[go: up one dir, main page]

TWI768606B - System and method for monitoring sensor - Google Patents

System and method for monitoring sensor Download PDF

Info

Publication number
TWI768606B
TWI768606B TW109145182A TW109145182A TWI768606B TW I768606 B TWI768606 B TW I768606B TW 109145182 A TW109145182 A TW 109145182A TW 109145182 A TW109145182 A TW 109145182A TW I768606 B TWI768606 B TW I768606B
Authority
TW
Taiwan
Prior art keywords
sensor
sensors
clustering
cluster
module
Prior art date
Application number
TW109145182A
Other languages
Chinese (zh)
Other versions
TW202225868A (en
Inventor
黃建瑋
簡鈺庭
許顥瀚
Original Assignee
日月光半導體製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日月光半導體製造股份有限公司 filed Critical 日月光半導體製造股份有限公司
Priority to TW109145182A priority Critical patent/TWI768606B/en
Application granted granted Critical
Publication of TWI768606B publication Critical patent/TWI768606B/en
Publication of TW202225868A publication Critical patent/TW202225868A/en

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

The present disclosure relates to a system for monitoring sensor. The system includes an acquiring module, a clustering module, and a determining module. The acquiring module is configure to acquire sensor data of a plurality of sensors. The clustering module is configure to cluster the plurality of sensors according to the sensor data. The determining module is configure to determine whether the cluster of the plurality of sensors changes in comparison with a standard cluster. The present disclosure also relates to a method for monitoring sensor.

Description

感測器監測系統及方法 Sensor monitoring system and method

本發明係關於一種感測器監測系統及方法,詳言之係關於感測器之自動化監測系統及方法。 The present invention relates to a sensor monitoring system and method, and more specifically relates to an automatic monitoring system and method for a sensor.

無線感測器網路(Wireless Sensor Network,WSN)技術可應用於各種場域中,利用多個感測器協同運作以監視不同位置的物理或環境狀況,在物聯網(IoT)及自動化產線發展方面佔有關鍵地位。 Wireless Sensor Network (WSN) technology can be applied in various fields, using multiple sensors to work together to monitor physical or environmental conditions in different locations, in the Internet of Things (IoT) and automated production lines Development plays a key role.

當感測器出現異常訊號時,通常需要再透過人工判讀以辨識該異常訊號為環境變因或是誤判。此外,為了提高感測器的可靠度,通常需要定期人工檢測各個感測器,除了費時費工之外,亦難以即時校正或替換感測器。因此,如何減少人工判讀與檢測感測器的成本、並確保感測器的可靠度,為本發明欲解決的問題。 When an abnormal signal occurs in the sensor, manual interpretation is usually required to identify the abnormal signal as an environmental variable or a misjudgment. In addition, in order to improve the reliability of the sensors, it is usually necessary to manually check each sensor on a regular basis, which is not only time-consuming and labor-intensive, but also difficult to calibrate or replace the sensors in real time. Therefore, how to reduce the cost of manual interpretation and detection of the sensor and ensure the reliability of the sensor is the problem to be solved by the present invention.

本揭露之一實施例係關於一種感測器監測系統,包括擷取模組、群聚模組、及判定模組。擷取模組經配置以擷取複數個感測器之複數個感測器資料。群聚模組經配置以根據該等感測器資料將該等感測器群聚分類。判定模組經配置以判定該等感測器之群聚分類相較於標準群聚分類是否具有群聚變更。 An embodiment of the present disclosure relates to a sensor monitoring system, including a capture module, a clustering module, and a determination module. The capture module is configured to capture the plurality of sensor data of the plurality of sensors. The clustering module is configured to classify the sensor clusters according to the sensor data. The determination module is configured to determine whether the cluster classification of the sensors has a cluster change compared to a standard cluster classification.

本揭露之一實施例係關於一種感測器監測方法,包括擷取複數個感測器之複數個感測器資料、根據該等感測器資料將該等感測器群聚分類、及判定該等感測器之群聚分類相較於一標準群聚分類是否具有群聚變更。 An embodiment of the present disclosure relates to a sensor monitoring method, including capturing a plurality of sensor data of a plurality of sensors, clustering the sensors according to the sensor data, and determining Whether the cluster classification of the sensors has a cluster change compared to a standard cluster classification.

1:感測器監測系統 1: Sensor monitoring system

10:擷取模組 10: Capture module

11:群聚模組 11: Swarm Module

12:判定模組 12: Judgment Module

13:檢測模組 13: Detection module

2:感測器監測方法 2: Sensor monitoring method

20:步驟 20: Steps

21:步驟 21: Steps

22:步驟 22: Steps

23:步驟 23: Steps

24:步驟 24: Steps

25:步驟 25: Steps

26:步驟 26: Steps

27:步驟 27: Steps

28:步驟 28: Steps

7:場域 7: Field

70:位置 70: Location

71:位置 71: Location

A-Z:感測器 A-Z: Sensors

a-h:感測器 a-h: sensor

在下文中參考圖式討論實施例之各種態樣,該等圖式並非按比例繪製,且該等圖式僅為例示,並未限制本發明之範疇。在圖式及說明書中使用的元件符號僅為例示,並未限制本發明之範疇。相同或相似的元件以相同的元件符號表示,其中:圖1所示為根據本揭露之部分實施例之感測器監測系統之示意圖;圖2所示為根據本揭露之部分實施例之感測器監測方法之流程圖;圖3所示為根據本揭露之部分實施例之感測器監測方法中之一或更多步驟之示意圖;圖4所示為根據本揭露之部分實施例之感測器監測方法中之一或更多步驟之示意圖;圖5所示為根據本揭露之部分實施例之標準群聚分類圖;圖6所示為根據本揭露之部分實施例之群聚分類圖;圖7所示為根據本揭露之部分實施例之感測器之位置示意圖;及圖8所示為根據本揭露之部分實施例之感測器資料之平均值、改變量平均值、中位數值、峭度值、偏差值、及標準差。 Various aspects of the embodiments are discussed below with reference to the drawings, which are not drawn to scale, are illustrative only, and do not limit the scope of the invention. The reference numerals used in the drawings and the description are only examples, and do not limit the scope of the present invention. The same or similar components are represented by the same reference numerals, wherein: FIG. 1 shows a schematic diagram of a sensor monitoring system according to some embodiments of the present disclosure; FIG. 2 shows a sensing system according to some embodiments of the present disclosure. Figure 3 shows a schematic diagram of one or more steps in a sensor monitoring method according to some embodiments of the present disclosure; Figure 4 shows a sensing method according to some embodiments of the present disclosure Figure 5 shows a standard cluster classification diagram according to some embodiments of the present disclosure; Figure 6 shows a cluster classification diagram according to some embodiments of the present disclosure; FIG. 7 is a schematic diagram showing the position of the sensor according to some embodiments of the present disclosure; and FIG. 8 is the average value, the average value of the change amount, and the median value of the sensor data according to some embodiments of the present disclosure. , kurtosis value, deviation value, and standard deviation.

