[go: up one dir, main page]

TWI750513B - Insurance claim and underwriting assistance system and implementation method thereof - Google Patents

Insurance claim and underwriting assistance system and implementation method thereof Download PDF

Info

Publication number
TWI750513B
TWI750513B TW108136180A TW108136180A TWI750513B TW I750513 B TWI750513 B TW I750513B TW 108136180 A TW108136180 A TW 108136180A TW 108136180 A TW108136180 A TW 108136180A TW I750513 B TWI750513 B TW I750513B
Authority
TW
Taiwan
Prior art keywords
keyword
medical record
subsystem
disease
reference table
Prior art date
Application number
TW108136180A
Other languages
Chinese (zh)
Other versions
TW202115654A (en
Inventor
王祥仁
李弘達
黃育盛
饒彰年
Original Assignee
業務人資訊有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 業務人資訊有限公司 filed Critical 業務人資訊有限公司
Priority to TW108136180A priority Critical patent/TWI750513B/en
Publication of TW202115654A publication Critical patent/TW202115654A/en
Application granted granted Critical
Publication of TWI750513B publication Critical patent/TWI750513B/en

Links

Images

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Abstract

Insurance claim and underwriting assistance system and implementation method thereof are disclosed. The present system can extract multiple keyword strings from an electronic medical record and establish the grammatical structure of the whole electronic medical record. After that, the system can compare a medical vocabulary reference table (such as medical dictionary) and a disease classification reference table (such as ICD-10) to find out the closest medical vocabularies and the closest disease standard codes, and after that the system can determine whether the disease names corresponding to the disease standard code appears in the insurance terms of the insurance policy. If there is a match, then the system can assign a first identification mark (e.g. highlight label) to the extracted keyword strings shown in the electronic medical record, and after that the system can assign the second identification mark to an auxiliary interpretation reference table corresponding to the comparison result of insurance terms, and finally integrate the electronic medical record embedded with the first identification mark and the auxiliary interpretation reference table embedded with the second identification mark into an intelligent medical record. In this way, the intelligent medical record generated by the present system can not only improve the efficiency in underwriting operation or claim settlement operation, but also reduce the possibility of omission and misjudgments in the claim settlement operation.

Description

核保理賠輔助系統及其實施方法 Auxiliary system for underwriting claims and its implementation method

本發明涉及資料處理技術,尤指一種基於自然語言處理(NLP),可對病歷進行關鍵字提取及語意分析,並分別於醫學詞彙與疾病分類參照表進行比對,以基於病歷內容輔助審核人員快速判斷被保險人是否符合核保或理賠條件,以及輔助判斷被保險人是否有既往症的「核保理賠輔助系統及其實施方法」。The present invention relates to data processing technology, in particular to a method based on natural language processing (NLP), which can perform keyword extraction and semantic analysis on medical records, and compare medical vocabulary and disease classification reference table respectively, so as to assist reviewers based on the content of medical records Quickly determine whether the insured meets the conditions for underwriting or claim settlement, and assists in determining whether the insured has a pre-existing disease or not.

一般而言,在醫療保險理賠案件發生後,或在受理醫療保險業務後,保險行業的理賠或核保人員,為了確保被保險人的風險是在保險公司的可接受範圍內,會需要對理賠案件中的各個理賠項目進行核對,或需要對被保險人的體檢報告、健康告知事項及核保手冊等事項進行評估,以確保理賠案件的準確性或被保險人的風險是否過高,然而,由於該些審核工作都是透過核保或理賠人員進行人工審核,且若以審核理賠案件為例,理賠人員在審核過程中,除了需要耗費大量時間另外參照非結構化的診斷證明書或病歷、參照記載非常多項病症的健康告知事項、理賠手冊、理賠條款、參照多達15萬種代碼的國際疾病分類標準等資訊, 更需要參照醫學辭典、醫學縮寫辭典等包含許多高度專業性的醫學詞彙資料與檢驗項目名稱,以進行正確無偏差的配對,如此一來,於人工審核時將容易發生誤判、漏判、或漏未發現被保險人的既往症病史,而可能會導致誤賠事件發生,進而影響全體保戶的權益,另,也可能發生在診斷證明書或病歷中雖有提及相關病症的關鍵字,但事實上被保險人並未罹患該疾病,進而讓核保或理賠人員浪費了許多時間,故習知的核保或理賠作法不僅耗時,亦容易發生漏判或誤判,而仍有改善空間。Generally speaking, after a medical insurance claim case occurs, or after accepting medical insurance business, claims or underwriting personnel in the insurance industry, in order to ensure that the risk of the insured is within the acceptable range of the insurance company, will need to settle the claims. Check the various claims items in the case, or need to evaluate the insured's medical report, health notices and underwriting manuals to ensure the accuracy of the claims case or whether the insured's risk is too high, however, Since these audits are all conducted manually by underwriting or claims adjusters, and taking the audit of claims cases as an example, the claims adjusters need to spend a lot of time in the auditing process and refer to unstructured diagnostic certificates or medical records, Refer to information such as health notices, claim manuals, claims clauses, and international classification of diseases with up to 150,000 codes that record many diseases. It is even more necessary to refer to medical dictionaries, medical abbreviations dictionaries, etc., which contain many highly professional medical vocabulary data and test item names, so as to carry out correct and unbiased matching. As a result, misjudgment, missed judgment, or omission will easily occur during manual review. The insured's pre-existing medical history is not found, which may lead to the occurrence of false claims, thereby affecting the rights and interests of all insureds. In addition, it may also occur in the diagnosis certificate or medical record. Although keywords of related diseases are mentioned, the fact is The above insured does not suffer from the disease, and the underwriting or claims personnel waste a lot of time. Therefore, the conventional underwriting or claims method is not only time-consuming, but also prone to omission or misjudgment, and there is still room for improvement.

綜上可知,由於習知核保或理賠人員在進行核查工作時,仍有審核工作耗時、漏判、誤判(例如未能發現可適用拒保病症)或無法發現被保險人可能有既往症病史等缺點,依此,如何提出一種可解決前述缺點的「核保理賠輔助系統及其實施方法」,乃有待解決之問題。From the above, it can be seen that due to the conventional underwriting or claims personnel conducting verification work, there are still time-consuming audit work, omission of judgment, misjudgment (for example, failure to find applicable refusal diseases) or failure to find that the insured may have a history of pre-existing diseases. Therefore, how to propose an "underwriting and claims assistance system and its implementation method" that can solve the aforementioned shortcomings is a problem to be solved.

為達上述目的,本發明提出一種核保理賠輔助系統,可基於一電子病歷(medical record)生成一智能化病歷,以供一資訊裝置瀏覽智能化病歷,系統包含一處理器、一資料庫、一第二資料庫、一關鍵字提取子系統、一關鍵字解析子系統、一資料標記子系統、一資訊整合子系統及一前台子系統,其中,關鍵字提取子系統可從儲存於資料庫的電子病歷擷取多筆關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元;關鍵字解析子系統可基於關鍵字提取子系統對於關鍵字串的擷取結果,構建電子病歷的語法結構、分析病歷時間及該等關鍵字串的一語意,再基於該等語意從儲存於資料庫的一醫學詞彙參照表比對出多筆醫學詞彙,再基於該等語意與醫學詞彙,從儲存於資料庫的一疾病分類參照表解析出至少一疾病標準碼,再判斷疾病標準碼所對應之一疾病名稱,是否匹配於儲存於資料庫的一保險條款的一疾病關鍵字串,以生成一條款比對結果;資料標記子系統可對電子病歷中的該等關鍵字串,賦予關聯於疾病名稱之可視的多個第一識別標記,亦供以依據條款比對結果,對一輔助判讀參照表賦予對應於條款比對結果的一第二識別標記;資訊整合子系統可產生儲存於第二資料庫的一輔助判讀參照表,再將電子病歷、該等第一識別標記、第二識別標記及輔助判讀參照表,整合為儲存於第二資料庫的智能化病歷,其中輔助判讀參照表至少包含被解析出的疾病名稱、第二識別標記及疾病標準碼;而當資訊裝置經由一網路連結至前台子系統,以成功讀取第二資料庫的資料後,前台子系統可提供一檢視器,使包含輔助判讀參照表的智能化病歷呈現於資訊裝置所執行的檢視器。In order to achieve the above object, the present invention proposes an underwriting and claim settlement assistant system, which can generate an intelligent medical record based on an electronic medical record (medical record) for an information device to browse the intelligent medical record. The system includes a processor, a database, a second database, a keyword extraction subsystem, a keyword parsing subsystem, a data marking subsystem, an information integration subsystem and a front-end subsystem, wherein the keyword extraction subsystem can be stored in the database The electronic medical record retrieves multiple keyword strings, and the keyword strings include a medical keyword, a time string, a numerical string and a symbol character; the keyword parsing subsystem can be based on the keyword extraction subsystem For the retrieval result of the keyword string, construct the grammatical structure of the electronic medical record, analyze the time of the medical record and a semantic of the keyword string, and then compare a plurality of terms from a medical vocabulary reference table stored in the database based on the semantic meaning Medical vocabulary, and then based on the semantics and medical vocabulary, parse out at least one disease standard code from a disease classification reference table stored in the database, and then determine whether a disease name corresponding to the disease standard code matches the one stored in the database. A disease keyword string of an insurance clause in the electronic medical record to generate a clause comparison result; the data marking subsystem can assign a plurality of visible first identification marks associated with the disease name to these keyword strings in the electronic medical record, It is also used to assign a second identification mark corresponding to the item comparison result to an auxiliary interpretation reference table according to the clause comparison result; the information integration subsystem can generate an auxiliary interpretation reference table stored in the second database, and then The electronic medical record, the first identification marks, the second identification marks and the auxiliary interpretation reference table are integrated into an intelligent medical record stored in the second database, wherein the auxiliary interpretation reference table at least contains the parsed disease name, the second identification markers and disease standard codes; and when the information device is connected to the front-end subsystem through a network to successfully read the data in the second database, the front-end subsystem can provide a viewer to make the intelligent system including the auxiliary interpretation reference table The medical record is presented in the viewer executed by the information device.

為使 貴審查委員得以清楚了解本發明之目的、技術特徵及其實施後之功效,茲以下列說明搭配圖示進行說明,敬請參閱。In order to enable your examiners to clearly understand the purpose, technical features and effects of the present invention, the following descriptions are combined with the diagrams for illustration, please refer to.

