TWI744795B - Sea level image detection system - Google Patents
Sea level image detection system Download PDFInfo
- Publication number
- TWI744795B TWI744795B TW109104367A TW109104367A TWI744795B TW I744795 B TWI744795 B TW I744795B TW 109104367 A TW109104367 A TW 109104367A TW 109104367 A TW109104367 A TW 109104367A TW I744795 B TWI744795 B TW I744795B
- Authority
- TW
- Taiwan
- Prior art keywords
- sea level
- level image
- discrete
- detection system
- value
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000010586 diagram Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明關於一種利用離散餘弦轉換器和卡爾曼濾波器取得較為穩定的海平面影像之海平面影像偵測系統。 The invention relates to a sea level image detection system that uses a discrete cosine converter and a Kalman filter to obtain a relatively stable sea level image.
以往,海平面的影像偵測會受到海水載浮載沉的影響而晃動,導致海平面影像進而晃動、飄移或傾斜。現有的海平面影像偵測系統為利用霍夫轉換(Hough transform)和卡爾曼濾波器(Kalman Filter)進行海平面影像的選定,並過濾晃動、飄移或傾斜的海平面影像;然而,海平面影像經過霍夫轉換而可能產生多條對應海平面影像的線,難以判斷確切海平面的位置。 In the past, the sea level image detection would be affected by the buoyancy and sinking of the sea, causing the sea level image to shake, drift or tilt. The existing sea-level image detection system uses Hough transform and Kalman Filter to select sea-level images, and filters the sea level images that are swaying, drifting, or tilted; however, sea-level images After the Hough transformation, multiple lines corresponding to the sea level image may be generated, and it is difficult to determine the exact location of the sea level.
美國公開號US20180217243A1之專利為利用超聲波的方式偵測海平面的高度,進而得知船所處的海平面位置,但仍未取得海平面影像,而仍未知船所處的海平面狀況。 The patent of the US Publication No. US20180217243A1 uses ultrasound to detect the height of the sea level, and then knows the sea level position of the ship, but the sea level image has not yet been obtained, and the sea level status of the ship is still unknown.
綜觀前所述,本發明之發明者思索並設計一種海平面影像偵測系統,以期針對習知技術之缺失加以改善,進而增進產業上之實施利用。 In summary, the inventor of the present invention thought about and designed a sea level image detection system, in order to improve the lack of conventional technology, and further enhance the application and utilization in the industry.
有鑑於上述習知之問題,本發明的目的在於提供一種海平面影像偵測系統,用以解決習知技術中所面臨之問題。 In view of the above-mentioned conventional problems, the purpose of the present invention is to provide a sea level image detection system to solve the problems faced by the conventional technology.
基於上述目的,本發明提供一種海平面影像系統,其包括影像擷取器、離散餘弦轉換器以及卡爾曼濾波器。影像擷取器拍攝海平面影像。離散 餘弦轉換器電性連接影像擷取器以接收海平面影像,離散餘弦轉換器將海平面影像分為複數個像素區塊並計算其相應的標示值,離散餘弦轉換器比較各像素區塊之標示值和門檻值,以區分各像素區塊為海洋或天空,進而取得離散海平面影像及海平面線。卡爾曼濾波器電性連接離散餘弦轉換器以接收離散海平面影像及海平面線,卡爾曼濾波器儲存前次海平面影像以及前次海平面線,卡爾曼濾波器根據前次海平面影像及前次海平面線修正離散海平面影像及海平面線。透過離散餘弦轉換器和卡爾曼濾波器的設置,使海平面影像較為穩定,並去除海平面起伏較大的海平面影像。 Based on the above objective, the present invention provides a sea level imaging system, which includes an image extractor, a discrete cosine converter, and a Kalman filter. The image capture device captures sea level images. Discrete The cosine converter is electrically connected to the image capture device to receive the sea level image. The discrete cosine converter divides the sea level image into a plurality of pixel blocks and calculates the corresponding label value. The discrete cosine converter compares the label of each pixel block Value and threshold value to distinguish each pixel block as ocean or sky, and then obtain discrete sea level image and sea level line. The Kalman filter is electrically connected to the discrete cosine converter to receive the discrete sea level image and sea level line. The Kalman filter stores the previous sea level image and the previous sea level line. The Kalman filter is based on the previous sea level image and The previous sea level line corrected the discrete sea level image and sea level line. Through the setting of the discrete cosine converter and Kalman filter, the sea level image is more stable and the sea level image with large sea level fluctuations is removed.