參照圖1,圖1所示為根據本揭露之部分實施例之感測器監測系統1之示意圖。感測器監測系統1可包含擷取模組10、群聚模組11、判定模組12、及檢測模組13。 Referring to FIG. 1 , FIG. 1 is a schematic diagram of a sensor monitoring system 1 according to some embodiments of the present disclosure. The sensor monitoring system 1 may include a capture module 10 , a clustering module 11 , a determination module 12 , and a detection module 13 .

在一些實施例中,擷取模組10、群聚模組11、判定模組12、及檢測模組13可經整合而由單一個電子裝置實現其所有的功能。在一些實施例中,擷取模組10、群聚模組11、判定模組12、及檢測模組13可分散在若干裝置中,由複數個裝置實現其所有的功能。 In some embodiments, the capture module 10 , the clustering module 11 , the determination module 12 , and the detection module 13 can be integrated to realize all their functions by a single electronic device. In some embodiments, the capturing module 10 , the clustering module 11 , the determination module 12 , and the detection module 13 may be dispersed in several devices, and all functions are implemented by a plurality of devices.

在本揭露中使用的用語,例如「系統」、「模組」、及「裝置」,係指涉與電腦或伺服器相關的硬體、軟體、韌體、或該者之任意組合。例如,感測器監測系統1可包括執行在電腦上的軟體、執行該軟體的電腦、或軟體及電腦兩者。例如,擷取模組10、群聚模組11、判定模組12、及檢測模組13可包括執行在電腦上的軟體、執行該軟體的電腦、或軟體及電腦兩者。在一些實施例中,電腦及伺服器可具有一或更多的處理器且經配置以執行儲存於記憶體中的電腦可執行指令,而處理器可包括應用電子訊號執行邏輯操作的電子積體電路。 Terms used in this disclosure, such as "system," "module," and "device," refer to hardware, software, firmware, or any combination of these, associated with a computer or server. For example, the sensor monitoring system 1 may include software executing on a computer, a computer executing the software, or both software and a computer. For example, the capture module 10, the clustering module 11, the determination module 12, and the detection module 13 may include software executing on a computer, a computer executing the software, or both software and a computer. In some embodiments, computers and servers may have one or more processors configured to execute computer-executable instructions stored in memory, and processors may include electronic integrated circuits that apply electronic signals to perform logical operations circuit.

根據本揭露之部分實施例,感測器監測系統1可應用於各種場域中以監測其中的感測器。前述場域可包括例如(但不限於)工廠、實驗室、及其他室內空間。然而,前述場域並不限於密閉空間,而係包括感測器檢測範圍所界定的虛擬空間。例如,複數個感測器協同運作以監視不同位置的物理或環境狀況,複數個感測器之檢測範圍即為感測器監測系統1可應用的場域。前述感測器可包括微粒或粒子感測器,例如(但不限於)落塵感測器、氣味粒子感測器、溫度感測器、濕度感測器、聲音感測器、或 其他訊號具有空間重疊相關特性的感測器。 According to some embodiments of the present disclosure, the sensor monitoring system 1 can be applied in various fields to monitor sensors therein. The aforementioned fields may include, for example, but not limited to, factories, laboratories, and other indoor spaces. However, the aforementioned field is not limited to a confined space, but includes a virtual space defined by the detection range of the sensor. For example, a plurality of sensors work together to monitor physical or environmental conditions at different locations, and the detection range of the plurality of sensors is the applicable field of the sensor monitoring system 1 . The aforementioned sensors may include particulate or particle sensors such as, but not limited to, falling dust sensors, odor particle sensors, temperature sensors, humidity sensors, sound sensors, or Sensors with spatially overlapping correlation characteristics of other signals.

在一些實施例中,擷取模組10可經配置以擷取感測器的感測器資料。群聚模組11可經配置以根據感測器資料將感測器群聚分類。判定模組12可經配置以判定感測器之群聚分類相較於標準群聚分類是否具有群聚變更。檢測模組13可經配置以檢測感測器資料是否超出標準值。 In some embodiments, the capture module 10 may be configured to capture sensor data for the sensors. Clustering module 11 may be configured to classify sensor clusters according to sensor data. The determination module 12 may be configured to determine whether the cluster classification of the sensor has a cluster change compared to the standard cluster classification. The detection module 13 may be configured to detect whether the sensor data exceeds a standard value.

以下將參照圖2至圖8說明感測器監測系統1及感測器監測系統2的實施方式。 Embodiments of the sensor monitoring system 1 and the sensor monitoring system 2 will be described below with reference to FIGS. 2 to 8 .

圖2所示為根據本揭露之部分實施例之感測器監測方法2之流程圖。感測器監測方法2可透過感測器監測系統1而實現。 FIG. 2 is a flowchart of a sensor monitoring method 2 according to some embodiments of the present disclosure. The sensor monitoring method 2 can be implemented by the sensor monitoring system 1 .

在步驟20,擷取模組(例如圖1之擷取模組10)可擷取感測器的感測器資料。 In step 20, a capture module (eg, capture module 10 of FIG. 1) may capture sensor data of the sensor.

