TWI746019B - 用於判定特徵對效能的貢獻的方法及設備 - Google Patents
用於判定特徵對效能的貢獻的方法及設備 Download PDFInfo
- Publication number
- TWI746019B TWI746019B TW109120733A TW109120733A TWI746019B TW I746019 B TWI746019 B TW I746019B TW 109120733 A TW109120733 A TW 109120733A TW 109120733 A TW109120733 A TW 109120733A TW I746019 B TWI746019 B TW I746019B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- model
- substrates
- program
- substrate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70525—Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70625—Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706837—Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41875—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
-
- H10P74/203—
-
- H10P74/23—
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32194—Quality prediction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Quality & Reliability (AREA)
- Data Mining & Analysis (AREA)
- Manufacturing & Machinery (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本發明揭示一種判定一程序特徵對圖案化基板之一程序之效能之一貢獻的方法。該方法可包含獲得對第一程序資料及第一效能資料訓練之一第一模型。可基於當該第一模型應用至與一或多個基板相關聯之程序資料時該第一模型之一預測品質來識別該一或多個基板。可對與經識別之該一或多個基板相關聯的第二程序資料及第二效能資料訓練一第二模型。可使用該第二模型以判定該第二程序資料之一程序特徵對與該一或多個基板相關聯的該第二效能資料之貢獻。
Description
本發明係關於用於分析圖案化程序之方法及設備。特定言之,本發明係關於判定程序特徵對程序之效能的貢獻。
微影設備為經建構以將所要圖案施加至基板上之機器。微影設備可用於例如積體電路(IC)之製造中。微影設備可例如將圖案化裝置(例如光罩)處之圖案(亦經常被稱作「設計佈局」或「設計」)投影至提供於基板(例如晶圓)上之輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影設備可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵之最小大小。當前在使用中之典型波長為365 nm (i線)、248 nm、193 nm及13.5 nm。相比於使用例如具有193 nm之波長之輻射的微影設備,使用具有在4 nm至20 nm之範圍內之波長(例如6.7 nm或13.5 nm)之極紫外線(EUV)輻射的微影設備可用以在基板上形成較小特徵。
低k1
微影可用以處理尺寸小於微影設備之經典解析度極限的特徵。在此程序中,可將解析度公式表達為CD = k1
×λ/NA,其中λ為所使用輻射之波長、NA為微影設備中之投影光學件之數值孔徑、CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此狀況下為半節距)且k1
為經驗解析度因數。一般而言,k1
愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,可將複雜微調步驟應用至微影投影設備及/或設計佈局。此等步驟包括例如但不限於:NA之最佳化、自訂照明方案、使用相移圖案化裝置、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。替代地,用於控制微影設備之穩定性之嚴格控制迴路可用以改良在低k1
下之圖案之再生。
當未解決以上所描述之微影圖案化之難題時,此可導致圖案化程序之品質降低。若圖案化程序之品質下降,則此可導致最終經圖案化基板之品質降低。因此,評估經圖案化基板之品質可給出圖案化程序品質之指示。為了測試經圖案化基板之品質,可測試經圖案化基板是否起作用。經圖案化基板可包含複數個元件(例如晶粒),該複數個元件可被個別地測試以判定該元件是否合格,亦即該元件工作,或該元件已不合格(不工作)。基板上之工作之元件之比例可被稱作基板之良率。需要改良微影設備及對應圖案化程序之良率以獲得基板上之更多的工作元件。
根據本發明之一第一態樣,提供一種判定一程序特徵對圖案化基板之一程序之效能之貢獻的方法。該方法包含獲得對第一程序資料及第一效能資料訓練之一第一模型。可基於當該第一模型應用至與一或多個基板相關聯之程序資料時該第一模型之一預測品質來識別該一或多個基板。可對與經識別之該一或多個基板相關聯的第二程序資料及第二效能資料訓練一第二模型,且可使用該第二模型以判定該第二程序資料之一程序特徵對與該一或多個基板相關聯的該第二效能資料之貢獻。
視情況,識別一或多個基板可包含提供與複數個基板相關聯之程序資料作為至該第一模型之輸入;及獲得經預測效能資料作為該第一模型之一輸出。
視情況,該方法可進一步包含獲得用於該複數個基板之經量測效能資料。
視情況,識別一或多個基板可進一步包含比較該經預測效能資料與該經量測效能資料以判定該預測品質。
視情況,該經預測效能資料可包含經預測良率資料。
視情況,該第一模型可包含一神經網路。
視情況,該第一模型之該輸出可進一步包含與該複數個基板相關聯之該程序資料之複數個程序特徵對該經預測效能資料之貢獻的一估計。
視情況,該第一模型之該輸出可包含該複數個程序特徵對該經預測效能資料之該所估計貢獻的一順位。
視情況,該複數個程序特徵可包括疊對、對準、位階量測、臨界尺寸、厚度及內容脈絡資料中之一或多者。
視情況,該程序資料可包含關於一基板之複數個層之資料。
視情況,該方法可進一步包含基於該一或多個經識別基板產生擴充程序資料。
視情況,該第二程序資料可包含該擴充程序資料及該一或多個經識別基板之該程序資料。
視情況,產生擴充程序資料可包含:模型化用於一程序特徵之一參數分佈;及根據該經模型化參數分佈產生複數個樣本,其中該擴充程序資料包含該複數個樣本。
視情況,產生擴充程序資料可包含:判定用於一程序特徵之一值範圍;及在用於該程序特徵之該值範圍內產生複數個樣本,其中該擴充程序資料包含該複數個樣本。
視情況,該方法可進一步包含:提供該擴充程序資料作為至該第一模型之輸入;及獲得擴充經預測效能資料作為該第一模型之一輸出。
