TWI768606B - System and method for monitoring sensor - Google Patents
System and method for monitoring sensor Download PDFInfo
- Publication number
- TWI768606B TWI768606B TW109145182A TW109145182A TWI768606B TW I768606 B TWI768606 B TW I768606B TW 109145182 A TW109145182 A TW 109145182A TW 109145182 A TW109145182 A TW 109145182A TW I768606 B TWI768606 B TW I768606B
- Authority
- TW
- Taiwan
- Prior art keywords
- sensor
- sensors
- clustering
- cluster
- module
- Prior art date
Links
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Burglar Alarm Systems (AREA)
Abstract
Description
本發明係關於一種感測器監測系統及方法,詳言之係關於感測器之自動化監測系統及方法。 The present invention relates to a sensor monitoring system and method, and more specifically relates to an automatic monitoring system and method for a sensor.
無線感測器網路(Wireless Sensor Network,WSN)技術可應用於各種場域中,利用多個感測器協同運作以監視不同位置的物理或環境狀況,在物聯網(IoT)及自動化產線發展方面佔有關鍵地位。 Wireless Sensor Network (WSN) technology can be applied in various fields, using multiple sensors to work together to monitor physical or environmental conditions in different locations, in the Internet of Things (IoT) and automated production lines Development plays a key role.
當感測器出現異常訊號時,通常需要再透過人工判讀以辨識該異常訊號為環境變因或是誤判。此外,為了提高感測器的可靠度,通常需要定期人工檢測各個感測器,除了費時費工之外,亦難以即時校正或替換感測器。因此,如何減少人工判讀與檢測感測器的成本、並確保感測器的可靠度,為本發明欲解決的問題。 When an abnormal signal occurs in the sensor, manual interpretation is usually required to identify the abnormal signal as an environmental variable or a misjudgment. In addition, in order to improve the reliability of the sensors, it is usually necessary to manually check each sensor on a regular basis, which is not only time-consuming and labor-intensive, but also difficult to calibrate or replace the sensors in real time. Therefore, how to reduce the cost of manual interpretation and detection of the sensor and ensure the reliability of the sensor is the problem to be solved by the present invention.
本揭露之一實施例係關於一種感測器監測系統,包括擷取模組、群聚模組、及判定模組。擷取模組經配置以擷取複數個感測器之複數個感測器資料。群聚模組經配置以根據該等感測器資料將該等感測器群聚分類。判定模組經配置以判定該等感測器之群聚分類相較於標準群聚分類是否具有群聚變更。 An embodiment of the present disclosure relates to a sensor monitoring system, including a capture module, a clustering module, and a determination module. The capture module is configured to capture the plurality of sensor data of the plurality of sensors. The clustering module is configured to classify the sensor clusters according to the sensor data. The determination module is configured to determine whether the cluster classification of the sensors has a cluster change compared to a standard cluster classification.
本揭露之一實施例係關於一種感測器監測方法,包括擷取複數個感測器之複數個感測器資料、根據該等感測器資料將該等感測器群聚分類、及判定該等感測器之群聚分類相較於一標準群聚分類是否具有群聚變更。 An embodiment of the present disclosure relates to a sensor monitoring method, including capturing a plurality of sensor data of a plurality of sensors, clustering the sensors according to the sensor data, and determining Whether the cluster classification of the sensors has a cluster change compared to a standard cluster classification.
