TWI750513B - Insurance claim and underwriting assistance system and implementation method thereof - Google Patents
Insurance claim and underwriting assistance system and implementation method thereof Download PDFInfo
- Publication number
- TWI750513B TWI750513B TW108136180A TW108136180A TWI750513B TW I750513 B TWI750513 B TW I750513B TW 108136180 A TW108136180 A TW 108136180A TW 108136180 A TW108136180 A TW 108136180A TW I750513 B TWI750513 B TW I750513B
- Authority
- TW
- Taiwan
- Prior art keywords
- keyword
- medical record
- subsystem
- disease
- reference table
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 107
- 201000010099 disease Diseases 0.000 claims abstract description 105
- 239000000284 extract Substances 0.000 claims abstract 3
- 238000000605 extraction Methods 0.000 claims description 34
- 238000004458 analytical method Methods 0.000 claims description 18
- 238000012216 screening Methods 0.000 claims description 14
- 238000012937 correction Methods 0.000 claims description 13
- 230000036541 health Effects 0.000 claims description 10
- 230000010354 integration Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 230000001960 triggered effect Effects 0.000 claims description 9
- 238000007689 inspection Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 description 14
- 206010020772 Hypertension Diseases 0.000 description 12
- 238000012549 training Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000013598 vector Substances 0.000 description 8
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 238000003058 natural language processing Methods 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 7
- 238000012552 review Methods 0.000 description 5
- 208000006029 Cardiomegaly Diseases 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000023146 Pre-existing disease Diseases 0.000 description 3
- 238000012550 audit Methods 0.000 description 3
- 208000019425 cirrhosis of liver Diseases 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 231100000283 hepatitis Toxicity 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- 201000004239 Secondary hypertension Diseases 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012015 optical character recognition Methods 0.000 description 2
- 238000013526 transfer learning Methods 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010018498 Goitre Diseases 0.000 description 1
- 208000035211 Heart Murmurs Diseases 0.000 description 1
- 208000008454 Hyperhidrosis Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 206010053262 Skin swelling Diseases 0.000 description 1
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 1
- 208000022531 anorexia Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 201000003872 goiter Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 230000002969 morbid Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
本發明涉及資料處理技術,尤指一種基於自然語言處理(NLP),可對病歷進行關鍵字提取及語意分析,並分別於醫學詞彙與疾病分類參照表進行比對,以基於病歷內容輔助審核人員快速判斷被保險人是否符合核保或理賠條件,以及輔助判斷被保險人是否有既往症的「核保理賠輔助系統及其實施方法」。The present invention relates to data processing technology, in particular to a method based on natural language processing (NLP), which can perform keyword extraction and semantic analysis on medical records, and compare medical vocabulary and disease classification reference table respectively, so as to assist reviewers based on the content of medical records Quickly determine whether the insured meets the conditions for underwriting or claim settlement, and assists in determining whether the insured has a pre-existing disease or not.
一般而言,在醫療保險理賠案件發生後,或在受理醫療保險業務後,保險行業的理賠或核保人員,為了確保被保險人的風險是在保險公司的可接受範圍內,會需要對理賠案件中的各個理賠項目進行核對,或需要對被保險人的體檢報告、健康告知事項及核保手冊等事項進行評估,以確保理賠案件的準確性或被保險人的風險是否過高,然而,由於該些審核工作都是透過核保或理賠人員進行人工審核,且若以審核理賠案件為例,理賠人員在審核過程中,除了需要耗費大量時間另外參照非結構化的診斷證明書或病歷、參照記載非常多項病症的健康告知事項、理賠手冊、理賠條款、參照多達15萬種代碼的國際疾病分類標準等資訊, 更需要參照醫學辭典、醫學縮寫辭典等包含許多高度專業性的醫學詞彙資料與檢驗項目名稱,以進行正確無偏差的配對,如此一來,於人工審核時將容易發生誤判、漏判、或漏未發現被保險人的既往症病史,而可能會導致誤賠事件發生,進而影響全體保戶的權益,另,也可能發生在診斷證明書或病歷中雖有提及相關病症的關鍵字,但事實上被保險人並未罹患該疾病,進而讓核保或理賠人員浪費了許多時間,故習知的核保或理賠作法不僅耗時,亦容易發生漏判或誤判,而仍有改善空間。Generally speaking, after a medical insurance claim case occurs, or after accepting medical insurance business, claims or underwriting personnel in the insurance industry, in order to ensure that the risk of the insured is within the acceptable range of the insurance company, will need to settle the claims. Check the various claims items in the case, or need to evaluate the insured's medical report, health notices and underwriting manuals to ensure the accuracy of the claims case or whether the insured's risk is too high, however, Since these audits are all conducted manually by underwriting or claims adjusters, and taking the audit of claims cases as an example, the claims adjusters need to spend a lot of time in the auditing process and refer to unstructured diagnostic certificates or medical records, Refer to information such as health notices, claim manuals, claims clauses, and international classification of diseases with up to 150,000 codes that record many diseases. It is even more necessary to refer to medical dictionaries, medical abbreviations dictionaries, etc., which contain many highly professional medical vocabulary data and test item names, so as to carry out correct and unbiased matching. As a result, misjudgment, missed judgment, or omission will easily occur during manual review. The insured's pre-existing medical history is not found, which may lead to the occurrence of false claims, thereby affecting the rights and interests of all insureds. In addition, it may also occur in the diagnosis certificate or medical record. Although keywords of related diseases are mentioned, the fact is The above insured does not suffer from the disease, and the underwriting or claims personnel waste a lot of time. Therefore, the conventional underwriting or claims method is not only time-consuming, but also prone to omission or misjudgment, and there is still room for improvement.
綜上可知,由於習知核保或理賠人員在進行核查工作時,仍有審核工作耗時、漏判、誤判(例如未能發現可適用拒保病症)或無法發現被保險人可能有既往症病史等缺點,依此,如何提出一種可解決前述缺點的「核保理賠輔助系統及其實施方法」,乃有待解決之問題。From the above, it can be seen that due to the conventional underwriting or claims personnel conducting verification work, there are still time-consuming audit work, omission of judgment, misjudgment (for example, failure to find applicable refusal diseases) or failure to find that the insured may have a history of pre-existing diseases. Therefore, how to propose an "underwriting and claims assistance system and its implementation method" that can solve the aforementioned shortcomings is a problem to be solved.