請參閱「第1圖」,其為本發明之系統架構圖,本發明提出一種核保理賠輔助系統10,可基於一電子病歷MR生成一智能化病歷SMR,以供一資訊裝置20瀏覽智能化病歷SMR,主要包含一處理器101,另有一資料庫102、一第二資料庫103、一關鍵字提取子系統104、一關鍵字解析子系統105、一資料標記子系統106、一資訊整合子系統107及一前台子系統108分別與處理器101資訊連接,其中: (1)  處理器101供以運行核保理賠輔助系統1、存取第一與第二資料庫(102、103)之內容、控制或觸發前述的多個子系統,並具有並具備邏輯運算、暫存運算結果、保存執行指令位置等功能,且處理器101可以例如是一中央處理器(CPU)、一虛擬處理器(vCPU)、一微處理器(MPU)、一微控制器(MCU)、一應用處理器(AP)、一嵌入式處理器、一特殊應用積體電路(ASIC)、一張量處理器(TPU)或一圖形處理器(GPU)等,但均不以此為限,並且,處理器101本身可運行於一伺服器(圖中未繪示),而前述伺服器可為一實體的伺服器、或以一虛擬機器(VM)形式運行的伺服器、或以一虛擬專屬主機(Virtual Private Server)形式運行的伺服器; (2)  資料庫102與第二資料庫103皆可為一資料庫主機,資料庫102可儲存供處理器101存取的一疾病分類參照表ICD_T、一醫學詞彙參照表MD_T、一保險條款IC(insurance clause)及電子病歷MR; (3)  第二資料庫103可儲存供處理器101存取的一輔助判讀參照表SMR_T及智能化病歷SMR;並且,疾病分類參照表ICD_T可為一國際疾病分類標準的第9版、第10版或其組合;醫學詞彙參照表MD_T可包含一醫學辭典(medical dictionary)及一醫學縮寫辭典(medical abbreviation dictionary)之其中一種或其組合;保險條款IC可為一核保條款(或稱核保手冊)、一理賠條款、一理賠手冊及一健康告知條款(亦可稱健康告知書或健康告知事項)之其中一種或其組合; (4)  關鍵字提取子系統104可儲存多個指令,其供處理器101觸發後,可執行例如一斷詞處理(word segmentation/tokenize),並從儲存於資料庫102的電子病歷MR擷取多筆關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元,另,關鍵字提取子系統104進行斷詞處理時,可先忽略對語意沒有影響的標點符號(Punctuation); (5)  其中,前述的醫學關鍵字可為一病症名稱、一器官名稱、一檢驗名稱、一描述現象名稱、一描述程度名稱及一縮寫名稱等關鍵字,更具體而言,病症名稱可例如為高血壓、甲狀腺腫、厭食症等病症;器官名稱可例如為二尖瓣結構、心臟結構、肺結構、身體部位等器官;檢驗名稱可例如為超音波心動檢查/描記、血氣測量、X射線成像程序等檢驗名稱;描述現象名稱可為心悸、已婚、劇烈的、壓力/壓迫、體重下降、皮膚腫脹、心臟雜音、出汗等現象;描述程度名稱可例如為惡化、狀況/病態、完整的/未受損的、有規則/整齊的、日常的/慣例、惡化等;縮寫名稱可例如為PO(口服)、QN(每晚使用一次)、QD(每日一次)、HCVD(高血壓性心臟血管疾病)、Af(心房纖維顫動)、PVCs(心室性早期收縮)、OPD(門診)、急診(ER)等縮寫,但以上僅為舉例,均不以此為限; (6)  其中,前述的時間字串可例如為時刻、年、舊(old)、月、最近、頻繁、小時、每週、分鐘、日期、同日(same day)、隔日(next day),但以上僅為舉例,均不以此為限; (7)  其中,前述的數值字串可例如為一檢驗讀數(如mmHg、mm、mEqL、mg/DL、ph值、MmhG、mmol/L、%、uL、g/dL等,但以上僅為舉例,均不以此為限; (8)  其中,前述的符號字元可例如為(+)、(-)等,其可依據前後文所提及的醫學關鍵字(例如病症名稱),提示被保險人患有(+)或未患有(-)前述的疾病名稱; (9)  關鍵字解析子系統105可儲存多個指令,其供處理器101觸發後,可基於關鍵字提取子系統104對於關鍵字串的擷取結果,構建電子病歷MR的一或多個語法結構、分析一病歷時間,以及從前述的語法結構分析該等關鍵字串的一語意(例如可透過一語句相依性分析(Dependency parsing)達成),再基於該等語意從醫學詞彙參照表MD_T比對出多筆醫學詞彙,再基於該等語意與該等醫學詞彙,從疾病分類參照表ICD_T解析出至少一疾病標準碼(例如ICD Code),再判斷疾病標準碼所對應之一疾病名稱是否匹配於保險條款IC的一疾病關鍵字串,以生成一條款比對結果; (10)   其中,前述的語法結構係指,電子病歷MR中的各個敘述句可分別被表示為自然語言處理所應用的「結構樹(Structure Tree)」形式,且每個結構樹可包含一或多個語意角色(semantic role),例如包含主事者(Agent)、目標(Goal)、受事者(Patient)、客體(Theme)、工具(Instrument)、處所(Location)、來源(Source)、時間(Time)、謂詞(Predicate)等角色; (11)   其中,前述的病歷時間可為一住院日期、一病歷製作日期、一出院日期、歷史病症期間; (12)   另,本發明為了同時改善因訓練樣本不足,而可能發生關鍵字提取結果或語意分析結果準確性較低的問題,則可透過讓關鍵字提取子系統104或關鍵字解析子系統105閱讀大量電子病歷MR的內文,利用前後文的統計特性,可學習出每一個關鍵字串的一詞向量(Word Vector或Word Embedding),例如「Drug」和「Abuse」的詞向量距離在向量空間中可能較為接近,但「Drug」和「smoking」的詞向量距離在向量空間中則可能較遠,而隨著訓練的文本越來越多,關鍵字提取子系統104或關鍵字解析子系統105可以自動調整各個關鍵字串的詞向量,解決自然語言處理模型之訓練資料不足的問題,並提升系統的抽象化思考,另,有關訓練詞向量的作法,可過例如CBOW和Skipgram的訓練模型達成; (13)   資料標記子系統106可儲存多個指令,其供處理器101觸發後,可對電子病歷MD中的該等關鍵字串,賦予關聯於疾病名稱之可視的多個第一識別標記H1,亦可對輔助判讀參照表SMR_T賦予對應於條款比對結果的一第二識別標記H2; (14)   資訊整合子系統107可儲存多個指令,其供處理器101觸發後,可產生儲存於第二資料庫103的輔助判讀參照表SMR_T,再將電子病歷、該等第一識別標記H1、第二識別標記H2及輔助判讀參照表SMR_T,整合為智能化病歷SMR,其中輔助判讀參照表SMR_T至少包含被解析出該等的疾病名稱、第二識別標記H2及疾病標準碼; (15)   前台子系統108可供資訊裝置20經由一網路30與其通訊連結,當資訊裝置20連結至前台子系統108,以讀取第二資料庫103後,前台子系統108可提供資訊裝置20一檢視器V,而使包含輔助判讀參照表SMR_T的智能化病歷SMR呈現於檢視器V,以供資訊裝置20的使用者(核保/理賠人員)可僅依據智能化病歷SMR的分析結果,對電子病歷MR中的重要資訊與核保或理賠條款進行審核與比對,而毋須完整檢視電子病歷MR的內容; (16)   另,網路30可為公眾或私人網路,例如無線網路(3G、4G LTE、Wi-Fi等)、有線網路、區域網路(LAN)、廣域網路(WA)等; (17)   另,智能化病歷SMR的格式可為.pdf、.xls或.doc,但皆不以此為限; (18)   另,檢視器V可為一網頁瀏覽器(Web Brower)、一PDF檢視器(PDF Viewer)或其它文件檢視器; (19)   另,電子病歷MR可由與處理器101耦接的一光學字元辨識(OCR)子系統(圖中未繪示),利用掃描器或其他光學設備將一紙本病歷的文字資料擷取成數位影像(即電子病歷MR),再進行自動辨識以從中取得可編輯的病歷文字及版面資訊。Please refer to “FIG. 1”, which is a system architecture diagram of the present invention. The present invention proposes an underwriting and claims assistance system 10, which can generate an intelligent medical record SMR based on an electronic medical record MR for an information device 20 to browse intelligently The medical record SMR mainly includes a processor 101, a database 102, a second database 103, a keyword extraction subsystem 104, a keyword analysis subsystem 105, a data marking subsystem 106, and an information integrator The system 107 and a foreground subsystem 108 are respectively connected to the processor 101 for information, wherein: (1) The processor 101 is used to run the underwriting and claim settlement assistance system 1, access the contents of the first and second databases (102, 103), control or trigger the aforementioned multiple subsystems, and has and has logical operations, temporary The processor 101 can be, for example, a central processing unit (CPU), a virtual processing unit (vCPU), a microprocessor (MPU), a microcontroller (MCU), an application processor (AP), an embedded processor, an application-specific integrated circuit (ASIC), a tensor processing unit (TPU), a graphics processing unit (GPU), etc., but not limited thereto, Furthermore, the processor 101 itself can run on a server (not shown in the figure), and the aforementioned server can be a physical server, a server running in the form of a virtual machine (VM), or a virtual server A server running in the form of a dedicated host (Virtual Private Server); (2) Both the database 102 and the second database 103 can be a database host, and the database 102 can store a disease classification reference table ICD_T, a medical vocabulary reference table MD_T, and an insurance clause IC for the processor 101 to access (insurance clause) and electronic medical record MR; (3) The second database 103 can store an auxiliary interpretation reference table SMR_T and an intelligent medical record SMR for the processor 101 to access; and the disease classification reference table ICD_T can be an International Classification of Diseases 9th edition, 10th edition version or a combination thereof; the medical vocabulary reference table MD_T may include one or a combination of a medical dictionary and a medical abbreviation dictionary; the insurance clause IC may be an underwriting clause (or underwriting Manual), a claim clause, a claim manual and a health notice clause (also called a health notice or a health notice) one or a combination thereof; (4) The keyword extraction subsystem 104 can store a plurality of instructions, which can be triggered by the processor 101 to perform, for example, a word segmentation/tokenize process, and retrieved from the electronic medical record MR stored in the database 102 Multiple keyword strings, and these keyword strings include a medical keyword, a time string, a numerical string, and a symbol character. In addition, when the keyword extraction subsystem 104 performs word segmentation processing, it can be ignored first Punctuation that has no effect on semantics; (5) Wherein, the aforementioned medical keywords can be keywords such as a disease name, an organ name, a test name, a description phenomenon name, a description level name, and an abbreviated name. More specifically, the disease name can be, for example, For hypertension, goiter, anorexia and other diseases; the name of the organ can be, for example, the mitral valve structure, the structure of the heart, the structure of the lung, the body part and other organs; the name of the test can be, for example, echocardiography / tracing, blood gas measurement, X-ray Name of examination such as imaging procedure; descriptive name may be palpitations, married, severe, stress/compression, weight loss, skin swelling, heart murmur, sweating, etc.; descriptive name may be, for example, exacerbation, condition/morbid, complete Abbreviated names may eg be PO (oral), QN (once nightly), QD (once daily), HCVD (hypertension) Cardiovascular disease), Af (atrial fibrillation), PVCs (early ventricular contraction), OPD (outpatient), emergency (ER) and other abbreviations, but the above are only examples and are not limited to this; (6) Wherein, the aforementioned time string can be, for example, time, year, old (old), month, recent, frequent, hour, week, minute, date, same day (same day), next day (next day), but The above is only an example and is not limited to this; (7) Wherein, the aforementioned numerical string can be, for example, a test reading (such as mmHg, mm, mEqL, mg/DL, ph value, MmhG, mmol/L, %, uL, g/dL, etc., but the above are only Examples are not limited to this; (8) Wherein, the aforementioned symbol characters can be, for example, (+), (-), etc., which can indicate that the insured suffers from (+) or Not suffering from (-) the aforementioned disease name; (9) The keyword parsing subsystem 105 can store a plurality of instructions, which, after being triggered by the processor 101, can construct one or more grammars of the electronic medical record MR based on the retrieval result of the keyword string by the keyword extraction subsystem 104 structure, analyze a medical record time, and analyze a semantic of the keyword string from the aforementioned grammatical structure (for example, it can be achieved through a sentence dependency parsing), and then compare it from the medical vocabulary reference table MD_T based on the semantics. Identify multiple medical terms, and then parse out at least one disease standard code (eg, ICD Code) from the disease classification reference table ICD_T based on the semantics and the medical terms, and then determine whether a disease name corresponding to the disease standard code matches. A disease keyword string in the insurance clause IC to generate a clause comparison result; (10) Wherein, the aforementioned grammatical structure means that each descriptive sentence in the electronic medical record MR can be represented as a “Structure Tree” applied by natural language processing, and each structure tree can contain a Multiple semantic roles, such as Agent, Goal, Patient, Theme, Instrument, Location, Source, Time (Time), predicate (Predicate) and other roles; (11) Among them, the aforementioned medical record time can be a hospitalization date, a medical record preparation date, a discharge date, and a historical illness period; (12) In addition, in order to simultaneously improve the problem that the keyword extraction result or the semantic analysis result may have low accuracy due to insufficient training samples, the present invention can make the keyword extraction subsystem 104 or the keyword analysis subsystem 105 possible by letting the keyword extraction subsystem 104 or the keyword analysis subsystem 105 Read the text of a large number of electronic medical records MR, and use the statistical characteristics of the context to learn the word vector (Word Vector or Word Embedding) of each keyword string. For example, the word vector distance of "Drug" and "Abuse" is in the vector It may be close in the space, but the word vector distance of "Drug" and "smoking" may be farther in the vector space, and as more and more texts are trained, the keyword extraction subsystem 104 or the keyword parsing subsystem 105 can automatically adjust the word vector of each keyword string, solve the problem of insufficient training data for natural language processing models, and improve the abstract thinking of the system. In addition, for training word vectors, you can use training models such as CBOW and Skipgram. achieve; (13) The data labeling subsystem 106 can store a plurality of instructions, which, after being triggered by the processor 101, can assign a plurality of visible first identification marks H1 associated with the disease name to the keyword strings in the electronic medical record MD , and a second identification mark H2 corresponding to the clause comparison result can also be assigned to the auxiliary interpretation reference table SMR_T; (14) The information integration subsystem 107 can store a plurality of instructions, which, after being triggered by the processor 101, can generate the auxiliary interpretation reference table SMR_T stored in the second database 103, and then combine the electronic medical records, the first identification marks H1 , the second identification mark H2 and the auxiliary interpretation reference table SMR_T are integrated into an intelligent medical record SMR, wherein the auxiliary interpretation reference table SMR_T contains at least the disease name, the second identification mark H2 and the disease standard code that are parsed out of these; (15) The foreground subsystem 108 is available for the information device 20 to communicate with it via a network 30. When the information device 20 is connected to the foreground subsystem 108 to read the second database 103, the foreground subsystem 108 can provide the information device 20 is a viewer V, so that the intelligent medical record SMR including the auxiliary interpretation reference table SMR_T is displayed on the viewer V, so that the user (underwriting/claims adjuster) of the information device 20 can only rely on the analysis result of the intelligent medical record SMR , to review and compare the important information in the electronic medical record MR with the underwriting or claims clauses, without having to fully review the content of the electronic medical record MR; (16) In addition, the network 30 can be a public or private network, such as a wireless network (3G, 4G LTE, Wi-Fi, etc.), a wired network, a local area network (LAN), a wide area network (WA), etc.; (17) In addition, the format of the intelligent medical record SMR can be .pdf, .xls or .doc, but it is not limited to this; (18) In addition, the viewer V can be a web browser (Web Browser), a PDF viewer (PDF Viewer) or other document viewers; (19) In addition, the electronic medical record MR can use an optical character recognition (OCR) subsystem (not shown in the figure) coupled with the processor 101 to use a scanner or other optical equipment to capture the text data of a paper medical record Take digital images (ie, electronic medical record MR), and then perform automatic identification to obtain editable medical record text and layout information.

