[go: up one dir, main page]

TWI763169B - Prediction system and prediction method for event type of cloud data center - Google Patents

Prediction system and prediction method for event type of cloud data center Download PDF

Info

Publication number
TWI763169B
TWI763169B TW109143605A TW109143605A TWI763169B TW I763169 B TWI763169 B TW I763169B TW 109143605 A TW109143605 A TW 109143605A TW 109143605 A TW109143605 A TW 109143605A TW I763169 B TWI763169 B TW I763169B
Authority
TW
Taiwan
Prior art keywords
data
training
machine learning
module
prediction
Prior art date
Application number
TW109143605A
Other languages
Chinese (zh)
Other versions
TW202223648A (en
Inventor
周雍傑
李玟儀
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW109143605A priority Critical patent/TWI763169B/en
Application granted granted Critical
Publication of TWI763169B publication Critical patent/TWI763169B/en
Publication of TW202223648A publication Critical patent/TW202223648A/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Debugging And Monitoring (AREA)

Abstract

A prediction system and a prediction method for an event type of a cloud data center are provided. The prediction method includes: receiving log data from the cloud data center; receiving first parameter source metadata and generating first input data corresponding to the log data and the first parameter source metadata; generating a prediction result according to a first machine learning (ML) model and the first input data, wherein the prediction result indicates the event type corresponding to the log data; and outputting the prediction result.

Description

雲端資料中心的事件種類的預測系統和預測方法Prediction system and prediction method of event type in cloud data center

本發明是有關於一種雲端資料中心的事件種類的預測系統和預測方法。The present invention relates to a prediction system and prediction method for event types in a cloud data center.

雲端資料中心提供使用者多樣且高速的雲端服務及應用,但在實務處理上,虛擬化的技術讓軟體、網路及硬體設備間的關係更為複雜。基此,對雲端資料中心的管理者來說,如何監控並利用雲端資料中心的訊息提前預知異常事件的發生並且迅速地排除系統障礙,是一項重要的議題。Cloud data centers provide users with diverse and high-speed cloud services and applications, but in practical processing, virtualization technology complicates the relationship between software, network, and hardware devices. Based on this, for cloud data center managers, how to monitor and use information from the cloud data center to predict the occurrence of abnormal events in advance and quickly eliminate system obstacles is an important issue.

本發明提供一種雲端資料中心的事件種類的預測系統和預測方法,可透過雲端資料中心所產生之雲端服務日誌內容預測雲端資料中心所發生之事件的種類。The present invention provides a prediction system and prediction method for event types in a cloud data center, which can predict the types of events that occur in the cloud data center through cloud service log content generated by the cloud data center.

本發明的一種雲端資料中心的事件種類的預測系統,包含處理器、儲存媒體以及收發器。收發器通訊連接至雲端資料中心。儲存媒體儲存多個模組。處理器耦接儲存媒體和收發器,並且存取和執行多個模組,其中多個模組包含模型管理預測模組、系統文本預測語句庫、系統功能執行模組、分析模組以及回應模組。模型管理預測模組儲存第一機器學習模型。系統文本預測語句庫通過收發器以自雲端資料中心接收日誌資料。系統功能執行模組通過收發器接收第一參數來源中繼資料,並且產生對應於日誌資料和第一參數來源中繼資料的第一輸入資料。分析模組根據第一機器學習模型和第一輸入資料產生預測結果,其中預測結果指示對應於日誌資料的事件種類。回應模組通過收發器輸出預測結果。An event type prediction system in a cloud data center of the present invention includes a processor, a storage medium and a transceiver. The transceiver communicates with the cloud data center. The storage medium stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes a plurality of modules, wherein the plurality of modules include a model management prediction module, a system text prediction sentence library, a system function execution module, an analysis module and a response module Group. The model management prediction module stores the first machine learning model. The system text prediction sentence library receives log data from the cloud data center through the transceiver. The system function execution module receives the first parameter source metadata through the transceiver, and generates first input data corresponding to the log data and the first parameter source metadata. The analysis module generates a prediction result according to the first machine learning model and the first input data, wherein the prediction result indicates the event type corresponding to the log data. The response module outputs the prediction result through the transceiver.

在本發明的一實施例中,上述的多個模組更包含測試資料鏈結模組。測試資料鏈結模組對日誌資料進行特徵篩選以產生測試資料,其中系統功能執行模組根據測試資料產生第一輸入資料。In an embodiment of the present invention, the above-mentioned modules further include a test data link module. The test data linking module performs feature screening on the log data to generate test data, wherein the system function execution module generates the first input data according to the test data.

在本發明的一實施例中,上述的多個模組更包含系統文本訓練語句庫、事件種類訓練語句庫以及訓練資料鏈結模組。系統文本訓練語句庫通過收發器以自雲端資料中心接收歷史日誌資料。事件種類訓練語句庫通過收發器以自雲端資料中心接收對應於歷史日誌資料的事件種類標籤資料。訓練資料鏈結模組根據歷史日誌資料以及事件種類標籤資料產生訓練資料,其中系統功能執行模組通過收發器接收第二參數來源中繼資料,產生對應於訓練資料以及第二參數來源中繼資料的第二輸入資料,並且根據第二輸入資料訓練第一機器學習模型。In an embodiment of the present invention, the above-mentioned modules further include a system text training sentence database, an event type training sentence database, and a training data link module. The system text training sentence library receives historical log data from the cloud data center through the transceiver. The event type training sentence library receives the event type label data corresponding to the historical log data from the cloud data center through the transceiver. The training data linking module generates training data according to the historical log data and the event type label data, wherein the system function execution module receives the second parameter source relay data through the transceiver, and generates the training data and the second parameter source relay data corresponding to the data the second input data, and train the first machine learning model according to the second input data.

在本發明的一實施例中,上述的訓練資料鏈結模組對歷史日誌資料進行特徵篩選以產生經篩選歷史日誌資料,其中訓練資料鏈結模組根據事件種類標籤資料刪除經篩選歷史日誌資料以及事件種類標籤資料中與異常事件相對應的多個資料點以產生訓練資料。In an embodiment of the present invention, the above-mentioned training data linking module performs feature screening on historical log data to generate filtered historical log data, wherein the training data linking module deletes the filtered historical log data according to the event type label data and a plurality of data points corresponding to abnormal events in the event type label data to generate training data.

