TWI767192B - Application method of intelligent analysis system - Google Patents
Application method of intelligent analysis system Download PDFInfo
- Publication number
- TWI767192B TWI767192B TW109106335A TW109106335A TWI767192B TW I767192 B TWI767192 B TW I767192B TW 109106335 A TW109106335 A TW 109106335A TW 109106335 A TW109106335 A TW 109106335A TW I767192 B TWI767192 B TW I767192B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- application method
- analysis system
- open
- closed
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 26
- 238000007781 pre-processing Methods 0.000 claims abstract description 11
- 238000013135 deep learning Methods 0.000 claims description 7
- 230000010354 integration Effects 0.000 claims description 6
- 230000006403 short-term memory Effects 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000003066 decision tree Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000000611 regression analysis Methods 0.000 claims description 3
- 230000001568 sexual effect Effects 0.000 claims 1
- 238000007726 management method Methods 0.000 description 11
- 230000007306 turnover Effects 0.000 description 10
- 238000013473 artificial intelligence Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000007405 data analysis Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000013075 data extraction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000010921 in-depth analysis Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 231100000870 cognitive problem Toxicity 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本發明關於一種智慧分析系統之應用方法,其步驟包含:於一伺服器上擷取一開放性資料,並於一客戶端取得一封閉性資料;於一處理單元將該開放性資料及該封閉性資料進行前置處理(pre-processing),並輸出一第一資料源及一第二資料源;將該第一資料源及該第二資料源儲存於一資料庫中;分析該第一資料源及該第二資料源,並輸出一分析結果;依據該分析結果於一界面輸出一圖表、一模型或一表格,使用者藉由該圖表、該模型或該表格實現智慧經營與管理。The present invention relates to an application method of an intelligent analysis system, the steps of which include: retrieving an open data from a server, and obtaining a closed data from a client; a processing unit of the open data and the closed data pre-processing the data, and output a first data source and a second data source; store the first data source and the second data source in a database; analyze the first data source and the second data source, and output an analysis result; output a chart, a model or a table on an interface according to the analysis result, the user can realize intelligent operation and management by means of the chart, the model or the table.
Description
本發明關於一種分析系統之應用方法,尤指一種藉由收集、前端分析、深度分析並輸出分析結果之智慧分析系統之應用方法。The present invention relates to an application method of an analysis system, especially an application method of an intelligent analysis system by collecting, front-end analysis, in-depth analysis and outputting analysis results.
隨著網絡科技的發展,人工智慧已經是時下最熱門的產業,人工智慧結合傳統產業,對於傳統產業的數據處理能夠起到很大的幫助。人工智慧 (AI) 是電腦科學的一個領域,致力於解決與人類智慧相關的常見認知問題,例如學習、解決問題和模式辨識。With the development of network technology, artificial intelligence has become the most popular industry nowadays. The combination of artificial intelligence with traditional industries can greatly help the data processing of traditional industries. Artificial intelligence (AI) is a field of computer science that addresses common cognitive problems associated with human intelligence, such as learning, problem solving, and pattern recognition.
同樣的,在商業或學術界對於「商業智慧和分析」(BI&A, Business Intelligence & Analytics)相關領域已變得越來越重要,並且在許多產業研究中有重大突破與發展。因此除了獲得資訊,如何儲存並分析資料,也是需要突破與發展的技術,簡單來說,儲存資料的地方即為一般資料庫所要達成的工作,並進一步針對資料庫中的 一群相關資料的集合體進行分析。資料庫所儲存之資料一般可區分為開放性資料與封閉性資料,即開放性資料可供公眾存取的資料,而封閉性資料為限制於私企單位內部或政府機關單位內部存取的資料。Similarly, the related fields of "Business Intelligence & Analytics" (BI&A, Business Intelligence & Analytics) have become more and more important in business or academia, and there have been major breakthroughs and developments in many industrial studies. Therefore, in addition to obtaining information, how to store and analyze data is also a technology that needs to be broken through and developed. In short, the place where data is stored is the work to be achieved by a general database, and further targeted at a group of related data in the database. analysis. The data stored in the database can generally be divided into open data and closed data, that is, open data can be accessed by the public, while closed data is restricted to private companies or government agencies.
