TWI760710B - Recognition and collection device for recyclable containers, and recognition method thereof - Google Patents
Recognition and collection device for recyclable containers, and recognition method thereof Download PDFInfo
- Publication number
- TWI760710B TWI760710B TW109108689A TW109108689A TWI760710B TW I760710 B TWI760710 B TW I760710B TW 109108689 A TW109108689 A TW 109108689A TW 109108689 A TW109108689 A TW 109108689A TW I760710 B TWI760710 B TW I760710B
- Authority
- TW
- Taiwan
- Prior art keywords
- container
- analysis result
- image
- livelihood
- neck
- Prior art date
Links
Images
Landscapes
- Sorting Of Articles (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
本發明係有關於一種民生容器辨識回收裝置,特別是一種採用影像辨識機制的民生容器辨識回收裝置。本發明還涉及此民生容器辨識回收裝置的辨識方法。The present invention relates to an identification and recycling device for civilian containers, in particular to an identification and recycling device for civilian containers using an image identification mechanism. The present invention also relates to an identification method for the identification and recovery device for the livelihood container.
目前,民生容器回收分類仍大部份由人工執行;然而,由於大部份的已開發國家都面臨著嚴重的人口老化問題,故這些國家的勞動力也逐漸呈現不足的狀況,因此由人工執行民生容器回收分類已不能滿足未來的需求。At present, most of the recycling and sorting of livelihood containers is still performed manually; however, since most developed countries are facing a serious population aging problem, the labor force in these countries is gradually becoming insufficient, so people's livelihood is performed manually. Container recycling and sorting can no longer meet future needs.
為了解決上述的問題,已有多種KIOSK民生容器自動分類裝置被開發出來以進行民生容器自動分類及回收。這些民生容器自動分類裝置採取的分類模式主要有二種,即條碼掃描模式及影像辨識+重量感知模式。In order to solve the above problems, a variety of KIOSK civilian container automatic sorting devices have been developed for automatic sorting and recycling of civilian containers. There are mainly two classification modes adopted by these automatic classification devices for civilian containers, namely barcode scanning mode and image recognition + weight sensing mode.
條碼掃描模式需要用條碼掃描機掃描容器的條碼,這種模式不但辨識速度慢(約4秒/每個),且容器的標籤薄膜不能事先拆除;另外,且容器的標籤薄膜在辨識程序完成後還需人工移除,無法達到簡化回收流程的目的。The barcode scanning mode requires a barcode scanner to scan the barcode of the container. This mode not only has a slow recognition speed (about 4 seconds/each), but also the label film of the container cannot be removed in advance; It also needs to be removed manually, which cannot achieve the purpose of simplifying the recycling process.
影像辨識+重量感知模式可達到較高的辨識速度(約1秒/每個),但若容器標籤薄膜受損則無法進行辨識,且若需事先更新資料庫才能有效地辨識新產品,故這種模式無法符合實際應用上的需求。Image recognition + weight perception mode can achieve a high recognition speed (about 1 second/each), but if the container label film is damaged, it cannot be recognized, and new products can be effectively recognized if the database needs to be updated in advance. This mode cannot meet the needs of practical applications.
另外,部份現有的民生容器回收自動分類裝置的訓練機制及辨識機制過於複雜,且需要額外的訓練設備及營運設備,故大幅提高了製造成本,不利於產品的推廣。In addition, the training mechanism and identification mechanism of some of the existing automatic sorting devices for recycling containers for people's livelihood are too complicated, and additional training equipment and operating equipment are required, which greatly increases the manufacturing cost and is not conducive to product promotion.
本發明之主要目的就是在提供一種民生容器辨識回收裝置及其辨識方法,以解決現有的民生容器回收自動分類裝置無法簡化回收流程、無法符合實際應用上的需求及製造成本過高的問題。The main purpose of the present invention is to provide a livelihood container identification and recovery device and an identification method thereof, so as to solve the problems that the existing civilian livelihood container recovery automatic sorting device cannot simplify the recovery process, cannot meet the needs of practical applications and the manufacturing cost is too high.
根據本發明之第一實施例,提出一種民生容器辨識回收裝置,其包含第一影像擷取模組、第二影像擷取模組、至少一分選機構、處理器及控制器。第一影像擷取模組及第二影像擷取模組分別擷取容器之頸部影像及底部影像。分選機構與複數個儲存槽連接。處理器分析頸部影像以判斷容器之頸部是否為錐形並產生第一分析結果,並分析底部影像以判斷容器之底部是否為圓形並產生第二分析結果,再分析底部影像以判斷容器之底部是否為透明並產生第三分析結果,並根據該些分析結果產生控制訊號。控制器根據控制訊號控制分選機構將容器輸送至對應的儲存槽。According to a first embodiment of the present invention, an identification and recycling device for household containers is provided, which includes a first image capturing module, a second image capturing module, at least one sorting mechanism, a processor and a controller. The first image capturing module and the second image capturing module capture images of the neck and bottom of the container, respectively. The sorting mechanism is connected to the plurality of storage tanks. The processor analyzes the neck image to determine whether the neck of the container is tapered and generates a first analysis result, and analyzes the bottom image to determine whether the bottom of the container is circular and generates a second analysis result, and then analyzes the bottom image to determine the container Whether the bottom is transparent and generates a third analysis result, and generates a control signal according to the analysis results. The controller controls the sorting mechanism to transport the container to the corresponding storage tank according to the control signal.
在一實施例中,本發明可依據容器底部的結構特徵,例如點或線結構特徵,分析並產生第四分析結果。In one embodiment, the present invention can analyze and generate a fourth analysis result according to structural features of the bottom of the container, such as point or line structural features.
根據本發明之第二實施例,再提出一種民生容器辨識方法,其包含下列步驟:擷取容器之頸部影像;擷取容器之底部影像;分析頸部影像以判斷容器之頸部是否為錐形並產生第一分析結果;分析底部影像以判斷容器之底部是否為圓形並產生第二分析結果;分析底部影像以判斷容器之底部是否為透明並產生第三分析結果;以及根據第一分析結果、第二分析結果及第三分析結果判斷容器的種類。According to a second embodiment of the present invention, a method for identifying a livelihood container is further provided, which includes the following steps: capturing an image of the neck of the container; capturing an image of the bottom of the container; analyzing the image of the neck to determine whether the neck of the container is a cone shape and generate a first analysis result; analyze the bottom image to determine whether the bottom of the container is circular and generate a second analysis result; analyze the bottom image to determine whether the bottom of the container is transparent and generate a third analysis result; and according to the first analysis The result, the second analysis result, and the third analysis result determine the type of the container.
在一實施例中,本發明可依據容器底部的結構特徵,例如點或線結構特徵,分析並產生第四分析結果。In one embodiment, the present invention can analyze and generate a fourth analysis result according to structural features of the bottom of the container, such as point or line structural features.
根據本發明之第三實施例,又提出一種民生容器辨識回收裝置,其包含分選通道、至少一分選機構、第一影像擷取模組、第二影像擷取模組、處理器及控制器。分選機構包含第一電磁閥組及第二電磁閥組及分選通道。分選通道包含第一通道、第二通道及中央通道;第一通道及第二通道分別與複數個儲存槽連接,中央通道分別連通第一通道與第二通道,並用於放置容器。第一電磁閥組包括多個第一電磁閥,而第二電磁閥組包括多個第二電磁閥,該些第一電磁閥及該些第二電磁閥分別設置於第一通道及第二通道的通道口上。第一影像擷取模組擷取容器之頸部影像。第二影像擷取模組擷取容器之底部影像。處理器分析頸部影像及底部影像、透明、結構特徵以產生控制訊號。控制器根據控制訊號控制第一電磁閥組或第二電磁閥組以開通第一通道或第二通道,以將容器輸送至對應的儲存槽。According to a third embodiment of the present invention, there is further provided a civilian container identification and recycling device, which includes a sorting channel, at least one sorting mechanism, a first image capture module, a second image capture module, a processor and a control device. The sorting mechanism includes a first solenoid valve group, a second solenoid valve group and a sorting channel. The sorting channel includes a first channel, a second channel and a central channel; the first channel and the second channel are respectively connected with a plurality of storage tanks, and the central channel is respectively connected with the first channel and the second channel and is used for placing containers. The first solenoid valve group includes a plurality of first solenoid valves, and the second solenoid valve group includes a plurality of second solenoid valves, the first solenoid valves and the second solenoid valves are respectively disposed in the first channel and the second channel on the channel port. The first image capturing module captures the neck image of the container. The second image capturing module captures the bottom image of the container. The processor analyzes the neck image and bottom image, transparency, and structural features to generate control signals. The controller controls the first solenoid valve group or the second solenoid valve group to open the first channel or the second channel according to the control signal, so as to transport the container to the corresponding storage tank.