在本發明的一實施例中,上述的系統功能執行模組自測試資料鏈結模組以及訓練資料鏈結模組的其中之一接收資料,其中系統功能執行模組響應於資料包含事件種類標籤資料而判斷資料為訓練資料,其中系統功能執行模組響應於資料不包含事件種類標籤資料而判斷資料為測試資料。In an embodiment of the present invention, the above-mentioned system function execution module receives data from one of the test data link module and the training data link module, wherein the system function execution module includes an event type label in response to the data The data is determined as training data, wherein the system function execution module determines that the data is test data in response to the data not including event type label data.

在本發明的一實施例中,上述的系統功能執行模組自測試資料鏈結模組以及訓練資料鏈結模組的其中之一接收資料,其中系統功能執行模組通過收發器接收系統功能中繼資料,並且根據系統功能中繼資料判斷資料為測試資料和訓練資料的其中之一。In an embodiment of the present invention, the above-mentioned system function execution module receives data from one of the test data link module and the training data link module, wherein the system function execution module receives the system function through the transceiver. Relay data, and judge the data as one of test data and training data according to the system function relay data.

在本發明的一實施例中,上述的模型管理預測模組儲存包含第一機器學習模型的多個機器學習模型,其中系統功能執行模組通過收發器接收系統功能中繼資料,並且根據系統功能中繼資料以從多個機器學習模型中挑選出第一機器學習模型。In an embodiment of the present invention, the above-mentioned model management prediction module stores a plurality of machine learning models including the first machine learning model, wherein the system function execution module receives the system function relay data through the transceiver, and according to the system function The data is relayed to select a first machine learning model from the plurality of machine learning models.

在本發明的一實施例中,上述的多個機器學習模型對應於下列的至少其中之一:長短期記憶模型、雙向長短期記憶模型、雙向二次長短期記憶模型、閘循環神經網路模型、雙向閘循環神經網路模型以及雙向二次閘循環神經網路模型。In an embodiment of the present invention, the above-mentioned multiple machine learning models correspond to at least one of the following: long short-term memory model, bidirectional long short-term memory model, bidirectional quadratic long short-term memory model, gated recurrent neural network model, Bidirectional gate cyclic neural network model and bidirectional secondary gate cyclic neural network model.

在本發明的一實施例中,上述的預測系統更包含輸出裝置。輸出裝置耦接至處理器,其中多個模組更包含使用者介面模組。使用者介面模組通過收發器接收查詢指令,根據查詢指令以自預測結果取得事件資訊,並且通過輸出裝置輸出事件資訊。In an embodiment of the present invention, the above-mentioned prediction system further includes an output device. The output device is coupled to the processor, wherein the plurality of modules further includes a user interface module. The user interface module receives the query command through the transceiver, obtains the event information from the prediction result according to the query command, and outputs the event information through the output device.

本發明的一種雲端資料中心的事件種類的預測方法,包含:自雲端資料中心接收日誌資料;接收第一參數來源中繼資料,並且產生對應於日誌資料和第一參數來源中繼資料的第一輸入資料;根據第一機器學習模型和第一輸入資料產生預測結果,其中預測結果指示對應於日誌資料的事件種類;以及輸出預測結果。A method for predicting event types in a cloud data center of the present invention includes: receiving log data from the cloud data center; receiving first parameter source relay data, and generating a first parameter corresponding to the log data and the first parameter source relay data input data; generate a prediction result according to the first machine learning model and the first input data, wherein the prediction result indicates an event type corresponding to the log data; and output the prediction result.

基於上述,本發明可通過系統文本訓練語句庫自動地彙整雲端資料中心服務產生的歷史日誌資料以作為機器學習模型的訓練資料。事件意圖訓練語句庫可自動地處理雲端資料中心之日誌資料和事件種類標籤資料。訓練資料鏈結模組可整併上述資料以完成訓練模型所需之訓練資料的建立。本發明還可通過系統功能執行模組進行模型的訓練,並可管理訓練完之機器學習模型。另一方面,本發明可藉由系統功能執行模組預測日誌資料所對應的事件種類。回應模組可根據使用者的需求輸出堆疊的事件種類的預測結果。Based on the above, the present invention can automatically aggregate the historical log data generated by the cloud data center service through the system text training sentence database as the training data of the machine learning model. The event intent training sentence base can automatically process the log data and event type label data in the cloud data center. The training data link module can integrate the above data to complete the establishment of the training data required for training the model. The present invention can also perform model training through the system function execution module, and can manage the trained machine learning model. On the other hand, the present invention can predict the event type corresponding to the log data through the system function execution module. The response module can output the prediction results of the stacked event types according to the user's needs.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more comprehensible, the following specific embodiments are given as examples according to which the present invention can indeed be implemented. Additionally, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1根據本發明的實施例繪示一種預測系統100的示意圖,其中預測系統100可用於預測雲端資料中心的事件種類。預測系統100可包含處理器110、儲存媒體120、收發器130以及輸出裝置140。FIG. 1 is a schematic diagram of a prediction system 100 according to an embodiment of the present invention, wherein the prediction system 100 can be used to predict event types in a cloud data center. The prediction system 100 may include a processor 110 , a storage medium 120 , a transceiver 130 and an output device 140 .

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120、收發器130以及輸出裝置140,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (micro control unit, MCU), microprocessor (microprocessor), digital signal processing digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processor (graphics processing unit, GPU), image signal processor (image signal processor, ISP) ), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (field programmable gate array) , FPGA) or other similar elements or a combination of the above. The processor 110 may be coupled to the storage medium 120 , the transceiver 130 and the output device 140 , and access and execute a plurality of modules and various application programs stored in the storage medium 120 .

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。The storage medium 120 is, for example, any type of fixed or removable random access memory (random access memory, RAM), read-only memory (ROM), and flash memory (flash memory). , a hard disk drive (HDD), a solid state drive (SSD), or similar components or a combination of the above components for storing a plurality of modules or various application programs executable by the processor 110 .

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。預測系統100可通過收發器130通訊連接至雲端資料中心。雲端資料中心可由諸如python等軟體開發,並可提供網路服務(web service)。The transceiver 130 transmits and receives signals in a wireless or wired manner. Transceiver 130 may also perform operations such as low noise amplification, impedance matching, frequency mixing, up or down frequency conversion, filtering, amplification, and the like. The prediction system 100 can be connected to the cloud data center through the transceiver 130 . The cloud data center can be developed by software such as python, and can provide web services.

輸出裝置140可包含通訊介面、顯示器或揚聲器等,本發明不限於此。The output device 140 may include a communication interface, a display or a speaker, etc., and the present invention is not limited thereto.

