[go: up one dir, main page]

TWI767192B - Application method of intelligent analysis system - Google Patents

Application method of intelligent analysis system Download PDF

Info

Publication number
TWI767192B
TWI767192B TW109106335A TW109106335A TWI767192B TW I767192 B TWI767192 B TW I767192B TW 109106335 A TW109106335 A TW 109106335A TW 109106335 A TW109106335 A TW 109106335A TW I767192 B TWI767192 B TW I767192B
Authority
TW
Taiwan
Prior art keywords
data
application method
analysis system
open
closed
Prior art date
Application number
TW109106335A
Other languages
Chinese (zh)
Other versions
TW202133003A (en
Inventor
曾慶忠
Original Assignee
傑睿資訊服務股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 傑睿資訊服務股份有限公司 filed Critical 傑睿資訊服務股份有限公司
Priority to TW109106335A priority Critical patent/TWI767192B/en
Publication of TW202133003A publication Critical patent/TW202133003A/en
Application granted granted Critical
Publication of TWI767192B publication Critical patent/TWI767192B/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本發明關於一種智慧分析系統之應用方法,其步驟包含:於一伺服器上擷取一開放性資料,並於一客戶端取得一封閉性資料;於一處理單元將該開放性資料及該封閉性資料進行前置處理(pre-processing),並輸出一第一資料源及一第二資料源;將該第一資料源及該第二資料源儲存於一資料庫中;分析該第一資料源及該第二資料源,並輸出一分析結果;依據該分析結果於一界面輸出一圖表、一模型或一表格,使用者藉由該圖表、該模型或該表格實現智慧經營與管理。The present invention relates to an application method of an intelligent analysis system, the steps of which include: retrieving an open data from a server, and obtaining a closed data from a client; a processing unit of the open data and the closed data pre-processing the data, and output a first data source and a second data source; store the first data source and the second data source in a database; analyze the first data source and the second data source, and output an analysis result; output a chart, a model or a table on an interface according to the analysis result, the user can realize intelligent operation and management by means of the chart, the model or the table.

Description

智慧分析系統之應用方法Application method of intelligent analysis system

本發明關於一種分析系統之應用方法,尤指一種藉由收集、前端分析、深度分析並輸出分析結果之智慧分析系統之應用方法。The present invention relates to an application method of an analysis system, especially an application method of an intelligent analysis system by collecting, front-end analysis, in-depth analysis and outputting analysis results.

隨著網絡科技的發展,人工智慧已經是時下最熱門的產業,人工智慧結合傳統產業,對於傳統產業的數據處理能夠起到很大的幫助。人工智慧 (AI) 是電腦科學的一個領域,致力於解決與人類智慧相關的常見認知問題,例如學習、解決問題和模式辨識。With the development of network technology, artificial intelligence has become the most popular industry nowadays. The combination of artificial intelligence with traditional industries can greatly help the data processing of traditional industries. Artificial intelligence (AI) is a field of computer science that addresses common cognitive problems associated with human intelligence, such as learning, problem solving, and pattern recognition.

同樣的,在商業或學術界對於「商業智慧和分析」(BI&A, Business Intelligence & Analytics)相關領域已變得越來越重要,並且在許多產業研究中有重大突破與發展。因此除了獲得資訊,如何儲存並分析資料,也是需要突破與發展的技術,簡單來說,儲存資料的地方即為一般資料庫所要達成的工作,並進一步針對資料庫中的 一群相關資料的集合體進行分析。資料庫所儲存之資料一般可區分為開放性資料與封閉性資料,即開放性資料可供公眾存取的資料,而封閉性資料為限制於私企單位內部或政府機關單位內部存取的資料。Similarly, the related fields of "Business Intelligence & Analytics" (BI&A, Business Intelligence & Analytics) have become more and more important in business or academia, and there have been major breakthroughs and developments in many industrial studies. Therefore, in addition to obtaining information, how to store and analyze data is also a technology that needs to be broken through and developed. In short, the place where data is stored is the work to be achieved by a general database, and further targeted at a group of related data in the database. analysis. The data stored in the database can generally be divided into open data and closed data, that is, open data can be accessed by the public, while closed data is restricted to private companies or government agencies.