承上所述,依本發明之民生容器辨識回收裝置及其辨識方法,其可具有一或多個下述優點:Based on the above, according to the identification and recovery device of the people's livelihood container and the identification method thereof of the present invention, it can have one or more of the following advantages:
(1)本發明之民生容器辨識回收裝置採用人機協作的方式完成民生容器分類及回收,因此可以有效地減少民生容器回收分類所需要的人力,使民生容器辨識回收裝置更能符合未來的需求。(1) The people's livelihood container identification and recycling device of the present invention completes the classification and recycling of the people's livelihood containers by means of human-machine cooperation, so it can effectively reduce the manpower required for the recovery and classification of the people's livelihood containers, so that the people's livelihood container identification and recycling device can better meet the future needs. .
(2)本發明之民生容器辨識回收裝置採用影像辨識法來辨識容器之瓶身特徵資訊及/或瓶底特徵資訊,故能達到更快的辨識速度,因此能有效簡化回收流程。(2) The identification and recycling device of the livelihood container of the present invention adopts the image recognition method to identify the characteristic information of the bottle body and/or the characteristic information of the bottle bottom of the container, so that a faster identification speed can be achieved, and thus the recycling process can be effectively simplified.
(3)本發明之民生容器辨識回收裝置的影像辨識程序採用簡單且精確的辨識邏輯;相較於現有的民生容器回收自動分類裝置,本發明之民生容器辨識回收裝置不需要複雜訓練機制,也不需要額外的訓練設備及營運設備,因此可以大幅降低民生容器辨識回收裝置的製造成本。(3) The image recognition program of the civil container identification and recycling device of the present invention adopts a simple and accurate identification logic; compared with the existing automatic sorting device for civil container recycling, the civil container identification and recycling device of the present invention does not require a complex training mechanism, and also There is no need for additional training equipment and operating equipment, so the manufacturing cost of the civilian container identification and recycling device can be greatly reduced.
以下將參照相關圖式,說明依本發明之民生容器辨識回收裝置及其辨識方法之實施例,為了清楚與方便圖式說明之故,圖式中的各部件在尺寸與比例上可能會被誇大或縮小地呈現。在以下描述及/或申請專利範圍中,當提及元件「連接」或「耦合」至另一元件時,其可以直接連接或耦合至該另一元件或也可存在介入元件;而當提及元件「直接連接」或「直接耦合」至另一元件時,不存在介入元件,用於描述元件或層之間之關係之其他字詞應以相同方式解釋。為使便於理解,下述實施例中之相同元件係以相同之符號標示來進行說明。The following will refer to the relevant drawings to describe the embodiments of the identification and recovery device for civil life containers and the method for identifying the same according to the present invention. For the sake of clarity and convenience in the description of the drawings, the dimensions and proportions of the components in the drawings may be exaggerated. or rendered in a reduced size. In the following description and/or claims, when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present; When an element is "directly connected" or "directly coupled" to another element, there are no intervening elements present, and other words used to describe the relationship between the elements or layers should be interpreted in the same fashion. For ease of understanding, the same elements in the following embodiments are marked with the same symbols for description.
請參閱第1圖,其係為本發明之第一實施例之民生容器辨識回收裝置1之方塊圖。如圖所示,民生容器辨識回收裝置1包含第一影像擷取模組11、第二影像擷取模組12、處理器13、控制器14、第一分選機構3a及第二分選機構3b。Please refer to FIG. 1 , which is a block diagram of an
第一分選機構3a及第二分選機構3b可分別與複數個儲存槽連接;第一分選機構3a具有回收口1331A,而第二分選機構3b具有回收口1331B。使用者可透過回收口1331A或1331B將一待辨識之容器放置於第一分選機構3a或第二分選機構3b上,以進行後續的影像辨識程序。此容器可為一般的可回收容器,包含但不限於聚氯乙烯(PVC)容器(用於礦泉水及各種飲料的寶特瓶)、聚乙烯(PE)容器(用於牛奶、咖啡及各種飲料的塑膠瓶)、聚乙烯對苯二甲酸脂(PET)容器(用於礦泉水及各種飲料的寶特瓶)、金屬容器(如鐵罐、鋁罐等)或紙盒容器(利樂包)等等。在本實施例中,第一分選機構3a用於回收金屬容器及紙盒容器,故回收口1331A標示用於回收金屬容器及紙盒容器,回收的金屬容器及紙盒容器則經第一分選機構3a分選後存放在不同的儲存槽中;第二分選機構3b 則用於回收PET容器及PE容器,回收口1331B標示用於回收PET容器及PE容器,回收的PET容器及PE容器經第二分選機構3b分選後也存放在不同的儲存槽中。The
在另一實施例中,金屬容器及紙盒容器可存在同一個儲存槽,而PET容器及PE容器也可存在同一個儲存槽。In another embodiment, the metal container and the carton container may exist in the same storage tank, and the PET container and the PE container may also exist in the same storage tank.