為達上述目的,本發明提出一種核保理賠輔助系統,可基於一電子病歷(medical record)生成一智能化病歷,以供一資訊裝置瀏覽智能化病歷,系統包含一處理器、一資料庫、一第二資料庫、一關鍵字提取子系統、一關鍵字解析子系統、一資料標記子系統、一資訊整合子系統及一前台子系統,其中,關鍵字提取子系統可從儲存於資料庫的電子病歷擷取多筆關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元;關鍵字解析子系統可基於關鍵字提取子系統對於關鍵字串的擷取結果,構建電子病歷的語法結構、分析病歷時間及該等關鍵字串的一語意,再基於該等語意從儲存於資料庫的一醫學詞彙參照表比對出多筆醫學詞彙,再基於該等語意與醫學詞彙,從儲存於資料庫的一疾病分類參照表解析出至少一疾病標準碼,再判斷疾病標準碼所對應之一疾病名稱,是否匹配於儲存於資料庫的一保險條款的一疾病關鍵字串,以生成一條款比對結果;資料標記子系統可對電子病歷中的該等關鍵字串,賦予關聯於疾病名稱之可視的多個第一識別標記,亦供以依據條款比對結果,對一輔助判讀參照表賦予對應於條款比對結果的一第二識別標記;資訊整合子系統可產生儲存於第二資料庫的一輔助判讀參照表,再將電子病歷、該等第一識別標記、第二識別標記及輔助判讀參照表,整合為儲存於第二資料庫的智能化病歷,其中輔助判讀參照表至少包含被解析出的疾病名稱、第二識別標記及疾病標準碼;而當資訊裝置經由一網路連結至前台子系統,以成功讀取第二資料庫的資料後,前台子系統可提供一檢視器,使包含輔助判讀參照表的智能化病歷呈現於資訊裝置所執行的檢視器。In order to achieve the above object, the present invention proposes an underwriting and claim settlement assistant system, which can generate an intelligent medical record based on an electronic medical record (medical record) for an information device to browse the intelligent medical record. The system includes a processor, a database, a second database, a keyword extraction subsystem, a keyword parsing subsystem, a data marking subsystem, an information integration subsystem and a front-end subsystem, wherein the keyword extraction subsystem can be stored in the database The electronic medical record retrieves multiple keyword strings, and the keyword strings include a medical keyword, a time string, a numerical string and a symbol character; the keyword parsing subsystem can be based on the keyword extraction subsystem For the retrieval result of the keyword string, construct the grammatical structure of the electronic medical record, analyze the time of the medical record and a semantic of the keyword string, and then compare a plurality of terms from a medical vocabulary reference table stored in the database based on the semantic meaning Medical vocabulary, and then based on the semantics and medical vocabulary, parse out at least one disease standard code from a disease classification reference table stored in the database, and then determine whether a disease name corresponding to the disease standard code matches the one stored in the database. A disease keyword string of an insurance clause in the electronic medical record to generate a clause comparison result; the data marking subsystem can assign a plurality of visible first identification marks associated with the disease name to these keyword strings in the electronic medical record, It is also used to assign a second identification mark corresponding to the item comparison result to an auxiliary interpretation reference table according to the clause comparison result; the information integration subsystem can generate an auxiliary interpretation reference table stored in the second database, and then The electronic medical record, the first identification marks, the second identification marks and the auxiliary interpretation reference table are integrated into an intelligent medical record stored in the second database, wherein the auxiliary interpretation reference table at least contains the parsed disease name, the second identification markers and disease standard codes; and when the information device is connected to the front-end subsystem through a network to successfully read the data in the second database, the front-end subsystem can provide a viewer to make the intelligent system including the auxiliary interpretation reference table The medical record is presented in the viewer executed by the information device.
為使 貴審查委員得以清楚了解本發明之目的、技術特徵及其實施後之功效,茲以下列說明搭配圖示進行說明,敬請參閱。In order to enable your examiners to clearly understand the purpose, technical features and effects of the present invention, the following descriptions are combined with the diagrams for illustration, please refer to.