1:感測器監測系統 1: Sensor monitoring system
10:擷取模組 10: Capture module
11:群聚模組 11: Swarm Module
12:判定模組 12: Judgment Module
13:檢測模組 13: Detection module
2:感測器監測方法 2: Sensor monitoring method
20:步驟 20: Steps
21:步驟 21: Steps
22:步驟 22: Steps
23:步驟 23: Steps
24:步驟 24: Steps
25:步驟 25: Steps
26:步驟 26: Steps
27:步驟 27: Steps
28:步驟 28: Steps
7:場域 7: Field
70:位置 70: Location
71:位置 71: Location
A-Z:感測器 A-Z: Sensors
a-h:感測器 a-h: sensor
在下文中參考圖式討論實施例之各種態樣,該等圖式並非按比例繪製,且該等圖式僅為例示,並未限制本發明之範疇。在圖式及說明書中使用的元件符號僅為例示,並未限制本發明之範疇。相同或相似的元件以相同的元件符號表示,其中:圖1所示為根據本揭露之部分實施例之感測器監測系統之示意圖;圖2所示為根據本揭露之部分實施例之感測器監測方法之流程圖;圖3所示為根據本揭露之部分實施例之感測器監測方法中之一或更多步驟之示意圖;圖4所示為根據本揭露之部分實施例之感測器監測方法中之一或更多步驟之示意圖;圖5所示為根據本揭露之部分實施例之標準群聚分類圖;圖6所示為根據本揭露之部分實施例之群聚分類圖;圖7所示為根據本揭露之部分實施例之感測器之位置示意圖;及圖8所示為根據本揭露之部分實施例之感測器資料之平均值、改變量平均值、中位數值、峭度值、偏差值、及標準差。 Various aspects of the embodiments are discussed below with reference to the drawings, which are not drawn to scale, are illustrative only, and do not limit the scope of the invention. The reference numerals used in the drawings and the description are only examples, and do not limit the scope of the present invention. The same or similar components are represented by the same reference numerals, wherein: FIG. 1 shows a schematic diagram of a sensor monitoring system according to some embodiments of the present disclosure; FIG. 2 shows a sensing system according to some embodiments of the present disclosure. Figure 3 shows a schematic diagram of one or more steps in a sensor monitoring method according to some embodiments of the present disclosure; Figure 4 shows a sensing method according to some embodiments of the present disclosure Figure 5 shows a standard cluster classification diagram according to some embodiments of the present disclosure; Figure 6 shows a cluster classification diagram according to some embodiments of the present disclosure; FIG. 7 is a schematic diagram showing the position of the sensor according to some embodiments of the present disclosure; and FIG. 8 is the average value, the average value of the change amount, and the median value of the sensor data according to some embodiments of the present disclosure. , kurtosis value, deviation value, and standard deviation.
參照圖1,圖1所示為根據本揭露之部分實施例之感測器監測系統1之示意圖。感測器監測系統1可包含擷取模組10、群聚模組11、判定模組12、及檢測模組13。
Referring to FIG. 1 , FIG. 1 is a schematic diagram of a
在一些實施例中,擷取模組10、群聚模組11、判定模組12、及檢測模組13可經整合而由單一個電子裝置實現其所有的功能。在一些實施例中,擷取模組10、群聚模組11、判定模組12、及檢測模組13可分散在若干裝置中,由複數個裝置實現其所有的功能。
In some embodiments, the
在本揭露中使用的用語,例如「系統」、「模組」、及「裝置」,係指涉與電腦或伺服器相關的硬體、軟體、韌體、或該者之任意組合。例如,感測器監測系統1可包括執行在電腦上的軟體、執行該軟體的電腦、或軟體及電腦兩者。例如,擷取模組10、群聚模組11、判定模組12、及檢測模組13可包括執行在電腦上的軟體、執行該軟體的電腦、或軟體及電腦兩者。在一些實施例中,電腦及伺服器可具有一或更多的處理器且經配置以執行儲存於記憶體中的電腦可執行指令,而處理器可包括應用電子訊號執行邏輯操作的電子積體電路。
Terms used in this disclosure, such as "system," "module," and "device," refer to hardware, software, firmware, or any combination of these, associated with a computer or server. For example, the
根據本揭露之部分實施例,感測器監測系統1可應用於各種場域中以監測其中的感測器。前述場域可包括例如(但不限於)工廠、實驗室、及其他室內空間。然而,前述場域並不限於密閉空間,而係包括感測器檢測範圍所界定的虛擬空間。例如,複數個感測器協同運作以監視不同位置的物理或環境狀況,複數個感測器之檢測範圍即為感測器監測系統1可應用的場域。前述感測器可包括微粒或粒子感測器,例如(但不限於)落塵感測器、氣味粒子感測器、溫度感測器、濕度感測器、聲音感測器、或
其他訊號具有空間重疊相關特性的感測器。
According to some embodiments of the present disclosure, the