一般對外開放之開放性資料之應用主要為非文字的資料素材,像是地圖、基因序列、神經網路體(或稱連結體Connections)、化學分子資料、數學函式、科學公式、醫學資料與應用、生命科學以及生物多樣性等無隱私權限制且無著作權限制的公開資料,對於私企單位或政府機關單位而言,其所提供之無存取限制之公開資料亦是開放性資料,但亦有僅供內部存取之封閉性資料,例如:私企單位其經營活動的結果基本在於固定的報表等模式。業務報表階段是資料分析的初始階段。隨著資料庫技術的出現,尤其現今,企業紛紛開始資訊化建設,業務流程資訊化沉澱了大量數位化的業務資料,而資料分析的需求其實大家一直都有,既然有了資料沉澱,通過這些資料進行報表統計和資料分析的需求自然就出現了。The applications of open data generally open to the outside world are mainly non-text data materials, such as maps, gene sequences, neural network bodies (or Connections), chemical molecular data, mathematical functions, scientific formulas, medical data and Applications, life sciences, biodiversity and other public information without privacy restrictions and without copyright restrictions, for private enterprises or government agencies, the open information provided by them without access restrictions is also open information, but also There are closed data for internal access only, for example: the results of the business activities of private enterprises are basically based on fixed reports and other models. The business report stage is the initial stage of data analysis. With the emergence of database technology, especially today, enterprises have begun to build information, and the informationization of business processes has precipitated a large amount of digital business data. In fact, everyone has always had the need for data analysis. Now that there is data precipitation, through these The demand for data reporting statistics and data analysis naturally arises.

然而,隨著資料庫儲存大量數位化資料,難免會存在冗餘資料或過於細緻,因而讓資料分析需要花費較為冗長的時間,藉此,如何有效的將上述資料去蕪存菁,提取有效的資料,是本發明所要研究的方向。However, as the database stores a large amount of digitized data, it is inevitable that there will be redundant data or too detailed data, which will take a long time to analyze the data. Data is the research direction of the present invention.

針對上述之問題,本發明提供一種智慧分析系統之應用方法,並且結合人工智慧分析以及深度學習等現代化技術,將上述資料迅速轉換為實用的技術性資料。In view of the above problems, the present invention provides an application method of an intelligent analysis system, and combines the modern technologies such as artificial intelligence analysis and deep learning to quickly convert the above-mentioned data into practical technical data.

本發明之一目的,係提供一種智慧分析系統之應用方法,藉由分析企業內部與外部結構化資料或半結構化資料,經過資料萃取、轉換、載入處後,運用人工智慧分析技術,將企業經營管理知識外化成一套經營管理系統,幫助管理者智慧經營。An object of the present invention is to provide an application method of an intelligent analysis system, by analyzing the internal and external structured data or semi-structured data of an enterprise, after data extraction, conversion and loading, using artificial intelligence analysis technology, the The knowledge of enterprise operation and management is externalized into a set of operation management system to help managers operate intelligently.

為了達到上述之目的,本發明揭示了一種智慧分析系統之應用方法,其包含步驟如下:一伺服器之一處理單元擷取一開放性資料,並於一客戶端取得一封閉性資料;該處理單元將該開放性資料及該封閉性資料進行前置處理(pre-processing),產生一第一資料源及一第二資料源;將該第一資料源及該第二資料源儲存於一資料庫中;該處理單元執行一人工智慧程序並依據至少一分析參數分析該第一資料源及該第二資料源,產生一分析結果;依據該分析結果於一使用者界面顯示一圖表、一模型或一表格,使用者藉由該圖表、該模型或該表格實現智慧經營與管理。In order to achieve the above object, the present invention discloses an application method of an intelligent analysis system, which includes the following steps: a processing unit of a server retrieves an open data, and obtains a closed data from a client; the processing The unit performs pre-processing on the open data and the closed data to generate a first data source and a second data source; and stores the first data source and the second data source in a data source in the database; the processing unit executes an artificial intelligence program and analyzes the first data source and the second data source according to at least one analysis parameter to generate an analysis result; according to the analysis result, a graph and a model are displayed on a user interface Or a table, the user realizes intelligent operation and management through the diagram, the model or the table.

本發明之一實施例中,其更揭露該前置處理(pre-processing)包含資料清理、遺漏值處理、正規化處理。In an embodiment of the present invention, it is further disclosed that the pre-processing includes data cleaning, missing value processing, and normalization processing.

本發明之一實施例中,其更揭露將該開放性資料及該封閉性資料進行擷取-轉換-載入 (Extract-Transform-Load,ETL)處理。In an embodiment of the present invention, it further discloses performing Extract-Transform-Load (ETL) processing on the open data and the closed data.

本發明之一實施例中,其更揭露使用PDI(Pentaho Data Integration)工具對該開放性資料及該封閉性資料進行分析。In an embodiment of the present invention, it further discloses using a PDI (Pentaho Data Integration) tool to analyze the open data and the closed data.

本發明之一實施例中,其更揭露對該第一資料源及該第二資料源進行統計歸納、迴歸分析(regression)、決策樹(decision tree)分析及深度學習(deep learning)。In an embodiment of the present invention, it further discloses performing statistical induction, regression analysis, decision tree analysis and deep learning on the first data source and the second data source.

本發明之一實施例中,其更揭露該深度學習為長短期記憶(Long Short-Term Memory,LSTM)。In an embodiment of the present invention, it is further disclosed that the deep learning is Long Short-Term Memory (LSTM).