在一些實施例中,感測器資料可包括感測器所產生之訊號與時間之關係。由於訊號值(或資料點)可依時間排序,因此感測器資料亦可稱為時間序列。在一些實施例中,感測器資料可包括例如(但不限於)每單位時間所偵測到的微粒數量、氣味(例如濃度)、溫度、濕度或聲音(例如分貝)。 In some embodiments, the sensor data may include the relationship of the signal generated by the sensor to time. Since the signal values (or data points) can be ordered in time, sensor data can also be referred to as time series. In some embodiments, sensor data may include, for example, but not limited to, number of particles detected per unit time, odor (eg, concentration), temperature, humidity, or sound (eg, decibels).

在步驟21、步驟22、及步驟23,群聚模組(例如圖1之群聚模組11)可計算所擷取的感測器資料的相似度、並根據相似度將感測器群聚分類直到群聚數降至需求數。 In step 21, step 22, and step 23, the clustering module (eg, the clustering module 11 of FIG. 1) can calculate the similarity of the captured sensor data, and cluster the sensors according to the similarity Sort until the number of clusters drops to the number of needs.

在一些實施例中,感測器資料的相似度可代表感測器資料在單位時間內之變化趨勢的相似度。若感測器資料變化的時間差愈小,則相似度愈高。具體而言,一個事件(如粉塵)經空氣傳播後,該傳播路徑會依序經過相鄰的兩件感測器,故該兩個感測器之訊號會有相似的表現,惟 時間序列不同,故透過這樣的比較概念,可以得知那些感測器為相鄰,哪些感測器為不同群聚。 In some embodiments, the similarity of the sensor data may represent the similarity of the change trend of the sensor data in a unit time. The smaller the time difference between sensor data changes, the higher the similarity. Specifically, after an event (such as dust) is transmitted through the air, the propagation path will pass through two adjacent sensors in sequence, so the signals of the two sensors will have similar performance, but The time series are different, so through such a comparison concept, it can be known which sensors are adjacent and which sensors are in different clusters.

在一些實施例中,感測器資料的相似度可利用動態時間校正(Dynamic Time Warping)來計算。舉例來說,如圖3所示,將兩組感測器資料(亦即兩條時間序列)標準化以使其時間對準。可得到兩組感測器資料個別的起始資料點i及j、以及下一個資料點i-1及j-1。接著計算兩組感測器資料之資料點距離,並找出最短距離。例如計算資料點i及資料點j-1之間的距離(表示為D(i,j-1))、D(i-1,j)、及D(i-1,j-1),其中若D(i,j-1)為最短距離,則將i及j-1的分別的下一個資料點(亦即i-1及j-2)視為起始資料點。重複上述步驟直到資料點的尾端,可以得到複數個最短距離,而複數個最短距離的總合即為兩組感測器資料之距離。若距離愈小(或數值愈小),表示資料點的時間差愈小,可認定兩組感測器資料的相似度愈高。 In some embodiments, the similarity of sensor data may be calculated using Dynamic Time Warping. For example, as shown in FIG. 3, the two sets of sensor data (ie, the two time series) are normalized to align their time. The respective initial data points i and j and the next data points i-1 and j-1 of the two sets of sensor data can be obtained. Then, the distance between the data points of the two sets of sensor data is calculated, and the shortest distance is found. For example, calculate the distance between data point i and data point j-1 (denoted as D(i,j-1)), D(i-1,j), and D(i-1,j-1), where If D(i, j-1) is the shortest distance, the next data points of i and j-1 (ie, i-1 and j-2), respectively, are regarded as starting data points. By repeating the above steps until the end of the data point, a plurality of shortest distances can be obtained, and the sum of the plurality of shortest distances is the distance between the two sets of sensor data. If the distance is smaller (or the value is smaller), it means that the time difference between the data points is smaller, and it can be determined that the similarity of the two sets of sensor data is higher.

在一些實施例中,計算任兩組感測器資料的距離可繪製距離矩陣,並可利用聚合式階層分群法(Hierarchical Agglomerative Clustering)及平均連結聚合演算法(Average-linkage Agglomerative Algorithm)根據距離矩陣將感測器群聚分類。舉例來說,如圖4所示,P1、P2、P3、P4分別為四個感測器(為四組群聚)。首先將相似度最高(亦即最小距離「2」)的P1及P2合併為第一階群聚,第一階群聚的相似度為「2」(亦即P1及P2的距離「2」)。第一階群聚中的P1及P2係以一個節點連接。接著將與第一階群聚相似度最高(亦即最小距離「4」及「3」)的P3與第一階群聚合併為第二階群聚,第二階群聚的相似度為「3.5」(亦即P3與P1的距離「4」及P3與P2的距離「3」的平均「3.5」)。第二階群聚的P3與第一階群聚中的P1(或P2)係以兩個節點連接。再接著將與第二階群聚 相似度最高(亦即最小距離「10」、「13」、「22)的P4與第二階群聚合併為第三階群聚,第三階群聚的相似度為「15」(亦即P4與P1的距離「10」、P4與P2的距離「13」、及P4與P3的距離「22」的平均「15」)。第三階群聚的P4與第一階群聚中的P1(或P2)係以三個節點連接。 In some embodiments, calculating the distances of any two sets of sensor data can draw a distance matrix, and can use Hierarchical Agglomerative Clustering and Average-linkage Agglomerative Algorithm according to the distance matrix Classify sensor clusters. For example, as shown in FIG. 4 , P1 , P2 , P3 , and P4 are four sensors (grouped in four groups), respectively. First, the P1 and P2 with the highest similarity (that is, the minimum distance "2") are merged into the first-order cluster, and the similarity of the first-order cluster is "2" (that is, the distance between P1 and P2 is "2") . P1 and P2 in the first-order cluster are connected by a node. Then, the P3 with the highest similarity with the first-order cluster (that is, the minimum distances "4" and "3") is aggregated with the first-order cluster to form the second-order cluster, and the similarity of the second-order cluster is " 3.5" (that is, the average "3.5" of the distance "4" between P3 and P1 and the distance "3" between P3 and P2). P3 of the second-order cluster is connected with P1 (or P2) of the first-order cluster by two nodes. Then will be clustered with the second order The P4 with the highest similarity (that is, the minimum distances "10", "13", "22") aggregates with the second-order group and becomes the third-order cluster, and the similarity of the third-order cluster is "15" (ie, The average of the distance "10" between P4 and P1, the distance "13" between P4 and P2, and the distance "22" between P4 and P3). P4 in the third-order cluster is connected with P1 (or P2) in the first-order cluster by three nodes.