一般對外開放之開放性資料之應用主要為非文字的資料素材,像是地圖、基因序列、神經網路體(或稱連結體Connections)、化學分子資料、數學函式、科學公式、醫學資料與應用、生命科學以及生物多樣性等無隱私權限制且無著作權限制的公開資料,對於私企單位或政府機關單位而言,其所提供之無存取限制之公開資料亦是開放性資料,但亦有僅供內部存取之封閉性資料,例如:私企單位其經營活動的結果基本在於固定的報表等模式。業務報表階段是資料分析的初始階段。隨著資料庫技術的出現,尤其現今,企業紛紛開始資訊化建設,業務流程資訊化沉澱了大量數位化的業務資料,而資料分析的需求其實大家一直都有,既然有了資料沉澱,通過這些資料進行報表統計和資料分析的需求自然就出現了。The applications of open data generally open to the outside world are mainly non-text data materials, such as maps, gene sequences, neural network bodies (or Connections), chemical molecular data, mathematical functions, scientific formulas, medical data and Applications, life sciences, biodiversity and other public information without privacy restrictions and without copyright restrictions, for private enterprises or government agencies, the open information provided by them without access restrictions is also open information, but also There are closed data for internal access only, for example: the results of the business activities of private enterprises are basically based on fixed reports and other models. The business report stage is the initial stage of data analysis. With the emergence of database technology, especially today, enterprises have begun to build information, and the informationization of business processes has precipitated a large amount of digital business data. In fact, everyone has always had the need for data analysis. Now that there is data precipitation, through these The demand for data reporting statistics and data analysis naturally arises.
然而,隨著資料庫儲存大量數位化資料,難免會存在冗餘資料或過於細緻,因而讓資料分析需要花費較為冗長的時間,藉此,如何有效的將上述資料去蕪存菁,提取有效的資料,是本發明所要研究的方向。However, as the database stores a large amount of digitized data, it is inevitable that there will be redundant data or too detailed data, which will take a long time to analyze the data. Data is the research direction of the present invention.
針對上述之問題,本發明提供一種智慧分析系統之應用方法,並且結合人工智慧分析以及深度學習等現代化技術,將上述資料迅速轉換為實用的技術性資料。In view of the above problems, the present invention provides an application method of an intelligent analysis system, and combines the modern technologies such as artificial intelligence analysis and deep learning to quickly convert the above-mentioned data into practical technical data.
本發明之一目的,係提供一種智慧分析系統之應用方法,藉由分析企業內部與外部結構化資料或半結構化資料,經過資料萃取、轉換、載入處後,運用人工智慧分析技術,將企業經營管理知識外化成一套經營管理系統,幫助管理者智慧經營。An object of the present invention is to provide an application method of an intelligent analysis system, by analyzing the internal and external structured data or semi-structured data of an enterprise, after data extraction, conversion and loading, using artificial intelligence analysis technology, the The knowledge of enterprise operation and management is externalized into a set of operation management system to help managers operate intelligently.
為了達到上述之目的,本發明揭示了一種智慧分析系統之應用方法,其包含步驟如下:一伺服器之一處理單元擷取一開放性資料,並於一客戶端取得一封閉性資料;該處理單元將該開放性資料及該封閉性資料進行前置處理(pre-processing),產生一第一資料源及一第二資料源;將該第一資料源及該第二資料源儲存於一資料庫中;該處理單元執行一人工智慧程序並依據至少一分析參數分析該第一資料源及該第二資料源,產生一分析結果;依據該分析結果於一使用者界面顯示一圖表、一模型或一表格,使用者藉由該圖表、該模型或該表格實現智慧經營與管理。In order to achieve the above object, the present invention discloses an application method of an intelligent analysis system, which includes the following steps: a processing unit of a server retrieves an open data, and obtains a closed data from a client; the processing The unit performs pre-processing on the open data and the closed data to generate a first data source and a second data source; and stores the first data source and the second data source in a data source in the database; the processing unit executes an artificial intelligence program and analyzes the first data source and the second data source according to at least one analysis parameter to generate an analysis result; according to the analysis result, a graph and a model are displayed on a user interface Or a table, the user realizes intelligent operation and management through the diagram, the model or the table.
本發明之一實施例中,其更揭露該前置處理(pre-processing)包含資料清理、遺漏值處理、正規化處理。In an embodiment of the present invention, it is further disclosed that the pre-processing includes data cleaning, missing value processing, and normalization processing.
本發明之一實施例中,其更揭露將該開放性資料及該封閉性資料進行擷取-轉換-載入 (Extract-Transform-Load,ETL)處理。In an embodiment of the present invention, it further discloses performing Extract-Transform-Load (ETL) processing on the open data and the closed data.