另,請繼續參閱「第1圖」,本發明在一較佳實施例中,若關鍵字解析子系統105從電子病歷MR之一用藥歷史所提取的醫學關鍵字,可從醫學詞彙參照表MD_T比對出屬於「藥品名稱」的醫學詞彙,但從電子病歷MR之醫學關鍵字的語法結構並未偵測出特定疾病的語意時,關鍵字解析子系統105此時可從疾病分類參照表ICD_T解析出對應前述藥品名稱的疾病標準碼及其對應的疾病名稱,以提示操作資訊裝置20之核保或理賠人員,此電子病歷MR雖未明確提及此患者(被保險人)罹患有某種特定疾病(例如高血壓),但從其電子病歷MR的用藥歷史(例如被保險人其實有在定期服用高血壓藥)可發現,被保險人有隱匿高血壓之既往症(即帶病投保)的可能。In addition, please continue to refer to FIG. 1. In a preferred embodiment of the present invention, if the medical keywords extracted by the keyword parsing subsystem 105 from a medication history of the electronic medical record MR can be obtained from the medical vocabulary reference table MD_T When the medical vocabulary belonging to "drug name" is compared, but the semantics of a specific disease is not detected from the grammatical structure of the medical keywords in the electronic medical record MR, the keyword parsing subsystem 105 can refer to the disease classification table ICD_T at this time. The disease standard code corresponding to the aforementioned drug name and the corresponding disease name are parsed to prompt the underwriting or claim settlement personnel who operate the information device 20. Although the electronic medical record MR does not explicitly mention that the patient (insured) suffers from a certain disease Specific diseases (such as high blood pressure), but it can be found from the medication history of the electronic medical record MR (such as the insured who is actually taking high blood pressure drugs on a regular basis) that the insured has a pre-existing disease of hidden high blood pressure (that is, the insured is insured while sick). possible.