將所有感測器群聚分類後可產生群聚分類圖,如圖4右方的群聚分類圖所示。圖5的標準群聚分類圖及圖6的群聚分類圖亦可以上述方式產生。然而本揭露並不限於此,在一些實施例中,亦可使用其他可行的演算法來計算感測器資料的相似度。此外,亦可使用其他可行的演算法將感測器群聚分類。 After clustering and classifying all the sensors, a cluster classification map can be generated, as shown in the cluster classification map on the right side of Figure 4. The standard cluster classification map of FIG. 5 and the cluster classification map of FIG. 6 can also be generated in the manner described above. However, the present disclosure is not limited thereto, and in some embodiments, other feasible algorithms can also be used to calculate the similarity of sensor data. In addition, other feasible algorithms can also be used to classify the sensor clusters.

感測器監測系統1及感測器監測系統2透過上述方法產生標準群聚分類圖(例如圖5的標準群聚分類圖),並基於標準群聚分類圖判定感測器(例如圖6的群聚分類圖中的感測器)是否具有群聚變更、進而判定感測器是否異常。由於感測器可能增減、汰換、變更位置等,因此標準群聚分類圖可藉由每一次判定的結果反饋而即時地修正。 The sensor monitoring system 1 and the sensor monitoring system 2 generate a standard cluster classification map (such as the standard cluster classification map in FIG. 5 ) through the above method, and determine the sensor based on the standard cluster classification map (such as the standard cluster classification map in FIG. 6 ). Whether the sensor in the cluster classification diagram has a cluster change, and then determine whether the sensor is abnormal. Since the sensors may be added or removed, replaced, changed positions, etc., the standard cluster classification map can be corrected in real time by feedback of the results of each determination.

在步驟24,判定模組(例如圖1之判定模組12)可基於標準群聚分類圖(例如圖5的標準群聚分類圖)來判定感測器(例如圖6的群聚分類圖中的感測器)是否具有群聚變更。若無群聚變更,則判定模組(例如圖1之判定模組12)可判定感測器無異常(例如步驟28)。若有群聚變更,則判定模組(例如圖1之判定模組12)可進一步判定該群聚變更是否超出預設值(例如步驟25)。 At step 24 , a determination module (eg, determination module 12 of FIG. 1 ) may determine a sensor (eg, the cluster classification map of FIG. 6 ) based on a standard cluster classification map (eg, the standard cluster classification map of FIG. 5 ) sensor) has a cluster change. If there is no cluster change, the determination module (eg, the determination module 12 in FIG. 1 ) can determine that the sensor is not abnormal (eg, step 28 ). If there is a cluster change, the determination module (eg, the determination module 12 in FIG. 1 ) can further determine whether the cluster change exceeds a preset value (eg, step 25 ).

無群聚變更的情況包括,舉例來說,感測器H在圖5及圖6中均與感測器I以一個節點連接且相似度在預設值以內(屬於同一群聚),因此判定模組12可判定感測器H無群聚變更。此外,感測器H及感測器I在 圖5及圖6中均位於第一階群聚,且彼此以一個節點連接(屬於同一群聚),感測器H及感測器I的階數差異在圖5及圖6中並無變更,因此判定模組12可判定感測器H及感測器I無群聚變更。進一步而言,感測器H及感測器I在圖5之標準群聚分類圖中位於第一階群聚,且彼此以一個節點連接(屬於同一群聚),可表示感測器H及感測器I的訊號在單位時間內之變化趨勢的相似度較其他感測器高,在兩個感測器均沒有異常的情況下,兩個感測器的訊號在圖6亦會屬於同一群聚。反之,若兩個感測器的訊號在圖6亦會屬於同一群聚,則可以判定兩個感測器均沒有異常(例如步驟28)。 The case of no cluster change includes, for example, the sensor H is connected to the sensor I with one node in both FIG. 5 and FIG. 6 and the similarity is within the preset value (belonging to the same cluster), so it is determined that The module 12 can determine that the sensor H has no cluster change. In addition, sensor H and sensor I are in 5 and 6 are located in the first-order cluster, and are connected to each other by a node (belonging to the same cluster). , so the determination module 12 can determine that the sensor H and the sensor I have no cluster change. Further, sensor H and sensor I are located in the first-order cluster in the standard clustering classification diagram of FIG. 5, and are connected to each other by a node (belonging to the same cluster), which can represent sensors H and The similarity of the change trend of the signal of sensor 1 in unit time is higher than that of other sensors. If there is no abnormality in the two sensors, the signals of the two sensors will also belong to the same in Figure 6. crowd gathering. Conversely, if the signals of the two sensors also belong to the same cluster in FIG. 6 , it can be determined that neither of the two sensors is abnormal (eg, step 28 ).

有群聚變更時,在步驟25,判定模組(例如圖1之判定模組12)可進一步判定該群聚變更是否超出預設值。若無超出預設值,則判定模組(例如圖1之判定模組12)可判定感測器無異常(例如步驟28)。若超出預設值,則檢測模組(例如圖1之檢測模組13)可進一步判定感測器資料是否超出標準值(例如步驟26)。 When there is a cluster change, in step 25 , the determination module (eg, the determination module 12 in FIG. 1 ) can further determine whether the cluster change exceeds the preset value. If the predetermined value is not exceeded, the determination module (eg, the determination module 12 in FIG. 1 ) may determine that the sensor is not abnormal (eg, step 28 ). If it exceeds the preset value, the detection module (eg, the detection module 13 in FIG. 1 ) can further determine whether the sensor data exceeds the standard value (eg, step 26 ).