圖2根據本發明的實施例繪示儲存媒體120中的多個模組的示意圖,其中所述多個模組可包含系統功能執行模組11、系統文本訓練語句庫12、事件種類訓練語句庫13、訓練資料鏈結模組14、模型管理預測模組15、回應模組16、系統文本預測語句庫17、測試資料鏈結模組18、分析模組19以及使用者介面20。2 is a schematic diagram illustrating a plurality of modules in the storage medium 120 according to an embodiment of the present invention, wherein the plurality of modules may include a system function execution module 11, a system text training sentence database 12, and an event type training sentence database 13. A training data link module 14 , a model management prediction module 15 , a response module 16 , a system text prediction sentence library 17 , a test data link module 18 , an analysis module 19 and a user interface 20 .

模型管理預測模組15可儲存由系統功能執行模組11產生的多個機器學習模型。系統功能執行模組11可根據訓練資料來訓練儲存在模型管理預測模組15中的機器學習模型。The model management prediction module 15 can store a plurality of machine learning models generated by the system function execution module 11 . The system function execution module 11 can train the machine learning model stored in the model management prediction module 15 according to the training data.

系統功能執行模組11可自訓練資料鏈結模組14或測試資料鏈結模組18接收資料,並且判斷所接收的資料為訓練資料或測試資料。若所接收的資料為訓練資料,則預測系統100可根據訓練資料來訓練機器學習模型。若所接收的資料為測試資料,則預測系統100可利用訓練好的機器學習模型來判斷與測試資料相對應的事件種類,並產生對應的預測結果供使用者參考。The system function execution module 11 can receive data from the training data link module 14 or the test data link module 18, and determine that the received data is training data or test data. If the received data is training data, the prediction system 100 can train the machine learning model according to the training data. If the received data is test data, the prediction system 100 can use the trained machine learning model to determine the event type corresponding to the test data, and generate corresponding prediction results for the user's reference.

在一實施例中,系統功能執行模組11可判斷自訓練資料鏈結模組14或測試資料鏈結模組18所接收的資料是否包含事件種類標籤資料。若接收的資料包含事件種類標籤資料,則系統功能執行模組11可判斷所述資料為訓練資料。若接收的資料不包含事件種類標籤資料,則系統功能執行模組11可判斷所述資料為測試資料。In one embodiment, the system function execution module 11 can determine whether the data received from the training data link module 14 or the test data link module 18 includes event type label data. If the received data includes event type label data, the system function execution module 11 can determine that the data is training data. If the received data does not include event type label data, the system function execution module 11 can determine that the data is test data.

在一實施例中,系統功能執行模組11可通過收發器130接收系統功能中繼資料(metadata),並且根據系統功能中繼資料的指示判斷系統功能執行模組11所接收的資料為訓練資料或測試資料。換句話說,使用者可通過終端裝置傳送系統功能中繼資料給預測系統100,以控制預測系統100進行機器學習模型的訓練或進行事件種類的預測。In one embodiment, the system function execution module 11 can receive system function metadata (metadata) through the transceiver 130 , and determine that the data received by the system function execution module 11 is training data according to the instruction of the system function metadata or test data. In other words, the user can transmit the system function metadata to the prediction system 100 through the terminal device, so as to control the prediction system 100 to perform machine learning model training or event type prediction.

為了產生機器學習模型,系統文本訓練語句庫12可通過收發器130以自雲端資料中心接收歷史日誌資料,並且事件種類訓練語句庫13可通過收發器以自雲端資料中心接收對應於所述歷史日誌資料的事件種類標籤資料。事件種類標籤資料可包含歷史日誌資料所對應的事件種類的標籤。表1為歷史日誌資料所對應的事件種類的範例。 表1 編號 事件種類 1 ACLConfig供裝失敗 2 ACLConfig訂單供裝失敗 3 Host CPU 使用率嚴重過高 4 Host 網路卡 Admin 服務異常 5 Host 網路卡 Operation 服務異常 6 ODL控制器CPU總使用量嚴重過高 7 ODL控制器設備異常 8 OVS Bridge狀態異常 9 OpenFlow控制器連線狀態異常 10 QoSPolicyConfig供裝失敗 11 QoSPolicyConfig供裝失敗事件 12 SDN實體交換器設備異常 13 SDN實體交換器連接埠設備異常 14 VNF CPU 使用率嚴重過高 15 VNF DHCP服務異常 16 VNF SLB服務異常 17 VNF 系統異常 18 ebs供裝失敗 19 ebs訂單供裝失敗 20 host_cage供裝失敗 21 host_cage訂單供裝失敗 22 instance供裝失敗 23 instance訂單供裝失敗 24 interface供裝失敗 25 interface訂單供裝失敗 26 internetLinkDual_cht供裝失敗 27 internetLinkDual_cht訂單供裝失敗 28 pathTrace供裝失敗 29 pathTrace供裝失敗事件 30 privateSubnetDual_cht供裝失敗 31 privateSubnetDual_cht訂單供裝失敗 32 qosQueueConfig_cht供裝失敗 33 qosQueueConfig_cht供裝失敗事件 34 scalingGroup供裝失敗 35 scalingGroup訂單供裝失敗 36 staticRouteConfig_vyosCluster供裝失敗 37 staticRouteConfig_vyosCluster訂單供裝失敗 38 staticRouteIPv6Config_ciscoNexusCluster供裝失敗 39 staticRouteIPv6Config_ciscoNexusCluster訂單供裝失敗 40 staticRouteIPv6Config_vyosCluster供裝失敗 41 staticRouteIPv6Config_vyosCluster訂單供裝失敗 42 syncVenus供裝失敗 43 syncVenus訂單供裝失敗 44 vnfServer_cht供裝失敗 45 vnfServer_cht訂單供裝失敗 In order to generate the machine learning model, the system text training sentence base 12 can receive historical log data from the cloud data center through the transceiver 130, and the event type training sentence base 13 can receive the historical log data from the cloud data center through the transceiver 130 The event type label data for the data. The event type label data may include a label of the event type corresponding to the historical log data. Table 1 is an example of event types corresponding to historical log data. Table 1 Numbering type of event 1 ACLConfig provisioning failed 2 ACLConfig order supply failed 3 Host CPU usage is severely high 4 Host network card Admin service exception 5 Host network card Operation service exception 6 The total CPU usage of the ODL controller is seriously high 7 ODL controller device exception 8 OVS Bridge Status Abnormal 9 The connection status of the OpenFlow controller is abnormal 10 QoSPolicyConfig provisioning failed 11 QoSPolicyConfig provisioning failure event 12 SDN physical switch device is abnormal 13 SDN physical switch port device is abnormal 14 VNF CPU usage is severely high 15 VNF DHCP service is abnormal 16 VNF SLB service exception 17 VNF system exception 18 ebs supply failed 19 ebs order supply failed 20 host_cage provisioning failed twenty one host_cage order supply failed twenty two instance provisioning failed twenty three instance order supply failed twenty four interface provisioning failed 25 interface order supply failed 26 internetLinkDual_cht supply failed 27 internetLinkDual_cht order supply failed 28 pathTrace provisioning failed 29 pathTrace provisioning failure event 30 privateSubnetDual_cht failed to install 31 privateSubnetDual_cht order supply failed 32 qosQueueConfig_cht failed to supply 33 qosQueueConfig_cht supply failure event 34 Failed to supply scalingGroup 35 scalingGroup order supply failed 36 staticRouteConfig_vyosCluster provisioning failed 37 staticRouteConfig_vyosCluster order supply failed 38 staticRouteIPv6Config_ciscoNexusCluster provisioning failed 39 staticRouteIPv6Config_ciscoNexusCluster order supply failed 40 staticRouteIPv6Config_vyosCluster provisioning failed 41 staticRouteIPv6Config_vyosCluster order supply failed 42 syncVenus provisioning failed 43 syncVenus order supply failed 44 Failed to install vnfServer_cht 45 vnfServer_cht order supply failed