請參閱「第2圖」,其為本發明之系統實施流程圖,請搭配參閱「第1圖」,亦請搭配參閱「第3圖」~「第7圖」之實施示意圖,本發明提出一種核保理賠輔助系統的實施方法S,可包含以下步驟:(1) 關鍵字提取(步驟S10):一關鍵字提取子系統104可執行一斷詞處理,以利用例如一詞彙分析器(lexical analyzer),對儲存於資料庫102的電子病歷MR中的字元序列(即句子,sentence),分割為多個單詞(Token)組成的單詞序列,並分別標示各單詞所屬的分類,例如其中一單詞可被定義為一行為分類(或可稱事件分類)、一時間表達分類、一短句分類、一修飾分類等分類,但並不以此為限,後續可執行一正規化處理,以從一電子病歷MR擷取多筆關鍵字串,或可執行一語意框架剖析器(Parsing,例如Google釋出的語意框架剖析器SLING,但不以此為限),以利用語意框架(Frame Semantic Parsing)的方式來抽取電子病歷MR的文字結構,並以語意框架圖(Semantic frame graph)的方式呈現該等關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元,即如「第3圖」中劃記有底線的部分字串,其中,關鍵字提取子系統104可先預存多筆資料訓練集,以儲存已完成訓練、且部分關鍵字句已帶有標記(Tag)的詞彙庫,並且,執行斷詞處理時,關鍵字提取子系統104可例如以「空白」、「、」、「-」、「"」、「.」、「:」、「,」作為分隔符號達成斷詞;(2) 語法語意分析(步驟S20):一關鍵字解析子系統105基於關鍵字提取子系統104對於關鍵字串的擷取結果,利用例如一語法分析器(syntax analyzer,亦稱 parser)構建電子病歷MR的一或多個語法結構(例如對斷詞後的各字詞進行詞性標註、詞幹提取(stemming,例如從”leaves”→”leav")、詞形還原(lemmatization,例如從”started”→”start”)與組成結構樹(Parser tree))、分析一病歷時間,以及利用例如一語意分析器(semantic analyzer)從前述的語法結構分析該等關鍵字串的一語意(例如對結構樹的每個詞彙賦予語意角色後,有助於語意分析器藉此推敲該等關鍵字串的語意);(3) 比對參照表(步驟S30):關鍵字解析子系統105基於該等語意從一醫學詞彙參照表MD_T比對出多筆醫學詞彙,再基於該等語意與該等醫學詞彙,從一疾病分類參照表ICD_T解析出至少一疾病標準碼及其對應的一疾病名稱,即如「第4圖」中基於語意分析結果,分別從醫學詞彙參照表MD_T與疾病分類參照表ICD_T比對出醫學詞彙(例如第4圖的hypertension disorder-高血壓)、疾病標準碼(例如第4圖的”ICD9CM: 405.99”或”ICD10AM:I10-I15.9”)及疾病名稱(例如第4圖中對應ICD9的”其他續發性高血壓”及對應ICD 10的”續發性高血壓”)的比對結果;(4) 比對保險條款(步驟S40):關鍵字解析子系統105判斷疾病標準碼所對應之疾病名稱是否匹配於一保險條款IC的一疾病關鍵字串,以生成一條款比對結果,即如「第5圖」中基於電子病歷MR之語意,對比於例如健康告知條款(或稱健康告知事項)的保險條款IC的疾病關鍵字串(例如第5圖所示的高血壓);(5) 關鍵字標記(步驟S50):一資料標記子系統106對電子病歷MR中的該等關鍵字串,賦予關聯於疾病名稱之可視的多個第一識別標記H1,即如「第6圖」中以虛線方式劃記該等關鍵字串的形式,但圖中所示之識別第一標記H1的形式僅為舉例,亦得以高亮標記(highlight),例如以Online syntax highlighting但不以此為限的相關技術即可達成,資料標記子系統106亦可對輔助判讀參照表SMR_T賦予對應於條款比對結果的至少一第二識別標記H2;(6) 整合智能化病歷(步驟S60):一資訊整合子系統107產生一輔助判讀參照表SMR_T,即如「第7圖」的「PAGE 1」所示,其中,輔助判讀參照表SMR_T可至少包含一病名欄位、至少一保險條款比對結果欄位及至少一疾病標準碼欄位,各欄位之內容可分別被設定為關鍵字解析子系統105所解析出的疾病名稱、第二識別標記H2及疾病標準碼及一醫師描述病症(此圖中未繪示);其後,資訊整合子系統107再將電子病歷MR、該等第一識別標記H1、第二識別標記H2及輔助判讀參照表SMR_T,整合為一智能化病歷SMR,其中,輔助判讀參照表SMR_T可至少包含被解析出的疾病名稱、第二識別標記H2及疾病標準碼,至於智能化病歷SMR的其它組成要件(第一識別標記H1、電子病歷MR等),係呈現於智能化病歷SMR的其它頁面,故「第7圖」中並未繪示;(7) 提供智能化病歷檢視功能(步驟S70):一前台子系統108提供資訊裝置20一檢視器V,而使包含輔助判讀參照表SMR_T的智能化病歷SMR可呈現於檢視器V。Please refer to "Fig. 2", which is a flow chart of the implementation of the system of the present invention. Please refer to "Fig. 1" together with the schematic implementation diagrams of "Fig. 3" to "Fig. 7". The present invention proposes a The implementation method S of the underwriting and claim settlement assistance system may include the following steps: (1) Keyword extraction (step S10 ): a keyword extraction subsystem 104 can perform a word segmentation process to use, for example, a lexical analyzer ), the character sequence (ie, sentence, sentence) stored in the electronic medical record MR of the database 102 is divided into a word sequence composed of a plurality of words (Token), and the classification to which each word belongs is indicated, for example, one of the words It can be defined as a behavior classification (or event classification), a time expression classification, a short sentence classification, a modification classification, etc., but it is not limited to this. The electronic medical record MR captures multiple keyword strings, or executes a semantic frame parser (Parsing, such as the semantic frame parser SLING released by Google, but not limited thereto) to utilize the semantic frame (Frame Semantic Parsing) to extract the text structure of the electronic medical record MR, and present the keyword strings in the form of a Semantic frame graph, and the keyword strings include a medical keyword, a time string, and a numerical value. string and a symbol character, that is, a part of the string marked with an underline in "Figure 3", wherein the keyword extraction subsystem 104 can pre-store multiple data training sets to store completed training and some key Words already have a tag (Tag) vocabulary, and when performing word segmentation processing, the keyword extraction subsystem 104 can, for example, use "blank", ",", "-", """, ".", ":" and "," are used as separators to achieve word segmentation; (2) Grammar and semantic analysis (step S20): a keyword parsing subsystem 105 uses, for example, A syntax analyzer (also called parser) constructs one or more grammatical structures of the electronic medical record MR (for example, performing part-of-speech tagging, stemming, for example, from "leaves" → "leav"), lemmatization (e.g. from "started" → "start") and parser tree), parsing a medical record time, and using e.g. a semantic analyzer from the aforementioned grammar Structural analysis of the semantics of these keyword strings (for example, after assigning a semantic role to each word in the structure tree, it is helpful for the semantic analyzer to deduce the semantics of these keyword strings); (3) Comparison reference table ( Step S30): The keyword parsing subsystem 105 selects a medical term based on the semantics Compare multiple medical terms according to the table MD_T, and then parse out at least one disease standard code and its corresponding disease name from a disease classification reference table ICD_T based on the semantics and the medical terms, as shown in Figure 4 Based on the results of semantic analysis, medical vocabulary (such as hypertension disorder-hypertension in Figure 4), disease standard codes (such as "ICD9CM in Figure 4") are compared from the medical vocabulary reference table MD_T and the disease classification reference table ICD_T: 405.99” or “ICD10AM:I10-I15.9”) and disease name (such as “other secondary hypertension” corresponding to ICD9 in Figure 4 and “secondary hypertension” corresponding to ICD 10) (4) Compare insurance clauses (step S40): The keyword parsing subsystem 105 determines whether the disease name corresponding to the disease standard code matches a disease keyword string of an insurance clause IC to generate a clause comparison result, That is, as in "Fig. 5" based on the semantics of the electronic medical record MR, compare the disease keyword string (such as hypertension shown in Fig. 5) with the insurance clause IC such as health notification clauses (or health notification items); ( 5) Keyword marking (step S50 ): A data marking subsystem 106 assigns a plurality of first identification marks H1 that are visible to the disease name to the keyword strings in the electronic medical record MR, as shown in FIG. 6 . ” is marked with dotted lines in the form of these keyword strings, but the form of identifying the first mark H1 shown in the figure is only an example, and can also be highlighted, such as online syntax highlighting but not in this way This can be achieved with limited related technologies, and the data marking subsystem 106 can also assign at least one second identification mark H2 corresponding to the item comparison result to the auxiliary interpretation reference table SMR_T; (6) Integrate intelligent medical records (step S60): An information integration subsystem 107 generates an auxiliary interpretation reference table SMR_T, as shown in "PAGE 1" of "FIG. 7", wherein the auxiliary interpretation reference table SMR_T may include at least one disease name field and at least one insurance clause comparison The result field and the at least one disease standard code field, the contents of each field can be respectively set as the disease name, the second identification mark H2, the disease standard code and a doctor's description of the disease ( After that, the information integration subsystem 107 integrates the electronic medical record MR, the first identification marks H1, the second identification marks H2 and the auxiliary interpretation reference table SMR_T into an intelligent medical record SMR, Wherein, the auxiliary interpretation reference table SMR_T can at least include the parsed disease name, the second identification mark H2 and the disease standard code. As for other components of the intelligent medical record SMR (the first identification mark H1, the electronic medical record MR, etc.), the It is presented on other pages of the intelligent medical record SMR, so it is not shown in "Figure 7"; (7) Provide intelligent medical record inspection Viewing function (step S70 ): a foreground subsystem 108 provides a viewer V to the information device 20 , so that the intelligent medical record SMR including the auxiliary interpretation reference table SMR_T can be displayed on the viewer V.

請繼續參閱「第8圖」,其為本發明之另一較佳實施例(一),並請搭配參閱「第1圖」~「第2圖」,本實施例與「第1圖」~「第7圖」所揭技術類同,主要差異在於,本實施例的核保理賠輔助系統10更可包括與處理器101資訊連接的一關鍵字校正子系統109,其供處理器101觸發後,可對關鍵字提取子系統104執行斷詞處理後的該等關鍵字串(例如第8圖所示的”The History !!! of @rug abuse”),執行一拼字檢查(spellcheck),以從資料庫102儲存的多筆關鍵字句中,比對出最接近的關鍵字句(例如第8圖所示的”The History of Drug Abuse”),並對關鍵字串中無意義或錯誤的部分(例如第8圖所示的”!!!”及”@”)予以移除(例如刪除”!!!”)及修正(例如將”@”修正為”d”),以生成可供關鍵字解析子系統105構建電子病歷MR的語法結構、分析病歷時間及語意所需的一關鍵字串校正結果;換言之,本發明所揭露的核保理賠輔助系統的實施方法,更可包括以下步驟:關鍵字校正(步驟S15):關鍵字校正子系統109可對步驟S10(關鍵字提取)執行後所擷取的該等關鍵字串,執行拼字檢查,以從資料庫102儲存的多筆關鍵字句中,比對出最接近的關鍵字句,並對關鍵字串中無意義或錯誤的部分予以移除及修正,以生成步驟S20(語法語意分析)於構建電子病歷MR的語法結構、分析病歷時間及語意所需的一關鍵字串校正結果;Please continue to refer to "Fig. 8", which is another preferred embodiment (1) of the present invention, and please refer to "Fig. 1" ~ "Fig. 2" in conjunction with this embodiment and "Fig. 1" ~ The technology disclosed in FIG. 7 is similar, the main difference is that the underwriting and claim settlement assistance system 10 of this embodiment may further include a keyword correction subsystem 109 that is informationally connected to the processor 101, which is used for triggering by the processor 101. , the keyword extraction subsystem 104 can perform word segmentation processing on the keyword strings (for example, "The History !!! of @rug abuse" shown in FIG. 8 ), perform a spell check, In order to compare the most similar keyword sentences (such as "The History of Drug Abuse" shown in Figure 8) from the multiple keyword sentences stored in the database 102, and compare the meaningless or wrong keyword strings (such as "!!!" and "@" as shown in Figure 8) are removed (such as deleting "!!!") and corrected (such as correcting "@" to "d") to generate For the keyword parsing subsystem 105 to construct the grammatical structure of the electronic medical record MR, to analyze the time and semantics of the medical record, a keyword string correction result required; Step: Keyword Correction (Step S15 ): The keyword correction subsystem 109 may perform spell checking on the keyword strings retrieved after the execution of Step S10 (Keyword Extraction), so as to obtain a number of stored keywords from the database 102 . In the key sentences of the pen, the closest key sentences are compared, and the meaningless or wrong parts in the key string are removed and corrected, so as to generate step S20 (grammar and semantic analysis) for constructing the grammar of the electronic medical record MR A keyword string correction result required for structure, analysis time and semantics of medical records;

承上,請繼續參閱「第8圖」,並請搭配參閱「第1圖」~「第2圖」,本實施例的資料庫102亦可儲存一詞彙分析器(lexical analyzer)所創建的一符號表(symbol table),以供關鍵字校正子系統109亦可依據符號表,對前述經過斷詞處理後的關鍵字串,檢核各單詞(Token)所屬的模式(Pattern)是否符合符號表的規範,例如若單詞為時間表達分類,則檢核關鍵字串當中的時間字串的表達形式(lexeme)是否表示為包含日期、年分、時刻或其任意組合的形式,並予以修正或移除。As mentioned above, please continue to refer to "Fig. 8", and please refer to "Fig. 1" ~ "Fig. 2" in conjunction. The database 102 of this embodiment can also store a lexical analyzer created by a lexical analyzer. A symbol table, for the keyword correction subsystem 109 to check whether the pattern (Pattern) to which each word (Token) belongs conforms to the symbol table for the aforementioned keyword string after word segmentation processing according to the symbol table For example, if the word is a time expression classification, check whether the expression form (lexeme) of the time string in the keyword string is expressed as a form including date, year, time or any combination thereof, and correct or shift it. remove.