例如,在另一實施例中,第一分選機構3a也可分選金屬容器與紙盒容器,而第二分選機構3b則可分選PET容器與PVC容器。For example, in another embodiment, the
第一影像擷取模組11擷取此容器之頸部影像M1,而第二影像擷取模組12擷取此容器之底部影像M2。在一實施例中,第一影像擷取模組11及第二影像擷取模組12可為照相機、攝影機或其它類似的元件。The first
處理器13分析頸部影像M1以判斷容器之頸部是否為錐形並產生第一分析結果A1。同時,處理器13分析底部影像M2以判斷容器之底部是否為圓形並產生第二分析結果A2。接下來,處理器13分析底部影像M2以判斷容器之底部是否為透明並產生第三分析結果A3。然後,處理器13分析底部影像M2以判斷容器之底部是否包含結構特徵並產生一第四分析結果A4;其中,結構特徵可為點結構特徵及線結構特徵中之一或以上。在一實施例中,處理器13可以是中央處理器(CPU)、微控制器(MCU)或其它類似的元件。在一實施例中,處理器13可以透過自動光學檢查(AOI)技術分析頸部影像M1以及底部影像M2以產生上述的分析結果A1~A4,但並不以此為限。在另一實施例中,處理器13也可以透過其它現有的影像分析技術分析頸部影像M1以及底部影像M2以產生上述的分析結果A1~A4。The
最後,處理器13則能夠根據第一分析結果A1、第二分析結果A2、第三分析結果A3以及第四分析結果A4產生辨識結果,並根據辨識結果判斷容器之種類並產生相應的控制訊號C,並將控制訊號C傳送至控制器14。控制器14則根據控制訊號C控制第一分選機構3a(或第二分選機構3b)將容器輸送至對應的儲存槽。在一實施例中,控制器14也可以是中央處理器(CPU)、微控制器(MCU)或其它類似的元件。Finally, the
由於不同的民生容器有不同的結構特徵。例如,PVC容器的頸部為錐形,而底部為透明且不具有結構特徵;PET容器的頸部為錐形,而底部為不透明且具有點結構特徵;PE容器的頸部可能為錐形或不為錐形,而底部為不透明具有線結構特徵;紙盒容器的頸部不為錐形而底部為不透明;金屬容器的頸部可能為錐形或不為錐形,而底部為不透明且沒有結構特徵。因此,民生容器辨識回收裝置1採用影像辨識法來分別針對容器的頸部影像M1及底部影像M2進行分析,並分別依序判斷容器之瓶頸之形狀、容器之底部形狀及容器之底部之透明度來辨識容器的種類。而若上述三個階段仍無法判斷容器之種類,民生容器辨識回收裝置1則進一步判斷容器之底部之結構特徵以達到更佳的辨識效果。Because different livelihood containers have different structural characteristics. For example, a PVC container has a tapered neck while the bottom is transparent and has no structural features; a PET container has a tapered neck and an opaque bottom with dotted features; a PE container may have a tapered neck or Not tapered, but opaque at the bottom with a line structure feature; carton containers with non-tapered necks and opaque bottoms; metal containers with necks that may or may not be tapered, with opaque bottoms and no Structure. Therefore, the people's livelihood container identification and
例如,當第一分析結果A1顯示容器之頸部為錐形,第二分析結果A2顯示容器之底部為圓形,第三分析結果A3顯示容器之底部為透明,而第四分析結果A4顯示容器之底部不具有結構特徵,處理器13則判斷容器為PVC容器。For example, when the first analysis result A1 shows that the neck of the container is tapered, the second analysis result A2 shows that the bottom of the container is circular, the third analysis result A3 shows that the bottom of the container is transparent, and the fourth analysis result A4 shows that the container is transparent If the bottom has no structural features, the
例如,當第一分析結果A1顯示容器之頸部為錐形,第二分析結果A2顯示容器之底部為圓形,第三分析結果A3顯示容器之底部為不透明,第四分析結果A4顯示容器之底部具有線結構,處理器13判斷容器為PE容器。但若第四分析結果A4顯示容器之底部不具有結構特徵,處理器13判斷容器為金屬容器,例如金屬罐等。For example, when the first analysis result A1 shows that the neck of the container is tapered, the second analysis result A2 shows that the bottom of the container is circular, the third analysis result A3 shows that the bottom of the container is opaque, and the fourth analysis result A4 shows that the bottom of the container is opaque. The bottom has a line structure, and the
例如,當第一分析結果A1顯示容器之頸部為錐形,第二分析結果A2顯示容器之底部不為圓形,第三分析結果A3顯示容器之底部為透明,第四分析結果A4顯示容器之底部具有點結構特徵,處理器13判斷容器為PET容器。但若第四分析結果A4顯示容器之底部不具有結構特徵,處理器13判斷容器為PVC容器。For example, when the first analysis result A1 shows that the neck of the container is conical, the second analysis result A2 shows that the bottom of the container is not circular, the third analysis result A3 shows that the bottom of the container is transparent, and the fourth analysis result A4 shows that the container is transparent The bottom has a point structure feature, and the
例如,當第一分析結果A1顯示容器之頸部不為錐形,第二分析結果A2顯示容器之底部為圓形,第三分析結果A3顯示容器之底部為不透明,第四分析結果A4顯示容器之底部具有線結構,處理器13判斷容器為PE容器。但若第四分析結果A4顯示容器之底部不具有結構特徵,處理器13則判斷容器為金屬容器,例如金屬罐等。For example, when the first analysis result A1 shows that the neck of the container is not conical, the second analysis result A2 shows that the bottom of the container is round, the third analysis result A3 shows that the bottom of the container is opaque, and the fourth analysis result A4 shows that the container is not transparent. The bottom has a line structure, and the
例如,當第一分析結果A1顯示容器之頸部不為錐形,第二分析結果A2顯示容器之底部不為圓形,第三分析結果A3顯示容器之底部為不透明,處理器13判斷容器為紙盒容器,例如樂利包等。For example, when the first analysis result A1 shows that the neck of the container is not conical, the second analysis result A2 shows that the bottom of the container is not circular, and the third analysis result A3 shows that the bottom of the container is opaque, the
若處理器13無法辨識容器的種類,則處理器13則產生控制訊號C,以控制第一分選機構3a或第一分選機構3b將容器推出回收口。例如,當第一分析結果A1顯示容器之頸部為錐形,第二分析結果A2顯示容器之底部不為圓形,第三分析結果A3顯示容器之底部為不透明,處理器13判斷容器之種類無法辨識。If the
例如,當第一分析結果A1顯示容器之頸部不為錐形,第二分析結果A2顯示容器之底部為圓形,第三分析結果A3顯示容器之底部為透明,處理器13判斷容器之種類無法辨識。For example, when the first analysis result A1 shows that the neck of the container is not conical, the second analysis result A2 shows that the bottom of the container is circular, and the third analysis result A3 shows that the bottom of the container is transparent, the
例如,當第一分析結果A1顯示容器之頸部不為錐形,第二分析結果A2顯示容器之底部不為圓形,第三分析結果A3顯示容器之底部為透明,處理器13判斷容器之種類無法辨識。For example, when the first analysis result A1 shows that the neck of the container is not conical, the second analysis result A2 shows that the bottom of the container is not circular, and the third analysis result A3 shows that the bottom of the container is transparent, the
例如,當使用者欲丟棄一金屬容器時,可依標示判斷回收口1331A用於回收金屬容器,並將金屬容器透過回收口1331A放置在第一分選機構3a上。接下來,處理器13則進行上述的影像辨識機制辨識容器的外觀,並控制第一分選機構上3a將金屬容器輸送至存放金屬容器的儲存槽。使用者欲丟棄一紙盒容器時,可將紙盒容器透過回收口1331A放置在第一分選機構上3a上,處理器13則控制第一分選機構上3a將紙盒容器輸送至存放紙盒容器的儲存槽。而若當使用者欲丟棄一PET容器但誤將PET容器投入回收口1331A時,處理器13則判斷PET容器不屬於第一分選機構上3a的回收目標,故不會對PET容器進行回收。For example, when the user wants to discard a metal container, the user can judge that the
同樣的,當使用者欲丟棄一PET容器時,可依標示判斷回收口1331B用於回收PET容器,並將PET容器透過回收口1331B放置在第二分選機構上3b上。接下來,處理器13則進行上述的影像辨識機制辨識容器的外觀,並控制第二分選機構上3b將PET容器輸送至存放PET容器的儲存槽。使用者欲丟棄一PE容器時,可將PE容器透過回收口1331B放置在第二分選機構上3b上,處理器13則控制第二分選機構上3b將PE容器輸送至存放PE容器的儲存槽。而若當使用者欲丟棄一金屬容器但誤將金屬容器投入回收口1331B時,處理器13則判斷金屬容器不屬於第二分選機構上3b的回收目標,故不會對金屬容器進行回收。Similarly, when the user wants to discard a PET container, the user can judge that the
民生容器辨識回收裝置1可透過人機協作的方式先由使用者將容器投入對應的回收口(1331A或1331B),再透過上述的機制將容器進行分類及回收上述的人機協作方式能夠有效地減少民生容器回收分類所需要的人力,且能降低民生容器辨識回收裝置1的製造成本。The people's livelihood container identification and
透過上述的機制,民生容器辨識回收裝置1即可以透過人機協作的方式及影像辨識法辨識容器的外觀以判斷容器的種類,以將容器進行分類及回收,因此可以有效地減少民生容器回收分類所需要的人力,使民生容器辨識回收裝置更能符合未來的需求。Through the above-mentioned mechanism, the people's livelihood container identification and
當然,本實施例之民生容器辨識回收裝置1之各元件、該些元件之協同關係及辨識方法均為舉例說明,並不以此為限。Certainly, each element of the civil life container identification and
請參閱第2圖,其係為本發明之第一實施例之民生容器辨識方法之流程圖。如圖所示,本實施例之民生容器辨識回收裝置1採用之辨識方法包含下列步驟:Please refer to FIG. 2 , which is a flowchart of a method for identifying a livelihood container according to the first embodiment of the present invention. As shown in the figure, the identification method adopted by the livelihood container identification and
步驟S21:擷取容器之頸部影像。Step S21: Capture the neck image of the container.