較佳地,各複數個像素區塊具有複數個像素。 Preferably, each plurality of pixel blocks has a plurality of pixels.
較佳地,複數個像素的數量相異或相同於複數個像素區塊的數量。 Preferably, the number of the plurality of pixels is different or the same as the number of the plurality of pixel blocks.
較佳地,離散餘弦轉換器計算各像素區塊之複數個像素的直流係數值和複數個交流係數值,離散餘弦轉換器平均各像素區塊之複數個交流係數值以取得平均係數值,並找出各像素區塊的平均係數值之最大係數值,離散餘弦轉換器將各像素區塊之平均係數值和最大係數值相除以取得標示值。 Preferably, the discrete cosine converter calculates the DC coefficient values and the plurality of AC coefficient values of the plurality of pixels in each pixel block, and the discrete cosine converter averages the plurality of AC coefficient values of each pixel block to obtain the average coefficient value, and The maximum coefficient value of the average coefficient value of each pixel block is found, and the discrete cosine converter divides the average coefficient value and the maximum coefficient value of each pixel block to obtain the label value.
較佳地,當像素區塊之標示值小於門檻值,像素區塊為天空。 Preferably, when the label value of the pixel block is less than the threshold value, the pixel block is the sky.
較佳地,當像素區塊之標示值大於門檻值,像素區塊為海洋。 Preferably, when the label value of the pixel block is greater than the threshold value, the pixel block is the ocean.
較佳地,卡爾曼濾波器根據前次海平面影像及前次海平面線預估當前海平面影像以及當前海平面線,卡爾曼濾波器比對當前海平面影像和當前海平面線和離散海平面影像及海平面線,以修正離散海平面影像及海平面線。 Preferably, the Kalman filter estimates the current sea level image and the current sea level line based on the previous sea level image and the previous sea level line, and the Kalman filter compares the current sea level image with the current sea level line and the discrete sea. Plane image and sea level line to correct discrete sea level image and sea level line.
較佳地,卡爾曼濾波器根據前次海平面線所對應的座標值及前次海平面影像中的風速,預估當前海面線所對應的座標值及當前海平面影像中的風速。 Preferably, the Kalman filter estimates the coordinate values corresponding to the current sea level and the wind speed in the current sea level image based on the coordinate value corresponding to the previous sea level line and the wind speed in the previous sea level image.
較佳地,修正後離散海平面影像以修正後海平面線為基準透視轉換為穩定海平面影像。 Preferably, the corrected discrete sea level image is perspectively converted into a stable sea level image based on the corrected sea level line.
較佳地,靠近海洋之所屬為天空之各像素區塊互相連接為海平面線。 Preferably, each pixel block that belongs to the sky near the ocean is connected to each other to form a sea level line.
承上所述,本發明之海平面影像系統,透過離散餘弦轉換器和卡爾曼濾波器的設置,使海平面影像較為穩定,並去除海平面起伏較大的海平面影像。 As mentioned above, the sea level image system of the present invention makes the sea level image more stable through the setting of the discrete cosine converter and the Kalman filter, and removes the sea level image with large sea level fluctuations.