在一些實施例中,是否超出預設值可透過相似度來判定。舉例來說,感測器U及感測器V在圖5之標準群聚分類圖中位於第一階群聚,且彼此以一個節點連接(屬於同一群聚)。感測器U及感測器V在圖6中彼此以兩個節點連接(屬於不同群聚),從第一階群聚變為第二階群聚,感測器U及感測器V的群聚在圖5及圖6中發生變更,因此判定模組12可判定感測器U及感測器V具有群聚變更。然而,感測器U及感測器V在圖6中之第二階群聚的相似度為「5」,假設預設值為相似度為「10」,則感測器U及感測器V的相似度在預設值以內,因此判定模組12可判定感測器U及感測器V之群聚變更並未超出預設值。因此判定模組12可判定兩個感測器均沒有異常(例如步驟28)。 In some embodiments, whether the predetermined value is exceeded may be determined through similarity. For example, sensor U and sensor V are located in the first order cluster in the standard cluster classification diagram of FIG. 5 and are connected to each other by a node (belonging to the same cluster). Sensor U and Sensor V are connected to each other by two nodes (belonging to different clusters) in FIG. 6, from the first order cluster to the second order cluster, the clusters of sensors U and sensor V The cluster changes in FIGS. 5 and 6 , so the determination module 12 can determine that the sensor U and the sensor V have cluster changes. However, the similarity of the second-order clustering of the sensor U and the sensor V in FIG. 6 is "5". Assuming that the default value is the similarity of "10", the sensor U and the sensor The similarity of V is within the preset value, so the determination module 12 can determine that the cluster change of the sensor U and the sensor V does not exceed the preset value. Therefore, the determination module 12 can determine that neither of the two sensors is abnormal (eg, step 28 ).

在一些實施例中,是否超出預設值可透過其他感測器來判定。舉例來說,感測器Q及感測器S在圖5之標準群聚分類圖中彼此以三個節點連接(屬於不同群聚),相似度在「10」以內。可將圖5中相似度在「10」以內的感測器Q至Y視為同一群聚。感測器Q在圖6中與感測器W彼此以一個節點連接(屬於同一群聚),相似度在「10」以內。感測器Q在圖5及圖6中均與同一群聚的感測器以一個節點連接,因此可判定感測器Q之群聚變更並未超出預設值,感測器Q沒有異常(例如步驟28)。 In some embodiments, whether the predetermined value is exceeded may be determined by other sensors. For example, sensor Q and sensor S are connected to each other by three nodes (belonging to different clusters) in the standard cluster classification diagram of FIG. 5, and the similarity is within "10". Sensors Q to Y with a similarity within "10" in FIG. 5 can be regarded as the same cluster. In FIG. 6 , the sensor Q and the sensor W are connected to each other as a node (belonging to the same cluster), and the similarity is within “10”. The sensor Q is connected to the same cluster of sensors as a node in both Figure 5 and Figure 6, so it can be determined that the cluster change of the sensor Q does not exceed the preset value, and the sensor Q is not abnormal ( For example, step 28).

在一些實施例中,可預先設定一群感測器為同一群聚,並設定當同一群聚中的任兩者彼此以一個節點連接或群聚的相似度在預設值以內時,判定該兩者之群聚變更並未超出預設值。如圖7所示,在場域7中感測器H及感測器I位在位置70,可將感測器H及感測器I設定為同一群聚。感測器Q、感測器S、感測器T、感測器U、感測器V、感測器W、感測器c位在位置71,亦可設定為同一群聚。感測器S在圖6中與感測器c彼此以一個節點連接(屬於同一群聚),相似度在「10」以內。參照圖7之場域,由於感測器S與感測器c在相近位置,若出現相近的訊號反應,應可判定感測器無異常。感測器S在圖6中與同一群聚的感測器以一個節點連接,因此可判定感測器S之群聚變更並未超出預設值,感測器S沒有異常(例如步驟28)。 In some embodiments, a group of sensors can be preset as the same cluster, and when any two in the same cluster are connected to each other by a node or the similarity of the cluster is within a preset value, it is determined that the two sensors are The clustering changes of those did not exceed the default value. As shown in FIG. 7 , in field 7, sensor H and sensor 1 are located at position 70, and sensor H and sensor 1 can be set to the same cluster. The sensor Q, the sensor S, the sensor T, the sensor U, the sensor V, the sensor W, and the sensor c are located at the position 71, and can also be set to the same cluster. In FIG. 6 , the sensor S and the sensor c are connected to each other as a node (belonging to the same cluster), and the similarity is within “10”. Referring to the field of FIG. 7 , since the sensor S and the sensor c are at similar positions, if similar signal responses occur, it should be possible to determine that the sensors are not abnormal. In FIG. 6 , the sensor S is connected with the sensors of the same cluster as a node, so it can be determined that the cluster change of the sensor S does not exceed the preset value, and the sensor S is not abnormal (for example, step 28 ) .

群聚變更超出預設值的情況包括,舉例來說,感測器T在圖5及圖6中與不同的感測器群聚,變更群聚階數,因此具有群聚變更。且感測器T在圖6中未與同一群聚的感測器以一個節點連接,因此可判定感測器T之群聚變更超出預設值,感測器T的感測器資料出現異常。 The case where the clustering change exceeds the preset value includes, for example, that the sensor T is clustered with different sensors in FIG. 5 and FIG. 6 , the clustering order is changed, and thus has a clustering change. And the sensor T is not connected to the same cluster of sensors as a node in FIG. 6, so it can be determined that the cluster change of the sensor T exceeds the preset value, and the sensor data of the sensor T is abnormal .