訓練資料鏈結模組14可根據歷史日誌資料以及事件種類標籤資料產生用於訓練機器學習模型的訓練資料。具體來說,訓練資料鏈結模組14可對歷史日誌資料進行特徵篩選以找出歷史日誌資料的文本中的關鍵特徵,從而將歷史日誌資料中對應於關鍵特徵的資料保留以產生經篩選歷史日誌資料,藉以降低分析噪度。歷史日誌資料的特徵可包含但不限於實體設備主機、網路伺服器、防火牆、作業系統或網路設備的相關資訊。The training data linking module 14 can generate training data for training the machine learning model according to the historical log data and the event type label data. Specifically, the training data linking module 14 can perform feature screening on the historical log data to find key features in the text of the historical log data, so as to retain the data corresponding to the key features in the historical log data to generate a filtered history log data to reduce analysis noise. Features of historical log data may include, but are not limited to, information about physical device hosts, network servers, firewalls, operating systems, or network devices.

訓練資料鏈結模組14可解析歷史日誌資料中的Json、YAML或CSV等檔案的格式參數以進行特徵篩選。具體來說,系統文本訓練語句庫12可通過訊息佇列(message queue)暫存自雲端資料中心接收的歷史日誌資料。訓練資料鏈結模組14可使用例如python等軟體對歷史日誌資料進行分析處理。訓練資料鏈結模組14可通過搜尋引擎(例如:Elasticsearch)設定的規則對歷史日誌資料進行處理、合併(例如:合併歷史日誌資料中的對應於事件種類的標籤的時間戳記區間中的日誌的數值)以及索引建立,從而產生具有結構性的日誌資料存放(例如:使用python軟體中的pandas套件)。訓練資料鏈結模組14可例如通過Kibana軟體的使用者介面(user interface,UI)查看日誌資料,通過例如python軟體常使用的自然語言處理(natural language processing,NLP)工具的停止詞(stop words)去除日誌資料中的字元,額外計算日誌資料中的全部字元的逆向檔案頻率(inverse document frequency,idf)值,藉以找出日誌資料中idf值較小的字元以作為停止詞濾除,從而產生歷史日誌資料中的關鍵特徵的文本。The training data linking module 14 can parse the format parameters of files such as Json, YAML or CSV in the historical log data to perform feature filtering. Specifically, the system text training sentence database 12 can temporarily store the historical log data received from the cloud data center through a message queue. The training data linking module 14 can use software such as python to analyze and process the historical log data. The training data linking module 14 can process and combine the historical log data through the rules set by the search engine (for example: Elasticsearch) (for example: combine the logs in the timestamp interval of the tag corresponding to the event type in the historical log data. values) and indexing, resulting in structured log data storage (for example, using the pandas suite in python software). The training data linking module 14 can view log data through a user interface (UI) of Kibana software, for example, through stop words (stop words) of natural language processing (NLP) tools commonly used in python software. ) removes the characters in the log data, and additionally calculates the inverse document frequency (idf) value of all the characters in the log data, so as to find the characters with a smaller idf value in the log data and filter them out as stop words , resulting in the text of key features in historical log data.

在產生經篩選歷史日誌資料後,訓練資料鏈結模組14可將經篩選歷史日誌資料中的文本轉換為可作為機器學習模型之輸入的數值。具體來說,訓練資料鏈結模組14可將經篩選歷史日誌資料中的文本轉換成二元數值以進行異質資料整併,並透過統計關鍵字詞來將關鍵字詞轉換為字詞向量,藉以形成可供機器學習模型解讀的分布運算數值。在一實施例中,訓練資料鏈結模組14還可對歷史日誌資料(或經篩選歷史日誌資料)進行斷字、編碼或降噪等程序,以使歷史日誌資料可訓練出更準確的模型。After generating the filtered historical log data, the training data linking module 14 can convert the text in the filtered historical log data into numerical values that can be used as input to the machine learning model. Specifically, the training data linking module 14 can convert the text in the filtered historical log data into binary values for heterogeneous data integration, and convert the key words into word vectors by counting key words, Thereby forming a distribution operation value that can be interpreted by the machine learning model. In one embodiment, the training data linking module 14 may also perform procedures such as hyphenation, encoding or noise reduction on the historical log data (or the filtered historical log data), so that a more accurate model can be trained from the historical log data .

另一方面,訓練資料鏈結模組14可根據事件種類標籤資料判斷經篩選歷史日誌資料或事件種類標籤資料中的哪一些資料點對應於異常事件。訓練資料鏈結模組14可將經篩選歷史日誌資料或事件種類標籤資料中的對應於異常事件的多個資料點刪除,以提高所訓練之模型的準確度。接著,訓練資料鏈結模組14可結合經篩選歷史日誌資料以及事件種類標籤資料以產生訓練資料。On the other hand, the training data linking module 14 can determine which data points in the filtered historical log data or the event type label data correspond to abnormal events according to the event type label data. The training data linking module 14 can delete a plurality of data points corresponding to abnormal events in the filtered historical log data or event type label data, so as to improve the accuracy of the trained model. Then, the training data linking module 14 may combine the filtered historical log data and the event type tag data to generate training data.