請繼續參閱「第9圖」,其為本發明之另一較佳實施例(二),並請搭配參閱「第1圖」~「第2圖」,本實施例與「第1圖」~「第7圖」所揭技術類同,主要差異在於,在本實施例的核保理賠輔助系統10中,前台子系統108亦可提供耦接於檢視器V的一搜尋器S,以供資訊裝置20於檢視器V中界定一指定搜尋病症(例如指定搜尋”肝炎”或”肝硬化”),以搜尋出一指定搜尋結果S_T,其中,指定搜尋結果S_T可為一資料表(Table),並可進一步包含例如一指定搜尋病症(例如肝炎或肝硬化)、一條款比對結果(例如肝炎或肝硬化是否有出現於”被保險人健康告知條款”)、一索引頁數(例如第9圖所示的P6、P5)、一電子病歷描述段落、一病歷時間(例如第9圖所示的”1998”,”2011/08”)及至少一疾病標準碼(例如第9圖所示的ICD 9、ICD 10或其組合),前述的指定搜尋病症可為關鍵字解析子系統105欲從醫學詞彙參照表MD_T比對的特定該醫學詞彙、或欲從該疾病分類參照表解析出的特定該疾病標準碼、或判斷該疾病名稱是否匹配於該保險條款的特定該疾病關鍵字串的篩選依據,並且,本發明在一較佳實施例中,搜尋器S亦可供資訊裝置20於檢視器V界定一病歷時間區間,前述的病歷時間區間為關鍵字解析子系統105基於關鍵字提取子系統104對於該等時間字串的擷取結果,解析出特定病歷時間的篩選依據;換言之,本發明所揭露的核保理賠輔助系統的實施方法,更可包括以下步驟:提供搜尋器功能(步驟S35):前台子系統108為資訊裝置20提供一搜尋器S,以供資訊裝置20於檢視器V界定一指定搜尋病症及一病歷時間,其中,指定搜尋病症為步驟S30(比對參照表)於執行時,欲比對的特定該醫學詞彙或欲解析的特定該疾病標準碼的依據,亦可為步驟S40(比對保險條款)於執行時欲判斷是否匹配於特定該疾病關鍵字串的篩選依據。Please continue to refer to "Fig. 9", which is another preferred embodiment (2) of the present invention, and please refer to "Fig. 1" ~ "Fig. 2" in conjunction with this embodiment and "Fig. 1" ~ The technology disclosed in FIG. 7 is similar, but the main difference is that, in the underwriting and claim settlement assistance system 10 of the present embodiment, the front-end subsystem 108 can also provide a searcher S coupled to the viewer V for information The device 20 defines a specified search condition (for example, specified search "hepatitis" or "liver cirrhosis") in the viewer V to search for a specified search result S_T, wherein the specified search result S_T may be a data table (Table), It may further include, for example, a specified search condition (such as hepatitis or liver cirrhosis), a clause comparison result (such as whether hepatitis or liver cirrhosis appears in the "insured person's health notification clause"), an index page number (such as the 9th P6 and P5 shown in the figure), an electronic medical record description paragraph, a medical record time (such as "1998", "2011/08" shown in Figure 9) and at least one disease standard code (such as shown in Figure 9) ICD 9, ICD 10 or a combination thereof), the aforementioned specified search condition may be the specific medical term that the keyword parsing subsystem 105 wants to compare from the medical term reference table MD_T, or the specific medical term to be parsed from the disease classification reference table The disease standard code, or the screening basis for judging whether the disease name matches the specific disease keyword string of the insurance clause, and, in a preferred embodiment of the present invention, the search engine S is also available for the information device 20 to view The device V defines a medical record time interval, and the aforementioned medical record time interval is the basis for filtering out a specific medical record time by the keyword parsing subsystem 105 based on the retrieval results of the keyword extraction subsystem 104 for these time strings; in other words, this The implementation method of the underwriting and claim settlement assistance system disclosed by the invention may further include the following steps: providing a searcher function (step S35 ): the front-end subsystem 108 provides a searcher S for the information device 20 for the information device 20 to search the viewer V defines a specified search condition and a medical record time, wherein the specified search condition is the basis for the specific medical term to be compared or the specific disease standard code to be parsed when step S30 (comparing the reference table) is executed, and also The step S40 (comparing insurance terms) may be a screening basis for determining whether it matches the specific keyword string of the disease.

請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,本實施例的指定搜尋結果S_T亦得以各指定搜尋病症的發生時間的先後順序(例如第8圖的”1998”→”2011/08”→”1998”),以例如一時間序列表(Timeline Table)的形式進行排列的數據點序列,以提供給檢閱病歷的核保或理賠人員,更清楚瞭解病歷內事件發生的時序關係,協助核保或理賠人員縮短審核非結構化文本的時間,但並不以此為限;其中,本實施例為呈現前述的時間序列表,處理器101得以資料庫102儲存的一時序關係訓練資料集為基礎,使關鍵字提取子系統104利用一預訓練(pre-trained)自然語言處理模型,對電子病歷MR中的多個字元序列(即給定語句)分割為多個單詞(Token)組成的單詞序列,並分別標示各單詞的分類為一事件(Event)、一時間表達(Time expressions)或一其它的分類,但並不以此為限;其後,處理器101可再使關鍵字解析子系統105利用前述的預訓練自然語言處理模型,對關鍵字提取子系統104所分割出的單詞序列(包含事件、時間表達…等),提取各事件於一給定語句(字元序列)中的時序關係,並將時序關係分類為例如「之前(before)」、「之後(after)」與「重疊(overlap)」,其後,關鍵字解析子系統105再基於各事件於給定語句(字元序列)中的時序關係,以及各事件在各語句之間的時間表達可能路徑,解析出各事件在多個給定語句(字元序列)中的時序關係,進而能產生一或多個時間圖(Temporal Graph),以由各時間圖描述各電子病歷MR內事件的時間關係,進而作為生成例如時間序列表的依據。Please continue to refer to "Fig. 9", and please refer to "Fig. 1" ~ "Fig. 2". The designated search results S_T in this embodiment can also be based on the order of occurrence time of each designated search disease (for example, Fig. 8). "1998"→"2011/08"→"1998"), a sequence of data points arranged in the form of, for example, a time series table (Timeline Table), to provide the underwriting or claims adjusters who review the medical records for a clearer understanding The time sequence relationship of events in the medical record helps underwriting or claims adjusters to shorten the time for reviewing unstructured texts, but is not limited to this; wherein, in this embodiment, the aforementioned time sequence table is presented, and the processor 101 can access the database Based on a time series relationship training data set stored in 102, the keyword extraction subsystem 104 uses a pre-trained (pre-trained) natural language processing model to analyze multiple character sequences (ie, given sentences) in the electronic medical record MR. It is divided into word sequences composed of multiple words (Token), and the classification of each word is respectively marked as an event (Event), a time expression (Time expressions) or an other classification, but not limited to this; , the processor 101 can then make the keyword parsing subsystem 105 use the aforementioned pre-trained natural language processing model to extract each event from the word sequence (including events, time expressions, etc.) segmented by the keyword extraction subsystem 104. A temporal relationship in a given sentence (character sequence), and the temporal relationship is classified into, for example, "before", "after" and "overlap", after which the keyword parsing subsystem 105 Then, based on the temporal relationship of each event in a given sentence (character sequence), and the time expression possible path of each event between each sentence, parse out the relationship between each event in a plurality of given sentences (character sequence). The temporal relationship can then generate one or more Temporal Graphs, so that the temporal relationship of events in each electronic medical record MR can be described by each temporal graph, which is then used as a basis for generating, for example, a temporal sequence table.

承上,請繼續參閱「第9圖」,本實施例於前述所提及的時序關係訓練資料集,係可參考「Evaluating temporal relations in clinical text:2012 i2b2 Challenge ;引用資訊: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756273/」所提出的clinical temporal relation corpus資料集。Continuing from the above, please continue to refer to "Figure 9". For the temporal relationship training data set mentioned above in this embodiment, please refer to "Evaluating temporal relations in clinical text: 2012 i2b2 Challenge; reference information: https://www .ncbi.nlm.nih.gov/pmc/articles/PMC3756273/" clinical temporal relation corpus dataset.

承上,請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,本實施例所提及的預訓練自然語言處理模型可為一BERT(Bidirectional Encoder Representations from Transformers)語言代表模型、一長短期記憶網路(Long Short Term Memory Network, LSTM)模型;並且,前述的BERT語言代表模型可為對自然語言有一定理解且預先訓練後的通用模型,故關鍵字提取子系統104可利用BERT語言代表模型進行二階段的遷移學習(Transfer Learning),以於完成參數的微調(fine-tune)後,於本發明所應用的醫學領域進行監督式訓練的詞法分析任務(即於步驟S10執行時,將字符序列轉換為token序列的任務)。As mentioned above, please continue to refer to "Figure 9", and please refer to "Figure 1" ~ "Figure 2", the pre-trained natural language processing model mentioned in this embodiment can be a BERT (Bidirectional Encoder Representations from Transformers) language representative model, a Long Short Term Memory Network (LSTM) model; and, the aforementioned BERT language representative model can be a general model that has a certain understanding of natural language and is pre-trained, so the keyword The extraction subsystem 104 can use the BERT language representative model to perform two-stage transfer learning (Transfer Learning), so as to perform supervised training lexical analysis in the medical field to which the present invention is applied after the fine-tuning of parameters is completed. The task (that is, the task of converting the character sequence into the token sequence when step S10 is executed).