群聚變更超出預設值時,在步驟26,檢測模組(例如圖1之 檢測模組13)可進一步判定感測器資料是否超出標準值。例如,判定檢測感測器T的感測器資料之平均值、改變量平均值、中位數值、峭度值、偏差值、及標準差是否超出標準值(如圖8所示)。在一些實施例中,標準值可以使用感測器T的歷史感測器資料。在一些實施例中,標準值亦可以使用相近位置的感測器(例如圖7之感測器Q、感測器S、感測器U、感測器V、感測器W、感測器c)的歷史感測器資料。若經檢測後發現感測器資料並無超出標準值,可判定感測器沒有異常(例如步驟28)。若經檢測後發現感測器資料超出標準值,可判定感測器有異常(例如步驟27)。在一些實施例中,群聚模組(例如圖1之群聚模組11)可經配置以基於以上判定結果修正標準群聚分類。 When the cluster change exceeds the preset value, in step 26, the detection module (for example, the The detection module 13) can further determine whether the sensor data exceeds the standard value. For example, it is determined whether the average value, the average value of the change amount, the median value, the kurtosis value, the deviation value, and the standard deviation of the sensor data of the detection sensor T exceed the standard value (as shown in FIG. 8 ). In some embodiments, historical sensor data for sensor T may be used for the standard value. In some embodiments, the standard value can also use sensors at similar positions (for example, the sensor Q, the sensor S, the sensor U, the sensor V, the sensor W, the sensor in FIG. 7 , the sensor W, the sensor c) Historical sensor data. If it is found that the sensor data does not exceed the standard value after detection, it can be determined that the sensor is not abnormal (eg, step 28 ). If it is found that the sensor data exceeds the standard value after detection, it can be determined that the sensor is abnormal (eg, step 27 ). In some embodiments, a clustering module (eg, clustering module 11 of FIG. 1 ) may be configured to modify the standard clustering classification based on the above determinations.

以感測器監測系統1及感測器監測系統2來監測感測器,大幅減少人工定期判讀與檢測感測器的成本。當感測器出現異常訊號時,首先以相似度高的感測器的訊號來判斷該異常訊號為環境變因或是誤判(又可稱為空間異常),若為空間異常則判斷感測器資料是否超出歷史感測器資料的標準值(又可稱為時間異常)。當有同時被判為空間異常及時間異常的感測器時,感測器監測系統1可經設定發出警報,提醒校正或替換感測器,以確保感測器的可靠度。 The sensor monitoring system 1 and the sensor monitoring system 2 are used to monitor the sensors, which greatly reduces the cost of manual periodic interpretation and detection of the sensors. When an abnormal signal occurs in the sensor, the signal of the sensor with high similarity is used to determine whether the abnormal signal is an environmental variable or a misjudgment (also known as a spatial abnormality). If it is a spatial abnormality, the sensor is judged. Whether the data exceeds the standard value of historical sensor data (also known as time anomaly). When there are sensors judged to be both spatial anomalies and temporal anomalies, the sensor monitoring system 1 can be set to issue an alarm to remind the sensors to be calibrated or replaced, so as to ensure the reliability of the sensors.

將瞭解,本文討論之系統及方法之實施例不限於文中所述或圖中所繪之構造及/或配置之細節,而係可以各種方式實踐或執行。本文中的特定實施例僅屬例示性且不意在限制本發明。 It will be appreciated that the embodiments of the systems and methods discussed herein are not limited to the details of construction and/or configurations described herein or depicted in the drawings, but may be practiced or carried out in various ways. The specific embodiments herein are illustrative only and are not intended to limit the invention.

此外,在本文中使用之措辭及術語僅屬例示性且不意在限制本發明。單數形式或複數形式僅屬例示性且不意在限制本發明之系統或方法、其等元件、組件、或步驟。本文中「包含」、「包括」、「具 有」、「含有」、「涉及」及其他類似的用語涵蓋在其後列出之項目、等效物、及額外項目。「或」及其他類似的用語可視為指示所描述之項目之之任一者。 Also, the phraseology and terminology used herein is exemplary only and not intended to limit the invention. The singular or plural form is exemplary only and is not intended to limit the system or method of the present invention, its elements, components, or steps. "includes", "includes", "includes" Has," "contains," "involves," and other similar terms cover the items listed thereafter, equivalents, and additional items. "Or" and other similar terms may be taken to indicate any of the described items.

1:感測器監測系統 1: Sensor monitoring system

10:擷取模組 10: Capture module

11:群聚模組 11: Swarm Module

12:判定模組 12: Judgment Module

13:檢測模組 13: Detection module

Claims (16)