本發明之一實施例中,其更揭露使用PDI(Pentaho Data Integration)工具對該開放性資料及該封閉性資料進行分析。In an embodiment of the present invention, it further discloses using a PDI (Pentaho Data Integration) tool to analyze the open data and the closed data.
本發明之一實施例中,其更揭露對該第一資料源及該第二資料源進行統計歸納、迴歸分析(regression)、決策樹(decision tree)分析及深度學習(deep learning)。In an embodiment of the present invention, it further discloses performing statistical induction, regression analysis, decision tree analysis and deep learning on the first data source and the second data source.
本發明之一實施例中,其更揭露該深度學習為長短期記憶(Long Short-Term Memory,LSTM)。In an embodiment of the present invention, it is further disclosed that the deep learning is Long Short-Term Memory (LSTM).
本發明之一實施例中,其更揭露該開放性資料為經濟指標開放資料或產業財經文件資料。In an embodiment of the present invention, it further discloses that the open data is economic index open data or industry financial document data.
本發明之一實施例中,其更揭露該封閉性資料為結構化資料或半結構化資料。In an embodiment of the present invention, it further discloses that the closed data is structured data or semi-structured data.
本發明之一實施例中,其更揭露該模型包含回歸模型。In an embodiment of the present invention, it is further disclosed that the model includes a regression model.
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合詳細之說明,說明如後:In order to make your examiners have a further understanding and understanding of the features of the present invention and the effects achieved, I would like to assist with the detailed descriptions of examples and cooperation, and the descriptions are as follows:
本發明為一種智慧分析系統之應用方法,其通過在伺服器上擷取開放性資料及在客戶端取得封閉性資料,再藉由分析上述資料,經過資料萃取、轉換、載入處後,運用人工智慧分析技術,將企業經營管理知識外化成一套經營管理系統,幫助管理者智慧經營。The present invention is an application method of an intelligent analysis system, which captures open data on the server and obtains closed data on the client, and then analyzes the above-mentioned data, after data extraction, conversion and loading, the application Artificial intelligence analysis technology externalizes enterprise management knowledge into a set of management system to help managers operate intelligently.
以下,將進一步說明本發明之一種智慧分析系統之應用方法:Below, the application method of a kind of intelligent analysis system of the present invention will be further described:
請參閱第1圖,其係為本發明之智慧分析系統之流程圖,如圖所示,本發明之一種智慧分析系統之應用方法,其步驟包含:Please refer to FIG. 1, which is a flowchart of an intelligent analysis system of the present invention. As shown in the figure, an application method of an intelligent analysis system of the present invention includes the following steps:
S1:擷取開放性資料,並取得封閉性資料;S1: Capture open data and obtain closed data;
S3:將開放性資料及封閉性資料進行前置處理;S3: Pre-processing open data and closed data;
S9:產生第一資料源及第二資料源;S9: Generate a first data source and a second data source;
S11:將第一資料源及第二資料源儲存;S11: store the first data source and the second data source;
S13:分析第一資料源及第二資料源;S13: analyze the first data source and the second data source;
S17:輸出分析結果;S17: output the analysis result;
S19:依據分析結果於使用者界面顯示圖表、模型或表格。S19: Display a chart, model or table on the user interface according to the analysis result.