承上,請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,當本實施例之關鍵字提取子系統104以BERT語言代表模型進行前述的詞法分析任務時,係可利用例如Google AI Language發表的「Bert: Pre-training of deep bidirectional transformers for language understanding;參考資訊可見於:https://arxiv.org/pdf/1810.04805.pdf」,以及「classtransformers.BertForTokenClassification(BertPreTrainedModel);參考資訊可見於:https://huggingface.co/transformers/model_doc/bert.html#bertfortokenclassification」等技術,但並不以上述所提及的模型為限。Continuing from the above, please continue to refer to "Fig. 9", and please refer to "Fig. 1" ~ "Fig. 2" in combination, when the keyword extraction subsystem 104 of this embodiment uses the BERT language representative model to perform the aforementioned lexical analysis For tasks, the system can use, for example, "Bert: Pre-training of deep bidirectional transformers for language understanding" published by Google AI Language; reference information can be found at: https://arxiv.org/pdf/1810.04805.pdf", and "classtransformers. BertForTokenClassification(BertPreTrainedModel); reference information can be found in: https://huggingface.co/transformers/model_doc/bert.html#bertfortokenclassification" and other technologies, but it is not limited to the models mentioned above.

承上,請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,當本實施例之關鍵字解析子系統105以長短期記憶網路(LSTM)模型提取各事件於給定語句中的時序關係時,係可利用例如「LSTM-Based Model for Extracting Temporal Relations from Korean Text;參考資訊可見於:https://ieeexplore.ieee.org/abstract/document/8367201」之相關技術,但並不以該文獻所使用的韓語文本為限,而在關鍵字解析子系統105以長短期記憶網路(LSTM)模型以解析出各事件在多個給定語句中的時序關係,進而產生時間圖時,係可利用例如「Towards generating a patient's timeline: Extracting temporal relationships from clinical notes;參考資訊可見於:https://www.ncbi.nlm.nih.gov/pubmed/24212118」之相關技術,但並不以此為限。Continuing from the above, please continue to refer to "Fig. 9", and please refer to "Fig. 1" ~ "Fig. 2" in combination, when the keyword parsing subsystem 105 of this embodiment uses a long short-term memory network (LSTM) model to extract For the temporal relationship of events in a given statement, for example, "LSTM-Based Model for Extracting Temporal Relations from Korean Text; reference information can be found at: https://ieeexplore.ieee.org/abstract/document/8367201" However, it is not limited to the Korean text used in this document, and the keyword parsing subsystem 105 uses a Long Short-Term Memory (LSTM) model to parse out the time sequence of each event in a plurality of given sentences For example, "Towards generating a patient's timeline: Extracting temporal relationships from clinical notes; reference information can be found at: https://www.ncbi.nlm.nih.gov/pubmed/24212118" related technologies, but not limited thereto.

請繼續參閱「第10圖」,其為本發明之另一較佳實施例(三),並請搭配參閱「第1圖」~「第2圖」,本實施例與「第1圖」~「第7圖」所揭技術類同,主要差異在於,在本實施例的核保理賠輔助系統10中,前台子系統108亦可提供耦接於檢視器V的一篩選器F,篩選器F可包含一病症檢視清單F_LIST(例如包含”健康告知病症”、”其它參考資訊”其包含一或多個篩選項目F_ITEM,篩選項目F_ITEM可至少對應於關鍵字解析子系統105所解析出的各疾病名稱,且各篩選項目F_ITEM包含可導引至電子病歷MR中有關關鍵字串的一索引連結L1,更具體而言,當資訊裝置20觸發篩選器F之其中一篩選項目F_ITEM(如圖中所示的”Page 4:hypertension”)所附帶的索引連結L1後,前台子系統108即可導引資訊裝置20切換至標記有第一識別標記H1之關鍵字串”hypertension” 的電子病歷頁面,相對地,當資訊裝置20觸發篩選器F之其中一篩選項目F_ITEM(如圖中所示的”Page 4:Cardiomegaly”)所附帶的索引連結L1後,前台子系統108即可導引資訊裝置20切換至標記有第一識別標記H1的關鍵字串”Cardiomegaly”的電子病歷頁面;換言之,本發明所揭露的核保理賠輔助系統的實施方法S,更可包括以下步驟:提供篩選器功能(S80):前台子系統108為資訊裝置20提供一篩選器F,篩選器F可包含一病症檢視清單F_LIST,病症檢視清單F_LIST可包含一或多個篩選項目F_ITEM,各篩選項目F_ITEM分別對應於步驟S30(比對參照表)執行時所解析出的各疾病名稱,且各篩選項目F_ITEM包含可導引至電子病歷MR中有關關鍵字串的索引連結L1;Please continue to refer to "Fig. 10", which is another preferred embodiment (3) of the present invention, and please refer to "Fig. 1" ~ "Fig. 2" in conjunction with this embodiment and "Fig. 1" ~ The technology disclosed in FIG. 7 is similar, but the main difference is that, in the underwriting and claim settlement assistance system 10 of this embodiment, the front-end subsystem 108 can also provide a filter F coupled to the viewer V, and the filter F It can include a disease inspection list F_LIST (for example, including "health notification disease", "other reference information", which includes one or more screening items F_ITEM, and the screening item F_ITEM can at least correspond to each disease parsed by the keyword analysis subsystem 105 name, and each filter item F_ITEM includes an index link L1 that can lead to the relevant keyword string in the electronic medical record MR. More specifically, when the information device 20 triggers one of the filter items F_ITEM in the filter F (as shown in the figure) After the index link L1 attached to the shown “Page 4: hypertension”), the foreground subsystem 108 can guide the information device 20 to switch to the electronic medical record page marked with the keyword string “hypertension” of the first identification mark H1. Specifically, when the information device 20 triggers the index link L1 attached to one of the filter items F_ITEM in the filter F (“Page 4: Cardiomegaly” as shown in the figure), the foreground subsystem 108 can guide the information device 20 to switch Go to the electronic medical record page marked with the keyword string "Cardiomegaly" with the first identification mark H1; in other words, the implementation method S of the underwriting and claim settlement assistant system disclosed in the present invention may further include the following steps: providing a filter function (S80) : The front-end subsystem 108 provides a filter F for the information device 20. The filter F may include a disease inspection list F_LIST, and the disease inspection list F_LIST may include one or more screening items F_ITEM, and each screening item F_ITEM corresponds to step S30 ( The name of each disease parsed during the execution of the comparison reference table), and each screening item F_ITEM includes an index link L1 that can lead to the relevant keyword string in the electronic medical record MR;

承上,請繼續參閱「第10圖」,並請搭配參閱「第1圖」,本實施例的第一識別標記H1經資訊裝置20觸發後(例如點擊),亦可使前台子系統108於標記有第一識別標記H1的關鍵字串”Cardiomegaly”或”Page 4:Cardiomegaly”顯示一註解資訊COM,其中,註解資訊COM可包含一註釋資訊(例如”Hypertensive Disorder 高血壓疾病”)、一時間資訊、一分類資訊(例如”疾病”)及至少一疾病標準碼(例如第10圖的ICD9CM與ICD10CM),但並不以此為限。As mentioned above, please continue to refer to "Fig. 10", and please refer to "Fig. 1" in combination. After the first identification mark H1 of this embodiment is triggered by the information device 20 (for example, clicked), the front-end subsystem 108 can also be activated in The keyword string "Cardiomegaly" or "Page 4: Cardiomegaly" marked with the first identification mark H1 displays an annotation information COM, wherein the annotation information COM may include an annotation information (for example, "Hypertensive Disorder Hypertension disease"), a time information, a classification information (eg "disease") and at least one disease standard code (eg, ICD9CM and ICD10CM in Figure 10), but not limited thereto.

綜上可知,本發明據以實施後,至少可達成大幅提升核保或理賠人員之審核效率、降低完整閱讀病歷的時間、降低核保/理賠工作的學習成本、降低核保/理賠之誤判可能性、減少因被保險人隱匿既往症而損失理賠金及有效輔助核保/理賠人員進行更精準比對的有益功效。To sum up, after the implementation of the present invention, it can at least greatly improve the review efficiency of underwriting or claim settlement personnel, reduce the time for completely reading medical records, reduce the learning cost of underwriting/claim settlement work, and reduce the possibility of misjudgment of underwriting/claim settlement. It has the beneficial effects of reducing the loss of claims due to the concealed pre-existing conditions of the insured and effectively assisting the underwriting/claims personnel to make more accurate comparisons.

以上所述者,僅為本發明之較佳之實施例而已,並非用以限定本發明實施之範圍;任何熟習此技藝者,在不脫離本發明之精神與範圍下所作之均等變化與修飾,皆應涵蓋於本發明之專利範圍內。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; any person who is familiar with this technique, without departing from the spirit and scope of the present invention, makes equal changes and modifications, all It should be covered within the patent scope of the present invention.

綜上所述,本發明係具有「產業利用性」、「新穎性」與「進步性」等專利要件;申請人爰依專利法之規定,向 鈞局提起發明專利之申請。To sum up, the invention has the patent requirements of "industrial applicability", "novelty" and "progressiveness"; the applicant should file an application for an invention patent with the Jun Bureau in accordance with the provisions of the Patent Law.