在一些實施例中,擷取模組10可經配置以擷取感測器的感測器資料。群聚模組11可經配置以根據感測器資料將感測器群聚分類。判定模組12可經配置以判定感測器之群聚分類相較於標準群聚分類是否具有群聚變更。檢測模組13可經配置以檢測感測器資料是否超出標準值。
In some embodiments, the
以下將參照圖2至圖8說明感測器監測系統1及感測器監測系統2的實施方式。
Embodiments of the
圖2所示為根據本揭露之部分實施例之感測器監測方法2之流程圖。感測器監測方法2可透過感測器監測系統1而實現。
FIG. 2 is a flowchart of a
在步驟20,擷取模組(例如圖1之擷取模組10)可擷取感測器的感測器資料。
In
在一些實施例中,感測器資料可包括感測器所產生之訊號與時間之關係。由於訊號值(或資料點)可依時間排序,因此感測器資料亦可稱為時間序列。在一些實施例中,感測器資料可包括例如(但不限於)每單位時間所偵測到的微粒數量、氣味(例如濃度)、溫度、濕度或聲音(例如分貝)。 In some embodiments, the sensor data may include the relationship of the signal generated by the sensor to time. Since the signal values (or data points) can be ordered in time, sensor data can also be referred to as time series. In some embodiments, sensor data may include, for example, but not limited to, number of particles detected per unit time, odor (eg, concentration), temperature, humidity, or sound (eg, decibels).
在步驟21、步驟22、及步驟23,群聚模組(例如圖1之群聚模組11)可計算所擷取的感測器資料的相似度、並根據相似度將感測器群聚分類直到群聚數降至需求數。
In
在一些實施例中,感測器資料的相似度可代表感測器資料在單位時間內之變化趨勢的相似度。若感測器資料變化的時間差愈小,則相似度愈高。具體而言,一個事件(如粉塵)經空氣傳播後,該傳播路徑會依序經過相鄰的兩件感測器,故該兩個感測器之訊號會有相似的表現,惟 時間序列不同,故透過這樣的比較概念,可以得知那些感測器為相鄰,哪些感測器為不同群聚。 In some embodiments, the similarity of the sensor data may represent the similarity of the change trend of the sensor data in a unit time. The smaller the time difference between sensor data changes, the higher the similarity. Specifically, after an event (such as dust) is transmitted through the air, the propagation path will pass through two adjacent sensors in sequence, so the signals of the two sensors will have similar performance, but The time series are different, so through such a comparison concept, it can be known which sensors are adjacent and which sensors are in different clusters.
在一些實施例中,感測器資料的相似度可利用動態時間校正(Dynamic Time Warping)來計算。舉例來說,如圖3所示,將兩組感測器資料(亦即兩條時間序列)標準化以使其時間對準。可得到兩組感測器資料個別的起始資料點i及j、以及下一個資料點i-1及j-1。接著計算兩組感測器資料之資料點距離,並找出最短距離。例如計算資料點i及資料點j-1之間的距離(表示為D(i,j-1))、D(i-1,j)、及D(i-1,j-1),其中若D(i,j-1)為最短距離,則將i及j-1的分別的下一個資料點(亦即i-1及j-2)視為起始資料點。重複上述步驟直到資料點的尾端,可以得到複數個最短距離,而複數個最短距離的總合即為兩組感測器資料之距離。若距離愈小(或數值愈小),表示資料點的時間差愈小,可認定兩組感測器資料的相似度愈高。 In some embodiments, the similarity of sensor data may be calculated using Dynamic Time Warping. For example, as shown in FIG. 3, the two sets of sensor data (ie, the two time series) are normalized to align their time. The respective initial data points i and j and the next data points i-1 and j-1 of the two sets of sensor data can be obtained. Then, the distance between the data points of the two sets of sensor data is calculated, and the shortest distance is found. For example, calculate the distance between data point i and data point j-1 (denoted as D(i,j-1)), D(i-1,j), and D(i-1,j-1), where If D(i, j-1) is the shortest distance, the next data points of i and j-1 (ie, i-1 and j-2), respectively, are regarded as starting data points. By repeating the above steps until the end of the data point, a plurality of shortest distances can be obtained, and the sum of the plurality of shortest distances is the distance between the two sets of sensor data. If the distance is smaller (or the value is smaller), it means that the time difference between the data points is smaller, and it can be determined that the similarity of the two sets of sensor data is higher.