視情況,該第二效能資料可包含該擴充經預測效能資料及用於該一或多個基板之該經預測效能資料。
視情況,該第二模型可為一可解譯模型。
視情況,該可解譯模型可包含一線性模型、一淺決策樹、一隨機森林或一梯度增強樹中之一或多者。
視情況,使用該第二模型以判定該第二程序資料之一程序特徵對與經識別之該一或多個基板相關聯的該第二效能資料之一貢獻可包含:對該第二程序資料及該第二效能資料訓練該第二模型;使用該第二模型以估計一程序特徵與第二效能資料之間的一關係;及基於該所估計關係判定一程序特徵之貢獻。
視情況,若該預測品質高於一預定臨限值,則可識別一基板。
視情況,若該預測品質高於一預定損失度量,則可識別一基板。
視情況,該第一模型可為表示一組基板之一全域模型。該第二模型可為表示該組基板之一選定子集之一局域模型。
視情況,該方法可進一步包含基於該程序特徵之該經判定貢獻診斷用於執行圖案化基板之該程序之一設備的一效能問題。
視情況,該方法可進一步包含:基於該程序特徵之該經判定貢獻更新一或多個程序設定;及將該經更新一或多個程序設定提供至執行圖案化基板之該程序之一設備。
根據本發明之另一態樣,提供一種電腦程式,其包含在於至少一個處理器上執行時致使該至少一個處理器進行如上文所描述之一方法的指令。
根據本發明之另一態樣,提供一種處理器可讀媒體,其包含在由一處理器執行時致使該處理器執行如上文所描述之一方法之指令。
根據本發明之另一態樣,提供一種用於判定一程序特徵對圖案化基板之一程序之效能之貢獻的設備。該設備包含一或多個處理器,該一或多個處理器經組態以執行電腦程式碼以進行如上文所闡明之方法。
根據本發明之另一態樣,提供一種度量衡設備,其包含如上文所描述之一設備。
根據本發明之另一態樣,提供一種檢測設備,其包含如上文所描述之一設備。
根據本發明之另一態樣,提供一種微影設備,其包含如上文所描述之一設備。
在本發明之文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如具有為365 nm、248 nm、193 nm、157 nm或126 nm之波長)及極紫外線輻射(EUV,例如具有在約5 nm至100 nm之範圍內之波長)。
本文中所使用之術語「倍縮光罩」、「光罩」或「圖案化裝置」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化裝置,該經圖案化橫截面對應於待在基板之目標部分中產生之圖案。在此內容背景中,亦可使用術語「光閥」。除經典光罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化裝置之實例包括可程式化鏡面陣列及可程式化LCD陣列。
圖1示意性地描繪微影設備LA。該微影設備LA包括:照明系統(亦被稱作照明器) IL,其經組態以調節輻射光束B (例如UV輻射、DUV輻射或EUV輻射);光罩支撐件(例如光罩台) T,其經建構以支撐圖案化裝置(例如光罩) MA且連接至經組態以根據某些參數來準確地定位該圖案化裝置MA之第一定位器PM;基板支撐件(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數來準確地定位基板支撐件之第二定位器PW;及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。
在操作中,照明系統IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於導向、塑形及/或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電及/或其他類型之光學組件,或其任何組合。照明器IL可用以調節輻射光束B,以在圖案化裝置MA之平面處在其橫截面中具有所要空間及角強度分佈。
本文所使用之術語「投影系統」PS應被廣泛地解譯為涵蓋適於所使用之曝光輻射及/或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及/或靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」PS同義。
微影設備LA可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統PS與基板W之間的空間-此亦被稱作浸潤微影。以引用方式併入本文中之US6952253中給出關於浸潤技術之更多資訊。
微影設備LA亦可屬於具有兩個或多於兩個基板支撐件WT (又名「雙載物台」)之類型。在此「多載物台」機器中,可並行地使用基板支撐件WT,及/或可對位於基板支撐件WT中之一者上的基板W進行準備基板W之後續曝光的步驟,同時將另一基板支撐件WT上之另一基板W用於在該另一基板W上曝光圖案。
除了基板支撐件WT以外,微影設備LA亦可包含量測載物台。量測載物台經配置以固持感測器及/或清潔裝置。感測器可經配置以量測投影系統PS之屬性或輻射光束B之屬性。量測載物台可固持多個感測器。清潔裝置可經配置以清潔微影設備之部分,例如投影系統PS之部分或提供浸潤液體之系統之部分。量測載物台可在基板支撐件WT遠離投影系統PS時在投影系統PS下方移動。
在操作中,輻射光束B入射於被固持於光罩支撐件T上之圖案化裝置(例如光罩) MA上,且藉由存在於圖案化裝置MA上之圖案(設計佈局)而圖案化。在已橫穿光罩MA的情況下,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置量測系統IF,可準確地移動基板支撐件WT,例如以便使不同目標部分C在輻射光束B之路徑中定位於經聚焦且對準之位置處。相似地,第一定位器PM及可能另一位置感測器(其未在圖1中明確地描繪)可用以相對於輻射光束B之路徑來準確地定位圖案化裝置MA。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置MA及基板W。儘管如所說明之基板對準標記P1、P2佔據專用目標部分,但該等標記可位於目標部分之間的空間中。當基板對準標記P1、P2位於目標部分C之間時,此等基板對準標記P1、P2被稱為切割道對準標記。
如圖2所展示,微影設備LA可形成微影製造單元LC (有時亦被稱作微影製造單元(lithocell)或(微影)叢集)之部分,微影製造單元LC常常亦包括用以對基板W執行曝光前程序及曝光後程序之設備。通常,此等設備包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、例如用於調節基板W之溫度(例如用於調節抗蝕劑層中之溶劑)之冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同程序設備之間移動基板W且將基板W遞送至微影設備LA之裝載匣LB。微影製造單元中常常亦被集體地稱作塗佈顯影系統之裝置通常係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身可受到監督控制系統SCS控制,監督控制系統SCS亦可例如經由微影控制單元LACU而控制微影設備LA。