10:核保理賠輔助系統 101:處理器 102:資料庫 103:第二資料庫 104:關鍵字提取子系統 105:關鍵字解析子系統 106:資料標記子系統 107:資訊整合子系統 108:前台子系統 109:關鍵字校正子系統 20:資訊裝置 ICD_T:疾病分類參照表 MD_T:醫學詞彙參照表 IC:保險條款 MR:電子病歷 SMR:智能化病歷 SMR_T:輔助判讀參照表 H1:第一識別標記 H2:第二識別標記 COM:註解資訊 L1:索引連結 V:檢視器 S:搜尋器 S_T:指定搜尋結果 F:篩選器 F_LIST:病症檢視清單 F_ITEM:篩選項目 30:網路 S:核保理賠輔助系統的實施方法 S10:關鍵字提取 S15:關鍵字校正 S20:語法語意分析 S30:比對參照表 S35:提供搜尋器功能 S40:比對保險條款 S50:關鍵字標記 S60:整合智能化病歷 S70:提供智能化病歷檢視功能 S80:提供篩選器功能10: Auxiliary system for underwriting claims 101: Processor 102:Database 103: Second Database 104: Keyword Extraction Subsystem 105:Keyword Parsing Subsystem 106: Data Marking Subsystem 107: Information Integration Subsystem 108: Front-end subsystem 109: Keyword Correction Subsystem 20: Information Devices ICD_T: Disease classification reference table MD_T: Medical Vocabulary Reference List IC: Insurance Clause MR: Electronic Medical Record SMR: Smart Medical Records SMR_T: Auxiliary interpretation reference table H1: First identification mark H2: Second identification mark COM: Annotation information L1: index link V: Viewer S: Searcher S_T: Specify search results F: Filter F_LIST: Illness inspection list F_ITEM: Filter items 30: Internet S: Implementation Method of Underwriting Claims Auxiliary System S10: Keyword Extraction S15: Keyword Correction S20: Grammar and Semantic Analysis S30: Comparison reference table S35: Provide search function S40: Compare insurance terms S50: Keyword Tag S60: Integrate intelligent medical records S70: Provide intelligent medical record viewing function S80: Provides filter function

第1圖,為本發明之系統架構圖。 第2圖,為本發明之系統實施流程圖。 第3圖,為本發明之實施示意圖(一)。 第4圖,為本發明之實施示意圖(二)。 第5圖,為本發明之實施示意圖(三)。 第6圖,為本發明之實施示意圖(四)。 第7圖,為本發明之實施示意圖(五)。 第8圖,為本發明之另一較佳實施例(一)。 第9圖,為本發明之另一較佳實施例(二)。 第10圖,為本發明之另一較佳實施例(三)。FIG. 1 is a system architecture diagram of the present invention. Fig. 2 is a flow chart of the system implementation of the present invention. FIG. 3 is a schematic diagram (1) of the implementation of the present invention. FIG. 4 is a schematic diagram (2) of the implementation of the present invention. Fig. 5 is a schematic diagram (3) of the implementation of the present invention. Fig. 6 is a schematic diagram (4) of the implementation of the present invention. FIG. 7 is a schematic diagram (5) of the implementation of the present invention. Fig. 8 is another preferred embodiment (1) of the present invention. Fig. 9 is another preferred embodiment (2) of the present invention. Fig. 10 is another preferred embodiment (3) of the present invention.

S:核保理賠輔助系統的實施方法 S: Implementation Method of Underwriting Claims Auxiliary System

S10:關鍵字提取 S10: Keyword Extraction

S20:語法語意分析 S20: Grammar and Semantic Analysis

S30:比對參照表 S30: Comparison reference table

S40:比對保險條款 S40: Compare insurance terms

S50:關鍵字標記 S50: Keyword Tag

S60:整合智能化病歷 S60: Integrate intelligent medical records

S70:提供智能化病歷檢視功能 S70: Provide intelligent medical record viewing function

Claims (8)

一種核保理賠輔助系統,可基於一電子病歷生成一智能化病歷,以供一資訊裝置瀏覽該智能化病歷,包含:一處理器,另有一資料庫、一第二資料庫、一關鍵字提取子系統、一關鍵字解析子系統、一資料標記子系統、一資訊整合子系統及一前台子系統分別與該處理器資訊連接;該資料庫儲存有一疾病分類參照表、一醫學詞彙參照表、一保險條款及該電子病歷;該關鍵字提取子系統供該處理器觸發,以從儲存於該資料庫的該電子病歷擷取多筆關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元;該關鍵字解析子系統供該處理器觸發以基於該關鍵字提取子系統的擷取結果,以構建該電子病歷的語法結構、分析一病歷時間,以及分析該等關鍵字串的一語意,再基於該等語意從該醫學詞彙參照表比對出多筆醫學詞彙,再基於該等語意與該等醫學詞彙,從該疾病分類參照表解析出至少一疾病標準碼,再判斷該疾病標準碼所對應之一疾病名稱是否匹配於該保險條款的一疾病關鍵字串,以生成一條款比對結果;該資料標記子系統供該處理器觸發,以對該電子病歷中的該等關鍵字串,賦予關聯於該疾病名稱之可視的多個第一識別標記,亦供以對一輔助判讀參照表賦予對應於該條款比對結果的一第二識別標記; 該資訊整合子系統供該處理器觸發以產生儲存於該第二資料庫的該輔助判讀參照表,再將該電子病歷、該等第一識別標記、該第二識別標記及該輔助判讀參照表,整合為該智能化病歷,其中該輔助判讀參照表至少包含被解析出的該疾病名稱、該第二識別標記及該疾病標準碼;該資訊裝置經由一網路連結至該前台子系統,以讀取該第二資料庫後,該前台子系統提供該資訊裝置一檢視器,而使包含該輔助判讀參照表的該智能化病歷呈現於該檢視器;以及該前台子系統亦供以提供耦接於該檢視器的一搜尋器,供該資訊裝置於該檢視器界定一指定搜尋病症,該指定搜尋病症為該關鍵字解析子系統欲從該醫學詞彙參照表比對的特定該醫學詞彙、或欲從該疾病分類參照表解析出的特定該疾病標準碼、或判斷該疾病名稱是否匹配於該保險條款的特定該疾病關鍵字串的篩選依據。 An auxiliary system for underwriting and claim settlement, which can generate an intelligent medical record based on an electronic medical record for an information device to browse the intelligent medical record, comprising: a processor, another database, a second database, and a keyword extraction The subsystem, a keyword parsing subsystem, a data marking subsystem, an information integration subsystem and a foreground subsystem are respectively connected with the processor information; the database stores a disease classification reference table, a medical vocabulary reference table, an insurance clause and the electronic medical record; the keyword extraction subsystem is triggered by the processor to extract a plurality of keyword strings from the electronic medical record stored in the database, and the keyword strings include a medical keyword , a time string, a numerical string, and a symbol character; the keyword parsing subsystem is triggered by the processor to extract the results of the subsystem based on the keyword, so as to construct the grammatical structure and analysis of the electronic medical record A medical record time, and analyzing a semantic meaning of the keyword strings, and then comparing a plurality of medical terms from the medical vocabulary reference table based on the semantic meaning, and then referring to the disease classification based on the semantic meaning and the medical vocabulary The table parses out at least one disease standard code, and then judges whether a disease name corresponding to the disease standard code matches a disease keyword string of the insurance clause to generate a clause comparison result; the data marking subsystem is used for the processing The trigger is triggered to assign a plurality of visible first identification marks associated with the disease name to the keyword strings in the electronic medical record, and also to assign a reference table to an auxiliary interpretation reference table corresponding to the comparison result of the item. a second identification mark; The information integration subsystem is triggered by the processor to generate the auxiliary interpretation reference table stored in the second database, and then the electronic medical record, the first identification marks, the second identification mark and the auxiliary interpretation reference table , integrated into the intelligent medical record, wherein the auxiliary interpretation reference table at least includes the parsed disease name, the second identification mark and the disease standard code; the information device is connected to the front-end subsystem through a network to After reading the second database, the front-end subsystem provides a viewer for the information device, so that the intelligent medical record including the auxiliary interpretation reference table is displayed on the viewer; and the front-end subsystem also provides a coupling A searcher connected to the viewer, for the information device to define a specified search condition in the viewer, the specified search condition being the specific medical term that the keyword parsing subsystem wants to compare from the medical term reference table, Or the specific disease standard code to be parsed from the disease classification reference table, or the screening basis for judging whether the disease name matches the specific disease keyword string of the insurance clause. 如申請專利範圍第1項的核保理賠輔助系統,其中,該保險條款為一健康告知條款、一核保條款及一理賠條款之其中一種或其組合。 If applying for the underwriting and claims assistance system in the first item of the patent scope, wherein, the insurance clause is one of a health notification clause, an underwriting clause and a claim settlement clause or a combination thereof. 如申請專利範圍第1項的核保理賠輔助系統,更包括與該處理器資訊連接的一關鍵字校正子系統,供該處理器觸發後,對該關鍵字提取子系統所擷取的該等關鍵字串,執行一拼字檢查,以從該資料庫儲存的多筆關鍵字句中,比對 出最接近的該關鍵字句,並對該關鍵字串中無意義或錯誤的部分予以移除,以生成可供該關鍵字解析子系統構建該電子病歷的語法結構、該病歷時間及該語意所需的一關鍵字串校正結果。 For example, the underwriting and claim settlement assistance system of item 1 of the scope of the application further includes a keyword correction subsystem connected with the processor information for triggering the processor to retrieve the keywords extracted by the keyword extraction subsystem. Keyword strings, perform a spell check to compare multiple key phrases stored in the database extract the closest keyword sentence, and remove the meaningless or wrong part of the keyword string to generate the grammatical structure, the medical record time and the semantics for the keyword parsing subsystem to construct the electronic medical record The desired string of correction results. 如申請專利範圍第1項的核保理賠輔助系統,其中,該搜尋器亦可供該資訊裝置於該檢視器界定一病歷時間區間,該病歷時間區間為該關鍵字解析子系統基於該關鍵字提取子系統對於該等時間字串的擷取結果,解析出該病歷時間的篩選依據。 As claimed in claim 1 of the scope of the application, wherein the searcher can also be used by the information device to define a medical record time interval in the viewer, and the medical record time interval is the keyword parsing subsystem based on the keyword The extraction subsystem parses out the screening basis of the medical record time based on the retrieval results of the time strings. 如申請專利範圍第1項的核保理賠輔助系統,其中,該前台子系統亦供以提供耦接於該檢視器的一篩選器,該篩選器包含一病症檢視清單,其包含一或多個篩選項目,各該篩選項目分別對應於該關鍵字解析子系統所解析出的各該疾病名稱,且各該篩選項目包含可導引至該電子病歷中有關該關鍵字串的一索引連結。 As claimed in claim 1 of the scope of the application, wherein the front-end subsystem is also provided for providing a filter coupled to the viewer, the filter including a disease inspection list, which includes one or more Screening items. Each screening item corresponds to each disease name parsed by the keyword analysis subsystem, and each screening item includes an index link that can lead to the keyword string in the electronic medical record. 一種核保理賠輔助系統的實施方法,包含:一關鍵字提取步驟:一關鍵字提取子系統從一電子病歷擷取多筆關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元; 一語法語意分析步驟:一關鍵字解析子系統基於該關鍵字提取子系統的擷取結果,構建該電子病歷的語法結構、分析一病歷時間,以及分析該等關鍵字串的一語意;一比對參照表步驟:該關鍵字解析子系統基於該等語意從一醫學詞彙參照表比對出多筆醫學詞彙,再基於該等語意與該等醫學詞彙,從一疾病分類參照表解析出至少一疾病標準碼及對應該疾病標準碼的一疾病名稱;一比對保險條款步驟:該關鍵字解析子系統判斷該疾病標準碼所對應之該疾病名稱是否匹配於一保險條款的一疾病關鍵字串,以生成一條款比對結果;一關鍵字標記步驟:一資料標記子系統對該電子病歷中的該等關鍵字串,賦予關聯於該疾病名稱之可視的多個第一識別標記,亦對一輔助判讀參照表賦予對應於該條款比對結果的一第二識別標記;一整合智能化病歷步驟:一資訊整合子系統產生該輔助判讀參照表,再將該電子病歷、該等第一識別標記、該第二識別標記及該輔助判讀參照表,整合為一智能化病歷,其中,該輔助判讀參照表至少包含被解析出的該疾病名稱、該第二識別標記及該疾病標準碼;一提供智能化病歷檢視功能步驟:一前台子系統提供該資訊裝置一檢視器,而使包含該輔助判讀參照表的該智能化病歷呈現於該檢視器;以及一提供搜尋器功能步驟:該前台子系統為該資訊裝置提供一搜尋器,以供該資訊裝置於該檢視器界定一指定搜尋病 症、一病歷時間區間,其中,該指定搜尋病症為該關鍵字解析子系統欲比對的特定該醫學詞彙、欲解析的特定該疾病標準碼、或欲判斷是否匹配於特定該疾病關鍵字串的篩選依據。 An implementation method of an underwriting and claims assistance system, comprising: a keyword extraction step: a keyword extraction subsystem extracts multiple keyword strings from an electronic medical record, and the keyword strings include a medical keyword, a time string, a numeric string, and a symbolic character; A grammatical and semantic analysis step: a keyword parsing subsystem constructs a grammatical structure of the electronic medical record, analyzes a medical record time, and analyzes a semantics of the keyword strings based on the retrieval results of the keyword extraction subsystem; a comparison The step of comparing the reference table: the keyword parsing subsystem compares a plurality of medical terms from a medical vocabulary reference table based on the semantics, and then parses at least one disease classification reference table based on the semantics and the medical vocabulary. Disease standard code and a disease name corresponding to the disease standard code; a comparison insurance clause step: the keyword parsing subsystem determines whether the disease name corresponding to the disease standard code matches a disease keyword string of an insurance clause , to generate an item comparison result; a keyword marking step: a data marking subsystem assigns a plurality of visible first identification marks associated with the disease name to the keyword strings in the electronic medical record, and also marks the keyword strings in the electronic medical record. An auxiliary interpretation reference table is assigned a second identification mark corresponding to the comparison result of the item; a step of integrating intelligent medical records: an information integration subsystem generates the auxiliary interpretation reference table, and then the electronic medical record, the first identification The mark, the second identification mark and the auxiliary interpretation reference table are integrated into an intelligent medical record, wherein the auxiliary interpretation reference table at least includes the parsed disease name, the second identification mark and the disease standard code; a Steps of providing an intelligent medical record viewing function: a front-end subsystem provides the information device with a viewer, so that the intelligent medical record including the auxiliary interpretation reference table is displayed on the viewer; and a step of providing a searcher function: the front-end screen The system provides a searcher for the information device for the information device to define a specified search query in the viewer disease, a medical record time interval, wherein the specified search disease is the specific medical term to be compared by the keyword parsing subsystem, the specific disease standard code to be parsed, or the specific disease keyword string to be judged whether it matches filter basis. 如申請專利範圍第6項的核保理賠輔助系統的實施方法,更包括一關鍵字校正步驟:一關鍵字校正子系統對該關鍵字提取步驟執行後所擷取的該等關鍵字串,執行一拼字檢查,以從該資料庫儲存的多筆關鍵字句中,比對出最接近的該關鍵字句,並對該關鍵字串中無意義或錯誤的部分予以移除,以生成該比對參照表步驟執行時,構建該電子病歷的語法結構、分析該病歷時間以及該語意所需的一關鍵字串校正結果。 For example, the implementation method of the underwriting and claim settlement assistance system according to item 6 of the scope of the patent application further includes a keyword correction step: a keyword correction subsystem executes the keyword strings extracted after the keyword extraction step, and executes a spelling check, to compare the closest key phrase from the multiple key phrases stored in the database, and remove the meaningless or wrong part of the key string to generate the When the step of comparing the reference table is executed, the grammatical structure of the electronic medical record is constructed, the time of analyzing the medical record, and the correction result of a keyword string required for the semantics. 如申請專利範圍第6項的核保理賠輔助系統的實施方法,更包括一提供篩選器功能步驟:該前台子系統為該資訊裝置提供一篩選器,該篩選器包含一病症檢視清單,其包含一或多個篩選項目,各該篩選項目分別對應於該比對參照表步驟於執行時所解析出的各該疾病名稱,且各該篩選項目包含可導引至該電子病歷中有關該關鍵字串的一索引連結。 For example, the implementation method of the underwriting and claim settlement assistance system in the sixth item of the patent application scope further includes a step of providing a filter function: the front-end subsystem provides a filter for the information device, and the filter includes a disease inspection list, which includes One or more screening items, each of which corresponds to each of the disease names parsed during the execution of the comparison reference table step, and each of the screening items includes the keyword that can lead to the electronic medical record An indexed concatenation of strings.
TW108136180A 2019-10-05 2019-10-05 Insurance claim and underwriting assistance system and implementation method thereof TWI750513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108136180A TWI750513B (en) 2019-10-05 2019-10-05 Insurance claim and underwriting assistance system and implementation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108136180A TWI750513B (en) 2019-10-05 2019-10-05 Insurance claim and underwriting assistance system and implementation method thereof