分析模組19可根據訓練資料產生可由模型管理預測模組15儲存的一或多個機器學習模型,其中所述一或多個機器學習模型可對應於下列的至少其中之一:長短期記憶(long short term memory,LSTM)模型、雙向長短期記憶(bidirectional LSTM)模型、雙向二次長短期記憶(bidirectional LSTM+ LSTM)模型、閘循環神經網路(gate recurrent unit,GRU)模型、雙向閘循環神經網路(bidirectional GRU)模型以及雙向二次閘循環神經網路(bidirectional GRU+ GRU)模型。模型管理預測模組15可通過例如HDF5檔案格式來儲存和管理訓練好的機器學習模型。The analysis module 19 can generate one or more machine learning models that can be stored by the model management prediction module 15 according to the training data, wherein the one or more machine learning models can correspond to at least one of the following: long short-term memory ( long short term memory (LSTM) model, bidirectional long short term memory (bidirectional LSTM) model, bidirectional quadratic long short term memory (bidirectional LSTM+ LSTM) model, gate recurrent unit (GRU) model, bidirectional gate recurrent neural network Road (bidirectional GRU) model and bidirectional secondary gate recurrent neural network (bidirectional GRU+ GRU) model. The model management prediction module 15 can store and manage the trained machine learning model through, for example, the HDF5 file format.

具體來說,系統功能執行模組11可自訓練資料鏈結模組14接收訓練資料,並可通過收發器130接收用於訓練機器學習模型的第二參數來源中繼資料。第二參數來源中繼資料可與機器學習模型的種類有關。例如,第二參數來源中繼資料可包含訓練機器學習模型所需使用的超參數,諸如批量大小(batch size)、學習率(learning rate)、型樣(epoch)或權重(weight)等。Specifically, the system function execution module 11 can receive training data from the training data linking module 14 , and can receive the second parameter source relay data for training the machine learning model through the transceiver 130 . The second parameter source metadata may be related to the type of machine learning model. For example, the second parameter source metadata may include hyperparameters used to train the machine learning model, such as batch size, learning rate, epoch or weight, etc.

系統功能執行模組11可根據訓練資料以及第二參數來源中繼資料產生用於訓練機器學習模型的第二輸入資料。分析模組19可利用軟體工具(例如:python tensorflow)以根據第二輸入資料訓練機器學習模型。在一實施例中,系統功能執行模組11可通過收發器130接收系統功能中繼資料。系統功能執行模組11可根據系統功能中繼資料決定將訓練的機器學習模型的種類。分析模組19可根據系統功能執行模組11決定的種類來訓練機器學習模型。在完成機器學習模型的訓練後,系統功能執行模組11可將機器學習模型儲存於模型管理預測模組15中。The system function execution module 11 can generate the second input data for training the machine learning model according to the training data and the second parameter source metadata. The analysis module 19 can use software tools (eg, python tensorflow) to train the machine learning model according to the second input data. In one embodiment, the system function execution module 11 can receive the system function relay data through the transceiver 130 . The system function execution module 11 can determine the type of machine learning model to be trained according to the system function metadata. The analysis module 19 can train the machine learning model according to the type determined by the system function execution module 11 . After completing the training of the machine learning model, the system function execution module 11 may store the machine learning model in the model management and prediction module 15 .

預測系統100可利用儲存在模型管理預測模組15中的機器學習模型來判斷測試資料所對應的事件種類。系統文本預測語句庫17可通過收發器130以自雲端資料中心接收日誌資料。測試資料鏈結模組18可根據日誌資料產生測試資料。測試資料鏈結模組18可對日誌資料進行特徵篩選以產生經篩選日誌資料。舉例來說,測試資料鏈結模組18可基於與訓練資料鏈結模組14相似的方式來解析日誌資料中的Json、YAML或CSV等檔案的格式參數以進行特徵篩選以找出日誌資料的文本中的關鍵特徵,從而將日誌資料中對應於關鍵特徵的資料保留以產生經篩選日誌資料,藉以降低分析噪度。日誌資料的特徵可包含但不限於實體設備主機、網路伺服器、防火牆、作業系統或網路設備的相關資訊。The prediction system 100 can use the machine learning model stored in the model management prediction module 15 to determine the event type corresponding to the test data. The system text predictive sentence library 17 can receive log data from the cloud data center through the transceiver 130 . The test data link module 18 can generate test data according to the log data. The test data linking module 18 may perform feature filtering on log data to generate filtered log data. For example, the test data linking module 18 can parse the format parameters of files such as Json, YAML or CSV in the log data in a similar manner to the training data linking module 14 to perform feature filtering to find out the log data. key features in the text, thereby retaining the data in the log data corresponding to the key features to generate filtered log data to reduce analysis noise. The characteristics of log data may include, but are not limited to, information about physical device hosts, network servers, firewalls, operating systems, or network devices.

在產生經篩選日誌資料後,測試資料鏈結模組18可基於與訓練資料鏈結模組14相似的方式以將經篩選日誌資料中的文本轉換為可作為機器學習模型之輸入的數值,從而產生測試資料。在一實施例中,測試資料鏈結模組18可對日誌資料(或經篩選日誌資料)進行斷字、編碼或降噪等程序,以使日誌資料可用於產生更準確的預測結果。After generating the filtered log data, the test data linking module 18 can convert the text in the filtered log data into numerical values that can be used as input to the machine learning model in a similar manner as the training data linking module 14, thereby Generate test data. In one embodiment, the test data linking module 18 may hyphenate, encode, or denoise the log data (or filtered log data) so that the log data can be used to generate more accurate prediction results.

分析模組19可根據測試資料以及模型管理預測模組15中的機器學習模型產生預測結果,其中預測結果可指示對應於日誌資料的事件種類。具體來說,系統功能執行模組11可自測試資料鏈結模組18接收測試資料,並可通過收發器130接收第一參數來源中繼資料。第一參數來源中繼資料可與分析模組19將使用的機器學習模型的種類有關。例如,第一參數來源中繼資料可包含用於產生預測結果的機器學習模型所需使用的超參數,諸如批量大小、學習率、型樣或權重等。The analysis module 19 can generate a prediction result according to the test data and the machine learning model in the model management prediction module 15, wherein the prediction result can indicate the event type corresponding to the log data. Specifically, the system function execution module 11 can receive the test data from the test data link module 18 , and can receive the first parameter source relay data through the transceiver 130 . The first parameter source metadata may be related to the type of machine learning model that the analysis module 19 will use. For example, the first parameter source metadata may include hyperparameters, such as batch size, learning rate, pattern or weights, required to be used by the machine learning model used to generate the predicted results.