在一些實施例中,計算任兩組感測器資料的距離可繪製距離矩陣,並可利用聚合式階層分群法(Hierarchical Agglomerative Clustering)及平均連結聚合演算法(Average-linkage Agglomerative Algorithm)根據距離矩陣將感測器群聚分類。舉例來說,如圖4所示,P1、P2、P3、P4分別為四個感測器(為四組群聚)。首先將相似度最高(亦即最小距離「2」)的P1及P2合併為第一階群聚,第一階群聚的相似度為「2」(亦即P1及P2的距離「2」)。第一階群聚中的P1及P2係以一個節點連接。接著將與第一階群聚相似度最高(亦即最小距離「4」及「3」)的P3與第一階群聚合併為第二階群聚,第二階群聚的相似度為「3.5」(亦即P3與P1的距離「4」及P3與P2的距離「3」的平均「3.5」)。第二階群聚的P3與第一階群聚中的P1(或P2)係以兩個節點連接。再接著將與第二階群聚 相似度最高(亦即最小距離「10」、「13」、「22)的P4與第二階群聚合併為第三階群聚,第三階群聚的相似度為「15」(亦即P4與P1的距離「10」、P4與P2的距離「13」、及P4與P3的距離「22」的平均「15」)。第三階群聚的P4與第一階群聚中的P1(或P2)係以三個節點連接。 In some embodiments, calculating the distances of any two sets of sensor data can draw a distance matrix, and can use Hierarchical Agglomerative Clustering and Average-linkage Agglomerative Algorithm according to the distance matrix Classify sensor clusters. For example, as shown in FIG. 4 , P1 , P2 , P3 , and P4 are four sensors (grouped in four groups), respectively. First, the P1 and P2 with the highest similarity (that is, the minimum distance "2") are merged into the first-order cluster, and the similarity of the first-order cluster is "2" (that is, the distance between P1 and P2 is "2") . P1 and P2 in the first-order cluster are connected by a node. Then, the P3 with the highest similarity with the first-order cluster (that is, the minimum distances "4" and "3") is aggregated with the first-order cluster to form the second-order cluster, and the similarity of the second-order cluster is " 3.5" (that is, the average "3.5" of the distance "4" between P3 and P1 and the distance "3" between P3 and P2). P3 of the second-order cluster is connected with P1 (or P2) of the first-order cluster by two nodes. Then will be clustered with the second order The P4 with the highest similarity (that is, the minimum distances "10", "13", "22") aggregates with the second-order group and becomes the third-order cluster, and the similarity of the third-order cluster is "15" (ie, The average of the distance "10" between P4 and P1, the distance "13" between P4 and P2, and the distance "22" between P4 and P3). P4 in the third-order cluster is connected with P1 (or P2) in the first-order cluster by three nodes.
將所有感測器群聚分類後可產生群聚分類圖,如圖4右方的群聚分類圖所示。圖5的標準群聚分類圖及圖6的群聚分類圖亦可以上述方式產生。然而本揭露並不限於此,在一些實施例中,亦可使用其他可行的演算法來計算感測器資料的相似度。此外,亦可使用其他可行的演算法將感測器群聚分類。 After clustering and classifying all the sensors, a cluster classification map can be generated, as shown in the cluster classification map on the right side of Figure 4. The standard cluster classification map of FIG. 5 and the cluster classification map of FIG. 6 can also be generated in the manner described above. However, the present disclosure is not limited thereto, and in some embodiments, other feasible algorithms can also be used to calculate the similarity of sensor data. In addition, other feasible algorithms can also be used to classify the sensor clusters.