Publications (2)

Publication Number Publication Date
TW202115654A TW202115654A (en) 2021-04-16
TWI750513B true TWI750513B (en) 2021-12-21

Family

ID=76604380

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136180A TWI750513B (en) 2019-10-05 2019-10-05 Insurance claim and underwriting assistance system and implementation method thereof

Country Status (1)

Country Link
TW (1) TWI750513B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119864117B (en) * 2024-12-30 2025-11-11 清华大学 Agent mechanism-based electronic medical record data management method and related device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234129B2 (en) * 2005-10-18 2012-07-31 Wellstat Vaccines, Llc Systems and methods for obtaining, storing, processing and utilizing immunologic and other information of individuals and populations
US8670996B1 (en) * 2013-03-14 2014-03-11 David I. Weiss Health care incentive apparatus and method
CN105320714A (en) * 2014-10-22 2016-02-10 武汉理工大学 Interactive retrieval method for content retrieval and labeling information active service
CN109637605A (en) * 2018-12-11 2019-04-16 北京大学 Electronic health record structural method and computer readable storage medium
TWM591674U (en) * 2019-10-05 2020-03-01 業務人資訊有限公司 Underwriting claims assistance system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234129B2 (en) * 2005-10-18 2012-07-31 Wellstat Vaccines, Llc Systems and methods for obtaining, storing, processing and utilizing immunologic and other information of individuals and populations
US8670996B1 (en) * 2013-03-14 2014-03-11 David I. Weiss Health care incentive apparatus and method
CN105320714A (en) * 2014-10-22 2016-02-10 武汉理工大学 Interactive retrieval method for content retrieval and labeling information active service
CN109637605A (en) * 2018-12-11 2019-04-16 北京大学 Electronic health record structural method and computer readable storage medium
TWM591674U (en) * 2019-10-05 2020-03-01 業務人資訊有限公司 Underwriting claims assistance system

Also Published As

Publication number Publication date
TW202115654A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
US12080429B2 (en) Methods and apparatus for providing guidance to medical professionals
US11152084B2 (en) Medical report coding with acronym/abbreviation disambiguation
US7383172B1 (en) Process and system for semantically recognizing, correcting, and suggesting domain specific speech
US9971848B2 (en) Rich formatting of annotated clinical documentation, and related methods and apparatus
US20210165968A1 (en) Nlu training with user corrections to engine annotations
US8000956B2 (en) Semantic compatibility checking for automatic correction and discovery of named entities
US20200311343A1 (en) Methods and apparatus for extracting facts from a medical text
US10331763B2 (en) NLU training with merged engine and user annotations
Yehia et al. Ontology-based clinical information extraction from physician’s free-text notes
US9477662B2 (en) Computer-assisted abstraction for reporting of quality measures
US20140365239A1 (en) Methods and apparatus for facilitating guideline compliance
US20060020466A1 (en) Ontology based medical patient evaluation method for data capture and knowledge representation
US20060020465A1 (en) Ontology based system for data capture and knowledge representation
US10339143B2 (en) Systems and methods for relation extraction for Chinese clinical documents
TWM591674U (en) Underwriting claims assistance system
EP3000064A1 (en) Methods and apparatus for providing guidance to medical professionals
Luo et al. Assessing the effectiveness of automatic speech recognition technology in emergency medicine settings: a comparative study of four AI-powered engines
Xu et al. Extracting subject demographic information from abstracts of randomized clinical trial reports
US20060020447A1 (en) Ontology based method for data capture and knowledge representation
TWI750513B (en) Insurance claim and underwriting assistance system and implementation method thereof
CN112699669B (en) Natural language processing method, device and storage medium for epidemiological survey report
Hao et al. Extracting and normalizing temporal expressions in clinical data requests from researchers
CN113761899A (en) A method, device, device and storage medium for generating medical text
McKenzie et al. Information extraction from helicopter maintenance records as a springboard for the future of maintenance text analysis
US20260038692A1 (en) Method for determining a health state from input data