系統功能執行模組11可根據測試資料以及第一參數來源中繼資料產生機器學習模型的第一輸入資料。分析模組19可將第一輸入資料輸入至機器學習模型以產生預測結果。在一實施例中,系統功能執行模組11可通過收發器130接收系統功能中繼資料。系統功能執行模組11可根據系統功能中繼資料決定分析模組19所選用的機器學習模型的種類。分析模組19可根據所述種類挑選模型管理預測模組15中的多個機器學習模型的其中之一以產生預測結果。The system function execution module 11 can generate the first input data of the machine learning model according to the test data and the first parameter source metadata. The analysis module 19 can input the first input data to the machine learning model to generate the prediction result. In one embodiment, the system function execution module 11 can receive the system function relay data through the transceiver 130 . The system function execution module 11 can determine the type of machine learning model selected by the analysis module 19 according to the system function metadata. The analysis module 19 may select one of the plurality of machine learning models in the model management prediction module 15 according to the category to generate a prediction result.

在產生預測結果後,回應模組16可通過訊息佇列暫存預測結果。回應模組16可根據預測結果完成預測陣列結構建置,並以先進先出(first in first out,FIFO)的方式進行一或多個預測結果的堆疊和儲存,並產生與預測結果相對應的時間戳記。在一實施例中,回應模組16可通過收發器130輸出預測結果以供使用者參考。在一實施例中,使用者介面模組20可通過輸出裝置140輸出預測結果以供使用者參考。After generating the prediction result, the response module 16 can temporarily store the prediction result through the message queue. The response module 16 can complete the construction of the prediction array structure according to the prediction results, stack and store one or more prediction results in a first in first out (FIFO) manner, and generate a corresponding prediction result. Timestamp. In one embodiment, the response module 16 can output the prediction result through the transceiver 130 for the user's reference. In one embodiment, the user interface module 20 can output the prediction result through the output device 140 for the user's reference.

在一實施例中,使用者介面模組20可通過收發器130接收查詢指令,並且根據查詢指令以自儲存在回應模組16的一或多個預測結果取得事件資訊。舉例來說,當使用者欲查詢21:00至22:00的雲端資料中心所發生的事件種類時,使用者可通過終端裝置傳送查詢指令給預測系統100。查詢指令例如是基於超文本傳輸協定(hyper text transfer protocol,HTTP)的網路服務請求(service request)。使用者介面模組20可通過例如由Java撰寫的網路(web)應用程式介面(application programming interface,API)來接收查詢指令。使用者介面模組20可將查詢指令轉發給回應模組16。回應模組16可通過軟體工具(例如:python的pandas數值分析函式庫)以自堆疊的一或多個預測結果中取出與查詢指令相對應的事件資訊。使用者介面20可通過輸出裝置140輸出事件資訊以供使用者參考。In one embodiment, the user interface module 20 may receive a query command through the transceiver 130 and obtain event information from one or more prediction results stored in the response module 16 according to the query command. For example, when the user wants to inquire about the types of events occurring in the cloud data center from 21:00 to 22:00, the user can send an inquiry command to the prediction system 100 through the terminal device. The query command is, for example, a web service request (service request) based on a hypertext transfer protocol (HTTP). The user interface module 20 may receive query commands through a web application programming interface (API) written in Java, for example. The user interface module 20 may forward the query command to the response module 16 . The response module 16 can extract event information corresponding to the query command from the stacked one or more prediction results by using a software tool (eg, pandas numerical analysis library of python). The user interface 20 can output event information through the output device 140 for the user's reference.

圖3根據本發明的實施例繪示一種預測方法的流程圖,其中所述預測方法可用於預測雲端資料中心的事件種類,並可由如圖1所示的預測系統100實施。在步驟S301中,自雲端資料中心接收日誌資料。在步驟S302中,接收第一參數來源中繼資料,並且產生對應於日誌資料和第一參數來源中繼資料的第一輸入資料。在步驟S303中,根據第一機器學習模型和第一輸入資料產生預測結果,其中預測結果指示對應於日誌資料的事件種類。在步驟S304中,輸出預測結果。FIG. 3 shows a flowchart of a prediction method according to an embodiment of the present invention, wherein the prediction method can be used to predict the event types of a cloud data center, and can be implemented by the prediction system 100 shown in FIG. 1 . In step S301, log data is received from the cloud data center. In step S302, the first parameter source metadata is received, and first input data corresponding to the log data and the first parameter source metadata are generated. In step S303, a prediction result is generated according to the first machine learning model and the first input data, wherein the prediction result indicates the event type corresponding to the log data. In step S304, the prediction result is output.

綜上所述,本發明可達到如下所述的功效:彙整雲端資料中心大量產生的日誌資訊進行訓練,運用於異常事件的事件種類預測;改善傳統分析平台操作上,透過自動化步驟收集雲端資料中心日誌,並建立預測模型;透過函式化架構,建立雲端資料中心異常事件預測模型演算法訓練流程,從而加速模型訓練與預測的過程;以及針對雲端資料中心的事件種類的預測結果,使用者可藉由操作使用者介面以從預測結果中查詢使用者感興趣的資訊。To sum up, the present invention can achieve the following effects: a large amount of log information generated by the cloud data center is collected for training, and used to predict the event type of abnormal events; the operation of the traditional analysis platform is improved, and the cloud data center is collected through automated steps. log, and establish a prediction model; through the functional architecture, establish a cloud data center abnormal event prediction model algorithm training process, thereby speeding up the model training and prediction process; and for the prediction results of the cloud data center event types, users can By operating the user interface, the information of interest to the user can be inquired from the prediction result.