接著說明為達成本發明之一種智慧分析系統,請繼續參閱第1圖,及一併參閱第2圖,其係為本發明之智慧分析系統之示意圖。如圖所示,本發明之一種智慧分析系統包含:一伺服器10、一客戶端20、一處理單元30、一資料庫40及一操作界面50。該伺服器10與該客戶端20連接該處理單元30,該資料庫40連接該處理單元30,該操作界面50更包含一顯示單元用於顯示該資料庫40之一分析結果。其中,該伺服器10為網頁伺服器,該伺服器10上儲存一開放性資料,該客戶端20為企業內部客戶端,該客戶單20上儲存一封閉性資料。本發明之一種智慧分析系統具體步驟如後:Next, in order to achieve an intelligent analysis system of the present invention, please refer to FIG. 1 and FIG. 2 together, which are schematic diagrams of the intelligent analysis system of the present invention. As shown in the figure, an intelligent analysis system of the present invention includes: a
如步驟S1所示,擷取一開放性資料,並取得一封閉性資料。於該步驟中,首先於該伺服器10上擷取一開放性資料,並於該客戶端20取得一封閉性資料。其中,該開放性資料為經濟指標開放資料或產業財經文件資料等相關資料。該開放性資料之收集方式包含跨平台資料連接與轉換、開放資料收集與擷取以及使用Python程式語言撰寫之網頁爬蟲元件,於本實施例中,通過該網頁爬蟲元件擷取該伺服器10上之該開放性資料。而該封閉性資料之收集為客戶所提供之資料,其為結構化資料或半結構化資料。該資料需經過資料品質查核程序後,方為所需之該封閉性資料。As shown in step S1, an open data is retrieved, and a closed data is obtained. In this step, firstly, an open data is retrieved from the
如步驟S3所示,將該開放性資料及該封閉性資料進行前置處理。於本實施例中,於擷取一開放性資料,並取得一封閉性資料步驟後,更包含步驟S5:將該開放性資料及該封閉性資料進行擷取-轉換-載入(Extract-Transform-Load、ETL)處理,換言之,擷取-轉換-載入處理是將資料從來源端經過擷取(extract)、轉換(transform)、載入(load)至目的端的過程。也即是說,在擷取一開放性資料,並取得一封閉性資料步驟後,首先做一些簡單的分析工作,該前置處理包含資料清理、遺漏值處理、正規化處理等,例如: 1. 擷取 (Extract):讀取資料,資料來源可能是txt、excel或者是database; 2. 轉換 (Transform):將資料進行分析,例如驗證資料格式是否正確; 3.載入(Load):將處理好的資料可能匯出成txt、excel、寫入或更新到指定database。As shown in step S3, preprocessing is performed on the open data and the closed data. In this embodiment, after the step of retrieving an open data and obtaining a closed data, it further includes a step S5: extract-transform-load the open data and the closed data. -Load, ETL) processing, in other words, extract-transform-load processing is the process of extracting, transforming, and loading data from the source to the destination. That is to say, after the step of retrieving an open data and obtaining a closed data, first do some simple analysis work, the preprocessing includes data cleaning, missing value processing, normalization processing, etc., for example: 1. Extract: read data, the data source may be txt, excel or database; 2. Transform: Analyze the data, such as verifying whether the data format is correct; 3. Load: The processed data may be exported into txt, excel, written or updated to the specified database.
開放性資料之舉例如下表一所示:
私企之開放性資料的舉例如下表二所示:
封閉性資料之舉例如下表三所示:
另外,更包含步驟S7:使用Pentaho 資料整合(Pentaho Data Integration,PDI)對該開放性資料及該封閉性資料進行資料處理,所謂Pentaho Data Integration(PDI)為以Spoon為主的資料整合開發環境,Pentaho資料整合支援部署在一個雲端伺服器架構或是分散式叢集伺服器架構的單一主機上。In addition, step S7 is further included: use Pentaho Data Integration (PDI) to process the open data and the closed data. The so-called Pentaho Data Integration (PDI) is a Spoon-based data integration development environment. Pentaho data integration support is deployed on a single host in a cloud server architecture or a distributed cluster server architecture.
如步驟S9所示,輸出一第一資料源及一第二資料源。其中,將該開放性資料及該封閉性資料進行前置處理後,輸出該第一資料源及該第二資料源。As shown in step S9, a first data source and a second data source are output. Wherein, after preprocessing the open data and the closed data, the first data source and the second data source are output.
如步驟S11所示,將該第一資料源及該第二資料源儲存。其中,於輸出該第一資料源及該第二資料源後,將該第一資料源及該第二資料源儲存於該資料庫40中,換言之,該開放性資料及該封閉性資料經過前置處理後,僅保留有價值之資料,並將上述資料儲存,待後續進入更深層次分析,以獲取更有價值之資訊。As shown in step S11, the first data source and the second data source are stored. Wherein, after the first data source and the second data source are output, the first data source and the second data source are stored in the
如步驟S13所示,分析該第一資料源及該第二資料源。於該步驟中,首先從該資料庫40中提取所需資料或直接於該資料庫中進行下一階段分析。與步驟S13後,更包含步驟15:對該第一資料源及該第二資料源進行統計歸納、回歸分析、決策樹分析及深度學習。其中,在本實施例中,該深度學習為長短期記憶(Long Short-Term Memory,LSTM)等分析方法。然並不限制該分析方法。As shown in step S13, the first data source and the second data source are analyzed. In this step, the required data is first extracted from the
如步驟S17所示,輸出一分析結果。其中,於該步驟中,對該第一資料源及該第二資料源進行進一步分析後,輸出該分析結果。As shown in step S17, an analysis result is output. Wherein, in this step, after further analyzing the first data source and the second data source, the analysis result is output.