步驟S22:擷取容器之底部影像。Step S22: Capture the bottom image of the container.
步驟S23:分析頸部影像以判斷容器之頸部是否為錐形並產生第一分析結果。Step S23: Analyze the neck image to determine whether the neck of the container is tapered and generate a first analysis result.
步驟S24:分析底部影像以判斷容器之底部是否為圓形並產生第二分析結果。Step S24: Analyze the bottom image to determine whether the bottom of the container is circular and generate a second analysis result.
步驟S25:分析底部影像以判斷容器之底部是否為透明並產生第三分析結果。Step S25: Analyze the bottom image to determine whether the bottom of the container is transparent and generate a third analysis result.
步驟S26:分析底部影像以判斷容器之底部是否包含結構特徵並產生第四分析結果。Step S26: Analyze the bottom image to determine whether the bottom of the container contains structural features and generate a fourth analysis result.
步驟27:根據第一分析結果、第二分析結果、第三分析結果及第四分析結果判斷容器的種類或非回收物件。Step 27: Determine the type of the container or the non-recyclable object according to the first analysis result, the second analysis result, the third analysis result and the fourth analysis result.
當然,本實施例之民生容器辨識方法之各步驟均為舉例說明,該些步驟之順序及收量可依需求進行調整,並不以此為限。Of course, each step of the method for identifying a livelihood container in this embodiment is for illustration only, and the sequence and yield of these steps can be adjusted according to requirements, but not limited thereto.
請參閱第3圖,其係為本發明之第二實施例之民生容器辨識回收裝置2之立體圖。如第3圖所示,本實施例之民生容器回收辨識裝置2包含箱體20、伺服主機21、多個儲存槽22a、22b、22c、22d以及至少一分選機構。例如,在本實施例中,民生容器回收辨識裝置2可有兩個分選機構3a、3b。左側的第一分選機構3a具有回收口3331A,而右側的第二分選機構3b具有回收口3331B。伺服主機21則包含處理器及控制器等。在本實施例中,該些儲存槽可以包含PET容器儲存槽22a、PE容器儲存槽22b、金屬容器(鐵鋁罐)儲存槽22c、紙盒容器(利樂包)儲存槽22d。Please refer to FIG. 3 , which is a perspective view of the
請參閱第4圖及第5圖,其係為本發明之第二實施例之民生容器辨識回收裝置2之分選機構之立體圖及側視圖。左側的第一分選機構3a的結構與右側的第二分選機構3b的結構相同,故第4圖及第5圖以左側的第一分選機構3a的結構來舉例說明。如第4圖所示,本實施例之第一分選機構3a包含第一影像擷取模組31、第二影像擷取模組32、分選通道33及分選器34。Please refer to FIG. 4 and FIG. 5 , which are a perspective view and a side view of the sorting mechanism of the people's livelihood container identification and
分選器34包含第一電磁閥組及第二電磁閥組;第一電磁閥組包含複數個第一電磁閥341,而第一電磁閥組包含複數個第二電磁閥342。The
分選通道33包含第一通道331、第二通道332及中央通道333。中央通道333用於放置一待辨識之容器T,而第一通道331及第二通道332則與中央通道333連通。該些第一電磁閥341及該些第二電磁閥342分別設置於第一通道331及第二通道332之通道口上,以控制第一通道331及第二通道332的開通及關閉。而左側之第一分選機構3a之分選通道33之第一通道331及第二通道332則分別通住PET容器儲存槽22a以及PE容器儲存槽22b;而右側之第二分選機構3b之分選通道33之第一通道331及第二通道332分別通住金屬容器儲存槽22c及紙盒容器儲存槽22d。The sorting
如第5圖所示,第一通道331與垂直平面V之間具有一夾角θ1,而第二通道332與垂直平面V之間具有一夾角θ2,而夾角θ1可以等於夾角θ2;在本實施例中,夾角θ1及夾角θ2約為45°,但不以此為限。透過上述的結構,在第一通道331或第二通道332上的第一電磁閥組或第二電磁閥組打開後,容器T可直接由第一通道331或第二通道332掉落至對應的儲存槽。As shown in FIG. 5, there is an included angle θ1 between the
如第4圖所示,中央通道333具有回收口3331A、側窗3332、後窗3333、第一支臂3334及第二支臂3335。使用者可透過回收口3331A將容器T放置於中央通道333內,以進行辨識。第一支臂3334向中央通道333之一側延伸,而第一影像擷取模組31設置於第一支臂3334上並正對側窗3332,使第一影像擷取模組31正好能夠擷取放置於中央通道333內之容器T之頸部影像。第二支臂3335向中央通道333之後方延伸,而第二影像擷取模組32設置於第二支臂3335上並正對後窗3333,使第二影像擷取模組32正好能夠擷取放置於中央通道333內之容器T之底部影像。As shown in FIG. 4 , the
透過上述的結構,伺服主機21(如第4圖所示)則能夠根據第一影像擷取模組31及第二影像擷取模組32擷取之頸部影像及底部影像經辨識流程進行辨識容器T的辨識,並控制第一分選機構3a或第二分選機構3b將容器T輸送至對應的儲存槽。Through the above structure, the server host 21 (as shown in FIG. 4 ) can be identified according to the identification process of the neck image and the bottom image captured by the first
請參閱第6A圖及第6B圖,其係為本發明之第二實施例之民生容器辨識回收裝置2之分選機構之運作狀態之第一示意圖及第二示意圖。Please refer to FIG. 6A and FIG. 6B , which are the first schematic diagram and the second schematic diagram of the operation state of the sorting mechanism of the civil container identification and
在一實施例中,民生容器辨識回收裝置2可於該些回收口3331A、3331B上方貼上可回收容器的標示文字及/或圖形等,以分別標示該些回收口3331A、3331B的回收目標。如第6A圖所示,當容器T為一PET瓶且使用者將容器T放置到左側的第一分選機構3a之中央通道333內時,第一影像擷取模組31及第二影像擷取模組32則能分別擷取此容器T之頸部影像及底部影像。伺服主機21則能執行前述實施例之影像辨識機制以判斷容器T為PET容器,並控制該些第一電磁閥341打開第一通道331,使容器T掉落至PET容器儲存槽22a。In one embodiment, the livelihood container identification and
如第6B圖所示,當容器T為一PE瓶且使用者將容器T放置到左側的第一分選機構3a之分選通道33之中央通道333內時,第一影像擷取模組31及第二影像擷取模組32則能分別擷取此容器T之頸部影像及底部影像。伺服主機21則能執行前述實施例之影像辨識機制以判斷容器T為PE容器,並控制該些第二電磁閥342打開第二通道332,使容器T掉落至PE容器儲存槽22b。As shown in FIG. 6B , when the container T is a PE bottle and the user places the container T into the
請參閱第7圖及第8圖,其係為本發明之第二實施例之民生容器辨識回收裝置2之分選機構之立體圖及運作狀態之示意圖。第7圖及第8圖舉例說明了民生容器辨識回收裝置2之分選機構的另一種結構。如第7圖所示,第一分選機構3a之分選器34更可包含第三電磁閥343及底板344。Please refer to FIG. 7 and FIG. 8 , which are a perspective view and a schematic diagram of a working state of the sorting mechanism of the civil container identification and
第三電磁閥343設置於第二支臂3335上並與底板344連接,以控制底板344的位置,而底板344設置於中央通道333內,並覆蓋中央通道333之後窗3333,並面對容器T之尾端。在本實施例中,底板344可包含框架及透明板體,而透明板體設置在框架內,使底板344的中央部份仍為透明,故第二影像擷取模組32仍可擷取此容器T之底部影像。在另一實施例中,底板344也可為一中空框架,使第二影像擷取模組32仍可擷取此容器T之底部影像。底板344的結構可依實際需求設計,本發明並不以此為限。The
如第8圖所示,當使用者將容器T放置到左側的第一分選機構3a之中央通道333內時,第一影像擷取模組31及第二影像擷取模組32則能分別擷取此容器T之頸部影像及底部影像。若伺服主機21執行前述實施例之影像辨識機制並判斷容器T無法辨識或容器T並不屬於左側的第一分選機構3a的回收目標時,伺服主機21控制第三電磁閥344將底板344往回收口3331A的方向移動以推動容器T,使容器T之頂端露出回收口3331A,藉此提醒使用者取回容器。As shown in FIG. 8, when the user places the container T into the
除此之外,民生容器回收辨識裝置2更可包含複數個擠壓機構(圖中未示),其可分別與該些第一通道331及該些第二通道332連接,並設置於該些第一通道331及該些第二通道332與該些儲存槽22a、22b、22c、22d之間。該些擠壓機構可以在容器T掉落至該些儲存槽22a、22b、22c、22d前先擠壓容器T,以減少容器T的體積。In addition, the recycling and