為了正確且一致地曝光由微影設備LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。出於此目的,可在微影製造單元LC中包括檢測工具(圖中未繪示)。若偵測到誤差,則可對後續基板之曝光或對待對基板W執行之其他處理步驟進行例如調整,尤其是在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可被稱作度量衡設備之檢測設備係用以判定基板W之屬性,且尤其判定不同基板W之屬性如何變化或與同一基板W之不同層相關聯之屬性在層與層間如何變化。檢測設備可替代地經建構以識別基板W上之缺陷,且可例如為微影製造單元LC之部分,或可整合至微影設備LA中,或可甚至為單機裝置。檢測設備可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已被移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
通常微影設備LA中之圖案化程序為在處理中之最具決定性步驟中的一者,其需要基板W上之結構之尺寸標定及置放之高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境中,如圖3示意性地所描繪。此等系統中之一者為微影設備LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此三個系統之間的合作以增強總體程序窗且提供嚴格控制迴路,從而確保由微影設備LA執行之圖案化保持在程序窗內。程序窗界定程序參數(例如劑量、焦點、疊對)之範圍,在該程序參數範圍內特定製造程序得到所界定結果(例如功能半導體裝置)-通常在該程序參數範圍內,微影程序或圖案化程序中之程序參數被允許變化。
電腦系統CL可使用待圖案化之設計佈局(之部分)以預測使用哪種解析度增強技術且執行運算微影模擬及計算以判定哪種光罩佈局及微影設備設定達成圖案化程序之最大總體程序窗(在圖3中由第一標度SC1中之雙箭頭描繪)。通常,解析度增強技術經配置以匹配於微影設備LA之圖案化可能性。電腦系統CL亦可用以偵測在程序窗內何處微影設備LA當前正操作(例如使用來自度量衡工具MT之輸入)以預測歸因於例如次佳處理是否可存在缺陷(在圖3中由第二標度SC2中之指向「0」之箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影設備LA以識別例如微影設備LA之校準狀態中的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
度量衡工具MT可用以量測與微影基板相關之一或多個特徵或屬性。可受到關注的屬性之一種類型可為圖案化程序之效能。圖案化程序之效能可難以直接量測。替代地,可藉由量測與效能相關聯之屬性而間接評估效能。舉例而言,此可包括評估存在於基板上之最終圖案之品質。用以評估最終圖案之品質之一種方式係藉由量測基板之良率。評估圖案化效能之其他實例方法包括修復密度、探針二進位碼等。基板之良率可表示基板上之恰當地起作用之元件之比例。評估良率可包含對基板上之每一個別元件進行判定,無論其是「工作」抑或「不合格」。工作元件可被稱為通過良率測試。工作元件之數目除以元件之總數目可為基板之良率。元件可為經組態為能夠與基板上之其他實體分離地起作用之實體。此元件可被稱作晶粒。元件之實例可為記憶體胞元、開關、處理單元等。
量測良率可給出經圖案化基板之品質之指示。經完美圖案化之基板(其中每一晶粒包含一作用元件)具有100%之良率。所有晶粒皆由不工作元件組成的基板具有0%之良率。獲得100%或儘可能接近於100%之良率為高品質微影圖案化之目標。為了診斷任何問題且判定如何改良圖案化以增加良率,可需要判定基板上之不合格晶粒的根本原因或判定一或多個潛在根本原因。為簡潔起見,良率損失之根本原因亦可被稱作良率之根本原因。良率損失之實例原因可包括關於基板之一或多個層之對準、疊對或位階量測之問題,或關於基板上之蝕刻步驟(例如蝕刻過多或不足)之問題。
已知的良率根本原因尋找方法可使用來自許多樣本基板之資料以建立相關模型。舉例而言,相關模型可包含多變量機器學習模型或單變量線性/非線性相關分析。在機器學習相關模型之狀況下,特徵權重可用作作為潛在根本原因的彼特徵之重要性之指示符。可將特徵按其與良率損失之相關性之次序進行順位。此順位可用以選擇一或多個潛在良率根本原因。
關於使用已知相關模型之問題為:基板良率、圖案化程序屬性與經量測程序特徵之間的關係係複雜的。如本文中所使用,術語「程序特徵」(或簡言之「特徵」)係指與微影圖案化程序相關之屬性、參數或特徵。相關模型可藉由試圖找到相關性而試圖自來自樣本基板之資料中找到解釋良率損失之程序特徵。然而,若存在許多基板,則在特徵與良率之間存在許多不同的相關性。舉例而言,基板可包含許多不同的製造層以藉由一或多個成品晶粒形成最終經圖案化基板。不同的程序特徵可影響不同製造層中及/或不同基板中的良率。舉例而言,在一個層中,關於疊對之問題可在基板之一個區中造成良率損失。在另一層中,關於臨界尺寸變化之問題可在基板之另一區中造成良率損失。相關模型通常採取所有提供之良率損失資料的平均值,且使用此平均值以嘗試尋找潛在根本原因。然而,相關模型可能不能夠準確地區分良率損失之兩個或多於兩個個別原因。此可導致對根本原因之不正確的預測。
本發明係關於用於判定一或多個基板上之良率損失之一或多個潛在根本原因的方法及設備。替代地,可判定圖案化程序效能之另一指示符中之損失的根本原因。該方法可藉由基於程序資料作出對良率損失之估計來判定潛在根本原因,且估計程序資料之哪些特徵最影響良率之損失。此等特徵可與良率損失之潛在根本原因連結。程序資料可包含針對一或多個基板所獲得之度量衡資料。程序資料亦可包含與用於基板之微影圖案化及/或其他製造程序相關之製造程序資料。提供至該方法的度量衡資料及/或程序資料可與程序特徵相關。該方法亦可使用針對一或多個基板所獲得之良率資料。程序特徵之實例可包括度量衡資料,諸如疊對、位階量測、對準、臨界尺寸或微影設備設定、用於圖案化步驟之配方設定、內容脈絡資料等。本文中所描述之方法使用兩個模型,以便區分不同程序特徵對一或多個基板之良率之貢獻。基於由不同程序特徵對良率損失作出之不同貢獻,可識別良率損失之潛在根本原因。
圖4描繪判定程序特徵對圖案化基板之程序效能之貢獻之方法的流程圖。在402處,獲得第一模型。舉例而言,可自儲存器(例如自資料儲存裝置)擷取先前產生之模型,或可重新產生第一模型。可對第一程序資料及第一效能資料訓練第一模型。第一程序資料及第一效能資料可包含歷史資料。歷史資料可與在該方法中分析效能之圖案化程序之較早執行相關。程序資料可包含用於一或多個程序特徵之複數個資料點。程序特徵可與基板之屬性相關,例如疊對、對準、臨界尺寸、位階量測等。舉例而言,程序資料可包含針對一或多個程序特徵橫越基板之量測之分佈。效能資料可與一屬性相關,該屬性與在其上評估基板之效能的基板相關。效能資料之實例可為基板之良率資料。如本文中所描述,第一模型可接收程序資料作為輸入,且提供效能資料之估計作為輸出。作為訓練程序之部分,可相對於所提供之(已知)第一效能資料來評估所估計之效能資料,以便訓練模型。
在404處,可識別一或多個基板。該識別可基於當第一模型應用至一或多個基板之程序資料時該第一模型之預測品質。第一模型可經應用至一組基板以進行預測。一或多個基板可為該組基板之子集。在406處,可對第二程序資料及第二效能資料訓練第二模型。第二程序資料及第二效能資料可與一或多個基板相關聯。在408處,可使用經訓練第二模型以判定第二程序資料之特徵對與一或多個基板相關聯的第二效能資料之貢獻。