本發明之一實施例中,其更揭露該開放性資料為經濟指標開放資料或產業財經文件資料。In an embodiment of the present invention, it further discloses that the open data is economic index open data or industry financial document data.

本發明之一實施例中,其更揭露該封閉性資料為結構化資料或半結構化資料。In an embodiment of the present invention, it further discloses that the closed data is structured data or semi-structured data.

本發明之一實施例中,其更揭露該模型包含回歸模型。In an embodiment of the present invention, it is further disclosed that the model includes a regression model.

為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合詳細之說明,說明如後:In order to make your examiners have a further understanding and understanding of the features of the present invention and the effects achieved, I would like to assist with the detailed descriptions of examples and cooperation, and the descriptions are as follows:

本發明為一種智慧分析系統之應用方法,其通過在伺服器上擷取開放性資料及在客戶端取得封閉性資料,再藉由分析上述資料,經過資料萃取、轉換、載入處後,運用人工智慧分析技術,將企業經營管理知識外化成一套經營管理系統,幫助管理者智慧經營。The present invention is an application method of an intelligent analysis system, which captures open data on the server and obtains closed data on the client, and then analyzes the above-mentioned data, after data extraction, conversion and loading, the application Artificial intelligence analysis technology externalizes enterprise management knowledge into a set of management system to help managers operate intelligently.

以下,將進一步說明本發明之一種智慧分析系統之應用方法:Below, the application method of a kind of intelligent analysis system of the present invention will be further described:

請參閱第1圖,其係為本發明之智慧分析系統之流程圖,如圖所示,本發明之一種智慧分析系統之應用方法,其步驟包含:Please refer to FIG. 1, which is a flowchart of an intelligent analysis system of the present invention. As shown in the figure, an application method of an intelligent analysis system of the present invention includes the following steps:

S1:擷取開放性資料,並取得封閉性資料;S1: Capture open data and obtain closed data;

S3:將開放性資料及封閉性資料進行前置處理;S3: Pre-processing open data and closed data;

S9:產生第一資料源及第二資料源;S9: Generate a first data source and a second data source;

S11:將第一資料源及第二資料源儲存;S11: store the first data source and the second data source;

S13:分析第一資料源及第二資料源;S13: analyze the first data source and the second data source;

S17:輸出分析結果;S17: output the analysis result;

S19:依據分析結果於使用者界面顯示圖表、模型或表格。S19: Display a chart, model or table on the user interface according to the analysis result.

接著說明為達成本發明之一種智慧分析系統,請繼續參閱第1圖,及一併參閱第2圖,其係為本發明之智慧分析系統之示意圖。如圖所示,本發明之一種智慧分析系統包含:一伺服器10、一客戶端20、一處理單元30、一資料庫40及一操作界面50。該伺服器10與該客戶端20連接該處理單元30,該資料庫40連接該處理單元30,該操作界面50更包含一顯示單元用於顯示該資料庫40之一分析結果。其中,該伺服器10為網頁伺服器,該伺服器10上儲存一開放性資料,該客戶端20為企業內部客戶端,該客戶單20上儲存一封閉性資料。本發明之一種智慧分析系統具體步驟如後:Next, in order to achieve an intelligent analysis system of the present invention, please refer to FIG. 1 and FIG. 2 together, which are schematic diagrams of the intelligent analysis system of the present invention. As shown in the figure, an intelligent analysis system of the present invention includes: a server 10 , a client 20 , a processing unit 30 , a database 40 and an operation interface 50 . The server 10 and the client 20 are connected to the processing unit 30 , the database 40 is connected to the processing unit 30 , and the operation interface 50 further includes a display unit for displaying an analysis result of the database 40 . Wherein, the server 10 is a web server, and an open data is stored on the server 10 , the client 20 is an internal client of an enterprise, and a closed data is stored on the customer list 20 . The specific steps of an intelligent analysis system of the present invention are as follows:

如步驟S1所示,擷取一開放性資料,並取得一封閉性資料。於該步驟中,首先於該伺服器10上擷取一開放性資料,並於該客戶端20取得一封閉性資料。其中,該開放性資料為經濟指標開放資料或產業財經文件資料等相關資料。該開放性資料之收集方式包含跨平台資料連接與轉換、開放資料收集與擷取以及使用Python程式語言撰寫之網頁爬蟲元件,於本實施例中,通過該網頁爬蟲元件擷取該伺服器10上之該開放性資料。而該封閉性資料之收集為客戶所提供之資料,其為結構化資料或半結構化資料。該資料需經過資料品質查核程序後,方為所需之該封閉性資料。As shown in step S1, an open data is retrieved, and a closed data is obtained. In this step, firstly, an open data is retrieved from the server 10 , and a closed data is obtained from the client 20 . Among them, the open data is related data such as economic indicators open data or industry financial documents. The collection methods of the open data include cross-platform data connection and conversion, open data collection and retrieval, and web crawler components written in the Python programming language. the open data. The collection of closed data is the data provided by customers, which is structured data or semi-structured data. The closed data is required only after the data has undergone the data quality check procedure.