100:預測系統 110:處理器 120:儲存媒體 130:收發器 140:輸出裝置 11:系統功能執行模組 12:系統文本訓練語句庫 13:事件種類訓練語句庫 14:訓練資料鏈結模組 15:模型管理預測模組 16:回應模組 17:系統文本預測語句庫 18:測試資料鏈結模組 19:分析模組 20:使用者介面 S301、S302、S303、S304:步驟 100: Predictive Systems 110: Processor 120: Storage Media 130: Transceiver 140: Output device 11: System function execution module 12: System text training sentence library 13: Event type training sentence library 14: Training data link module 15: Model Management Prediction Module 16: Response module 17: System text prediction sentence library 18: Test data link module 19: Analysis module 20: User Interface S301, S302, S303, S304: steps

圖1根據本發明的實施例繪示一種預測系統的示意圖。 圖2根據本發明的實施例繪示儲存媒體中的多個模組的示意圖。 圖3根據本發明的實施例繪示一種預測方法的流程圖。 FIG. 1 is a schematic diagram of a prediction system according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating a plurality of modules in a storage medium according to an embodiment of the present invention. FIG. 3 is a flowchart illustrating a prediction method according to an embodiment of the present invention.

S301、S302、S303、S304:步驟 S301, S302, S303, S304: steps

Claims (5)

一種雲端資料中心的事件種類的預測系統,包括:收發器,通訊連接至所述雲端資料中心;儲存媒體,儲存多個模組;以及處理器,耦接所述儲存媒體和所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括:模型管理預測模組,儲存包括第一機器學習模型的多個機器學習模型;系統文本預測語句庫,通過所述收發器以自所述雲端資料中心接收日誌資料;系統文本訓練語句庫,通過所述收發器以自所述雲端資料中心接收歷史日誌資料;事件種類訓練語句庫,通過所述收發器以自所述雲端資料中心接收對應於所述歷史日誌資料的事件種類標籤資料;訓練資料鏈結模組,根據所述歷史日誌資料以及所述事件種類標籤資料產生訓練資料;測試資料鏈結模組,對所述日誌資料進行特徵篩選以產生測試資料;系統功能執行模組,通過所述收發器接收第一參數來源中繼資料,並且根據所述測試資料產生對應於所述日誌資料和所述第一參數來源中繼資料的第一輸入資料,其中所述系統功能執行模組通過所述收發器接收第二參數來源中繼資料,產生對應於所述 訓練資料以及所述第二參數來源中繼資料的第二輸入資料,並且根據所述第二輸入資料訓練所述第一機器學習模型;分析模組,根據所述第一機器學習模型和所述第一輸入資料產生預測結果,其中所述預測結果指示對應於所述日誌資料的所述事件種類;以及回應模組,通過所述收發器輸出所述預測結果,其中所述系統功能執行模組自所述測試資料鏈結模組以及所述訓練資料鏈結模組的其中之一接收資料,並且根據下列的其中之一判斷所述資料為所述訓練資料和所述測試資料的其中之一:響應於所述資料包括所述事件種類標籤資料而判斷所述資料為所述訓練資料,並且響應於所述資料不包括所述事件種類標籤資料而判斷所述資料為所述測試資料;以及通過所述收發器接收系統功能中繼資料,並且根據所述系統功能中繼資料判斷所述資料為所述測試資料和所述訓練資料的所述其中之一,其中所述系統功能執行模組根據所述系統功能中繼資料以從所述多個機器學習模型中挑選出所述第一機器學習模型。 An event type prediction system in a cloud data center, comprising: a transceiver, connected to the cloud data center in communication; a storage medium, for storing a plurality of modules; and a processor, coupled to the storage medium and the transceiver, And access and execute the plurality of modules, wherein the plurality of modules include: a model management prediction module, storing a plurality of machine learning models including the first machine learning model; system text prediction sentence library, through the The transceiver receives log data from the cloud data center; the system text training sentence library receives historical log data from the cloud data center through the transceiver; the event type training sentence library uses the transceiver to The cloud data center receives the event type label data corresponding to the historical log data; the training data link module generates training data according to the historical log data and the event type label data; the test data link module, for The log data is subjected to feature screening to generate test data; the system function execution module receives the first parameter source relay data through the transceiver, and generates corresponding log data and the first parameter according to the test data. the first input data of the parameter source metadata, wherein the system function execution module receives the second parameter source metadata through the transceiver, and generates a corresponding training data and the second input data of the second parameter source metadata, and train the first machine learning model according to the second input data; an analysis module, according to the first machine learning model and the The first input data generates a prediction result, wherein the prediction result indicates the event type corresponding to the log data; and a response module outputs the prediction result through the transceiver, wherein the system function execution module Receive data from one of the test data link module and the training data link module, and determine that the data is one of the training data and the test data according to one of the following : determining that the data is the training data in response to the data including the event type label data, and determining that the data is the test data in response to the data not including the event class label data; and Receive system function relay data through the transceiver, and determine that the data is one of the test data and the training data according to the system function relay data, wherein the system function execution module The first machine learning model is selected from the plurality of machine learning models according to the system function metadata. 如請求項1所述的預測系統,其中所述訓練資料鏈結模組對所述歷史日誌資料進行特徵篩選以產生經篩選歷史日誌資料,其中所述訓練資料鏈結模組根據所述事件種類標籤資料刪除所述經篩選歷史日誌資料以及所述事件種類標籤資料中與異常事件相 對應的多個資料點以產生所述訓練資料。 The prediction system of claim 1, wherein the training data linking module performs feature filtering on the historical log data to generate filtered historical log data, wherein the training data linking module is based on the event type Tag data delete the filtered historical log data and the event category tag data in relation to anomalous events corresponding data points to generate the training data. 如請求項1所述的預測系統,其中所述多個機器學習模型對應於下列的至少其中之一:長短期記憶模型、雙向長短期記憶模型、雙向二次長短期記憶模型、閘循環神經網路模型、雙向閘循環神經網路模型以及雙向二次閘循環神經網路模型。 The prediction system of claim 1, wherein the plurality of machine learning models correspond to at least one of: a long short term memory model, a bidirectional long short term memory model, a bidirectional quadratic long short term memory model, a gated recurrent neural network model, two-way gate recurrent neural network model and two-way secondary gate recurrent neural network model. 如請求項1所述的預測系統,更包括:輸出裝置,耦接至所述處理器,其中所述多個模組更包括:使用者介面模組,通過所述收發器接收查詢指令,根據所述查詢指令以自所述預測結果取得事件資訊,並且通過所述輸出裝置輸出所述事件資訊。 The prediction system according to claim 1, further comprising: an output device, coupled to the processor, wherein the plurality of modules further comprises: a user interface module for receiving a query command through the transceiver, according to The query command obtains event information from the prediction result, and outputs the event information through the output device. 一種雲端資料中心的事件種類的預測方法,包括:儲存包括第一機器學習模型的多個機器學習模型;自所述雲端資料中心接收日誌資料、歷史日誌資料以及對應於所述歷史日誌資料的事件種類標籤資料;根據所述歷史日誌資料以及所述事件種類標籤資料產生訓練資料;對所述日誌資料進行特徵篩選以產生測試資料;取得包括所述訓練資料以及所述測試資料的其中之一的資料,並且根據下列的其中之一判斷所述資料為所述訓練資料和所述測試資料的所述其中之一:響應於所述資料包括所述事件種類標籤資料而判斷所述資料為所述訓練資料,並且響應於所述資料不包括所述事 件種類標籤資料而判斷所述資料為所述測試資料;以及接收系統功能中繼資料,並且根據所述系統功能中繼資料判斷所述資料為所述測試資料和所述訓練資料的所述其中之一;接收第二參數來源中繼資料,產生對應於所述訓練資料以及所述第二參數來源中繼資料的第二輸入資料,並且根據所述第二輸入資料訓練所述第一機器學習模型;接收第一參數來源中繼資料,並且根據所述測試資料產生對應於所述日誌資料和所述第一參數來源中繼資料的第一輸入資料;根據所述系統功能中繼資料以從所述多個機器學習模型中挑選出所述第一機器學習模型;根據所述第一機器學習模型和所述第一輸入資料產生預測結果,其中所述預測結果指示對應於所述日誌資料的所述事件種類;以及輸出所述預測結果。 A method for predicting event types in a cloud data center, comprising: storing a plurality of machine learning models including a first machine learning model; receiving log data, historical log data, and events corresponding to the historical log data from the cloud data center type label data; generate training data according to the historical log data and the event type label data; perform feature screening on the log data to generate test data; obtain a data including one of the training data and the test data data, and determine that the data is the one of the training data and the test data according to one of the following: In response to the data including the event type label data, it is determined that the data is the training data, and in response to the data not including the event and judging that the data is the test data; and receiving the system function relay data, and judging the data as the test data and the training data according to the system function relay data. One: Receive second parameter source metadata, generate second input data corresponding to the training data and the second parameter source metadata, and train the first machine learning according to the second input data model; receiving the first parameter source metadata, and generating first input data corresponding to the log data and the first parameter source metadata according to the test data; The first machine learning model is selected from the plurality of machine learning models; a prediction result is generated according to the first machine learning model and the first input data, wherein the prediction result indicates a data corresponding to the log data. the event category; and outputting the predicted result.
TW109143605A 2020-12-10 2020-12-10 Prediction system and prediction method for event type of cloud data center TWI763169B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109143605A TWI763169B (en) 2020-12-10 2020-12-10 Prediction system and prediction method for event type of cloud data center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143605A TWI763169B (en) 2020-12-10 2020-12-10 Prediction system and prediction method for event type of cloud data center