第一模型可為表示基板群體之全域模型。對於其餘的描述,第一模型將被稱作全域模型。第一程序資料及第一效能資料可分別被稱作全域程序資料及全域效能資料。全域程序資料及全域效能資料可包含與大量基板相關之資料。因此,可對大量基板訓練全域模型。結果,可能已對表示許多不同程序特徵之程序資料訓練全域模型,從而對圖案化程序之效能產生許多不同的效應。全域模型可用以預測用於一組基板之圖案化程序之效能。該組基板可例如為一批次基板。一批次可為經受相同圖案化程序之基板群組。結果,該等基板可具有相似及可相當的屬性,從而使得其適合於一起被分析。一批次基板可例如包含二十五個基板。
全域模型GM可為機器學習模型。特定言之,全域模型GM可為神經網路,例如深度神經網路。全域模型可擁有以引用方式併入本文中之WO2018/202361中所描述的模型之一或多個屬性。
當對來自大的訓練基板集合之程序資料訓練全域模型時,可在多個不同的訓練基板上存在晶粒不合格/良率損失之多種原因。一些原因可能並不存在於一些訓練基板中。當模型判定程序資料與良率預測之間的對應性時,可能會低估橫越所有/大多數訓練基板未存在的原因之效應。較不普遍的原因因此可藉由遍及大的訓練基板集合之平均化效應而不明顯。結果,對大的基板集合訓練之全域模型可並不適合於判定程序特徵之貢獻作為晶粒不合格及良率損失之原因。換言之,全域模型可能無法判定哪一(哪些)程序特徵為特定晶粒、晶圓或批次不合格的根本原因。
為了允許判定良率損失之根本原因,本文所揭示之方法使用第二模型。該第二模型可為表示選自一組基板之子集之局域模型。對於其餘的描述,第二模型將被稱作局域模型。第二程序資料及第二效能資料亦可分別被稱作局域程序資料及局域效能資料。局域模型之功能可為解譯在基板子集附近(或局部)之全域模型之行為。對與全域模型一起使用的一組基板之子集訓練局域模型之優點為:對對應程序資料之解譯可更準確。此可能係因為對與基板之較小子集相關聯之資料訓練局域模型。結果,資料對預測之貢獻之解譯被限制至基板之選定子集附近。此可意謂造成良率損失之效應之範疇對於一組大的基板而言可較小。因此,不大可能將原因平均化。局域模型具有程序資料之改良之解譯的第二原因可為:子集包含基於由全域模型進行之預測之品質而已識別及選擇的基板。具有高預測品質可指示全域模型對該子集中之基板進行有效預測。此可指示子集之基板具有由全域模型可識別的良率損失屬性,此可使得其容易受局域模型分析。結果,經訓練之局域模型可能夠識別用於子集中之基板之程序特徵的貢獻。
局域模型可為可解譯模型。可解譯模型可為可直觀地解釋模型輸入與模型之間的一或多個關係之模型類型。局域模型可提供不同程序特徵與基板之良率損失資料的相關性程度之指示。可自經訓練局域模型獲得之此資訊可由該方法用以判定程序特徵對圖案化程序之效能之貢獻。
程序資料可與一或多個程序特徵相關。程序資料可包含程序特徵之經量測資料。舉例而言,程序特徵可為疊對,且程序資料可包含疊對資料。替代經量測資料或除了經量測資料以外,程序資料亦可包含所估計及/或推斷之資料。舉例而言,可自對基板進行之其他量測推斷出所估計之疊對資料。此所推斷/估計之疊對資料亦可被提供為基板之程序資料。
如上文所描述,方法包括識別已作為至全域模型之輸入提供的一組基板之子集。該識別步驟可包含選擇該組中由全域模型進行之預測之品質高於預定臨限值及/或預定損失度量的一或多個基板。該臨限值可取決於效能資料之類型。該臨限值可取決於基板上之晶粒之圖案的預期使用狀況。使用狀況可與特徵貢獻之分析資料之使用相關,及/或可與晶粒自身之預期使用相關。實例臨限值可為預測資料與經量測資料之間超過75%的對應性。實例損失度量包括均方誤差(MSE)損失、對數(logarithmic/log)損失、交叉熵、分類準確度等。替代地,可進行子集之選擇作為針對一組基板獲得之最佳品質預測的一部分。舉例而言,該組中具有最佳預測結果之基板的10%、20%、30%、40%或50%可經選擇用於子集。如上文所描述選擇基板可自子集排除未獲得足夠良好的預測品質的基板。可需要排除此類基板,此係因為不良的預測品質可指示基板屬性與基板之其餘部分及/或訓練全域模型之基板不同。此等基板很可能具有與基板之其餘部分不同的良率損失屬性。結果,可自子集排除該等基板使得其並不會不利地影響根本原因之預測之有效性。
基於對全域模型之預測之品質選擇一或多個基板之子集的優點為:其可指示彼等基板之程序資料及效能資料與全域程序資料及全域效能資料之匹配的良好程度。若選擇係基於具有高預測品質,則此可指示全域模型能夠大體上準確地解譯程序資料。此繼而可指示基板之程序資料落在預期程序資料值內。
除了基於預測品質進行選擇以外,識別一組基板之子集170亦可包括選擇具有在預定範圍內之良率的基板。可基於經預測良率或經量測良率評估良率是否落在預定範圍內。可設定預定範圍以排除具有極高良率之基板。歸因於基板上存在少量的不合格的晶粒,高良率基板可提供關於判定良率損失之根本原因之有限的資訊。預定範圍亦可排除具有極低良率之基板。可例如與該組中之其他基板進行比較來設定用於極低良率之臨限值。低良率基板與該組中之其他基板相比可具有良率損失之替代及/或額外的根本原因,且可自對子集中之根本原因之分析被排除。
現在將關於圖5更詳細地描述用於判定程序特徵對圖案化程序之效能之貢獻的方法。圖5描繪本文中所描述之方法之不同部分的示意性表示。將輸入110提供至全域模型GM。輸入110可包含與一組基板之一基板相關的程序資料。程序資料可包含與用於基板之不同層之程序特徵相關的資料。程序特徵可包含來自圖案化程序之任何所關注特徵。舉例而言,程序特徵可包括疊對OVL、位階量測LVL、對準AL、臨界尺寸CD及內容脈絡資料CXT。可提供用於複數個層中之每一者之一或多個程序特徵之程序資料,該一或多個程序特徵在圖5中由字母A,…X來標註。
全域模型GM可接收輸入110,且基於該輸入產生輸出。輸出可包含經預測效能資料。效能資料可包含用於基板之經預測良率資料120。全域模型亦可提供複數個特徵對經預測效能資料之貢獻140之估計。該複數個特徵可為與提供至全域模型GM之一組基板相關聯的程序資料之部分。該估計可用以提供複數個程序特徵對經預測效能資料之所估計貢獻的順位。圖5中之貢獻140之估計係僅出於說明之目的之任意實例。然而,如上文所描述,此全域模型特徵貢獻140可能並不適合於準確地預測特徵對良率損失之根本原因之貢獻。
為了判定經預測良率120之品質,可提供用於基板之實際良率資料130。實際良率資料130可自基板上之量測(例如由良率探針測試進行之量測)獲得。良率探針測試可為對最終基板執行以用於測試基板上之圖案之功能性的測試。良率探針可為電氣測試。良率探針可測試基板上之每一個別晶粒。良率探針測試之後果可為晶粒分類為「合格」或「不合格」。可比較經預測良率120與實際良率130以便判定預測品質150。出於說明之目的,以曲線圖152標繪相對於實際良率130之預測品質150。描繪了針對來自該組之實例基板的實際良率135、經預測良率125以及實際良率與經預測良率之間的差異155之分佈的圖形表示。突出顯示區域可表示實例基板上之不合格的晶粒。良率資料之圖形表示亦可展示基板上之促成良率損失的不合格晶粒之部位分佈。
可針對一組基板160中之每一基板重複判定經預測良率之方法。針對組160中之每一基板以曲線圖152說明所得預測品質150。基於該組中之基板之預測品質,可識別對一或多個基板之選擇以形成子集170。將一或多個基板選擇至子集170中另外可基於實際良率及經預測良率之分佈155。可提供子集170中之基板以訓練局域模型LM。一旦已訓練局域模型LM,其就可用以判定對於子集170之經預測之特徵重要性180。