如步驟S3所示,將該開放性資料及該封閉性資料進行前置處理。於本實施例中,於擷取一開放性資料,並取得一封閉性資料步驟後,更包含步驟S5:將該開放性資料及該封閉性資料進行擷取-轉換-載入(Extract-Transform-Load、ETL)處理,換言之,擷取-轉換-載入處理是將資料從來源端經過擷取(extract)、轉換(transform)、載入(load)至目的端的過程。也即是說,在擷取一開放性資料,並取得一封閉性資料步驟後,首先做一些簡單的分析工作,該前置處理包含資料清理、遺漏值處理、正規化處理等,例如: 1. 擷取 (Extract):讀取資料,資料來源可能是txt、excel或者是database; 2. 轉換 (Transform):將資料進行分析,例如驗證資料格式是否正確; 3.載入(Load):將處理好的資料可能匯出成txt、excel、寫入或更新到指定database。As shown in step S3, preprocessing is performed on the open data and the closed data. In this embodiment, after the step of retrieving an open data and obtaining a closed data, it further includes a step S5: extract-transform-load the open data and the closed data. -Load, ETL) processing, in other words, extract-transform-load processing is the process of extracting, transforming, and loading data from the source to the destination. That is to say, after the step of retrieving an open data and obtaining a closed data, first do some simple analysis work, the preprocessing includes data cleaning, missing value processing, normalization processing, etc., for example: 1. Extract: read data, the data source may be txt, excel or database; 2. Transform: Analyze the data, such as verifying whether the data format is correct; 3. Load: The processed data may be exported into txt, excel, written or updated to the specified database.

開放性資料之舉例如下表一所示: 功能 主要外部資料源(Input) 處理方法(Process) 產出(Output) 外部統計指標: l  綜合經濟指標、 l  勞工薪資與生產力、 l  產業經營指標 l  國發會景氣指標查詢系統 l  Yahoo股市觀測站 l  鉅亨網 l  中華民國統計資訊網 1.資料分群分類 2.統計運算 3.圖表呈現 根據指標特性,以合適的圖表形式呈現給使用者,旨在使用戶了解所屬產業其他公司的績效指標,作為公司經營參考。 產業新聞: l  摘要分析、 l  關鍵字分析 l  玩股趣 l  MoneyDJ l  鉅亨網產業新聞網 l  台灣經濟研究院 1.文字前處理分析 2.關鍵字頻率分析 3.摘要文字探勘 採用人工智慧演算法計算所收集外部產業新聞的重要關鍵字與摘要內容,提供給使用者可以快速掌握與企業經有相關之外部資訊。 趨勢分析: l  匯率走勢、 l  商品價格 l  英為財情 l  (investing.com) l  Srock-AI l  財經M平方 l  (MacoMicro) 1.數值資料前分析 2.多變量維度分析 3.迴歸/DL模型 針對跟企業成本比較高相關的原物料或匯率,提供未來走勢的基本預測,供企業作為財務規劃、銷售或採購決策參考。 現況分析 l  公司內部資料 l  上述前三項的外部資料 1.知識庫(KB)模型 2.時序資料分析 3.統計分析 4.樣式(pattern)分析 將公司內部資料所得的分析結果,與外部資料綜合分析,給予使用者基本的現況分析,特別是一些異常現象的提醒。 未來預測 l  公司內部資料 l  上述前三項外部資料經分析後的結果產出 1.知識庫(KB)模型 2.時序資料分析 3.統計分析 4.樣式(pattern)分析 將公司內部資料與外部資料的未來預測結果做探勘分析,對公司經營管理指標做未來預測,如有發現異常現象的能給經營者事先預警。 表一Examples of open data are shown in Table 1 below: Function Primary external data source (Input) Processing method (Process) Output (Output) External statistical indicators: l comprehensive economic indicators, l labor wages and productivity, l industrial operation indicators l National Development Council Prosperity Index Inquiry System l Yahoo Stock Market Observation Station l Juheng Network l ROC Statistical Information Network 1. Data grouping and classification 2. Statistical operation 3. Chart presentation According to the characteristics of the indicators, it is presented to the user in the form of a suitable chart, which aims to make the user understand the performance indicators of other companies in the industry and serve as a reference for the company's operation. Industry News: l Summary Analysis, l Keyword Analysis l Play stock fun l MoneyDJ l Juheng.com Industry News Network l Taiwan Economic Research Institute 1. Text preprocessing analysis 2. Keyword frequency analysis 3. Abstract text mining The artificial intelligence algorithm is used to calculate the important keywords and abstract content of the collected external industry news, so that users can quickly grasp the external information related to the company's business. Trend analysis: l exchange rate trends, l commodity prices l Yingwei Finance l (investing.com) l Srock-AI l Finance M Square l (MacoMicro) 1. Pre-analysis of numerical data 2. Multivariate dimension analysis 3. Regression/DL model For the raw materials or exchange rates related to the high cost of the enterprise, the basic forecast of the future trend is provided for the enterprise to use as a reference for financial planning, sales or purchasing decisions. Current Situation Analysis l Internal information of the company l External information of the first three items above 1. Knowledge base (KB) model 2. Time series data analysis 3. Statistical analysis 4. Pattern analysis The analysis results obtained from the company's internal data and external data are comprehensively analyzed to give users a basic analysis of the current situation, especially reminders of some abnormal phenomena. future forecast l Internal data of the company l Results of the analysis of the first three external data above 1. Knowledge base (KB) model 2. Time series data analysis 3. Statistical analysis 4. Pattern analysis Conduct exploration and analysis on the future forecast results of the company's internal data and external data, and make future forecasts for the company's operation and management indicators. If abnormal phenomena are found, the operator can be warned in advance. Table I