感測器監測系統1及感測器監測系統2透過上述方法產生標準群聚分類圖(例如圖5的標準群聚分類圖),並基於標準群聚分類圖判定感測器(例如圖6的群聚分類圖中的感測器)是否具有群聚變更、進而判定感測器是否異常。由於感測器可能增減、汰換、變更位置等,因此標準群聚分類圖可藉由每一次判定的結果反饋而即時地修正。
The
在步驟24,判定模組(例如圖1之判定模組12)可基於標準群聚分類圖(例如圖5的標準群聚分類圖)來判定感測器(例如圖6的群聚分類圖中的感測器)是否具有群聚變更。若無群聚變更,則判定模組(例如圖1之判定模組12)可判定感測器無異常(例如步驟28)。若有群聚變更,則判定模組(例如圖1之判定模組12)可進一步判定該群聚變更是否超出預設值(例如步驟25)。
At
無群聚變更的情況包括,舉例來說,感測器H在圖5及圖6中均與感測器I以一個節點連接且相似度在預設值以內(屬於同一群聚),因此判定模組12可判定感測器H無群聚變更。此外,感測器H及感測器I在
圖5及圖6中均位於第一階群聚,且彼此以一個節點連接(屬於同一群聚),感測器H及感測器I的階數差異在圖5及圖6中並無變更,因此判定模組12可判定感測器H及感測器I無群聚變更。進一步而言,感測器H及感測器I在圖5之標準群聚分類圖中位於第一階群聚,且彼此以一個節點連接(屬於同一群聚),可表示感測器H及感測器I的訊號在單位時間內之變化趨勢的相似度較其他感測器高,在兩個感測器均沒有異常的情況下,兩個感測器的訊號在圖6亦會屬於同一群聚。反之,若兩個感測器的訊號在圖6亦會屬於同一群聚,則可以判定兩個感測器均沒有異常(例如步驟28)。
The case of no cluster change includes, for example, the sensor H is connected to the sensor I with one node in both FIG. 5 and FIG. 6 and the similarity is within the preset value (belonging to the same cluster), so it is determined that The
有群聚變更時,在步驟25,判定模組(例如圖1之判定模組12)可進一步判定該群聚變更是否超出預設值。若無超出預設值,則判定模組(例如圖1之判定模組12)可判定感測器無異常(例如步驟28)。若超出預設值,則檢測模組(例如圖1之檢測模組13)可進一步判定感測器資料是否超出標準值(例如步驟26)。
When there is a cluster change, in
在一些實施例中,是否超出預設值可透過相似度來判定。舉例來說,感測器U及感測器V在圖5之標準群聚分類圖中位於第一階群聚,且彼此以一個節點連接(屬於同一群聚)。感測器U及感測器V在圖6中彼此以兩個節點連接(屬於不同群聚),從第一階群聚變為第二階群聚,感測器U及感測器V的群聚在圖5及圖6中發生變更,因此判定模組12可判定感測器U及感測器V具有群聚變更。然而,感測器U及感測器V在圖6中之第二階群聚的相似度為「5」,假設預設值為相似度為「10」,則感測器U及感測器V的相似度在預設值以內,因此判定模組12可判定感測器U及感測器V之群聚變更並未超出預設值。因此判定模組12可判定兩個感測器均沒有異常(例如步驟28)。
In some embodiments, whether the predetermined value is exceeded may be determined through similarity. For example, sensor U and sensor V are located in the first order cluster in the standard cluster classification diagram of FIG. 5 and are connected to each other by a node (belonging to the same cluster). Sensor U and Sensor V are connected to each other by two nodes (belonging to different clusters) in FIG. 6, from the first order cluster to the second order cluster, the clusters of sensors U and sensor V The cluster changes in FIGS. 5 and 6 , so the
在一些實施例中,是否超出預設值可透過其他感測器來判定。舉例來說,感測器Q及感測器S在圖5之標準群聚分類圖中彼此以三個節點連接(屬於不同群聚),相似度在「10」以內。可將圖5中相似度在「10」以內的感測器Q至Y視為同一群聚。感測器Q在圖6中與感測器W彼此以一個節點連接(屬於同一群聚),相似度在「10」以內。感測器Q在圖5及圖6中均與同一群聚的感測器以一個節點連接,因此可判定感測器Q之群聚變更並未超出預設值,感測器Q沒有異常(例如步驟28)。 In some embodiments, whether the predetermined value is exceeded may be determined by other sensors. For example, sensor Q and sensor S are connected to each other by three nodes (belonging to different clusters) in the standard cluster classification diagram of FIG. 5, and the similarity is within "10". Sensors Q to Y with a similarity within "10" in FIG. 5 can be regarded as the same cluster. In FIG. 6 , the sensor Q and the sensor W are connected to each other as a node (belonging to the same cluster), and the similarity is within “10”. The sensor Q is connected to the same cluster of sensors as a node in both Figure 5 and Figure 6, so it can be determined that the cluster change of the sensor Q does not exceed the preset value, and the sensor Q is not abnormal ( For example, step 28).