請參閱「第1圖」,其為本發明之系統架構圖,本發明提出一種核保理賠輔助系統10,可基於一電子病歷MR生成一智能化病歷SMR,以供一資訊裝置20瀏覽智能化病歷SMR,主要包含一處理器101,另有一資料庫102、一第二資料庫103、一關鍵字提取子系統104、一關鍵字解析子系統105、一資料標記子系統106、一資訊整合子系統107及一前台子系統108分別與處理器101資訊連接,其中:
(1) 處理器101供以運行核保理賠輔助系統1、存取第一與第二資料庫(102、103)之內容、控制或觸發前述的多個子系統,並具有並具備邏輯運算、暫存運算結果、保存執行指令位置等功能,且處理器101可以例如是一中央處理器(CPU)、一虛擬處理器(vCPU)、一微處理器(MPU)、一微控制器(MCU)、一應用處理器(AP)、一嵌入式處理器、一特殊應用積體電路(ASIC)、一張量處理器(TPU)或一圖形處理器(GPU)等,但均不以此為限,並且,處理器101本身可運行於一伺服器(圖中未繪示),而前述伺服器可為一實體的伺服器、或以一虛擬機器(VM)形式運行的伺服器、或以一虛擬專屬主機(Virtual Private Server)形式運行的伺服器;
(2) 資料庫102與第二資料庫103皆可為一資料庫主機,資料庫102可儲存供處理器101存取的一疾病分類參照表ICD_T、一醫學詞彙參照表MD_T、一保險條款IC(insurance clause)及電子病歷MR;
(3) 第二資料庫103可儲存供處理器101存取的一輔助判讀參照表SMR_T及智能化病歷SMR;並且,疾病分類參照表ICD_T可為一國際疾病分類標準的第9版、第10版或其組合;醫學詞彙參照表MD_T可包含一醫學辭典(medical dictionary)及一醫學縮寫辭典(medical abbreviation dictionary)之其中一種或其組合;保險條款IC可為一核保條款(或稱核保手冊)、一理賠條款、一理賠手冊及一健康告知條款(亦可稱健康告知書或健康告知事項)之其中一種或其組合;
(4) 關鍵字提取子系統104可儲存多個指令,其供處理器101觸發後,可執行例如一斷詞處理(word segmentation/tokenize),並從儲存於資料庫102的電子病歷MR擷取多筆關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元,另,關鍵字提取子系統104進行斷詞處理時,可先忽略對語意沒有影響的標點符號(Punctuation);
(5) 其中,前述的醫學關鍵字可為一病症名稱、一器官名稱、一檢驗名稱、一描述現象名稱、一描述程度名稱及一縮寫名稱等關鍵字,更具體而言,病症名稱可例如為高血壓、甲狀腺腫、厭食症等病症;器官名稱可例如為二尖瓣結構、心臟結構、肺結構、身體部位等器官;檢驗名稱可例如為超音波心動檢查/描記、血氣測量、X射線成像程序等檢驗名稱;描述現象名稱可為心悸、已婚、劇烈的、壓力/壓迫、體重下降、皮膚腫脹、心臟雜音、出汗等現象;描述程度名稱可例如為惡化、狀況/病態、完整的/未受損的、有規則/整齊的、日常的/慣例、惡化等;縮寫名稱可例如為PO(口服)、QN(每晚使用一次)、QD(每日一次)、HCVD(高血壓性心臟血管疾病)、Af(心房纖維顫動)、PVCs(心室性早期收縮)、OPD(門診)、急診(ER)等縮寫,但以上僅為舉例,均不以此為限;
(6) 其中,前述的時間字串可例如為時刻、年、舊(old)、月、最近、頻繁、小時、每週、分鐘、日期、同日(same day)、隔日(next day),但以上僅為舉例,均不以此為限;
(7) 其中,前述的數值字串可例如為一檢驗讀數(如mmHg、mm、mEqL、mg/DL、ph值、MmhG、mmol/L、%、uL、g/dL等,但以上僅為舉例,均不以此為限;
(8) 其中,前述的符號字元可例如為(+)、(-)等,其可依據前後文所提及的醫學關鍵字(例如病症名稱),提示被保險人患有(+)或未患有(-)前述的疾病名稱;
(9) 關鍵字解析子系統105可儲存多個指令,其供處理器101觸發後,可基於關鍵字提取子系統104對於關鍵字串的擷取結果,構建電子病歷MR的一或多個語法結構、分析一病歷時間,以及從前述的語法結構分析該等關鍵字串的一語意(例如可透過一語句相依性分析(Dependency parsing)達成),再基於該等語意從醫學詞彙參照表MD_T比對出多筆醫學詞彙,再基於該等語意與該等醫學詞彙,從疾病分類參照表ICD_T解析出至少一疾病標準碼(例如ICD Code),再判斷疾病標準碼所對應之一疾病名稱是否匹配於保險條款IC的一疾病關鍵字串,以生成一條款比對結果;
(10) 其中,前述的語法結構係指,電子病歷MR中的各個敘述句可分別被表示為自然語言處理所應用的「結構樹(Structure Tree)」形式,且每個結構樹可包含一或多個語意角色(semantic role),例如包含主事者(Agent)、目標(Goal)、受事者(Patient)、客體(Theme)、工具(Instrument)、處所(Location)、來源(Source)、時間(Time)、謂詞(Predicate)等角色;
(11) 其中,前述的病歷時間可為一住院日期、一病歷製作日期、一出院日期、歷史病症期間;
(12) 另,本發明為了同時改善因訓練樣本不足,而可能發生關鍵字提取結果或語意分析結果準確性較低的問題,則可透過讓關鍵字提取子系統104或關鍵字解析子系統105閱讀大量電子病歷MR的內文,利用前後文的統計特性,可學習出每一個關鍵字串的一詞向量(Word Vector或Word Embedding),例如「Drug」和「Abuse」的詞向量距離在向量空間中可能較為接近,但「Drug」和「smoking」的詞向量距離在向量空間中則可能較遠,而隨著訓練的文本越來越多,關鍵字提取子系統104或關鍵字解析子系統105可以自動調整各個關鍵字串的詞向量,解決自然語言處理模型之訓練資料不足的問題,並提升系統的抽象化思考,另,有關訓練詞向量的作法,可過例如CBOW和Skipgram的訓練模型達成;
(13) 資料標記子系統106可儲存多個指令,其供處理器101觸發後,可對電子病歷MD中的該等關鍵字串,賦予關聯於疾病名稱之可視的多個第一識別標記H1,亦可對輔助判讀參照表SMR_T賦予對應於條款比對結果的一第二識別標記H2;
(14) 資訊整合子系統107可儲存多個指令,其供處理器101觸發後,可產生儲存於第二資料庫103的輔助判讀參照表SMR_T,再將電子病歷、該等第一識別標記H1、第二識別標記H2及輔助判讀參照表SMR_T,整合為智能化病歷SMR,其中輔助判讀參照表SMR_T至少包含被解析出該等的疾病名稱、第二識別標記H2及疾病標準碼;
(15) 前台子系統108可供資訊裝置20經由一網路30與其通訊連結,當資訊裝置20連結至前台子系統108,以讀取第二資料庫103後,前台子系統108可提供資訊裝置20一檢視器V,而使包含輔助判讀參照表SMR_T的智能化病歷SMR呈現於檢視器V,以供資訊裝置20的使用者(核保/理賠人員)可僅依據智能化病歷SMR的分析結果,對電子病歷MR中的重要資訊與核保或理賠條款進行審核與比對,而毋須完整檢視電子病歷MR的內容;
(16) 另,網路30可為公眾或私人網路,例如無線網路(3G、4G LTE、Wi-Fi等)、有線網路、區域網路(LAN)、廣域網路(WA)等;
(17) 另,智能化病歷SMR的格式可為.pdf、.xls或.doc,但皆不以此為限;
(18) 另,檢視器V可為一網頁瀏覽器(Web Brower)、一PDF檢視器(PDF Viewer)或其它文件檢視器;
(19) 另,電子病歷MR可由與處理器101耦接的一光學字元辨識(OCR)子系統(圖中未繪示),利用掃描器或其他光學設備將一紙本病歷的文字資料擷取成數位影像(即電子病歷MR),再進行自動辨識以從中取得可編輯的病歷文字及版面資訊。Please refer to “FIG. 1”, which is a system architecture diagram of the present invention. The present invention proposes an underwriting and