一種感測器監測系統,包含:一擷取模組,經配置以擷取複數個感測器之複數個感測器資料;一群聚模組,經配置以根據該等複數個感測器資料將該等複數個感測器群聚分類;及一判定模組,經配置以判定該等複數個感測器之一群聚分類相較於一標準群聚分類是否具有群聚變更;其中該等複數個感測器包括一第一感測器及一第二感測器;及其中該判定模組進一步經配置以:若該第一感測器在該標準群聚分類中之群聚不等於該第一感測器在該群聚分類中之群聚,則判定該第一感測器具有群聚變更;及若該第一感測器與該第二感測器在該標準群聚分類中之階數差異不等於該第一感測器與該第二感測器在該群聚分類中之階數差異,則判定該第一感測器及該第二感測器具有群聚變更。 A sensor monitoring system, comprising: a capture module configured to capture a plurality of sensor data from a plurality of sensors; a cluster module configured to capture data from the plurality of sensors classifying the plurality of sensor clusters; and a determination module configured to determine whether a clustering classification of the plurality of sensors has a clustering change compared to a standard clustering classification; wherein the The plurality of sensors includes a first sensor and a second sensor; and wherein the determination module is further configured to: if the clustering of the first sensor in the standard clustering classification is not equal to If the first sensor is clustered in the clustering classification, it is determined that the first sensor has a clustering change; and if the first sensor and the second sensor are in the standard clustering classification If the order difference is not equal to the order difference between the first sensor and the second sensor in the cluster classification, it is determined that the first sensor and the second sensor have a cluster change . 如請求項1所述之感測器監測系統,其中該等複數個感測器資料包括該等複數個感測器所產生之訊號與時間之關係。 The sensor monitoring system of claim 1, wherein the plurality of sensor data includes the relationship between the signals generated by the plurality of sensors and time. 如請求項2所述之感測器監測系統,其中該群聚模組經配置以根據該等複數個感測器所產生之訊號與時間之關係將該等複數個感測器群聚分類。 The sensor monitoring system of claim 2, wherein the clustering module is configured to classify the plurality of sensor clusters according to the relationship between the signals generated by the plurality of sensors and time. 如請求項3所述之感測器監測系統,其中該群聚模組經配置以依據該等複數個感測器所產生之訊號計算訊號相似度。 The sensor monitoring system of claim 3, wherein the clustering module is configured to calculate signal similarity based on signals generated by the plurality of sensors. 如請求項2所述之感測器監測系統,其中該訊號包括該等複數個感測器每單位時間所偵測到的微粒數量、氣味、溫度、濕度或聲音。 The sensor monitoring system of claim 2, wherein the signal includes the number of particles, odor, temperature, humidity or sound detected by the plurality of sensors per unit time. 如請求項1所述之感測器監測系統,其中該等複數個感測器之該群聚分類包含M階群聚,該標準群聚分類包含N階群聚,且M及N為一正整數。 The sensor monitoring system of claim 1, wherein the cluster classification of the plurality of sensors includes M-order clustering, the standard cluster classification includes N-order clustering, and M and N are positive Integer. 如請求項6所述之感測器監測系統,其中該群聚模組經配置以依據該等複數個感測器所產生之訊號計算訊號相似度,並將訊號相似度最高的第一組感測器合併為第一階群聚,將訊號相似度次高的第二組感測器與該第一階群聚合併為第二階群聚。 The sensor monitoring system of claim 6, wherein the clustering module is configured to calculate the signal similarity according to the signals generated by the plurality of sensors, and assign the first group of sensors with the highest signal similarity The sensors are combined into a first-order cluster, and the second group of sensors with the next highest signal similarity are aggregated with the first-order cluster to form a second-order cluster. 如請求項7所述之感測器監測系統,其中該群聚模組經配置以藉由群聚合併的方法,使該等複數個感測器之群聚階數小於或等於M。 The sensor monitoring system of claim 7, wherein the clustering module is configured to make the clustering order of the plurality of sensors less than or equal to M by means of cluster merging. 如請求項1所述之感測器監測系統,其中若該第一感測器或該第二感測器之群聚變更大於一預定值,則該判定模組進一步經配置以判定該第一感測器或該第二感測器具有異常。 The sensor monitoring system of claim 1, wherein the determination module is further configured to determine the first sensor if the cluster change of the first sensor or the second sensor is greater than a predetermined value The sensor or the second sensor has an abnormality. 如請求項1所述之感測器監測系統,其中該群聚模組經配置以基於該 判定模組之判定結果而修正該標準分類群聚。 The sensor monitoring system of claim 1, wherein the clustering module is configured to be based on the The standard taxonomic cluster is corrected by determining the determination result of the module. 如請求項1所述之感測器監測系統,更包含:一檢測模組,檢測該等感測器資料之平均值、改變量平均值、中位數值、峭度值、偏差值、及標準差中之至少一者是否超出一標準值。 The sensor monitoring system according to claim 1, further comprising: a detection module for detecting the average value, the average value of the change amount, the median value, the kurtosis value, the deviation value, and the standard value of the sensor data Whether at least one of the differences exceeds a standard value. 一種感測器監測方法,包含:擷取複數個感測器之複數個感測器資料;根據該等複數個感測器資料將該等複數個感測器群聚分類;及判定該等複數個感測器之一群聚分類相較於一標準群聚分類是否具有群聚變更;其中該等複數個感測器包括一第一感測器及一第二感測器;及其中該感測器監測方法更包含:若該第一感測器在該標準群聚分類中之群聚不等於該第一感測器在該群聚分類中之群聚,則判定該第一感測器具有群聚變更;及若該第一感測器或該第二感測器之群聚變更大於一預定值,則判定該第一感測器或該第二感測器具有異常。 A sensor monitoring method, comprising: acquiring a plurality of sensor data of a plurality of sensors; clustering and classifying the plurality of sensors according to the plurality of sensor data; and determining the plurality of sensors whether a clustering classification of the sensors has a clustering change compared to a standard clustering classification; wherein the plurality of sensors includes a first sensor and a second sensor; and wherein the sensor The sensor monitoring method further includes: if the clustering of the first sensor in the standard clustering classification is not equal to the clustering of the first sensor in the clustering classification, determining that the first sensor has cluster change; and if the cluster change of the first sensor or the second sensor is greater than a predetermined value, determining that the first sensor or the second sensor has an abnormality. 如請求項12所述之感測器監測方法,其中該等複數個感測器資料包括該等複數個感測器所產生之訊號與時間之關係。 The sensor monitoring method of claim 12, wherein the plurality of sensor data includes the relationship between the signals generated by the plurality of sensors and time. 如請求項13所述之感測器監測方法,其中該訊號包括該等複數個感測器每單位時間所偵測到的微粒數量、氣味、溫度、濕度或聲音。 The sensor monitoring method of claim 13, wherein the signal includes the number of particles, odor, temperature, humidity or sound detected by the plurality of sensors per unit time. 如請求項12所述之感測器監測方法,其中該等複數個感測器之群聚分類包含M階群聚,該標準群聚分類包含N階群聚,且M及N為一正整數。 The sensor monitoring method of claim 12, wherein the clustering classification of the plurality of sensors includes M-order clustering, the standard clustering classification includes N-ordering clustering, and M and N are positive integers . 如請求項12所述之感測器監測方法,更包含:檢測該等複數個感測器資料之平均值、改變量平均值、中位數值、峭度值、偏差值、及標準差中之至少一者是否超出一標準值。 The sensor monitoring method of claim 12, further comprising: detecting an average value, a change average value, a median value, a kurtosis value, a deviation value, and a standard deviation of the plurality of sensor data Whether at least one exceeds a standard value.
TW109145182A 2020-12-18 2020-12-18 System and method for monitoring sensor TWI768606B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109145182A TWI768606B (en) 2020-12-18 2020-12-18 System and method for monitoring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109145182A TWI768606B (en) 2020-12-18 2020-12-18 System and method for monitoring sensor