在一些實施例中,可預先設定一群感測器為同一群聚,並設定當同一群聚中的任兩者彼此以一個節點連接或群聚的相似度在預設值以內時,判定該兩者之群聚變更並未超出預設值。如圖7所示,在場域7中感測器H及感測器I位在位置70,可將感測器H及感測器I設定為同一群聚。感測器Q、感測器S、感測器T、感測器U、感測器V、感測器W、感測器c位在位置71,亦可設定為同一群聚。感測器S在圖6中與感測器c彼此以一個節點連接(屬於同一群聚),相似度在「10」以內。參照圖7之場域,由於感測器S與感測器c在相近位置,若出現相近的訊號反應,應可判定感測器無異常。感測器S在圖6中與同一群聚的感測器以一個節點連接,因此可判定感測器S之群聚變更並未超出預設值,感測器S沒有異常(例如步驟28)。
In some embodiments, a group of sensors can be preset as the same cluster, and when any two in the same cluster are connected to each other by a node or the similarity of the cluster is within a preset value, it is determined that the two sensors are The clustering changes of those did not exceed the default value. As shown in FIG. 7 , in field 7, sensor H and
群聚變更超出預設值的情況包括,舉例來說,感測器T在圖5及圖6中與不同的感測器群聚,變更群聚階數,因此具有群聚變更。且感測器T在圖6中未與同一群聚的感測器以一個節點連接,因此可判定感測器T之群聚變更超出預設值,感測器T的感測器資料出現異常。 The case where the clustering change exceeds the preset value includes, for example, that the sensor T is clustered with different sensors in FIG. 5 and FIG. 6 , the clustering order is changed, and thus has a clustering change. And the sensor T is not connected to the same cluster of sensors as a node in FIG. 6, so it can be determined that the cluster change of the sensor T exceeds the preset value, and the sensor data of the sensor T is abnormal .
群聚變更超出預設值時,在步驟26,檢測模組(例如圖1之
檢測模組13)可進一步判定感測器資料是否超出標準值。例如,判定檢測感測器T的感測器資料之平均值、改變量平均值、中位數值、峭度值、偏差值、及標準差是否超出標準值(如圖8所示)。在一些實施例中,標準值可以使用感測器T的歷史感測器資料。在一些實施例中,標準值亦可以使用相近位置的感測器(例如圖7之感測器Q、感測器S、感測器U、感測器V、感測器W、感測器c)的歷史感測器資料。若經檢測後發現感測器資料並無超出標準值,可判定感測器沒有異常(例如步驟28)。若經檢測後發現感測器資料超出標準值,可判定感測器有異常(例如步驟27)。在一些實施例中,群聚模組(例如圖1之群聚模組11)可經配置以基於以上判定結果修正標準群聚分類。
When the cluster change exceeds the preset value, in
以感測器監測系統1及感測器監測系統2來監測感測器,大幅減少人工定期判讀與檢測感測器的成本。當感測器出現異常訊號時,首先以相似度高的感測器的訊號來判斷該異常訊號為環境變因或是誤判(又可稱為空間異常),若為空間異常則判斷感測器資料是否超出歷史感測器資料的標準值(又可稱為時間異常)。當有同時被判為空間異常及時間異常的感測器時,感測器監測系統1可經設定發出警報,提醒校正或替換感測器,以確保感測器的可靠度。
The
將瞭解,本文討論之系統及方法之實施例不限於文中所述或圖中所繪之構造及/或配置之細節,而係可以各種方式實踐或執行。本文中的特定實施例僅屬例示性且不意在限制本發明。 It will be appreciated that the embodiments of the systems and methods discussed herein are not limited to the details of construction and/or configurations described herein or depicted in the drawings, but may be practiced or carried out in various ways. The specific embodiments herein are illustrative only and are not intended to limit the invention.