私企之開放性資料的舉例如下表二所示: 綜合景氣指標  領先指標 領先指標綜合指數、外銷訂單動向指數、貨幣總計數 M1B、股價指數、工業及服務業受僱員工淨進入率、建築物開工樓地板面積、半導體設備進口值 同時指標 同時指標綜合指數、工業生產指數、工業生產指數、電力(企業)總用電量、製造業銷售量指數、非農業部門就業人數、海關出口值、機械及電機設備進口值 落後指標 落後指標綜合指數、失業率、製造業單位產出勞動成本指數、金融業隔夜拆款利率、全體金融機構放款與投資、製造業存貨價值 薪資勞動產力 薪資水平 每人每月總薪資、每人每月經常性薪資、每人每月非經常性薪資 人力成長 進入率、退出率、流動率 生產力成本 勞動生產力指數、單位產出勞動成本指數 產業經營指標 獲利能力 每股營業額、每股稅後盈餘、稅後毛利率、稅前純益率、稅後純益率、資產報酬率 經營績效 營收成長率、營業利益成長率、稅前純益成長率、稅後純益成長率 經營能力 存貨週轉率、應付款項週轉率、應收款項週轉率、總資產週轉率 財務結構 利息保障倍數、流動比率、速動比率 償債能力 槓桿比率、負債比率 表二Examples of open data of private companies are shown in Table 2 below: Comprehensive Prosperity Indicator leading indicator Leading Indicators Composite Index, Export Order Trend Index, Currency Aggregate M1B, Stock Price Index, Industrial and Service Employee Net Entry Rate, Floor Area under Construction, Semiconductor Equipment Import Value Simultaneous indicators At the same time indicators composite index, industrial production index, industrial production index, electricity (enterprise) total electricity consumption, manufacturing sales volume index, employment in the non-agricultural sector, customs export value, import value of machinery and electrical equipment lagging indicator Composite index of lagging indicators, unemployment rate, labor cost index per unit output of manufacturing industry, overnight lending rate in the financial industry, lending and investment of all financial institutions, manufacturing inventory value wage labor productivity Salary level Total monthly salary per person, monthly recurring salary per person, non-recurring monthly salary per person Human growth Entry rate, exit rate, turnover rate productivity cost Labor productivity index, unit output labor cost index Industrial management indicators Profitability Turnover per share, after-tax earnings per share, after-tax gross profit margin, pre-tax net profit ratio, after-tax net profit ratio, return on assets business performance Revenue growth rate, operating profit growth rate, pre-tax net profit growth rate, after-tax net profit growth rate Management capacity Inventory Turnover, Accounts Payable Turnover, Receivables Turnover, Total Assets Turnover financial structure Interest coverage ratio, current ratio, quick ratio solvency leverage ratio, debt ratio Table II

封閉性資料之舉例如下表三所示: 生產 產出量、生產良率、人均生產力,存貨金額、存貨庫齡、存貨週轉天數、逾期生產比率分析、委外交貨延遲比率分析 銷售 營收總額、客戶銷售排行、產品銷售排行、出貨延遲分析 人資 人員離職率、薪資成本率、人力產值 研發 研發費用率、計畫達成率 財務 毛利率、應付帳款週轉率、應收帳款週轉率、負債比率、營業費用率 表三Examples of closed data are shown in Table 3 below: Production Output, production yield, per capita productivity, inventory amount, inventory age, inventory turnover days, overdue production ratio analysis, outsourcing delivery delay ratio analysis Sales Total revenue, customer sales ranking, product sales ranking, shipment delay analysis HR Staff turnover rate, salary cost rate, human output value research and development R&D expense rate, plan completion rate finance Gross Margin, Accounts Payable Turnover, Accounts Receivable Turnover, Debt Ratio, Operating Expense Ratio Table 3

另外,更包含步驟S7:使用Pentaho 資料整合(Pentaho Data Integration,PDI)對該開放性資料及該封閉性資料進行資料處理,所謂Pentaho Data Integration(PDI)為以Spoon為主的資料整合開發環境,Pentaho資料整合支援部署在一個雲端伺服器架構或是分散式叢集伺服器架構的單一主機上。In addition, step S7 is further included: use Pentaho Data Integration (PDI) to process the open data and the closed data. The so-called Pentaho Data Integration (PDI) is a Spoon-based data integration development environment. Pentaho data integration support is deployed on a single host in a cloud server architecture or a distributed cluster server architecture.