當然,本實施例之民生容器辨識回收裝置2之各元件、該些元件之協同關係及辨識方法均為舉例說明,並不以此為限。Of course, each element of the civilian-living container identification and
請參閱第9A圖、第9B圖及第9C圖,其係為本發明之第二實施例之民生容器辨識方法之流程圖及霍夫圓變換之示意圖,並請同時參閱第11A圖~第11G圖;第11A圖~第11G圖為各種容器之瓶頸特徵及瓶底特徵之示意圖。第9A圖及第9B圖舉例說明了前述實施例之民生容器辨識回收裝置2之左側的第一分選機構3a的辨識邏輯,其可以包含下列步驟:Please refer to Fig. 9A, Fig. 9B and Fig. 9C, which are a flowchart of the method for identifying a livelihood container and a schematic diagram of Hough circle transform according to the second embodiment of the present invention, and please refer to Fig. 11A to Fig. 11G at the same time Figures; Figures 11A to 11G are schematic diagrams of the bottle neck features and bottle bottom features of various containers. Figures 9A and 9B illustrate the identification logic of the
步驟S30:判斷容器之頸部是否為錐形?若是,則進入步驟S31;若否,則進入步驟S41。在此步驟中,伺服主機21(處理器)可根據容器之頸部外觀進行影像分析,以計算容器之頸部之上底與下底之比例來判斷容器之頸部是否為錐形,並產生第一分析結果A1。其中,若容器之頸部之上底與下底之比例之寬度範圍值小於0.66(如第11A圖所示),處理器13此容器之頸部為錐形;若容器之頸部之上底與下底大於0.66,處理器13此容器之頸部不為錐形;當然,上述的判斷方式為舉例,本發明並不以此為限。Step S30: Determine whether the neck of the container is tapered? If yes, go to Step S31; if not, go to Step S41. In this step, the servo host 21 (processor) can perform image analysis according to the appearance of the neck of the container, and determine whether the neck of the container is tapered by calculating the ratio of the upper bottom and the lower bottom of the neck of the container, and generate The first analysis result A1. Wherein, if the ratio of the upper bottom to the lower bottom of the neck of the container has a width range value of less than 0.66 (as shown in Figure 11A), the
步驟S31:判斷容器之底部是否為圓形?若是,則進入步驟S32a;若否,則進入步驟S32b。在此步驟中,伺服主機21(處理器)可將容器之底部影像M2進行霍夫圓變換及投票機制以產生累積座標平面,再根據累積權重(請發明人補充四個名詞的定義:文字或公式均可。習知技術亦需提供)判斷容器之底部是否為圓形(如第11B圖所示)或非圓形(如第11C圖所示),並產生第二分析結果A2。更詳細的說,霍夫圓變換是一種特徵提取的方法,已被廣泛應用於各種影像處理程序,其可以找出一個物件中的特徵以判別此物件的形狀。霍夫圓變換會在參數空間中執行投票(即投票機制)來決定物體的形狀,而這是由累加空間(即累積座標平面)裡的局部最大值(即累積權重)來決定。一個圓可以用三個參數描述,包含圓心座標(a, b)和半徑r,如下式(1)所式:Step S31: Determine whether the bottom of the container is circular? If yes, go to Step S32a; if not, go to Step S32b. In this step, the server host 21 (processor) can perform Hough circle transformation and voting mechanism on the bottom image M2 of the container to generate a cumulative coordinate plane, and then according to the cumulative weight (please the inventor add the definitions of four nouns: text or Any formula can be used. The prior art also needs to be provided.) Determine whether the bottom of the container is circular (as shown in Figure 11B) or non-circular (as shown in Figure 11C), and generate a second analysis result A2. In more detail, the Hough circle transform is a feature extraction method, which has been widely used in various image processing programs. It can find features in an object to determine the shape of the object. The Hough circle transform performs voting (ie voting mechanism) in the parameter space to determine the shape of the object, which is determined by the local maxima (ie cumulative weights) in the accumulated space (ie the accumulated coordinate plane). A circle can be described by three parameters, including the center coordinates (a, b) and the radius r, as shown in the following formula (1):
f((x, y), (a, b, r))=(x-a)2 +(y-b)2 -r2 =0…………………………………..(1)f((x, y), (a, b, r))=(xa) 2 +(yb) 2 -r 2 =0……………………………………..(1)
仿照直線偵測的方法,可以將影像空間上的一點(x,y)映射至三維的參數空間(a, b, r)上的圓錐(circular cone),如圖9C所示;其中,r1及r2為座標軸r上的二個點。如果影像空間上的兩個點位於同一個圓的軌跡,則參數空間上的兩個圓錐將交於一點(a’, b’, c’)。累增器(Accumulator)的使用如同直線偵測的霍夫轉換,以下舉例說明圓形偵測的霍夫轉換演算法的程式片段: for(i=0; i>nr; i++)for (j=0; j>nc; j++) { if (edge_image[i] > 0) // This is an edge pixel { x = j; y = i; // populate the accumulator array for(a= 0;a>max_a;a++)for(b=0;b>max_b;b++) //For each circle center,execute: { r = (int) sqrt((x-a)*(x-a) + (y-b)*(y-b)); if ((r>0)&&(r>max_r))accumulator[r][a][b]++; } } }Following the method of line detection, a point (x, y) on the image space can be mapped to a circular cone on the three-dimensional parameter space (a, b, r), as shown in Figure 9C; where r1 and r2 is two points on the coordinate axis r. If two points in image space lie on the same circle trajectory, then the two cones in parameter space will intersect at a point (a', b', c'). The use of the accumulator is similar to the Hough transform of line detection. The following is an example of the program fragment of the Hough transform algorithm of circle detection: for(i=0; i>nr; i++)for (j=0; j>nc; j++) { if (edge_image[i] > 0) // This is an edge pixel { x = j; y = i; // populate the accumulator array for(a= 0;a>max_a;a++)for(b=0;b>max_b;b++) //For each circle center,execute: { r = (int) sqrt((x-a)*(x-a) + (y-b)*(y-b)); if ((r>0)&&(r>max_r))accumulator[r][a][b]++; } } }
由於霍夫圓變換為本領域中具有通常知識者所熟知,故不在此多加贅述。Since the Hough circle transform is well known to those with ordinary knowledge in the art, it will not be repeated here.