另,請繼續參閱「第1圖」,本發明在一較佳實施例中,若關鍵字解析子系統105從電子病歷MR之一用藥歷史所提取的醫學關鍵字,可從醫學詞彙參照表MD_T比對出屬於「藥品名稱」的醫學詞彙,但從電子病歷MR之醫學關鍵字的語法結構並未偵測出特定疾病的語意時,關鍵字解析子系統105此時可從疾病分類參照表ICD_T解析出對應前述藥品名稱的疾病標準碼及其對應的疾病名稱,以提示操作資訊裝置20之核保或理賠人員,此電子病歷MR雖未明確提及此患者(被保險人)罹患有某種特定疾病(例如高血壓),但從其電子病歷MR的用藥歷史(例如被保險人其實有在定期服用高血壓藥)可發現,被保險人有隱匿高血壓之既往症(即帶病投保)的可能。In addition, please continue to refer to FIG. 1. In a preferred embodiment of the present invention, if the medical keywords extracted by the
請參閱「第2圖」,其為本發明之系統實施流程圖,請搭配參閱「第1圖」,亦請搭配參閱「第3圖」~「第7圖」之實施示意圖,本發明提出一種核保理賠輔助系統的實施方法S,可包含以下步驟:(1)
關鍵字提取(步驟S10):一關鍵字提取子系統104可執行一斷詞處理,以利用例如一詞彙分析器(lexical analyzer),對儲存於資料庫102的電子病歷MR中的字元序列(即句子,sentence),分割為多個單詞(Token)組成的單詞序列,並分別標示各單詞所屬的分類,例如其中一單詞可被定義為一行為分類(或可稱事件分類)、一時間表達分類、一短句分類、一修飾分類等分類,但並不以此為限,後續可執行一正規化處理,以從一電子病歷MR擷取多筆關鍵字串,或可執行一語意框架剖析器(Parsing,例如Google釋出的語意框架剖析器SLING,但不以此為限),以利用語意框架(Frame Semantic Parsing)的方式來抽取電子病歷MR的文字結構,並以語意框架圖(Semantic frame graph)的方式呈現該等關鍵字串,且該等關鍵字串包含一醫學關鍵字、一時間字串、一數值字串與一符號字元,即如「第3圖」中劃記有底線的部分字串,其中,關鍵字提取子系統104可先預存多筆資料訓練集,以儲存已完成訓練、且部分關鍵字句已帶有標記(Tag)的詞彙庫,並且,執行斷詞處理時,關鍵字提取子系統104可例如以「空白」、「、」、「-」、「"」、「.」、「:」、「,」作為分隔符號達成斷詞;(2)
語法語意分析(步驟S20):一關鍵字解析子系統105基於關鍵字提取子系統104對於關鍵字串的擷取結果,利用例如一語法分析器(syntax analyzer,亦稱 parser)構建電子病歷MR的一或多個語法結構(例如對斷詞後的各字詞進行詞性標註、詞幹提取(stemming,例如從”leaves”→”leav")、詞形還原(lemmatization,例如從”started”→”start”)與組成結構樹(Parser tree))、分析一病歷時間,以及利用例如一語意分析器(semantic analyzer)從前述的語法結構分析該等關鍵字串的一語意(例如對結構樹的每個詞彙賦予語意角色後,有助於語意分析器藉此推敲該等關鍵字串的語意);(3)
比對參照表(步驟S30):關鍵字解析子系統105基於該等語意從一醫學詞彙參照表MD_T比對出多筆醫學詞彙,再基於該等語意與該等醫學詞彙,從一疾病分類參照表ICD_T解析出至少一疾病標準碼及其對應的一疾病名稱,即如「第4圖」中基於語意分析結果,分別從醫學詞彙參照表MD_T與疾病分類參照表ICD_T比對出醫學詞彙(例如第4圖的hypertension disorder-高血壓)、疾病標準碼(例如第4圖的”ICD9CM: 405.99”或”ICD10AM:I10-I15.9”)及疾病名稱(例如第4圖中對應ICD9的”其他續發性高血壓”及對應ICD 10的”續發性高血壓”)的比對結果;(4)
比對保險條款(步驟S40):關鍵字解析子系統105判斷疾病標準碼所對應之疾病名稱是否匹配於一保險條款IC的一疾病關鍵字串,以生成一條款比對結果,即如「第5圖」中基於電子病歷MR之語意,對比於例如健康告知條款(或稱健康告知事項)的保險條款IC的疾病關鍵字串(例如第5圖所示的高血壓);(5)
關鍵字標記(步驟S50):一資料標記子系統106對電子病歷MR中的該等關鍵字串,賦予關聯於疾病名稱之可視的多個第一識別標記H1,即如「第6圖」中以虛線方式劃記該等關鍵字串的形式,但圖中所示之識別第一標記H1的形式僅為舉例,亦得以高亮標記(highlight),例如以Online syntax highlighting但不以此為限的相關技術即可達成,資料標記子系統106亦可對輔助判讀參照表SMR_T賦予對應於條款比對結果的至少一第二識別標記H2;(6)
整合智能化病歷(步驟S60):一資訊整合子系統107產生一輔助判讀參照表SMR_T,即如「第7圖」的「PAGE 1」所示,其中,輔助判讀參照表SMR_T可至少包含一病名欄位、至少一保險條款比對結果欄位及至少一疾病標準碼欄位,各欄位之內容可分別被設定為關鍵字解析子系統105所解析出的疾病名稱、第二識別標記H2及疾病標準碼及一醫師描述病症(此圖中未繪示);其後,資訊整合子系統107再將電子病歷MR、該等第一識別標記H1、第二識別標記H2及輔助判讀參照表SMR_T,整合為一智能化病歷SMR,其中,輔助判讀參照表SMR_T可至少包含被解析出的疾病名稱、第二識別標記H2及疾病標準碼,至於智能化病歷SMR的其它組成要件(第一識別標記H1、電子病歷MR等),係呈現於智能化病歷SMR的其它頁面,故「第7圖」中並未繪示;(7)
提供智能化病歷檢視功能(步驟S70):一前台子系統108提供資訊裝置20一檢視器V,而使包含輔助判讀參照表SMR_T的智能化病歷SMR可呈現於檢視器V。Please refer to "Fig. 2", which is a flow chart of the implementation of the system of the present invention. Please refer to "Fig. 1" together with the schematic implementation diagrams of "Fig. 3" to "Fig. 7". The present invention proposes a The implementation method S of the underwriting and claim settlement assistance system may include the following steps: (1) Keyword extraction (step S10 ): a
請繼續參閱「第8圖」,其為本發明之另一較佳實施例(一),並請搭配參閱「第1圖」~「第2圖」,本實施例與「第1圖」~「第7圖」所揭技術類同,主要差異在於,本實施例的核保理賠輔助系統10更可包括與處理器101資訊連接的一關鍵字校正子系統109,其供處理器101觸發後,可對關鍵字提取子系統104執行斷詞處理後的該等關鍵字串(例如第8圖所示的”The History !!! of @rug abuse”),執行一拼字檢查(spellcheck),以從資料庫102儲存的多筆關鍵字句中,比對出最接近的關鍵字句(例如第8圖所示的”The History of Drug Abuse”),並對關鍵字串中無意義或錯誤的部分(例如第8圖所示的”!!!”及”@”)予以移除(例如刪除”!!!”)及修正(例如將”@”修正為”d”),以生成可供關鍵字解析子系統105構建電子病歷MR的語法結構、分析病歷時間及語意所需的一關鍵字串校正結果;換言之,本發明所揭露的核保理賠輔助系統的實施方法,更可包括以下步驟:關鍵字校正(步驟S15):關鍵字校正子系統109可對步驟S10(關鍵字提取)執行後所擷取的該等關鍵字串,執行拼字檢查,以從資料庫102儲存的多筆關鍵字句中,比對出最接近的關鍵字句,並對關鍵字串中無意義或錯誤的部分予以移除及修正,以生成步驟S20(語法語意分析)於構建電子病歷MR的語法結構、分析病歷時間及語意所需的一關鍵字串校正結果;Please continue to refer to "Fig. 8", which is another preferred embodiment (1) of the present invention, and please refer to "Fig. 1" ~ "Fig. 2" in conjunction with this embodiment and "Fig. 1" ~ The technology disclosed in FIG. 7 is similar, the main difference is that the underwriting and claim