此外,在本文中使用之措辭及術語僅屬例示性且不意在限制本發明。單數形式或複數形式僅屬例示性且不意在限制本發明之系統或方法、其等元件、組件、或步驟。本文中「包含」、「包括」、「具 有」、「含有」、「涉及」及其他類似的用語涵蓋在其後列出之項目、等效物、及額外項目。「或」及其他類似的用語可視為指示所描述之項目之之任一者。 Also, the phraseology and terminology used herein is exemplary only and not intended to limit the invention. The singular or plural form is exemplary only and is not intended to limit the system or method of the present invention, its elements, components, or steps. "includes", "includes", "includes" Has," "contains," "involves," and other similar terms cover the items listed thereafter, equivalents, and additional items. "Or" and other similar terms may be taken to indicate any of the described items.
1:感測器監測系統 1: Sensor monitoring system
10:擷取模組 10: Capture module
11:群聚模組 11: Swarm Module
12:判定模組 12: Judgment Module
13:檢測模組 13: Detection module
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109145182A TWI768606B (en) | 2020-12-18 | 2020-12-18 | System and method for monitoring sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109145182A TWI768606B (en) | 2020-12-18 | 2020-12-18 | System and method for monitoring sensor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI768606B true TWI768606B (en) | 2022-06-21 |
| TW202225868A TW202225868A (en) | 2022-07-01 |
Family
ID=83103940
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109145182A TWI768606B (en) | 2020-12-18 | 2020-12-18 | System and method for monitoring sensor |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI768606B (en) |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011132524A1 (en) * | 2010-04-20 | 2011-10-27 | 株式会社日立製作所 | Method for anomaly detection/diagnosis, system for anomaly detection/diagnosis, and program for anomaly detection/diagnosis |
| CN102466566A (en) * | 2010-11-03 | 2012-05-23 | 财团法人工业技术研究院 | Power equipment abnormality detection device and detection method thereof |
| WO2013024613A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社日立製作所 | Malfunction detection/diagnostic method, and malfunction detection/diagnostic system |
| WO2016112209A1 (en) * | 2015-01-09 | 2016-07-14 | Ecorithm, Inc. | Machine learning-based fault detection system |
| WO2018073955A1 (en) * | 2016-10-21 | 2018-04-26 | 日本電気株式会社 | System analysis method, system analysis device, and program |
| TW201947433A (en) * | 2016-12-12 | 2019-12-16 | 美商應用材料股份有限公司 | Auto defect screening using adaptive machine learning in semiconductor device manufacturing flow |
| TW202001464A (en) * | 2018-06-15 | 2020-01-01 | 日商三菱電機股份有限公司 | Diagnostic device, diagnostic method and program |
| TW202008223A (en) * | 2018-07-31 | 2020-02-16 | 日商三菱電機股份有限公司 | Information processing device, program, and information processing method |
| TW202026783A (en) * | 2019-01-10 | 2020-07-16 | 日商日立產機系統股份有限公司 | Power conversion device, rotating machine system, and diagnosis method |
| WO2020183781A1 (en) * | 2019-03-13 | 2020-09-17 | 株式会社日立製作所 | Abnormality diagnosis device |
| JP2020177378A (en) * | 2019-04-17 | 2020-10-29 | 株式会社ジェイテクト | Abnormality sign detection device and abnormality sign detection method |
-
2020
- 2020-12-18 TW TW109145182A patent/TWI768606B/en active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011132524A1 (en) * | 2010-04-20 | 2011-10-27 | 株式会社日立製作所 | Method for anomaly detection/diagnosis, system for anomaly detection/diagnosis, and program for anomaly detection/diagnosis |
| CN102466566A (en) * | 2010-11-03 | 2012-05-23 | 财团法人工业技术研究院 | Power equipment abnormality detection device and detection method thereof |
| WO2013024613A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社日立製作所 | Malfunction detection/diagnostic method, and malfunction detection/diagnostic system |