如步驟S9所示,輸出一第一資料源及一第二資料源。其中,將該開放性資料及該封閉性資料進行前置處理後,輸出該第一資料源及該第二資料源。As shown in step S9, a first data source and a second data source are output. Wherein, after preprocessing the open data and the closed data, the first data source and the second data source are output.

如步驟S11所示,將該第一資料源及該第二資料源儲存。其中,於輸出該第一資料源及該第二資料源後,將該第一資料源及該第二資料源儲存於該資料庫40中,換言之,該開放性資料及該封閉性資料經過前置處理後,僅保留有價值之資料,並將上述資料儲存,待後續進入更深層次分析,以獲取更有價值之資訊。As shown in step S11, the first data source and the second data source are stored. Wherein, after the first data source and the second data source are output, the first data source and the second data source are stored in the database 40, in other words, the open data and the closed data are processed before After processing, only the valuable information is retained, and the above-mentioned information is stored for further in-depth analysis to obtain more valuable information.

如步驟S13所示,分析該第一資料源及該第二資料源。於該步驟中,首先從該資料庫40中提取所需資料或直接於該資料庫中進行下一階段分析。與步驟S13後,更包含步驟15:對該第一資料源及該第二資料源進行統計歸納、回歸分析、決策樹分析及深度學習。其中,在本實施例中,該深度學習為長短期記憶(Long Short-Term Memory,LSTM)等分析方法。然並不限制該分析方法。As shown in step S13, the first data source and the second data source are analyzed. In this step, the required data is first extracted from the database 40 or the next stage analysis is performed directly in the database. After step S13, step 15 is further included: performing statistical induction, regression analysis, decision tree analysis and deep learning on the first data source and the second data source. Wherein, in this embodiment, the deep learning is an analysis method such as Long Short-Term Memory (Long Short-Term Memory, LSTM). However, this method of analysis is not limited.

如步驟S17所示,輸出一分析結果。其中,於該步驟中,對該第一資料源及該第二資料源進行進一步分析後,輸出該分析結果。As shown in step S17, an analysis result is output. Wherein, in this step, after further analyzing the first data source and the second data source, the analysis result is output.

如步驟S19所示,依據該分析結果於一操作界面輸出一圖表、一模型或一表格。其中,在本實施例中,該圖表為統計圖表,該模型為回歸模型等,但不以此為限。As shown in step S19, a graph, a model or a table is output on an operation interface according to the analysis result. Wherein, in this embodiment, the graph is a statistical graph, and the model is a regression model, etc., but not limited thereto.

於一實施例中,對於該第一資料源及該第二資料源之分析為依據一指標特性,以合適之圖表形式輸出該分析結果,使用戶了解所屬產業其他公司之績效指標,並作為公司經營參考。In one embodiment, the analysis of the first data source and the second data source is based on an indicator characteristic, and the analysis result is output in a suitable chart form, so that the user can understand the performance indicators of other companies in the industry, and use them as the company's performance indicators. business reference.

於另一實施例中,採用人工智慧演算法計算該開放性資料之該第一資料源之重要關鍵字與摘要內容,並提供給使用者掌握相關之外部資訊。In another embodiment, an artificial intelligence algorithm is used to calculate the important keywords and abstract content of the first data source of the open data, and provide the user with relevant external information.

於另一實施例中,對於該第一資料源及該第二資料源之分析為針對企業成本較高之相關原物料或匯率,提供未來走勢之基本預測,供企業作為財務規劃、銷售或採購決策之參考。In another embodiment, the analysis of the first data source and the second data source is to provide a basic forecast of future trends for related raw materials or exchange rates with higher costs for the enterprise, which is used by the enterprise for financial planning, sales or procurement. reference for decision-making.

於另一實施例中,將公司之該封閉性資料與該開放性資料之未來預測結果做探勘分析,對公司經營管理指標做未來預測,如有發現異常現象則給經營者發出一預警訊息。In another embodiment, prospecting and analyzing the future forecast results of the closed data and the open data of the company are performed to make future forecasts for the company's operation and management indicators, and an early warning message is sent to the operator if abnormal phenomena are found.