承上,請繼續參閱「第8圖」,並請搭配參閱「第1圖」~「第2圖」,本實施例的資料庫102亦可儲存一詞彙分析器(lexical analyzer)所創建的一符號表(symbol table),以供關鍵字校正子系統109亦可依據符號表,對前述經過斷詞處理後的關鍵字串,檢核各單詞(Token)所屬的模式(Pattern)是否符合符號表的規範,例如若單詞為時間表達分類,則檢核關鍵字串當中的時間字串的表達形式(lexeme)是否表示為包含日期、年分、時刻或其任意組合的形式,並予以修正或移除。As mentioned above, please continue to refer to "Fig. 8", and please refer to "Fig. 1" ~ "Fig. 2" in conjunction. The
請繼續參閱「第9圖」,其為本發明之另一較佳實施例(二),並請搭配參閱「第1圖」~「第2圖」,本實施例與「第1圖」~「第7圖」所揭技術類同,主要差異在於,在本實施例的核保理賠輔助系統10中,前台子系統108亦可提供耦接於檢視器V的一搜尋器S,以供資訊裝置20於檢視器V中界定一指定搜尋病症(例如指定搜尋”肝炎”或”肝硬化”),以搜尋出一指定搜尋結果S_T,其中,指定搜尋結果S_T可為一資料表(Table),並可進一步包含例如一指定搜尋病症(例如肝炎或肝硬化)、一條款比對結果(例如肝炎或肝硬化是否有出現於”被保險人健康告知條款”)、一索引頁數(例如第9圖所示的P6、P5)、一電子病歷描述段落、一病歷時間(例如第9圖所示的”1998”,”2011/08”)及至少一疾病標準碼(例如第9圖所示的ICD 9、ICD 10或其組合),前述的指定搜尋病症可為關鍵字解析子系統105欲從醫學詞彙參照表MD_T比對的特定該醫學詞彙、或欲從該疾病分類參照表解析出的特定該疾病標準碼、或判斷該疾病名稱是否匹配於該保險條款的特定該疾病關鍵字串的篩選依據,並且,本發明在一較佳實施例中,搜尋器S亦可供資訊裝置20於檢視器V界定一病歷時間區間,前述的病歷時間區間為關鍵字解析子系統105基於關鍵字提取子系統104對於該等時間字串的擷取結果,解析出特定病歷時間的篩選依據;換言之,本發明所揭露的核保理賠輔助系統的實施方法,更可包括以下步驟:提供搜尋器功能(步驟S35):前台子系統108為資訊裝置20提供一搜尋器S,以供資訊裝置20於檢視器V界定一指定搜尋病症及一病歷時間,其中,指定搜尋病症為步驟S30(比對參照表)於執行時,欲比對的特定該醫學詞彙或欲解析的特定該疾病標準碼的依據,亦可為步驟S40(比對保險條款)於執行時欲判斷是否匹配於特定該疾病關鍵字串的篩選依據。Please continue to refer to "Fig. 9", which is another preferred embodiment (2) of the present invention, and please refer to "Fig. 1" ~ "Fig. 2" in conjunction with this embodiment and "Fig. 1" ~ The technology disclosed in FIG. 7 is similar, but the main difference is that, in the underwriting and claim
請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,本實施例的指定搜尋結果S_T亦得以各指定搜尋病症的發生時間的先後順序(例如第8圖的”1998”→”2011/08”→”1998”),以例如一時間序列表(Timeline Table)的形式進行排列的數據點序列,以提供給檢閱病歷的核保或理賠人員,更清楚瞭解病歷內事件發生的時序關係,協助核保或理賠人員縮短審核非結構化文本的時間,但並不以此為限;其中,本實施例為呈現前述的時間序列表,處理器101得以資料庫102儲存的一時序關係訓練資料集為基礎,使關鍵字提取子系統104利用一預訓練(pre-trained)自然語言處理模型,對電子病歷MR中的多個字元序列(即給定語句)分割為多個單詞(Token)組成的單詞序列,並分別標示各單詞的分類為一事件(Event)、一時間表達(Time expressions)或一其它的分類,但並不以此為限;其後,處理器101可再使關鍵字解析子系統105利用前述的預訓練自然語言處理模型,對關鍵字提取子系統104所分割出的單詞序列(包含事件、時間表達…等),提取各事件於一給定語句(字元序列)中的時序關係,並將時序關係分類為例如「之前(before)」、「之後(after)」與「重疊(overlap)」,其後,關鍵字解析子系統105再基於各事件於給定語句(字元序列)中的時序關係,以及各事件在各語句之間的時間表達可能路徑,解析出各事件在多個給定語句(字元序列)中的時序關係,進而能產生一或多個時間圖(Temporal Graph),以由各時間圖描述各電子病歷MR內事件的時間關係,進而作為生成例如時間序列表的依據。Please continue to refer to "Fig. 9", and please refer to "Fig. 1" ~ "Fig. 2". The designated search results S_T in this embodiment can also be based on the order of occurrence time of each designated search disease (for example, Fig. 8). "1998"→"2011/08"→"1998"), a sequence of data points arranged in the form of, for example, a time series table (Timeline Table), to provide the underwriting or claims adjusters who review the medical records for a clearer understanding The time sequence relationship of events in the medical record helps underwriting or claims adjusters to shorten the time for reviewing unstructured texts, but is not limited to this; wherein, in this embodiment, the aforementioned time sequence table is presented, and the
承上,請繼續參閱「第9圖」,本實施例於前述所提及的時序關係訓練資料集,係可參考「Evaluating temporal relations in clinical text:2012 i2b2 Challenge ;引用資訊: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756273/」所提出的clinical temporal relation corpus資料集。Continuing from the above, please continue to refer to "Figure 9". For the temporal relationship training data set mentioned above in this embodiment, please refer to "Evaluating temporal relations in clinical text: 2012 i2b2 Challenge; reference information: https://www .ncbi.nlm.nih.gov/pmc/articles/PMC3756273/" clinical temporal relation corpus dataset.