步驟S32a:判斷容器之底部是否為透明?若是,則進入步驟S33a;若否,則進入步驟S33b。在此步驟中,伺服主機21(處理器)可執行圖像分割將容器之底部影像M2轉為二值圖像,並將此二值圖像與預定臨界灰度值比對以判斷容器之底部是否為透明,並產生第三分析結果A3。其中,若底部影像M2為全白(如第11D圖所示),伺服主機21(處理器)判斷此容器之底部為非透明;若底部影像M2有參雜不同顏色(如第11E圖所示),伺服主機21(處理器)判斷此容器之底部為透明或半透明;當然,上述的判斷方式為舉例,本發明並不以此為限。Step S32a: Determine whether the bottom of the container is transparent? If yes, go to Step S33a; if not, go to Step S33b. In this step, the server host 21 (processor) can perform image segmentation to convert the bottom image M2 of the container into a binary image, and compare the binary image with a predetermined critical gray value to determine the bottom of the container Whether it is transparent, and produces the third analysis result A3. Among them, if the bottom image M2 is completely white (as shown in Figure 11D), the server host 21 (processor) determines that the bottom of the container is non-transparent; if the bottom image M2 is mixed with different colors (as shown in Figure 11E) ), the server 21 (processor) judges whether the bottom of the container is transparent or translucent; of course, the above judgment method is an example, and the present invention is not limited thereto.
步驟S32b:判斷容器之底部是否為透明?若是,則進入步驟S33a;若否,則進入步驟S50。Step S32b: Determine whether the bottom of the container is transparent? If yes, go to Step S33a; if not, go to Step S50.
步驟S33a:判斷容器為PET容器。在此步驟中,伺服主機21(處理器)可判斷PET容器是左側的第一分選機構3a的回收目標,並控制第一分選機構3a將容器輸送至PET容器儲存槽22a。Step S33a: It is judged that the container is a PET container. In this step, the servo host 21 (processor) can determine that the PET container is the recycling target of the
步驟S33b:判斷容器之底部是否包含線結構特徵?若是,則進入步驟S34a;若否,則進入步驟S34b。在此步驟中,伺服主機21(處理器)可直接分析容器之底部影像M2以判斷容器之底部是否有結構特徵並產生第四分析結果A4。由於伺服主機21(處理器)已判斷容器之頸部為錐形,容器之底部為圓形且不透明;故在此步驟中,伺服主機21(處理器)則判斷容器之底部是否有長條狀突出物(即線結構特徵)之結構特徵。若容器之底部是有線結構特徵,伺服主機21(處理器)判斷容器為PE容器;若容器之底部無線結構特徵,伺服主機21(處理器)判斷判斷容器為金屬容器。由於PE容器是透過押出中空成形技術製造,故PE容器的底部會有線結構特徵(即分模線,如第11F圖所示)。Step S33b: Determine whether the bottom of the container contains line structure features? If yes, go to Step S34a; if not, go to Step S34b. In this step, the server host 21 (processor) can directly analyze the bottom image M2 of the container to determine whether the bottom of the container has structural features and generate a fourth analysis result A4. Since the servo host 21 (processor) has judged that the neck of the container is conical and the bottom of the container is round and opaque; therefore, in this step, the servo host 21 (processor) judges whether the bottom of the container has a long strip shape Structural features of protrusions (ie, line structural features). If the bottom of the container has a wired structure feature, the server host 21 (processor) determines that the container is a PE container; if the bottom of the container has a wireless structure feature, the server host 21 (processor) determines that the container is a metal container. Since the PE container is manufactured by extrusion hollow forming technology, the bottom of the PE container will have a line structure feature (ie, the parting line, as shown in Figure 11F).
步驟S34a:判斷容器為PE容器。在此步驟中,伺服主機21(處理器)可判斷PE容器是左側的第一分選機構3a的回收目標,並控制第一分選機構3a將容器輸送至PE容器儲存槽22b。Step S34a: It is judged that the container is a PE container. In this step, the servo host 21 (processor) can determine that the PE container is the recycling target of the
步驟S34b:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器並不是左側的第一分選機構3a的回收目標,並控制第一分選機構3a將容器推出回收口3331A,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S34b: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recovery target of the
步驟S41:判斷容器之底部是否為圓形?若是,則進入步驟S42a;若否,則進入步驟S42b。Step S41: Determine whether the bottom of the container is circular? If yes, go to Step S42a; if not, go to Step S42b.
步驟S42a:判斷容器之底部是否為透明?若是,則進入步驟S43a;若否,則進入步驟S43b。Step S42a: Determine whether the bottom of the container is transparent? If yes, go to Step S43a; if not, go to Step S43b.
步驟S42b:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷容器無法辨識,並根據辨識結果產生對應的控制訊號C,並控制第一分選機構3a將容器推出回收口3331A,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S42b: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container cannot be identified, and generate a corresponding control signal C according to the identification result, and control the
步驟S43a:判斷容器為PET容器。在此步驟中,伺服主機21(處理器)可判斷PET容器是左側的第一分選機構3a的回收目標,並控制第一分選機構3a將容器輸送至PET容器儲存槽22a。Step S43a: It is judged that the container is a PET container. In this step, the servo host 21 (processor) can determine that the PET container is the recycling target of the
步驟S43b:判斷容器之底部是否包含線結構特徵?若是,則進入步驟S44a;若否,則進入步驟S44b。Step S43b: Determine whether the bottom of the container contains line structure features? If yes, go to Step S44a; if not, go to Step S44b.
步驟S44a:判斷容器為PE容器。在此步驟中,伺服主機21(處理器)可判斷PE容器是左側的第一分選機構3a的回收目標,並控制第一分選機構3a將容器輸送至PE容器儲存槽22b。Step S44a: It is judged that the container is a PE container. In this step, the servo host 21 (processor) can determine that the PE container is the recycling target of the
步驟S44b:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器不是左側的第一分選機構3a的回收目標,並控制第一分選機構3a將推出回收口3331A,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S44b: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recycling target of the
步驟S50:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷容器無法辨識,並根據辨識結果產生對應的控制訊號C,並控制第一分選機構3a將容器推出回收口3331A,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S50: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container cannot be identified, and generate a corresponding control signal C according to the identification result, and control the
在另一實施例中,若第一分選機構3a用於回收PET容器及PVC容器,步驟S32a及步驟S32後則可增加一步驟以判斷容器之底部是否有結構特徵並產生第四分析結果A4。由於伺服主機21(處理器)己判斷容器之頸部為錐形,容器之底部為透明;故在此步驟中,伺服主機21(處理器)則判斷容器之底部是否有點狀突出物(即點結構特徵)之結構特徵。若容器之底部有點結構特徵,伺服主機21(處理器)判斷容器為PET容器。若容器之底部無點結構特徵,伺服主機21(處理器)判斷容器為PVC容器。由於PET容器是透過射出中空成形技術製造,故PET容器的底部會有點結構特徵(如第11G圖所示)。In another embodiment, if the
請參閱第10A圖及第10B圖,其係為本發明之第二實施例之民生容器辨識方法之流程圖。第10A圖及第10B圖舉例說明了前述實施例之民生容器辨識回收裝置2之右側的第二分選機構3b的辨識邏輯,其可以包含下列步驟:Please refer to FIG. 10A and FIG. 10B , which are flowcharts of a method for identifying a livelihood container according to the second embodiment of the present invention. Figures 10A and 10B illustrate the identification logic of the
步驟S60:判斷容器之頸部是否為錐形?若是,則進入步驟S61;若否,則進入步驟S71。Step S60: Determine whether the neck of the container is tapered? If yes, go to Step S61; if not, go to Step S71.
步驟S61:判斷容器之底部是否為圓形?若是,則進入步驟S62a;若否,則進入步驟S62b。Step S61: Determine whether the bottom of the container is circular? If yes, go to Step S62a; if not, go to Step S62b.
步驟S62a:判斷容器之底部是否為透明?若是,則進入步驟S63a;若否,則進入步驟S63b。Step S62a: Determine whether the bottom of the container is transparent? If yes, go to Step S63a; if not, go to Step S63b.
步驟S62b:判斷容器之底部是否為透明?若是,則進入步驟S63a;若否,則進入步驟S63c。Step S62b: Determine whether the bottom of the container is transparent? If yes, go to Step S63a; if not, go to Step S63c.