如上文所描述,可使用全域模型GM以基於由全域模型GM輸出之經預測效能資料120之品質來選擇基板之子集。一旦已選擇一或多個基板,就可分析用於子集之程序資料以判定程序特徵對基板上之良率損失之貢獻。該分析可使用局域模型LM,如圖6中所展示。為了判定特徵對基板之子集170之良率損失之貢獻,可對與彼子集170相關之資料訓練局域模型LM。
可用於子集170中之程序資料之量可能並不大到足以訓練局域模型。若對少量資料訓練局域模型,則此可造成擬合過度。為了避免擬合過度,方法可基於子集程序資料產生資料。所產生之資料可用以訓練局域模型LM。與關於基板之資料相關聯的所產生之資料可被稱作擴充資料或經模擬資料。所產生之擴充資料之量可涉及局域模型LM之準確度與產生資料且訓練局域模型所需之處理時間之間的取捨。增大可用於訓練之資料量之優點可為:其可減少或避免局域模型LM之擬合過度。
可藉由判定關於一或多個程序特徵之程序資料之範圍604且產生606在彼範圍內之資料點來獲得擴充程序資料。產生擴充程序資料之第一實例方法可包含模型化關於程序特徵之參數分佈,諸如疊對、對準、臨界尺寸等。可接著藉由根據模型化之參數分佈產生複數個樣本來獲得擴充程序資料。產生擴充程序資料之第二實例方法可包含判定用於程序特徵之值範圍。可藉由在特徵之值範圍內產生複數個樣本來獲得擴充資料程序。擴充程序資料可具有與子集中之基板之程序資料相同類型的內容。舉例而言,擴充程序資料及基板程序資料可包含相同的程序特徵、相同數目個層、相同量的資料點等中之一或多者。
為了將擴充程序資料用於訓練,可使擴充程序資料與對應的擴充效能資料成對。程序資料及效能資料可形成用於局域模型LM之輸入-輸出訓練對。為了形成程序-效能資料對,可使用擴充程序資料以產生擴充效能資料。在一項實例實施中,可提供擴充程序資料作為至全域模型GM之輸入。由全域模型GM產生之輸出可為對應於擴充程序資料輸入之擴充效能資料608。
用以訓練局域模型LM之資料可被稱作局域程序資料及局域效能資料610。局域程序資料可包含擴充程序資料。視情況,局域程序資料亦可包含子集170之程序資料。相似地,局域效能資料可包含擴充效能資料,且視情況包含子集170之效能資料。取決於子集之程序資料及效能資料是否包括於局域資料中,局域模型LM之訓練可分別基於擴充資料及子集資料兩者,或基於單獨擴充資料。歸因於至少部分地對擴充資料訓練局域模型LM,局域模型LM可被稱作代替模型。
可對局域資料612訓練局域模型LM。所使用之訓練方法可為用於該類型模型之標準訓練方法。局域模型LM可為可解譯模型。局域模型LM可為可解譯機器學習模型,例如線性模型或淺決策樹。局域模型LM可提供特徵重要性作為模型產生之部分,例如隨機森林或梯度增強樹。局域模型LM一旦其已被訓練就可提供對不同程序特徵對由該模型輸出之效能資料之貢獻的估計。因為對與經識別基板之子集170相關聯的資料訓練局域模型LM,所以該估計可提供與基板之子集170相關之解譯。
在一個實施中,局域模型LM可用以判定局域程序資料之一或多個特徵對局域效能資料之貢獻。為了達成此情形,可對局域程序資料及局域效能資料訓練局域模型LM。經訓練局域模型LM可為可解譯的,使得經訓練局域模型LM可用以估計一或多個特徵與局域效能資料之間的關係。基於自經訓練模型獲得之經解譯之估計關係,一或多個特徵對局域效能資料之貢獻。如上文所描述,可已使用全域模型GM來識別基板之子集170以展現相似的效能資料。基板之效能資料可提供應用至基板之圖案化程序之效能之指示。結果,所估計貢獻可表示一或多個特徵對子集170之基板之圖案化程序之效能的貢獻。
選擇一或多個基板以形成子集170可影響特徵對基板效能之所估計貢獻的後果。圖7(a)及圖7(b)說明基板選擇可對特徵對基板良率之貢獻之估計具有的可能的影響。圖7(a)及圖7(b)描繪複數個晶粒之曲線圖。該等晶粒可全部位於同一基板上,或可替代地位於多個相關基板上,例如同一批次中之基板。該曲線圖之軸線指示兩個選定程序特徵F1及F2之值。晶粒在該曲線圖中被分類為不合格晶粒702,由十字指示;或合格晶粒704,由圓圈指示。全域模型GM提供對一組基板上之每一晶粒之所估計之合格/不合格良率分類。對於該複數個晶粒中之每一者,標繪用於F1及F2之特徵值,且指示合格/不合格良率分類。所得曲線圖可用以判定特徵F1及F2對晶粒分類之貢獻。
在圖7(a)中,在曲線圖中繪製全域模型GM決策邊界710,展示不合格晶粒與合格晶粒之間的分離度。基於該全域模型GM決策邊界710,可估計712特徵F1及F2對邊界位置之貢獻。在所描繪之實例曲線圖中,特徵F1之值與特徵F2之值相比對晶粒效能之結果作出更大的貢獻。基於橫越全部複數個晶粒之評估,特徵F1對晶粒及基板整體上之效能具有更大的貢獻。
圖7(b)展示圖7(a)之曲線圖,其具有選擇730與基板之子集170相關之晶粒的附加說明。基於選擇730之基板170訓練局域模型。經訓練局域模型LM可判定局域模型決策邊界720。基於所說明之局域模型決策邊界720,特徵F2現在與特徵F1相比對合格/不合格分類作出更大的貢獻。可由經訓練局域模型LM判定局域模型決策線720。基於局域模型LM之所估計之特徵貢獻分析722不同於全域模型估計之特徵貢獻。差異之原因可被理解為在全域模型決策邊界710中所考量的許多晶粒之平均化效應。在對子集170之選定晶粒730之更具目標性之估計中並不存在此等平均化效應。
應理解,圖7(a)及圖7(b)之曲線圖係僅用於說明。全域模型GM及局域模型LM可在多於兩個特徵之間,例如存在於程序資料中之所有程序特徵F1至Fn,進行比較。模型GM及LM可基於計算判定特徵之貢獻,而不會產生圖形表示。
用於判定一或多個程序特徵對圖案化程序之效能之貢獻的方法可用於診斷及控制該圖案化程序中所使用之設備。基於一或多個特徵對圖案化基板之程序之效能之經判定貢獻,可診斷效能問題。一或多個特徵之貢獻可用以診斷基板上之良率損失之潛在根本原因。舉例而言,若藉由局域模型LM將基板之子集中之良率損失歸因於由特定層之疊對OVL或臨界尺寸CD造成,則此可指示對應層中的疊對相關或CD相關問題。對一或多個基板中之問題之診斷可指示所診斷問題在基板上之部位。舉例而言,基板上之元件/上之第一群組之良率損失可被診斷為由第一問題(例如層A中之疊對)造成。基板上之元件/晶粒之第二群組之良率損失可被診斷為由第二問題(例如層B中之臨界尺寸CD)造成。
除了診斷效能問題之外,該方法亦可用以控制圖案化程序。在一實例實施中,回應於判定特徵對良率損失之貢獻,可更新一或多個程序設定且將其提供至圖案化設備。舉例而言,在判定疊對對良率損失作出大的貢獻後,可進一步檢查疊對資料。可判定對程序設定之更新以改良形成於基板上之後續圖案之疊對屬性,其繼而減小疊對對良率損失之貢獻。在一項實例實施中,局域模型LM可用於判定導致所估計之良率損失增加之特徵值。
在以下經編號條項之清單中揭示了本發明之另外實施例:
1. 一種判定一程序特徵對圖案化基板之一程序之效能之一貢獻的方法,該方法包含:
獲得對第一程序資料及第一效能資料訓練之一第一模型;
基於當該第一模型應用至與一或多個基板相關聯之程序資料時該第一模型之一預測品質來識別該一或多個基板;
對與經識別之該一或多個基板相關聯的第二程序資料及第二效能資料訓練一第二模型;及
使用該第二模型以判定該第二程序資料之程序特徵對與該一或多個基板相關聯的該第二效能資料之貢獻。
2. 如條項1之方法,其中識別一或多個基板包含:
提供與複數個基板相關聯之程序資料作為至該第一模型之輸入;及
獲得經預測效能資料作為該第一模型之一輸出。