承上,請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,本實施例所提及的預訓練自然語言處理模型可為一BERT(Bidirectional Encoder Representations from Transformers)語言代表模型、一長短期記憶網路(Long Short Term Memory Network, LSTM)模型;並且,前述的BERT語言代表模型可為對自然語言有一定理解且預先訓練後的通用模型,故關鍵字提取子系統104可利用BERT語言代表模型進行二階段的遷移學習(Transfer Learning),以於完成參數的微調(fine-tune)後,於本發明所應用的醫學領域進行監督式訓練的詞法分析任務(即於步驟S10執行時,將字符序列轉換為token序列的任務)。As mentioned above, please continue to refer to "Figure 9", and please refer to "Figure 1" ~ "Figure 2", the pre-trained natural language processing model mentioned in this embodiment can be a BERT (Bidirectional Encoder Representations from Transformers) language representative model, a Long Short Term Memory Network (LSTM) model; and, the aforementioned BERT language representative model can be a general model that has a certain understanding of natural language and is pre-trained, so the keyword The
承上,請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,當本實施例之關鍵字提取子系統104以BERT語言代表模型進行前述的詞法分析任務時,係可利用例如Google AI Language發表的「Bert: Pre-training of deep bidirectional transformers for language understanding;參考資訊可見於:https://arxiv.org/pdf/1810.04805.pdf」,以及「classtransformers.BertForTokenClassification(BertPreTrainedModel);參考資訊可見於:https://huggingface.co/transformers/model_doc/bert.html#bertfortokenclassification」等技術,但並不以上述所提及的模型為限。Continuing from the above, please continue to refer to "Fig. 9", and please refer to "Fig. 1" ~ "Fig. 2" in combination, when the
承上,請繼續參閱「第9圖」,並請搭配參閱「第1圖」~「第2圖」,當本實施例之關鍵字解析子系統105以長短期記憶網路(LSTM)模型提取各事件於給定語句中的時序關係時,係可利用例如「LSTM-Based Model for Extracting Temporal Relations from Korean Text;參考資訊可見於:https://ieeexplore.ieee.org/abstract/document/8367201」之相關技術,但並不以該文獻所使用的韓語文本為限,而在關鍵字解析子系統105以長短期記憶網路(LSTM)模型以解析出各事件在多個給定語句中的時序關係,進而產生時間圖時,係可利用例如「Towards generating a patient's timeline: Extracting temporal relationships from clinical notes;參考資訊可見於:https://www.ncbi.nlm.nih.gov/pubmed/24212118」之相關技術,但並不以此為限。Continuing from the above, please continue to refer to "Fig. 9", and please refer to "Fig. 1" ~ "Fig. 2" in combination, when the
請繼續參閱「第10圖」,其為本發明之另一較佳實施例(三),並請搭配參閱「第1圖」~「第2圖」,本實施例與「第1圖」~「第7圖」所揭技術類同,主要差異在於,在本實施例的核保理賠輔助系統10中,前台子系統108亦可提供耦接於檢視器V的一篩選器F,篩選器F可包含一病症檢視清單F_LIST(例如包含”健康告知病症”、”其它參考資訊”其包含一或多個篩選項目F_ITEM,篩選項目F_ITEM可至少對應於關鍵字解析子系統105所解析出的各疾病名稱,且各篩選項目F_ITEM包含可導引至電子病歷MR中有關關鍵字串的一索引連結L1,更具體而言,當資訊裝置20觸發篩選器F之其中一篩選項目F_ITEM(如圖中所示的”Page 4:hypertension”)所附帶的索引連結L1後,前台子系統108即可導引資訊裝置20切換至標記有第一識別標記H1之關鍵字串”hypertension” 的電子病歷頁面,相對地,當資訊裝置20觸發篩選器F之其中一篩選項目F_ITEM(如圖中所示的”Page 4:Cardiomegaly”)所附帶的索引連結L1後,前台子系統108即可導引資訊裝置20切換至標記有第一識別標記H1的關鍵字串”Cardiomegaly”的電子病歷頁面;換言之,本發明所揭露的核保理賠輔助系統的實施方法S,更可包括以下步驟:提供篩選器功能(S80):前台子系統108為資訊裝置20提供一篩選器F,篩選器F可包含一病症檢視清單F_LIST,病症檢視清單F_LIST可包含一或多個篩選項目F_ITEM,各篩選項目F_ITEM分別對應於步驟S30(比對參照表)執行時所解析出的各疾病名稱,且各篩選項目F_ITEM包含可導引至電子病歷MR中有關關鍵字串的索引連結L1;Please continue to refer to "Fig. 10", which is another preferred embodiment (3) of the present invention, and please refer to "Fig. 1" ~ "Fig. 2" in conjunction with this embodiment and "Fig. 1" ~ The technology disclosed in FIG. 7 is similar, but the main difference is that, in the underwriting and claim
承上,請繼續參閱「第10圖」,並請搭配參閱「第1圖」,本實施例的第一識別標記H1經資訊裝置20觸發後(例如點擊),亦可使前台子系統108於標記有第一識別標記H1的關鍵字串”Cardiomegaly”或”Page 4:Cardiomegaly”顯示一註解資訊COM,其中,註解資訊COM可包含一註釋資訊(例如”Hypertensive Disorder 高血壓疾病”)、一時間資訊、一分類資訊(例如”疾病”)及至少一疾病標準碼(例如第10圖的ICD9CM與ICD10CM),但並不以此為限。As mentioned above, please continue to refer to "Fig. 10", and please refer to "Fig. 1" in combination. After the first identification mark H1 of this embodiment is triggered by the information device 20 (for example, clicked), the front-