| WO2016112209A1 (en) * | 2015-01-09 | 2016-07-14 | Ecorithm, Inc. | Machine learning-based fault detection system |
| WO2018073955A1 (en) * | 2016-10-21 | 2018-04-26 | 日本電気株式会社 | System analysis method, system analysis device, and program |
| US20190265088A1 (en) * | 2016-10-21 | 2019-08-29 | Nec Corporation | System analysis method, system analysis apparatus, and program |
| TW201947433A (en) * | 2016-12-12 | 2019-12-16 | 美商應用材料股份有限公司 | Auto defect screening using adaptive machine learning in semiconductor device manufacturing flow |
| TW202001464A (en) * | 2018-06-15 | 2020-01-01 | 日商三菱電機股份有限公司 | Diagnostic device, diagnostic method and program |
| TW202008223A (en) * | 2018-07-31 | 2020-02-16 | 日商三菱電機股份有限公司 | Information processing device, program, and information processing method |
| TW202026783A (en) * | 2019-01-10 | 2020-07-16 | 日商日立產機系統股份有限公司 | Power conversion device, rotating machine system, and diagnosis method |
| WO2020183781A1 (en) * | 2019-03-13 | 2020-09-17 | 株式会社日立製作所 | Abnormality diagnosis device |
| JP2020177378A (en) * | 2019-04-17 | 2020-10-29 | 株式会社ジェイテクト | Abnormality sign detection device and abnormality sign detection method |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202225868A (en) | 2022-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8255522B2 (en) | Event detection from attributes read by entities | |
| CN107644194B (en) | Systems and methods for providing monitoring data | |
| US20200403991A1 (en) | Security for network environment using trust scoring based on power consumption of devices within network | |
| US10429808B2 (en) | System that automatically infers equipment details from controller configuration details | |
| TW201802626A (en) | Anomaly data priority assessment device and anomaly data priority assessment method | |
| CN112188531A (en) | Abnormality detection method, abnormality detection device, electronic apparatus, and computer storage medium | |
| US10248113B2 (en) | Alerting system | |
| US20190155258A1 (en) | Information processing apparatus, information processing method, and recording medium having program recorded therein | |
| CN103761748A (en) | Method and device for detecting abnormal behaviors | |
| KR20170084445A (en) | Method and apparatus for detecting abnormality using time-series data | |
| US20200089176A1 (en) | A heating, ventilation and air conditioning capacity alert system | |
| WO2013165346A1 (en) | Notification based on an event identified from vibration data | |
| US11566807B2 (en) | System that retains continuity of equipment operational data upon replacement of controllers and components | |
| WO2014199177A1 (en) | Early warning and prevention system | |
| US12163683B2 (en) | System for auto-adjustment of gateway poll rates | |
| JP2021527873A (en) | Protocol-independent anomaly detection | |
| CN108804914A (en) | A kind of method and device of anomaly data detection | |
| TWI768606B (en) | System and method for monitoring sensor | |
| CN107590008B (en) | A method and system for judging the reliability of distributed clusters through weighted entropy | |
| CN116205885A (en) | Abnormal state detection method, system, electronic device and readable storage medium | |
| KR101876629B1 (en) | Apparatus and method for monitoring condition based on bicdata analysis | |
| US10681027B2 (en) | Gateway mechanisms to associate a contractor account | |
| US20170205097A1 (en) | Heating, ventilation and air conditioning capacity monitor | |
| JP2020038525A (en) | Anomaly detection device | |
| JP2020027425A (en) | Preventive maintenance device and system |