3. 如條項2之方法,其進一步包含:
獲得用於該複數個基板之經量測之效能資料。
4. 如條項2或條項3之方法,其中識別一或多個基板進一步包含比較該經預測效能資料與該經量測效能資料以判定該預測品質。
5. 如條項2至4中任一項之方法,其中該經預測效能資料包含經預測良率資料。
6. 如前述條項中任一項之方法,其中該第一模型包含一神經網路。
7. 如條項2至6中任一項之方法,其中該第一模型之該輸出進一步包含與該複數個基板相關聯之該程序資料之複數個程序特徵對該經預測效能資料之貢獻的一估計。
8. 如條項7之方法,其中該第一模型之該輸出包含該複數個程序特徵對該經預測效能資料之該所估計貢獻的一順位。
9. 如條項7至8中任一項之方法,其中該複數個程序特徵包括疊對、對準、位階量測、臨界尺寸、厚度及內容脈絡資料中之一或多者。
10. 如前述條項中任一項之方法,其中該程序資料包含關於一基板之複數個層之資料。
11. 如前述條項中任一項之方法,其進一步包含:
基於該一或多個經識別基板產生擴充程序資料。
12. 如條項11之方法,其中該第二程序資料包含該擴充程序資料及該一或多個經識別基板之該程序資料。
13. 如條項11至12中任一項之方法,其中產生擴充程序資料包含:
模型化用於一程序特徵之一參數分佈;及
根據該經模型化參數分佈產生複數個樣本,其中該擴充程序資料包含該複數個樣本。
14. 如條項11至13中任一項之方法,其中產生擴充程序資料包含:
判定用於一程序特徵之一值範圍;及
在用於該程序特徵之該值範圍內產生複數個樣本,其中該擴充程序資料包含該複數個樣本。
15. 如條項11至14中任一項之方法,其進一步包含:
提供該擴充程序資料作為至該第一模型之輸入;及獲得擴充經預測效能資料作為該第一模型之一輸出。
16. 如條項15之方法,其中該第二效能資料包含該擴充經預測效能資料及用於該一或多個基板之該經預測效能資料。
17. 如前述條項中任一項之方法,其中該第二模型係一可解譯模型。
18. 如條項17之方法,其中該可解譯模型包含一線性模型、一淺決策樹、一隨機森林或一梯度增強樹中之一或多者。
19. 如前述條項中任一項之方法,其中使用該第二模型以判定該第二程序資料之一程序特徵對與經識別之該一或多個基板相關聯的該第二效能資料之一貢獻包含:
對該第二程序資料及該第二效能資料訓練該第二模型;
使用該第二模型以估計一程序特徵與第二效能資料之間的一關係;及
基於該所估計關係判定一程序特徵之貢獻。
20. 如前述條項中任一項之方法,其中若該預測品質高於一預定臨限值,則識別一基板。
21. 如前述條項中任一項之方法,其中若該預測品質高於一預定損失度量,則識別一基板。
22. 如前述條項中任一項之方法,其中該第一模型係表示一組基板之一全域模型;且
其中該第二模型係表示該組基板之一選定子集之一局域模型。
23. 如前述條項中任一項之方法,其進一步包含:
基於該程序特徵之該經判定貢獻診斷用於執行圖案化基板之該程序之一設備的一效能問題。
24. 如前述條項中任一項之方法,其進一步包含:
基於該程序特徵之該經判定貢獻更新一或多個程序設定;及
將該經更新一或多個程序設定提供至執行圖案化基板之該程序之一設備。
25. 一種電腦程式,其包含在經執行於至少一個處理器上時致使該至少一個處理器進行如條項1至24中任一項之方法的指令。
26. 一種處理器可讀媒體,其包含在由一處理器執行時致使該處理器執行如條項1至24中任一項之方法的指令。
27. 一種用於判定一程序特徵對圖案化基板之一程序之效能之一貢獻的設備,該設備包含一或多個處理器,該一或多個處理器經組態以執行電腦程式碼以進行如條項1至24中任一項所陳述的方法。
28. 一種度量衡設備,其包含如條項27之設備。
29. 一種檢測設備,其包含如條項27之設備。
30. 一種微影設備,其包含如條項27之設備。
本文所描述之方法可被實施為電腦程式中之指令。該電腦程式可經執行於設備上,例如度量衡工具MT、檢測設備或微影設備LA。
儘管可在本文中特定地參考在IC製造中微影設備之使用,但應理解,本文中所描述之微影設備可具有其他應用。可能之其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影設備之內容背景中之本發明之實施例,但本發明之實施例可用於其他設備中。本發明之實施例可形成光罩檢測設備、度量衡設備或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化裝置)之物件之任何設備之部分。此等設備通常可被稱作微影工具。此微影工具可使用真空條件或環境(非真空)條件。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明在內容背景允許之情況下不限於光學微影且可用於其他應用(例如壓印微影)中。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
110:輸入
120:經預測良率資料
125:經預測良率
130:實際良率資料
135:實際良率
140:全域模型特徵貢獻
150:預測品質
152:曲線圖
155:差異
160:一組基板
170:基板之子集
180:經預測之特徵重要性
402:步驟
404:步驟
406:步驟
408:步驟
604:判定關於一或多個程序特徵之程序資料之範圍
606:產生
608:擴充效能資料
610:局域程序資料及局域效能資料
612:局域資料
702:不合格晶粒
704:合格晶粒
710:全域模型GM決策邊界
712:估計
720:局域模型決策邊界/局域模型決策線
722:所估計之特徵貢獻分析
730:選擇
B:輻射光束
BD:光束遞送系統
BK:烘烤板
C:目標部分
CH:冷卻板
CL:電腦系統
DE:顯影器
F1:程序特徵
F2:程序特徵
GM:全域模型
IF:位置量測系統
IL:照明系統/照明器
I/O1:輸入/輸出埠
I/O2:輸入/輸出埠
LA:微影設備
LACU:微影控制單元
LB:裝載匣
LC:微影製造單元
LM:局域模型
M1
:光罩對準標記
M2
:光罩對準標記
MA:圖案化裝置
MT:度量衡工具
P1
:基板對準標記
P2
:基板對準標記
PM:第一定位器
PS:投影系統
PW:第二定位器
RO:基板處置器或機器人
SC:旋塗器
SC1:第一標度
SC2:第二標度
SC3:第三標度
SCS:監督控制系統
SO:輻射源
T:光罩支撐件
TCU:塗佈顯影系統控制單元
W:基板
WT:基板支撐件
現在將僅作為實例參看隨附示意性圖式來描述本發明之實施例,在該等圖式中:
- 圖1描繪微影設備之示意性綜述;
- 圖2描繪微影製造單元之示意性綜述;
- 圖3描繪整體微影之示意性表示,其表示用以最佳化半導體製造之三種關鍵技術之間的合作;
- 圖4描繪在判定程序特徵對圖案化程序之效能之貢獻之方法中的步驟之流程圖;
- 圖5描繪用於判定程序特徵對圖案化程序之效能之貢獻之方法的示意性表示;
- 圖6描繪訓練局域模型以用於判定特徵對效能資料之貢獻的流程圖;及
圖7(a)及圖7(b)描繪用於判定特徵對效能資料之貢獻的實例曲線圖。
402:步驟
404:步驟
406:步驟
408:步驟
Claims (17)
- 一種判定一程序特徵對圖案化基板之一程序之效能之一貢獻的方法,該方法包含: 獲得對第一程序資料及第一效能資料訓練之一第一模型; 基於當該第一模型應用至與一或多個基板相關聯之程序資料時該第一模型之一預測品質來識別該一或多個基板; 對與經識別之該一或多個基板相關聯的第二程序資料及第二效能資料訓練一第二模型;及 使用該第二模型以判定該第二程序資料之程序特徵對與該一或多個基板相關聯的該第二效能資料之貢獻。