綜上所述,本發明之一種智慧分析系統,其通過在該伺服器上擷取該開放性資料及在該客戶端取得該封閉性資料,再藉由分析上述資料,經過資料萃取、轉換、載入處後,儲存於該資料庫中,其次,再運用人工智慧分析技術,將企業經營管理知識外化成一套經營管理系統,幫助管理者智慧經營。To sum up, an intelligent analysis system of the present invention captures the open data on the server and obtains the closed data from the client, and then analyzes the above-mentioned data, through data extraction, conversion, After loading, it is stored in the database, and secondly, artificial intelligence analysis technology is used to externalize the enterprise management knowledge into a set of management system to help managers operate intelligently.

故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈  鈞局早日賜准專利,至感為禱。Therefore, the present invention is indeed novel, progressive and available for industrial use, and it should meet the requirements of patent application in my country's patent law.

惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。However, the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. All changes and modifications made in accordance with the shape, structure, features and spirit described in the scope of the patent application of the present invention are equivalent. , shall be included in the scope of the patent application of the present invention.

10:伺服器 20:客戶端 30:處理單元 40:資料庫 50:操作界面 S1~S19:步驟10: Server 20: Client 30: Processing unit 40:Database 50: Operation interface S1~S19: Steps

第1圖:其為本發明之智慧分析系統之應用方法之流程圖一;以及 第2圖:其為本發明之智慧分析系統之應用方法之示意圖。Figure 1: It is a flow chart 1 of the application method of the intelligent analysis system of the present invention; and Figure 2: It is a schematic diagram of the application method of the intelligent analysis system of the present invention.

10:伺服器10: Server

20:客戶端20: Client

30:第一應用程序30: First App

40:第二應用程序40: Second application

50:第二認證機制50: Second Authentication Mechanism

Claims (8)

一種智慧分析系統之應用方法,其步驟包含:一伺服器之一處理單元擷取一開放性資料,並於一客戶端取得一封閉性資料,其中,該伺服器為網頁伺服器;該處理單元將該開放性資料及該封閉性資料進行一前置處理(pre-processing),產生一第一資料源及一第二資料源;該處理單元將該第一資料源及該第二資料源儲存於一資料庫中;該處理單元執行一人工智慧程序並依據至少一分析參數分析該第一資料源及該第二資料源,產生一分析結果,其中更包含該人工智慧程序對該第一資料源及該第二資料源進行統計歸納、迴歸分析(regression)、決策樹(decision tree)分析及深度學習(deep learning);及依據該分析結果於一使用者界面顯示一圖表、一模型或一表格。 An application method of an intelligent analysis system, the steps of which include: a processing unit of a server fetches an open data, and obtains a closed data from a client, wherein the server is a web server; the processing unit Perform a pre-processing on the open data and the closed data to generate a first data source and a second data source; the processing unit stores the first data source and the second data source In a database; the processing unit executes an artificial intelligence program and analyzes the first data source and the second data source according to at least one analysis parameter, and generates an analysis result, which further includes the artificial intelligence program on the first data perform statistical induction, regression analysis, decision tree analysis and deep learning on the source and the second data source; and display a graph, a model or a graph on a user interface according to the analysis result sheet. 如專利範圍第1項所述之智慧分析系統之應用方法,其中該前置處理(pre-processing)包含資料清理、遺漏值處理、正規化處理。 The application method of the intelligent analysis system as described in item 1 of the patent scope, wherein the pre-processing includes data cleaning, missing value processing, and normalization processing. 如專利範圍第1項所述之智慧分析系統之應用方法,其中於該處理單元將該開放性資料及該封閉性資料進行前置處理步驟中,更包含步驟:將該開放性資料及該封閉性資料進行擷取-轉換-載入(Extract-Transform-Load,ETL)處理。 The application method of the intelligent analysis system as described in item 1 of the patent scope, wherein in the step of preprocessing the open data and the closed data in the processing unit, it further comprises the step of: the open data and the closed data Extract-Transform-Load (ETL) processing of sexual data. 如專利範圍第3項所述之智慧分析系統之應用方法,其中於將該開放性資料及該封閉性資料進行擷取-轉換-載入(Extract-Transform-Load,ETL)處理之步驟中,更包含步驟: 使用PDI(Pentaho Data Integration)工具對該開放性資料及該封閉性資料進行分析。 The application method of the intelligent analysis system as described in item 3 of the patent scope, wherein in the steps of extract-transform-load (ETL) processing of the open data and the closed data, More steps are included: Use PDI (Pentaho Data Integration) tool to analyze the open data and the closed data. 如專利範圍第1項所述之智慧分析系統之應用方法,其中,該深度學習為長短期記憶(Long Short-Term Memory,LSTM)。 The application method of the intelligent analysis system as described in item 1 of the patent scope, wherein the deep learning is long short-term memory (Long Short-Term Memory, LSTM). 如專利範圍第1項所述之智慧分析系統之應用方法,其中,該開放性資料為經濟指標開放資料或產業財經文件資料。 According to the application method of the intelligent analysis system described in item 1 of the patent scope, the open data is open data of economic indicators or data of industrial financial documents. 如專利範圍第1項所述之智慧分析系統之應用方法,其中,該封閉性資料為結構化資料或半結構化資料。 The application method of the intelligent analysis system as described in item 1 of the patent scope, wherein the closed data is structured data or semi-structured data. 如專利範圍第1項所述之智慧分析系統之應用方法,其中,該模型包含回歸模型。 The application method of the intelligent analysis system as described in item 1 of the patent scope, wherein the model includes a regression model.
TW109106335A 2020-02-26 2020-02-26 Application method of intelligent analysis system TWI767192B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109106335A TWI767192B (en) 2020-02-26 2020-02-26 Application method of intelligent analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109106335A TWI767192B (en) 2020-02-26 2020-02-26 Application method of intelligent analysis system