如步驟S19所示,依據該分析結果於一操作界面輸出一圖表、一模型或一表格。其中,在本實施例中,該圖表為統計圖表,該模型為回歸模型等,但不以此為限。As shown in step S19, a graph, a model or a table is output on an operation interface according to the analysis result. Wherein, in this embodiment, the graph is a statistical graph, and the model is a regression model, etc., but not limited thereto.
於一實施例中,對於該第一資料源及該第二資料源之分析為依據一指標特性,以合適之圖表形式輸出該分析結果,使用戶了解所屬產業其他公司之績效指標,並作為公司經營參考。In one embodiment, the analysis of the first data source and the second data source is based on an indicator characteristic, and the analysis result is output in a suitable chart form, so that the user can understand the performance indicators of other companies in the industry, and use them as the company's performance indicators. business reference.
於另一實施例中,採用人工智慧演算法計算該開放性資料之該第一資料源之重要關鍵字與摘要內容,並提供給使用者掌握相關之外部資訊。In another embodiment, an artificial intelligence algorithm is used to calculate the important keywords and abstract content of the first data source of the open data, and provide the user with relevant external information.
於另一實施例中,對於該第一資料源及該第二資料源之分析為針對企業成本較高之相關原物料或匯率,提供未來走勢之基本預測,供企業作為財務規劃、銷售或採購決策之參考。In another embodiment, the analysis of the first data source and the second data source is to provide a basic forecast of future trends for related raw materials or exchange rates with higher costs for the enterprise, which is used by the enterprise for financial planning, sales or procurement. reference for decision-making.
於另一實施例中,將公司之該封閉性資料與該開放性資料之未來預測結果做探勘分析,對公司經營管理指標做未來預測,如有發現異常現象則給經營者發出一預警訊息。In another embodiment, prospecting and analyzing the future forecast results of the closed data and the open data of the company are performed to make future forecasts for the company's operation and management indicators, and an early warning message is sent to the operator if abnormal phenomena are found.
綜上所述,本發明之一種智慧分析系統,其通過在該伺服器上擷取該開放性資料及在該客戶端取得該封閉性資料,再藉由分析上述資料,經過資料萃取、轉換、載入處後,儲存於該資料庫中,其次,再運用人工智慧分析技術,將企業經營管理知識外化成一套經營管理系統,幫助管理者智慧經營。To sum up, an intelligent analysis system of the present invention captures the open data on the server and obtains the closed data from the client, and then analyzes the above-mentioned data, through data extraction, conversion, After loading, it is stored in the database, and secondly, artificial intelligence analysis technology is used to externalize the enterprise management knowledge into a set of management system to help managers operate intelligently.
故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。Therefore, the present invention is indeed novel, progressive and available for industrial use, and it should meet the requirements of patent application in my country's patent law.
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。However, the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. All changes and modifications made in accordance with the shape, structure, features and spirit described in the scope of the patent application of the present invention are equivalent. , shall be included in the scope of the patent application of the present invention.
10:伺服器 20:客戶端 30:處理單元 40:資料庫 50:操作界面 S1~S19:步驟10: Server 20: Client 30: Processing unit 40:Database 50: Operation interface S1~S19: Steps
第1圖:其為本發明之智慧分析系統之應用方法之流程圖一;以及 第2圖:其為本發明之智慧分析系統之應用方法之示意圖。Figure 1: It is a flow chart 1 of the application method of the intelligent analysis system of the present invention; and Figure 2: It is a schematic diagram of the application method of the intelligent analysis system of the present invention.