- 如請求項1之方法,其中識別一或多個基板包含: 提供與複數個基板相關聯之程序資料作為至該第一模型之輸入;及 獲得經預測效能資料作為該第一模型之一輸出。
- 如請求項2之方法,其進一步包含: 獲得用於該複數個基板之經量測之效能資料。
- 如請求項2或請求項3之方法,其中識別一或多個基板進一步包含:比較該經預測效能資料與該經量測效能資料以判定該預測品質。
- 如請求項2之方法,其中該經預測效能資料包含經預測良率資料。
- 如請求項1之方法,其中該第一模型包含一神經網路。
- 如請求項2之方法,其中該第一模型之該輸出進一步包含與該複數個基板相關聯之該程序資料之複數個程序特徵對該經預測效能資料之貢獻的一估計。
- 如請求項7之方法,其中該第一模型之該輸出包含該複數個程序特徵對該經預測效能資料之該所估計貢獻的一順位。
- 如請求項7或8之方法,其中該複數個程序特徵包括疊對、對準、位階量測、臨界尺寸、厚度及內容脈絡資料中之一或多者。
- 如請求項1之方法,其進一步包含: 基於該一或多個經識別基板產生擴充程序資料。
- 如請求項10之方法,其中該第二程序資料包含該擴充程序資料及該一或多個經識別基板之該程序資料。
- 如請求項10或11之方法,其中產生擴充程序資料包含: 模型化用於一程序特徵之一參數分佈;及 根據該經模型化參數分佈產生複數個樣本,其中該擴充程序資料包含該複數個樣本。
- 如請求項1之方法,其中該第二模型係一可解譯模型,其包含一線性模型、一淺決策樹、一隨機森林或一梯度增強樹中之一或多者。
- 如請求項1之方法,其中使用該第二模型以判定該第二程序資料之一程序特徵對與經識別之該一或多個基板相關聯的該第二效能資料之一貢獻包含: 對該第二程序資料及該第二效能資料訓練該第二模型; 使用該第二模型以估計一程序特徵與第二效能資料之間的一關係;及 基於該所估計關係判定一程序特徵之貢獻。
- 一種電腦程式,其包含在經執行於至少一個處理器上時致使該至少一個處理器進行如請求項1之方法的指令。
- 一種處理器可讀媒體,其包含在由一處理器執行時致使該處理器執行如請求項1之方法的指令。
- 一種用於判定一程序特徵對圖案化基板之一程序之效能之一貢獻的設備,該設備包含一或多個處理器,該一或多個處理器經組態以執行電腦程式碼以進行如請求項1所陳述的方法。
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP19184423.2 | 2019-07-04 | ||
| EP19184423 | 2019-07-04 | ||
| EP19186833.0 | 2019-07-17 | ||
| EP19186833.0A EP3767392A1 (en) | 2019-07-17 | 2019-07-17 | Method and apparatus for determining feature contribution to performance |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202117456A TW202117456A (zh) | 2021-05-01 |
| TWI746019B true TWI746019B (zh) | 2021-11-11 |
Family
ID=70975896
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109120733A TWI746019B (zh) | 2019-07-04 | 2020-06-19 | 用於判定特徵對效能的貢獻的方法及設備 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US12353967B2 (zh) |
| EP (1) | EP3994525B1 (zh) |
| KR (1) | KR102759889B1 (zh) |
| CN (1) | CN114008535B (zh) |
| TW (1) | TWI746019B (zh) |
| WO (1) | WO2021001114A1 (zh) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102703138B1 (ko) * | 2021-10-26 | 2024-09-04 | 연세대학교 산학협력단 | 기계 학습 기반 데이터베이스 튜닝 방법 및 장치 |
| US12019030B2 (en) * | 2022-01-18 | 2024-06-25 | Kla Corporation | Methods and systems for targeted monitoring of semiconductor measurement quality |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3312672A1 (en) * | 2016-10-21 | 2018-04-25 | ASML Netherlands B.V. | Methods of determining corrections for a patterning process, device manufacturing method, control system for a lithographic apparatus and lithographic apparatus |
| EP3352013A1 (en) * | 2017-01-23 | 2018-07-25 | ASML Netherlands B.V. | Generating predicted data for control or monitoring of a production process |
| TW201921151A (zh) * | 2017-09-08 | 2019-06-01 | 荷蘭商Asml荷蘭公司 | 機器學習輔助光學接近誤差校正的訓練方法 |
| US20190187569A1 (en) * | 2016-08-05 | 2019-06-20 | Asml Netherlands B.V. | Methods & apparatus for obtaining diagnostic information, methods & apparatus for controlling an industrial process |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3977324B2 (ja) | 2002-11-12 | 2007-09-19 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置 |
| EP3391150B1 (en) | 2015-12-17 | 2023-05-10 | ASML Netherlands B.V. | Optical metrology of lithographic processes using asymmetric sub-resolution features to enhance measurement |