步驟S63a:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器不是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將推出回收口3331B,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S63a: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recycling target of the
步驟S63b:判斷容器之底部是否包含線結構特徵?若是,則進入步驟S64a;若否,則進入步驟S64b。Step S63b: Determine whether the bottom of the container contains line structure features? If yes, go to Step S64a; if not, go to Step S64b.
步驟S63c:判斷容器為紙盒容器。在此步驟中,伺服主機21(處理器)可判斷紙盒容器是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將容器輸送至紙盒容器儲存槽22d。Step S63c: It is determined that the container is a carton container. In this step, the servo host 21 (processor) can determine that the carton container is the recycling target of the
步驟S64a:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器不是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將推出回收口3331B,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S64a: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recycling target of the
步驟S64b:判斷容器為金屬容器。在此步驟中,伺服主機21(處理器)可判斷金屬容器是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將容器輸送至金屬容器儲存槽22c。Step S64b: It is determined that the container is a metal container. In this step, the servo host 21 (processor) can determine that the metal container is the recycling target of the
步驟S71:判斷容器之底部是否為圓形?若是,則進入步驟S72a;若否,則進入步驟S72b。Step S71: Determine whether the bottom of the container is circular? If yes, go to Step S72a; if not, go to Step S72b.
步驟S72a:判斷容器之底部是否為透明?若是,則進入步驟S73a;若否,則進入步驟S73b。Step S72a: Determine whether the bottom of the container is transparent? If yes, go to Step S73a; if not, go to Step S73b.
步驟S72b:判斷容器之底部是否為透明?若是,則進入步驟S73c;若否,則進入步驟S73d。Step S72b: Determine whether the bottom of the container is transparent? If yes, go to Step S73c; if not, go to Step S73d.
步驟S73a:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器不是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將推出回收口3331B,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S73a: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recycling target of the
步驟S73b:判斷容器之底部是否包含線結構特徵?若是,則進入步驟S74a;若否,則進入步驟S74b。Step S73b: Determine whether the bottom of the container contains line structure features? If yes, go to Step S74a; if not, go to Step S74b.
步驟S73c:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器不是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將推出回收口3331B,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S73c: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recycling target of the
步驟S73d:判斷容器為紙盒容器。在此步驟中,伺服主機21(處理器)可判斷紙盒容器是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將容器輸送至紙盒容器儲存槽22d。Step S73d: It is judged that the container is a carton container. In this step, the servo host 21 (processor) can determine that the carton container is the recycling target of the
步驟S74a:判斷容器為非回收目標。在此步驟中,伺服主機21(處理器)可判斷此容器不是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將推出回收口3331B,表示此容器無法進行回收,藉此提醒使用者取回容器。Step S74a: It is determined that the container is a non-recycling target. In this step, the server host 21 (processor) can determine that the container is not the recycling target of the
步驟S74b:判斷容器為金屬容器。在此步驟中,伺服主機21(處理器)可判斷金屬容器是右側的第二分選機構3b的回收目標,並控制第二分選機構3b將容器輸送至金屬容器儲存槽22c。Step S74b: It is determined that the container is a metal container. In this step, the servo host 21 (processor) can determine that the metal container is the recycling target of the
當然,本實施例之民生容器辨識方法之各步驟均為舉例說明,該些步驟之順序及收量可依需求進行調整,並不以此為限。Of course, each step of the method for identifying a livelihood container in this embodiment is for illustration only, and the sequence and yield of these steps can be adjusted according to requirements, but not limited thereto.
綜上所述,本發明之民生容器辨識回收裝置採用人機協作的方式完成民生容器分類及回收,因此可以有效地減少民生容器回收分類所需要的人力,使民生容器辨識回收裝置更能符合未來的需求。To sum up, the identification and recycling device for livelihood containers of the present invention completes the sorting and recycling of livelihood containers by means of human-machine cooperation, so that the manpower required for recycling and sorting of livelihood containers can be effectively reduced, so that the identification and recycling device for livelihood containers is more suitable for the future. demand.
此外,本發明之民生容器辨識回收裝置採用影像辨識法來辨識容器之瓶身特徵資訊及/或瓶底特徵資訊,故能達到更快的辨識速度,因此能有效簡化回收流程。In addition, the identification and recycling device of the livelihood container of the present invention adopts the image recognition method to identify the characteristic information of the bottle body and/or the characteristic information of the bottle bottom of the container, so that a faster identification speed can be achieved, and thus the recycling process can be effectively simplified.
再者,根據本發明之實施例,民生容器辨識回收裝置的影像辨識程序採用簡單且準確的辨識邏輯;相較於現有的民生容器回收自動分類裝置,本發明之民生容器辨識回收裝置不需要複雜訓練機制,也不需要額外的訓練設備及營運設備,因此可以大幅降低民生容器辨識回收裝置1、2的製造成本。Furthermore, according to the embodiment of the present invention, the image recognition program of the civil container identification and recycling device adopts a simple and accurate identification logic; compared with the existing civil container recycling automatic sorting device, the civil container identification and recycling device of the present invention does not need to be complicated. The training mechanism also does not require additional training equipment and operating equipment, so the manufacturing cost of the identification and
可見本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請 貴局核准本件發明專利申請案,以勵創作,至感德便。It can be seen that the present invention has indeed achieved the desired enhancement effect under the breakthrough of the previous technology, and it is not easy for those who are familiar with the technology to think about it. Yuan has filed a patent application in accordance with the law, and I implore your bureau to approve this invention patent application, so as to encourage creation, and to be grateful.
以上所述為舉例性,而非為限制性者。其它任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應該包含於後附之申請專利範圍中。The foregoing is exemplary rather than limiting. Any other equivalent modifications or changes without departing from the spirit and scope of the present invention should be included in the appended patent application scope.
1, 2:民生容器辨識回收裝置 11, 31:第一影像擷取模組 12, 32:第二影像擷取模組 13:處理器 14:控制器 20:箱體 21:伺服主機 22a:金屬容器儲存槽 22b:紙盒容器儲存槽 22c:PET容器儲存槽 22d:PE容器儲存槽 3a:第一分選機構 3b:第二分選機構 33:分選通道 331:第一通道 332:第二通道 333:中央通道 1331A, 1331B, 3331A, 3331B:回收口 3332:側窗 3333:後窗 3334:第一支臂 3335:第二支臂 34:分選器 341:第一電磁閥 342:第二電磁閥 343:第三電磁閥 344:底板 T:容器 M1:頸部影像 M2:底部影像 A1:第一分析結果 A2:第二分析結果 A3:第三分析結果 A4:第四分析結果 C:控制訊號 S21~S27, S30~S31, S32a/b~S34a/b, S41, S42a/b, S43a/b, S44a/b, S50, S60~S61, S62a/b, S63a/b/c, S64a/b, S71, S72a/b, S73a/b/c/d, S74a/b:步驟流程 V:垂直平面 θ1, θ2:夾角1, 2: Identification and recycling device for livelihood containers 11, 31: The first image capture module 12, 32: The second image capture module 13: Processor 14: Controller 20: Box 21: Servo host 22a: Metal container storage tank 22b: Carton container storage slot 22c: PET container storage tank 22d: PE container storage tank 3a: First sorting agency 3b: Second sorting agency 33: Sorting channel 331: first channel 332: Second channel 333: Central Passage 1331A, 1331B, 3331A, 3331B: Recovery port 3332: Side Windows 3333: Rear window 3334: First Arm 3335: Second Arm 34: Sorter 341: The first solenoid valve 342: Second solenoid valve 343: The third solenoid valve 344: Bottom Plate T: container M1: Neck Image M2: Bottom image A1: The first analysis result A2: The second analysis result A3: The third analysis result A4: Fourth analysis result C: Control signal S21~S27, S30~S31, S32a/b~S34a/b, S41, S42a/b, S43a/b, S44a/b, S50, S60~S61, S62a/b, S63a/b/c, S64a/b, S71, S72a/b, S73a/b/c/d, S74a/b: step flow V: vertical plane θ1, θ2: included angle
第1圖 係為本發明之第一實施例之民生容器辨識回收裝置之方塊圖。Fig. 1 is a block diagram of the identification and recycling device for civil-use containers according to the first embodiment of the present invention.