Publications (2)

Publication Number Publication Date
TWI763169B true TWI763169B (en) 2022-05-01
TW202223648A TW202223648A (en) 2022-06-16

Family

ID=82593934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143605A TWI763169B (en) 2020-12-10 2020-12-10 Prediction system and prediction method for event type of cloud data center

Country Status (1)

Country Link
TW (1) TWI763169B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201643766A (en) * 2015-06-02 2016-12-16 緯創資通股份有限公司 Method, system and server for self-healing of electronic apparatus
TW201702872A (en) * 2015-04-09 2017-01-16 中心微電子德累斯頓股份公司 Electronic system and method for estimating and predicting a failure of that electronic system
US20190050714A1 (en) * 2017-08-09 2019-02-14 Ants Technology (Hk) Limited Modular distributed artificial neural networks
US20200184355A1 (en) * 2018-12-11 2020-06-11 Morgan Stanley Services Group Inc. System and method for predicting incidents using log text analytics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201702872A (en) * 2015-04-09 2017-01-16 中心微電子德累斯頓股份公司 Electronic system and method for estimating and predicting a failure of that electronic system
TW201643766A (en) * 2015-06-02 2016-12-16 緯創資通股份有限公司 Method, system and server for self-healing of electronic apparatus
US20190050714A1 (en) * 2017-08-09 2019-02-14 Ants Technology (Hk) Limited Modular distributed artificial neural networks
US20200184355A1 (en) * 2018-12-11 2020-06-11 Morgan Stanley Services Group Inc. System and method for predicting incidents using log text analytics

Also Published As

Publication number Publication date
TW202223648A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US10841181B2 (en) Monitoring and auto-correction systems and methods for microservices
CN107943668B (en) Computer server cluster log monitoring method and monitor supervision platform
US20180322419A1 (en) Model Driven Modular Artificial Intelligence Learning Framework
KR102088285B1 (en) Method and device for collecting log based on rule
JP2017538229A (en) Perceptual memory for neuro-language behavior recognition system
WO2023224764A1 (en) Multi-modality root cause localization for cloud computing systems
CN115102836A (en) Network equipment failure analysis method, device and storage medium
CN112313627A (en) Mapping mechanism of events to serverless function workflow instances
US20240127082A1 (en) Automated positive train control event data extraction and analysis engine for performing root cause analysis of unstructured data
CN114490262A (en) Database monitoring method, device, equipment and storage medium
CN109308309A (en) A data service quality assessment method and terminal
CA3248696A1 (en) Automated positive train control event data extraction and analysis engine for performing root cause analysis of unstructured data
TWI763169B (en) Prediction system and prediction method for event type of cloud data center
CN114880153A (en) Data processing method, apparatus, electronic device, and computer-readable storage medium
US20160050135A1 (en) Real-time measurement of user interface performance in a remote desktop environment
US20140101309A1 (en) Dynamic and selective management of integration points using performance metrics
JP7215574B2 (en) MONITORING SYSTEM, MONITORING METHOD AND PROGRAM
WO2025163420A1 (en) Data lakehouse system and data processing method based on data lakehouse system
EP4468666A1 (en) Network monitoring and healing based on a behavior model
WO2025009381A1 (en) Abnormality detection device, abnormality detection system, and abnormality detection method
CN118070223A (en) Computing resource early warning method, device, medium and computer program product
KR102757273B1 (en) Computerized systems and methods for processing high-volume log files from virtual servers
US12430068B2 (en) Managing provenance information for data processing pipelines
CN116185964A (en) Log processing method, device, electronic device and storage medium
US20260023671A1 (en) Log anomaly detection based on golden signal templates