| US11443083B2 (en) * | 2016-05-12 | 2022-09-13 | Asml Netherlands B.V. | Identification of hot spots or defects by machine learning |
| US10197908B2 (en) * | 2016-06-21 | 2019-02-05 | Lam Research Corporation | Photoresist design layout pattern proximity correction through fast edge placement error prediction via a physics-based etch profile modeling framework |
| US20180029851A1 (en) * | 2016-08-01 | 2018-02-01 | Caterpillar Inc. | Linkage assembly for machine |
| US10414149B2 (en) * | 2016-10-21 | 2019-09-17 | Microsoft Technology Licensing, Llc | Material estimate for fabrication of three-dimensional object |
| CN110622069B (zh) | 2017-05-05 | 2022-08-09 | Asml荷兰有限公司 | 用于预测器件制造工艺的良率的方法 |
| WO2018233966A1 (en) * | 2017-06-22 | 2018-12-27 | Asml Netherlands B.V. | METHOD FOR DETERMINING THE CONTRIBUTION TO A DIGITAL IMPRINT |
-
2020
- 2020-06-05 CN CN202080045171.XA patent/CN114008535B/zh active Active
- 2020-06-05 KR KR1020227000161A patent/KR102759889B1/ko active Active
- 2020-06-05 EP EP20730276.1A patent/EP3994525B1/en active Active
- 2020-06-05 WO PCT/EP2020/065619 patent/WO2021001114A1/en not_active Ceased
- 2020-06-05 US US17/624,014 patent/US12353967B2/en active Active
- 2020-06-19 TW TW109120733A patent/TWI746019B/zh active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20190187569A1 (en) * | 2016-08-05 | 2019-06-20 | Asml Netherlands B.V. | Methods & apparatus for obtaining diagnostic information, methods & apparatus for controlling an industrial process |
| EP3312672A1 (en) * | 2016-10-21 | 2018-04-25 | ASML Netherlands B.V. | Methods of determining corrections for a patterning process, device manufacturing method, control system for a lithographic apparatus and lithographic apparatus |
| EP3352013A1 (en) * | 2017-01-23 | 2018-07-25 | ASML Netherlands B.V. | Generating predicted data for control or monitoring of a production process |
| TW201921151A (zh) * | 2017-09-08 | 2019-06-01 | 荷蘭商Asml荷蘭公司 | 機器學習輔助光學接近誤差校正的訓練方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20220351075A1 (en) | 2022-11-03 |
| KR102759889B1 (ko) | 2025-02-03 |
| CN114008535B (zh) | 2024-04-12 |
| US12353967B2 (en) | 2025-07-08 |
| EP3994525A1 (en) | 2022-05-11 |
| CN114008535A (zh) | 2022-02-01 |
| EP3994525B1 (en) | 2023-05-03 |
| WO2021001114A1 (en) | 2021-01-07 |
| TW202117456A (zh) | 2021-05-01 |
| KR20220016966A (ko) | 2022-02-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11714357B2 (en) | Method to predict yield of a device manufacturing process | |
| KR102649158B1 (ko) | 반도체 제조 공정의 수율을 예측하는 방법 | |
| TWI726483B (zh) | 用於判定一半導體製造程序事件之根本原因之方法、電腦程式、及非暫時性電腦程式載體 | |
| KR102808643B1 (ko) | 반도체 제조 프로세스에서 기판들의 그룹에 대한 검사 전략을 결정하기 위한 방법 | |
| TWI746019B (zh) | 用於判定特徵對效能的貢獻的方法及設備 | |
| EP3767392A1 (en) | Method and apparatus for determining feature contribution to performance | |
| TWI777678B (zh) | 概念漂移減輕之方法及設備 | |
| JP2021527953A (ja) | 装置の動作を説明するパラメータ間の重要な関係の決定 | |
| US20230153582A1 (en) | Configuration of an imputer model | |
| EP3913435A1 (en) | Configuration of an imputer model | |
| EP4194952A1 (en) | Method for determing a measurement recipe and associated apparatuses |