第2圖 係為本發明之第一實施例之民生容器辨識方法之流程圖。Fig. 2 is a flow chart of a method for identifying a livelihood container according to the first embodiment of the present invention.
第3圖 係為本發明之第二實施例之民生容器辨識回收裝置之立體圖。Fig. 3 is a perspective view of a second embodiment of a civilian container identification and recycling device of the present invention.
第4圖 係為本發明之第二實施例之民生容器辨識回收裝置之分選機構之立體圖。Fig. 4 is a perspective view of the sorting mechanism of the identification and recycling device for civil-service containers according to the second embodiment of the present invention.
第5圖 係為本發明之第二實施例之民生容器辨識回收裝置之分選機構之側視圖。Fig. 5 is a side view of the sorting mechanism of the identification and recycling device for the livelihood containers according to the second embodiment of the present invention.
第6A圖及第6B圖 係為本發明之第二實施例之民生容器辨識回收裝置之分選機構之運作狀態之第一示意圖及第二示意圖。Figures 6A and 6B are the first schematic diagram and the second schematic diagram of the operation state of the sorting mechanism of the civil life container identification and recycling device according to the second embodiment of the present invention.
第7圖 係為本發明之第二實施例之民生容器辨識回收裝置之分選機構之立體圖。FIG. 7 is a perspective view of the sorting mechanism of the identification and recycling device for the livelihood containers according to the second embodiment of the present invention.
第8圖 係為本發明之第二實施例之民生容器辨識回收裝置之分選機構之運作狀態之示意圖。FIG. 8 is a schematic diagram of the operation state of the sorting mechanism of the identification and recycling device for civil containers according to the second embodiment of the present invention.
第9A圖~第9B圖 係為本發明之第二實施例之民生容器辨識方法之流程圖。Figures 9A to 9B are flowcharts of a method for identifying a livelihood container according to the second embodiment of the present invention.
第9C圖 係為本發明之第二實施例之民生容器辨識方法之霍夫圓變換之示意圖。FIG. 9C is a schematic diagram of the Hough circle transform of the method for identifying the livelihood container according to the second embodiment of the present invention.
第10A圖~第10B圖 係為本發明之第二實施例之民生容器辨識方法之流程圖。Figures 10A to 10B are flowcharts of a method for identifying a livelihood container according to the second embodiment of the present invention.
第11A~11G圖 係為各種容器之瓶頸特徵及瓶底特徵之示意圖。Figures 11A to 11G are schematic diagrams of the bottle neck features and bottle bottom features of various containers.
1:民生容器辨識回收裝置1: People's livelihood container identification and recycling device
11:第一影像擷取模組11: The first image capture module
12:第二影像擷取模組12: The second image capture module
13:處理器13: Processor
14:控制器14: Controller
3a:第一分選機構3a: First sorting agency
3b:第二分選機構3b: Second sorting agency
1311A,1311B:回收口1311A, 1311B: Recycling port
M1:頸部影像M1: Neck Image
M2:底部影像M2: Bottom image
A1:第一分析結果A1: The first analysis result
A2:第二分析結果A2: The second analysis result
A3:第三分析結果A3: The third analysis result
A4:第四分析結果A4: Fourth analysis result
C:控制訊號C: Control signal
Claims (35)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109108689A TWI760710B (en) | 2020-03-17 | 2020-03-17 | Recognition and collection device for recyclable containers, and recognition method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109108689A TWI760710B (en) | 2020-03-17 | 2020-03-17 | Recognition and collection device for recyclable containers, and recognition method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202141348A TW202141348A (en) | 2021-11-01 |
TWI760710B true TWI760710B (en) | 2022-04-11 |
Family
ID=80783195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109108689A TWI760710B (en) | 2020-03-17 | 2020-03-17 | Recognition and collection device for recyclable containers, and recognition method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI760710B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI800367B (en) * | 2022-04-30 | 2023-04-21 | 李漢揚 | Automatic recycling plastic cup collection system architecture |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7383195B2 (en) * | 2003-09-19 | 2008-06-03 | Vesta Medical, Llc | Methods of sorting waste |
CN101452522A (en) * | 2007-11-30 | 2009-06-10 | 上海科珺通信科技有限公司 | Beverage wrapping automatic recognition apparatus and method |
TWM580466U (en) * | 2019-03-12 | 2019-07-11 | 凡立橙股份有限公司 | Structure of bottle recycling system |
CN110369324A (en) * | 2019-08-01 | 2019-10-25 | 三门踱哒环保设备有限公司 | A kind of beverage bottle is classified reclaimer automatically |
-
2020
- 2020-03-17 TW TW109108689A patent/TWI760710B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7383195B2 (en) * | 2003-09-19 | 2008-06-03 | Vesta Medical, Llc | Methods of sorting waste |
CN101452522A (en) * | 2007-11-30 | 2009-06-10 | 上海科珺通信科技有限公司 | Beverage wrapping automatic recognition apparatus and method |
TWM580466U (en) * | 2019-03-12 | 2019-07-11 | 凡立橙股份有限公司 | Structure of bottle recycling system |
CN110369324A (en) * | 2019-08-01 | 2019-10-25 | 三门踱哒环保设备有限公司 | A kind of beverage bottle is classified reclaimer automatically |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI800367B (en) * | 2022-04-30 | 2023-04-21 | 李漢揚 | Automatic recycling plastic cup collection system architecture |
Also Published As
Publication number | Publication date |
---|---|
TW202141348A (en) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102207533B1 (en) | Bill management method and system | |
CN114266884B (en) | Rotating frame positioning multi-shape bottle-shaped object sorting target detection method | |
CN107617573B (en) | Logistics code identification and sorting method based on multitask deep learning | |
Rios-Cabrera et al. | Discriminatively trained templates for 3d object detection: A real time scalable approach | |
CN110498152A (en) | An AI-based intelligent sorting trash can and method therefor | |
EP3865222A1 (en) | A method for sorting consumer packaging objects travelling on a conveyor belt | |
CN105869154B (en) | A kind of Classification and Identification detection method of 250ml medical large transfusions visible foreign matters and bubble | |
CN102998316B (en) | Transparent liquid impurity detection system and detection method thereof | |
US20240157403A1 (en) | Materials detector | |
TWI760710B (en) | Recognition and collection device for recyclable containers, and recognition method thereof | |
CN108764302A (en) | A kind of bill images sorting technique based on color characteristic and bag of words feature | |
CN113807347A (en) | Kitchen waste impurity identification method based on target detection technology | |
Tan et al. | Identification for recycling polyethylene terephthalate (pet) plastic bottles by polarization vision | |
CN115909358A (en) | Commodity specification identification method and device, terminal equipment and computer storage medium | |
KR102565528B1 (en) | Intelligent recycling device for sorting multiple recyclables | |
CN117274209A (en) | Bottle defect detection methods, systems, media and electronic equipment | |
CN115761773A (en) | In-image table recognition method and system based on deep learning | |
CN118209492B (en) | Glass defect visual detection device and detection method thereof | |
CN118279652A (en) | Glass sorting method and device based on combination of image color recognition and deep learning | |
McDonnell et al. | Using style-transfer to understand material classification for robotic sorting of recycled beverage containers | |
Kokoulin et al. | The development of a system for objects recognition in reverse vending machine using machine learning technologies | |
Omar et al. | Multimedia inorganic waste separator | |
WO2023143704A1 (en) | System and method for identification of objects and prediction of object class | |
Xompero et al. | Multimodal estimation of the properties of containers and their content: Survey and evaluation | |
Lopez et al. | Reverse vending machine with power output for mobile devices using vision–based system |