綜上可知,本發明據以實施後,至少可達成大幅提升核保或理賠人員之審核效率、降低完整閱讀病歷的時間、降低核保/理賠工作的學習成本、降低核保/理賠之誤判可能性、減少因被保險人隱匿既往症而損失理賠金及有效輔助核保/理賠人員進行更精準比對的有益功效。To sum up, after the implementation of the present invention, it can at least greatly improve the review efficiency of underwriting or claim settlement personnel, reduce the time for completely reading medical records, reduce the learning cost of underwriting/claim settlement work, and reduce the possibility of misjudgment of underwriting/claim settlement. It has the beneficial effects of reducing the loss of claims due to the concealed pre-existing conditions of the insured and effectively assisting the underwriting/claims personnel to make more accurate comparisons.
以上所述者,僅為本發明之較佳之實施例而已,並非用以限定本發明實施之範圍;任何熟習此技藝者,在不脫離本發明之精神與範圍下所作之均等變化與修飾,皆應涵蓋於本發明之專利範圍內。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; any person who is familiar with this technique, without departing from the spirit and scope of the present invention, makes equal changes and modifications, all It should be covered within the patent scope of the present invention.
綜上所述,本發明係具有「產業利用性」、「新穎性」與「進步性」等專利要件;申請人爰依專利法之規定,向 鈞局提起發明專利之申請。To sum up, the invention has the patent requirements of "industrial applicability", "novelty" and "progressiveness"; the applicant should file an application for an invention patent with the Jun Bureau in accordance with the provisions of the Patent Law.
10:核保理賠輔助系統 101:處理器 102:資料庫 103:第二資料庫 104:關鍵字提取子系統 105:關鍵字解析子系統 106:資料標記子系統 107:資訊整合子系統 108:前台子系統 109:關鍵字校正子系統 20:資訊裝置 ICD_T:疾病分類參照表 MD_T:醫學詞彙參照表 IC:保險條款 MR:電子病歷 SMR:智能化病歷 SMR_T:輔助判讀參照表 H1:第一識別標記 H2:第二識別標記 COM:註解資訊 L1:索引連結 V:檢視器 S:搜尋器 S_T:指定搜尋結果 F:篩選器 F_LIST:病症檢視清單 F_ITEM:篩選項目 30:網路 S:核保理賠輔助系統的實施方法 S10:關鍵字提取 S15:關鍵字校正 S20:語法語意分析 S30:比對參照表 S35:提供搜尋器功能 S40:比對保險條款 S50:關鍵字標記 S60:整合智能化病歷 S70:提供智能化病歷檢視功能 S80:提供篩選器功能10: Auxiliary system for underwriting claims 101: Processor 102:Database 103: Second Database 104: Keyword Extraction Subsystem 105:Keyword Parsing Subsystem 106: Data Marking Subsystem 107: Information Integration Subsystem 108: Front-end subsystem 109: Keyword Correction Subsystem 20: Information Devices ICD_T: Disease classification reference table MD_T: Medical Vocabulary Reference List IC: Insurance Clause MR: Electronic Medical Record SMR: Smart Medical Records SMR_T: Auxiliary interpretation reference table H1: First identification mark H2: Second identification mark COM: Annotation information L1: index link V: Viewer S: Searcher S_T: Specify search results F: Filter F_LIST: Illness inspection list F_ITEM: Filter items 30: Internet S: Implementation Method of Underwriting Claims Auxiliary System S10: Keyword Extraction S15: Keyword Correction S20: Grammar and Semantic Analysis S30: Comparison reference table S35: Provide search function S40: Compare insurance terms S50: Keyword Tag S60: Integrate intelligent medical records S70: Provide intelligent medical record viewing function S80: Provides filter function
第1圖,為本發明之系統架構圖。 第2圖,為本發明之系統實施流程圖。 第3圖,為本發明之實施示意圖(一)。 第4圖,為本發明之實施示意圖(二)。 第5圖,為本發明之實施示意圖(三)。 第6圖,為本發明之實施示意圖(四)。 第7圖,為本發明之實施示意圖(五)。 第8圖,為本發明之另一較佳實施例(一)。 第9圖,為本發明之另一較佳實施例(二)。 第10圖,為本發明之另一較佳實施例(三)。FIG. 1 is a system architecture diagram of the present invention. Fig. 2 is a flow chart of the system implementation of the present invention. FIG. 3 is a schematic diagram (1) of the implementation of the present invention. FIG. 4 is a schematic diagram (2) of the implementation of the present invention. Fig. 5 is a schematic diagram (3) of the implementation of the present invention. Fig. 6 is a schematic diagram (4) of the implementation of the present invention. FIG. 7 is a schematic diagram (5) of the implementation of the present invention. Fig. 8 is another preferred embodiment (1) of the present invention. Fig. 9 is another preferred embodiment (2) of the present invention. Fig. 10 is another preferred embodiment (3) of the present invention.