10:伺服器10: Server
20:客戶端20: Client
30:第一應用程序30: First App
40:第二應用程序40: Second application
50:第二認證機制50: Second Authentication Mechanism
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109106335A TWI767192B (en) | 2020-02-26 | 2020-02-26 | Application method of intelligent analysis system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109106335A TWI767192B (en) | 2020-02-26 | 2020-02-26 | Application method of intelligent analysis system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202133003A TW202133003A (en) | 2021-09-01 |
| TWI767192B true TWI767192B (en) | 2022-06-11 |
Family
ID=78777660
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109106335A TWI767192B (en) | 2020-02-26 | 2020-02-26 | Application method of intelligent analysis system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI767192B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI872724B (en) * | 2023-08-10 | 2025-02-11 | 大陸商鼎捷數智股份有限公司 | Data fusion system and data fusion method |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI844210B (en) * | 2022-12-23 | 2024-06-01 | 合作金庫商業銀行股份有限公司 | News public opinion collection system and method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI306548B (en) * | 2003-09-30 | 2009-02-21 | Tokyo Electron Ltd | System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool, and computer readable medium therefore |
| CN106372185A (en) * | 2016-08-31 | 2017-02-01 | 广东京奥信息科技有限公司 | Data preprocessing method for heterogeneous data sources |
| TWI598755B (en) * | 2015-03-31 | 2017-09-11 | Ubic股份有限公司 | Data analysis system, data analysis method, computer program product storing data analysis program, and storage medium storing data analysis program |
| TW201807602A (en) * | 2016-08-24 | 2018-03-01 | 慧科訊業有限公司 | System, apparatus and method for monitoring internet media events based on a constructed industry knowledge graph database |
-
2020
- 2020-02-26 TW TW109106335A patent/TWI767192B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI306548B (en) * | 2003-09-30 | 2009-02-21 | Tokyo Electron Ltd | System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool, and computer readable medium therefore |
| TWI598755B (en) * | 2015-03-31 | 2017-09-11 | Ubic股份有限公司 | Data analysis system, data analysis method, computer program product storing data analysis program, and storage medium storing data analysis program |
| TW201807602A (en) * | 2016-08-24 | 2018-03-01 | 慧科訊業有限公司 | System, apparatus and method for monitoring internet media events based on a constructed industry knowledge graph database |
| CN106372185A (en) * | 2016-08-31 | 2017-02-01 | 广东京奥信息科技有限公司 | Data preprocessing method for heterogeneous data sources |
| CN106372185B (en) | 2016-08-31 | 2017-07-04 | 广东京奥信息科技有限公司 | A kind of data preprocessing method of heterogeneous data source |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI872724B (en) * | 2023-08-10 | 2025-02-11 | 大陸商鼎捷數智股份有限公司 | Data fusion system and data fusion method |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202133003A (en) | 2021-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20130191418A1 (en) | Systems and Methods for Providing a Multi-Tenant Knowledge Network | |
| CN112487105A (en) | Construction method of enterprise portrait | |
| JP2008515094A (en) | Systems, software, and methods for searching a database in a forensic accounting environment | |
| CN110929969A (en) | Supplier evaluation method and device | |
| Joseph | Significance of data warehousing and data mining in business applications | |
| Zioło et al. | The relationship between banks and company business models-sustainability context | |
| TWI767192B (en) | Application method of intelligent analysis system | |
| Portovaras et al. | The role of modern information technologies in financial analysis and market forecasting | |
| Yu et al. | Dynamic customer preference analysis for product portfolio identification using sequential pattern mining | |
| CN114372731A (en) | Method, device, equipment and storage medium for setting job goals based on big data | |
| Najadat et al. | Performance evaluation of industrial firms using DEA and DECORATE ensemble method. | |
| CN117033431B (en) | Work order processing methods, devices, electronic equipment and media | |
| Das et al. | A Review of Data Warehousing Using Feature Engineering | |
| Mahalle et al. | Data Acquisition and Preparation | |
| Wang | [Retracted] Research on Financial Cost Accounting and Control of Small‐and Medium‐Sized Enterprises under the Background of Data Mining | |
| Gao et al. | Research on student financial assistance system based on data mining and analysis | |
| Lin et al. | Big Data Finance in China | |
| He et al. | An overview of data mining | |
| Singh et al. | Role of Data Mining: A Survey and its Implications | |
| Azretbergenova et al. | Application of Big Data in the Banking Sector of Kazakhstan | |
| Potočár et al. | Data-driven decision-making options for less tech-savvy users | |
| CN119168701A (en) | Customer profiling method and system based on multidimensional data | |
| Ying et al. | Forecasting leading economic indicators in the US from financial news using multi-task learning | |
| Thapliyal | Data mining: a tool for banking industry | |
| Цепкало | The Role of Modern Information Technologies in Financial Analysis and Market Forecasting |