Publications (2)

Publication Number Publication Date
TW202133003A TW202133003A (en) 2021-09-01
TWI767192B true TWI767192B (en) 2022-06-11

Family

ID=78777660

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106335A TWI767192B (en) 2020-02-26 2020-02-26 Application method of intelligent analysis system

Country Status (1)

Country Link
TW (1) TWI767192B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI872724B (en) * 2023-08-10 2025-02-11 大陸商鼎捷數智股份有限公司 Data fusion system and data fusion method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI844210B (en) * 2022-12-23 2024-06-01 合作金庫商業銀行股份有限公司 News public opinion collection system and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI306548B (en) * 2003-09-30 2009-02-21 Tokyo Electron Ltd System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool, and computer readable medium therefore
CN106372185A (en) * 2016-08-31 2017-02-01 广东京奥信息科技有限公司 Data preprocessing method for heterogeneous data sources
TWI598755B (en) * 2015-03-31 2017-09-11 Ubic股份有限公司 Data analysis system, data analysis method, computer program product storing data analysis program, and storage medium storing data analysis program
TW201807602A (en) * 2016-08-24 2018-03-01 慧科訊業有限公司 System, apparatus and method for monitoring internet media events based on a constructed industry knowledge graph database

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI306548B (en) * 2003-09-30 2009-02-21 Tokyo Electron Ltd System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool, and computer readable medium therefore
TWI598755B (en) * 2015-03-31 2017-09-11 Ubic股份有限公司 Data analysis system, data analysis method, computer program product storing data analysis program, and storage medium storing data analysis program
TW201807602A (en) * 2016-08-24 2018-03-01 慧科訊業有限公司 System, apparatus and method for monitoring internet media events based on a constructed industry knowledge graph database
CN106372185A (en) * 2016-08-31 2017-02-01 广东京奥信息科技有限公司 Data preprocessing method for heterogeneous data sources
CN106372185B (en) 2016-08-31 2017-07-04 广东京奥信息科技有限公司 A kind of data preprocessing method of heterogeneous data source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI872724B (en) * 2023-08-10 2025-02-11 大陸商鼎捷數智股份有限公司 Data fusion system and data fusion method

Also Published As

Publication number Publication date
TW202133003A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US20130191418A1 (en) Systems and Methods for Providing a Multi-Tenant Knowledge Network
CN112487105A (en) Construction method of enterprise portrait
JP2008515094A (en) Systems, software, and methods for searching a database in a forensic accounting environment
CN110929969A (en) Supplier evaluation method and device
Joseph Significance of data warehousing and data mining in business applications
Zioło et al. The relationship between banks and company business models-sustainability context
TWI767192B (en) Application method of intelligent analysis system
Portovaras et al. The role of modern information technologies in financial analysis and market forecasting
Yu et al. Dynamic customer preference analysis for product portfolio identification using sequential pattern mining
CN114372731A (en) Method, device, equipment and storage medium for setting job goals based on big data
Najadat et al. Performance evaluation of industrial firms using DEA and DECORATE ensemble method.
CN117033431B (en) Work order processing methods, devices, electronic equipment and media
Das et al. A Review of Data Warehousing Using Feature Engineering
Mahalle et al. Data Acquisition and Preparation
Wang [Retracted] Research on Financial Cost Accounting and Control of Small‐and Medium‐Sized Enterprises under the Background of Data Mining
Gao et al. Research on student financial assistance system based on data mining and analysis
Lin et al. Big Data Finance in China
He et al. An overview of data mining
Singh et al. Role of Data Mining: A Survey and its Implications
Azretbergenova et al. Application of Big Data in the Banking Sector of Kazakhstan
Potočár et al. Data-driven decision-making options for less tech-savvy users
CN119168701A (en) Customer profiling method and system based on multidimensional data
Ying et al. Forecasting leading economic indicators in the US from financial news using multi-task learning
Thapliyal Data mining: a tool for banking industry
Цепкало The Role of Modern Information Technologies in Financial Analysis and Market Forecasting