S:核保理賠輔助系統的實施方法 S: Implementation Method of Underwriting Claims Auxiliary System
S10:關鍵字提取 S10: Keyword Extraction
S20:語法語意分析 S20: Grammar and Semantic Analysis
S30:比對參照表 S30: Comparison reference table
S40:比對保險條款 S40: Compare insurance terms
S50:關鍵字標記 S50: Keyword Tag
S60:整合智能化病歷 S60: Integrate intelligent medical records
S70:提供智能化病歷檢視功能 S70: Provide intelligent medical record viewing function
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108136180A TWI750513B (en) | 2019-10-05 | 2019-10-05 | Insurance claim and underwriting assistance system and implementation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108136180A TWI750513B (en) | 2019-10-05 | 2019-10-05 | Insurance claim and underwriting assistance system and implementation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202115654A TW202115654A (en) | 2021-04-16 |
| TWI750513B true TWI750513B (en) | 2021-12-21 |
Family
ID=76604380
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108136180A TWI750513B (en) | 2019-10-05 | 2019-10-05 | Insurance claim and underwriting assistance system and implementation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI750513B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119864117B (en) * | 2024-12-30 | 2025-11-11 | 清华大学 | Agent mechanism-based electronic medical record data management method and related device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8234129B2 (en) * | 2005-10-18 | 2012-07-31 | Wellstat Vaccines, Llc | Systems and methods for obtaining, storing, processing and utilizing immunologic and other information of individuals and populations |
| US8670996B1 (en) * | 2013-03-14 | 2014-03-11 | David I. Weiss | Health care incentive apparatus and method |
| CN105320714A (en) * | 2014-10-22 | 2016-02-10 | 武汉理工大学 | Interactive retrieval method for content retrieval and labeling information active service |
| CN109637605A (en) * | 2018-12-11 | 2019-04-16 | 北京大学 | Electronic health record structural method and computer readable storage medium |
| TWM591674U (en) * | 2019-10-05 | 2020-03-01 | 業務人資訊有限公司 | Underwriting claims assistance system |
-
2019
- 2019-10-05 TW TW108136180A patent/TWI750513B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8234129B2 (en) * | 2005-10-18 | 2012-07-31 | Wellstat Vaccines, Llc | Systems and methods for obtaining, storing, processing and utilizing immunologic and other information of individuals and populations |
| US8670996B1 (en) * | 2013-03-14 | 2014-03-11 | David I. Weiss | Health care incentive apparatus and method |
| CN105320714A (en) * | 2014-10-22 | 2016-02-10 | 武汉理工大学 | Interactive retrieval method for content retrieval and labeling information active service |
| CN109637605A (en) * | 2018-12-11 | 2019-04-16 | 北京大学 | Electronic health record structural method and computer readable storage medium |
| TWM591674U (en) * | 2019-10-05 | 2020-03-01 | 業務人資訊有限公司 | Underwriting claims assistance system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202115654A (en) | 2021-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12080429B2 (en) | Methods and apparatus for providing guidance to medical professionals | |
| US11152084B2 (en) | Medical report coding with acronym/abbreviation disambiguation | |
| US7383172B1 (en) | Process and system for semantically recognizing, correcting, and suggesting domain specific speech | |
| US9971848B2 (en) | Rich formatting of annotated clinical documentation, and related methods and apparatus | |
| US20210165968A1 (en) | Nlu training with user corrections to engine annotations | |
| US8000956B2 (en) | Semantic compatibility checking for automatic correction and discovery of named entities | |
| US20200311343A1 (en) | Methods and apparatus for extracting facts from a medical text | |
| US10331763B2 (en) | NLU training with merged engine and user annotations | |
| Yehia et al. | Ontology-based clinical information extraction from physician’s free-text notes | |
| US9477662B2 (en) | Computer-assisted abstraction for reporting of quality measures | |
| US20140365239A1 (en) | Methods and apparatus for facilitating guideline compliance | |
| US20060020466A1 (en) | Ontology based medical patient evaluation method for data capture and knowledge representation | |
| US20060020465A1 (en) | Ontology based system for data capture and knowledge representation | |
| US10339143B2 (en) | Systems and methods for relation extraction for Chinese clinical documents | |
| TWM591674U (en) | Underwriting claims assistance system | |
| EP3000064A1 (en) | Methods and apparatus for providing guidance to medical professionals | |
| Luo et al. | Assessing the effectiveness of automatic speech recognition technology in emergency medicine settings: a comparative study of four AI-powered engines | |
| Xu et al. | Extracting subject demographic information from abstracts of randomized clinical trial reports | |
| US20060020447A1 (en) | Ontology based method for data capture and knowledge representation | |
| TWI750513B (en) | Insurance claim and underwriting assistance system and implementation method thereof | |
| CN112699669B (en) | Natural language processing method, device and storage medium for epidemiological survey report | |
| Hao et al. | Extracting and normalizing temporal expressions in clinical data requests from researchers | |
| CN113761899A (en) | A method, device, device and storage medium for generating medical text | |
| McKenzie et al. | Information extraction from helicopter maintenance records as a springboard for the future of maintenance text analysis | |
| US20260038692A1 (en) | Method for determining a health state from input data |