the movement track of the scanner are suspended. 如申請專利範圍第1項所述的病灶偵測方法,更包括:依據多個不同位置之醫療影像對應的三維位置資訊,以三維方式呈現之各該些不同位置之醫療影像對應位置所形成的移動軌跡;以及形成一三維虛擬物體,並於該三維虛擬物體上呈現所有可疑病灶位置。 The lesion detection method described in item 1 of the scope of the patent application further comprises: according to the three-dimensional position information corresponding to the medical images at a plurality of different positions, the corresponding positions of the medical images at the different positions are presented in a three-dimensional manner. moving trajectory; and forming a three-dimensional virtual object, and presenting all suspicious lesion positions on the three-dimensional virtual object. 如申請專利範圍第1項所述的病灶偵測方法,更包括:依據多個不同位置之醫療影像對應的位置資訊,產生一虛擬部位範圍。 The lesion detection method described in item 1 of the scope of the patent application further comprises: generating a virtual part range according to the position information corresponding to the medical images of a plurality of different positions. 如申請專利範圍第1項所述的病灶偵測方法,更包括:取得至少一過往病灶資訊;以及呈現該至少一過往病灶資訊。 The lesion detection method described in item 1 of the scope of the application further comprises: acquiring at least one past lesion information; and presenting the at least one past lesion information. 一種病灶偵測裝置,包括:一儲存器,記錄多個模組及至少一醫療影像;以及一處理器,耦接該儲存器,且存取並載入該儲存器所記錄的該些模組,該些模組包括:一病灶辨識模組,辨識一第一位置之醫療影像存在一第一病灶,辨識一第二位置之醫療影像存在一第二病灶,其中該第一位置不同於該第二位置;以及一同病灶判斷模組,判斷該第二病灶是否為該第一病 灶,而若該第二病灶為該第一病灶,則將該第一病灶與該第二病灶合併顯示成單一病灶,其中該同病灶判斷模組更依據該第二病灶至該第一病灶的距離決定該第二病灶為該第一病灶。 A lesion detection device, comprising: a storage, recording a plurality of modules and at least one medical image; and a processor, coupled to the storage, and accessing and loading the modules recorded in the storage , the modules include: a lesion identification module for identifying a first lesion in a medical image at a first position, and identifying a second lesion in a medical image at a second position, wherein the first position is different from the first position two locations; and a same lesion determination module to determine whether the second lesion is the first lesion If the second lesion is the first lesion, the first lesion and the second lesion are combined and displayed as a single lesion, wherein the same lesion determination module is further based on the relationship between the second lesion and the first lesion. The distance determines that the second lesion is the first lesion.
TW108107925A 2019-03-08 2019-03-08 Focus detection apparatus and method thereof TWI769370B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108107925A TWI769370B (en) 2019-03-08 2019-03-08 Focus detection apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108107925A TWI769370B (en) 2019-03-08 2019-03-08 Focus detection apparatus and method thereof

Publications (2)

Publication Number Publication Date
TW202034349A TW202034349A (en) 2020-09-16
TWI769370B true TWI769370B (en) 2022-07-01

Family

ID=73643713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107925A TWI769370B (en) 2019-03-08 2019-03-08 Focus detection apparatus and method thereof

Country Status (1)

Country Link
TW (1) TWI769370B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI881698B (en) * 2024-02-02 2025-04-21 國立政治大學 Lesion identification learning device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517945B2 (en) * 2005-04-28 2013-08-27 Carestream Health, Inc. Segmentation of lesions in ultrasound images
TWI483711B (en) * 2012-07-10 2015-05-11 Univ Nat Taiwan Tumor detection system and method of breast ultrasound image
US20170231550A1 (en) * 2014-08-25 2017-08-17 Singapore University Of Technology And Design Method and device for analysing an image
CN109035187A (en) * 2018-07-10 2018-12-18 杭州依图医疗技术有限公司 A kind of mask method and device of medical image
CN109363697A (en) * 2018-10-16 2019-02-22 杭州依图医疗技术有限公司 A method and device for identifying breast imaging lesions
CN109363699A (en) * 2018-10-16 2019-02-22 杭州依图医疗技术有限公司 A method and device for identifying breast imaging lesions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517945B2 (en) * 2005-04-28 2013-08-27 Carestream Health, Inc. Segmentation of lesions in ultrasound images
TWI483711B (en) * 2012-07-10 2015-05-11 Univ Nat Taiwan Tumor detection system and method of breast ultrasound image
US20170231550A1 (en) * 2014-08-25 2017-08-17 Singapore University Of Technology And Design Method and device for analysing an image
CN109035187A (en) * 2018-07-10 2018-12-18 杭州依图医疗技术有限公司 A kind of mask method and device of medical image
CN109363697A (en) * 2018-10-16 2019-02-22 杭州依图医疗技术有限公司 A method and device for identifying breast imaging lesions
CN109363699A (en) * 2018-10-16 2019-02-22 杭州依图医疗技术有限公司 A method and device for identifying breast imaging lesions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI881698B (en) * 2024-02-02 2025-04-21 國立政治大學 Lesion identification learning device and method

Also Published As

Publication number Publication date
TW202034349A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP7003628B2 (en) Object tracking program, object tracking device, and object tracking method
JP2024045273A (en) System and method for detecting human gaze and gesture in unconstrained environments
JP5950973B2 (en) Method, apparatus and system for selecting a frame
US9909854B2 (en) Image processing apparatus and image processing method
CN113782159B (en) Medical image marking point matching method and device, electronic equipment and storage medium
CN102106758B (en) Automatic visual location device and automatic visual location method for head marks of patient in stereotactic neurosurgery
CN113474816B (en) Elastic dynamic projection mapping system and method
EP2499963A1 (en) Method and apparatus for gaze point mapping
CN109298778B (en) Tracking system and method therefor
CN110832542B (en) Identify processing equipment, identify processing methods and procedures
US11633235B2 (en) Hybrid hardware and computer vision-based tracking system and method
JP2011095797A (en) Image processing device, image processing method and program
CN111565293A (en) Device, method, and program for analyzing state of manual work by operator
US20120092680A1 (en) Methods and apparatus for real-time digitization of three-dimensional scenes
JP2019036346A (en) Image processing apparatus, image processing method, and program
WO2019029156A1 (en) Method and apparatus for navigating indoor target position, electronic device, and medium
JP5248236B2 (en) Image processing apparatus and image processing method
KR101396488B1 (en) Apparatus for signal input and method thereof
TWI769370B (en) Focus detection apparatus and method thereof
WO2024169384A1 (en) Gaze estimation method and apparatus, and readable storage medium and electronic device
CN109767417A (en) Lesion detection device and its method
CN118628657A (en) Gastric ultrasound image-assisted scanning method, device and electronic equipment
JP2012022561A5 (en)
TWI735367B (en) Speed measurement method, electronic equipment and storage medium
JP4972013B2 (en) Information presenting apparatus, information presenting method, information presenting program, and recording medium recording the program