Publications (2)

Publication Number Publication Date
TWI768606B true TWI768606B (en) 2022-06-21
TW202225868A TW202225868A (en) 2022-07-01

Family

ID=83103940

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109145182A TWI768606B (en) 2020-12-18 2020-12-18 System and method for monitoring sensor

Country Status (1)

Country Link
TW (1) TWI768606B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132524A1 (en) * 2010-04-20 2011-10-27 株式会社日立製作所 Method for anomaly detection/diagnosis, system for anomaly detection/diagnosis, and program for anomaly detection/diagnosis
CN102466566A (en) * 2010-11-03 2012-05-23 财团法人工业技术研究院 Power equipment abnormality detection device and detection method thereof
WO2013024613A1 (en) * 2011-08-17 2013-02-21 株式会社日立製作所 Malfunction detection/diagnostic method, and malfunction detection/diagnostic system
WO2016112209A1 (en) * 2015-01-09 2016-07-14 Ecorithm, Inc. Machine learning-based fault detection system
WO2018073955A1 (en) * 2016-10-21 2018-04-26 日本電気株式会社 System analysis method, system analysis device, and program
TW201947433A (en) * 2016-12-12 2019-12-16 美商應用材料股份有限公司 Auto defect screening using adaptive machine learning in semiconductor device manufacturing flow
TW202001464A (en) * 2018-06-15 2020-01-01 日商三菱電機股份有限公司 Diagnostic device, diagnostic method and program
TW202008223A (en) * 2018-07-31 2020-02-16 日商三菱電機股份有限公司 Information processing device, program, and information processing method
TW202026783A (en) * 2019-01-10 2020-07-16 日商日立產機系統股份有限公司 Power conversion device, rotating machine system, and diagnosis method
WO2020183781A1 (en) * 2019-03-13 2020-09-17 株式会社日立製作所 Abnormality diagnosis device
JP2020177378A (en) * 2019-04-17 2020-10-29 株式会社ジェイテクト Abnormality sign detection device and abnormality sign detection method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132524A1 (en) * 2010-04-20 2011-10-27 株式会社日立製作所 Method for anomaly detection/diagnosis, system for anomaly detection/diagnosis, and program for anomaly detection/diagnosis
CN102466566A (en) * 2010-11-03 2012-05-23 财团法人工业技术研究院 Power equipment abnormality detection device and detection method thereof
WO2013024613A1 (en) * 2011-08-17 2013-02-21 株式会社日立製作所 Malfunction detection/diagnostic method, and malfunction detection/diagnostic system
WO2016112209A1 (en) * 2015-01-09 2016-07-14 Ecorithm, Inc. Machine learning-based fault detection system
WO2018073955A1 (en) * 2016-10-21 2018-04-26 日本電気株式会社 System analysis method, system analysis device, and program
US20190265088A1 (en) * 2016-10-21 2019-08-29 Nec Corporation System analysis method, system analysis apparatus, and program
TW201947433A (en) * 2016-12-12 2019-12-16 美商應用材料股份有限公司 Auto defect screening using adaptive machine learning in semiconductor device manufacturing flow
TW202001464A (en) * 2018-06-15 2020-01-01 日商三菱電機股份有限公司 Diagnostic device, diagnostic method and program
TW202008223A (en) * 2018-07-31 2020-02-16 日商三菱電機股份有限公司 Information processing device, program, and information processing method
TW202026783A (en) * 2019-01-10 2020-07-16 日商日立產機系統股份有限公司 Power conversion device, rotating machine system, and diagnosis method
WO2020183781A1 (en) * 2019-03-13 2020-09-17 株式会社日立製作所 Abnormality diagnosis device
JP2020177378A (en) * 2019-04-17 2020-10-29 株式会社ジェイテクト Abnormality sign detection device and abnormality sign detection method

Also Published As

Publication number Publication date
TW202225868A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US8255522B2 (en) Event detection from attributes read by entities
CN107644194B (en) Systems and methods for providing monitoring data
US20200403991A1 (en) Security for network environment using trust scoring based on power consumption of devices within network
US10429808B2 (en) System that automatically infers equipment details from controller configuration details
TW201802626A (en) Anomaly data priority assessment device and anomaly data priority assessment method
CN112188531A (en) Abnormality detection method, abnormality detection device, electronic apparatus, and computer storage medium
US10248113B2 (en) Alerting system
US20190155258A1 (en) Information processing apparatus, information processing method, and recording medium having program recorded therein
CN103761748A (en) Method and device for detecting abnormal behaviors
KR20170084445A (en) Method and apparatus for detecting abnormality using time-series data
US20200089176A1 (en) A heating, ventilation and air conditioning capacity alert system
WO2013165346A1 (en) Notification based on an event identified from vibration data
US11566807B2 (en) System that retains continuity of equipment operational data upon replacement of controllers and components
WO2014199177A1 (en) Early warning and prevention system
US12163683B2 (en) System for auto-adjustment of gateway poll rates
JP2021527873A (en) Protocol-independent anomaly detection
CN108804914A (en) A kind of method and device of anomaly data detection
TWI768606B (en) System and method for monitoring sensor
CN107590008B (en) A method and system for judging the reliability of distributed clusters through weighted entropy
CN116205885A (en) Abnormal state detection method, system, electronic device and readable storage medium
KR101876629B1 (en) Apparatus and method for monitoring condition based on bicdata analysis
US10681027B2 (en) Gateway mechanisms to associate a contractor account
US20170205097A1 (en) Heating, ventilation and air conditioning capacity monitor
JP2020038525A (en) Anomaly detection device
JP2020027425A (en) Preventive maintenance device and system