10:影像擷取器 10: Image grabber
20:離散餘弦轉換器 20: Discrete Cosine Converter
30:卡爾曼濾波器 30: Kalman filter
BSLP:前次海平面影像 BSLP: Last sea level image
BSL:前次海平面線 BSL: Last sea level line
L:標示值 L: marked value
PB:像素區塊 PB: pixel block
SLP:海平面影像 SLP: Sea level image
THRS:門檻值 THRS: Threshold
:k狀態的估計值 : Estimated value of k state
:前次狀態的預測結果 : The prediction result of the previous state
B k μ k-1:估計中的雜訊 B k μ k -1 : Noise in estimation
Pk:估計後所得到預測的狀態 Pk : The predicted state after estimation
F k P k-1:目前變化狀態估計k-1前一個狀態後的估計後的變化時間 F k P k -1 : The current state of change is estimated k-1 The estimated change time after the previous state
F k T :轉換矩陣 F k T : conversion matrix
Q k :過濾雜訊 Q k : Filter noise
第1圖為本發明之海平面影像系統之配置圖。 Figure 1 is a configuration diagram of the sea level imaging system of the present invention.
第2圖為海平面影像之多個像素區塊之轉換圖。 Figure 2 is a conversion diagram of multiple pixel blocks of the sea level image.
第3圖為海平面影像經過離散餘弦轉換器後之示意圖。 Figure 3 is a schematic diagram of the sea level image after passing through the discrete cosine converter.
第4圖為卡爾曼濾波器之作動機制圖。 Figure 4 is a diagram of the operation mechanism of the Kalman filter.
第5圖為本發明之海平面影像圖。 Figure 5 is a sea level image diagram of the present invention.
本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知 識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。 The advantages, features, and technical methods of the present invention will be described in more detail with reference to exemplary embodiments and the accompanying drawings to make it easier to understand, and the present invention can be implemented in different forms, so it should not be understood to be limited to what is here. The stated embodiments, on the contrary, are generally known in the technical field For those of you who know, the provided embodiments will make this disclosure more thorough, comprehensive and complete to convey the scope of the present invention, and the present invention will only be defined by the scope of the appended patent application.
應當理解的是,儘管術語「第一」、「第二」等在本發明中可用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層及/或部分與另一個元件、部件、區域、層及/或部分區分開。因此,下文討論的「第一元件」、「第一部件」、「第一區域」、「第一層」及/或「第一部分」可以被稱為「第二元件」、「第二部件」、「第二區域」、「第二層」及/或「第二部分」,而不悖離本發明的精神和教示。 It should be understood that although the terms "first", "second", etc. may be used in the present invention to describe various elements, components, regions, layers and/or parts, these elements, components, regions, layers and/or parts Should not be restricted by these terms. These terms are only used to distinguish one element, component, region, layer and/or section from another element, component, region, layer and/or section. Therefore, the "first element", "first part", "first area", "first layer" and/or "first part" discussed below can be referred to as "second element", "second part" , "Second Area", "Second Layer" and/or "Second Part" without departing from the spirit and teachings of the present invention.
另外,術語「包括」及/或「包含」指所述特徵、區域、整體、步驟、操作、元件及/或部件的存在,但不排除一個或多個其他特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。 In addition, the terms "including" and/or "including" refer to the existence of the features, regions, wholes, steps, operations, elements, and/or components, but do not exclude one or more other features, regions, wholes, steps, operations , The presence or addition of elements, components, and/or combinations thereof.
除非另有定義,本發明所使用的所有術語(包括技術和科學術語)具有與本發明所屬技術領域的普通技術人員通常理解的相同含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的定義,並且將不被解釋為理想化或過度正式的意義,除非本文中明確地這樣定義。 Unless otherwise defined, all terms (including technical and scientific terms) used in the present invention have the same meanings as commonly understood by those of ordinary skill in the technical field to which the present invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having definitions consistent with their meanings in the context of related technologies and the present invention, and will not be interpreted as idealized or overly formal Unless explicitly defined as such in this article.
請參閱第1圖至第3圖,其為本發明之海平面影像系統之配置圖、海平面影像經過離散餘弦轉換器後之示意圖以及海平面影像經過離散餘弦轉換器後之示意圖。如第1圖至第3圖所示,本發明之海平面影像系統,其包括影像擷取器10、離散餘弦轉換器20以及卡爾曼濾波器30。影像擷取器10拍攝海平面影像SLP。離散餘弦轉換器20電性連接影像擷取器10以接收海平面影像SLP,離 散餘弦轉換器20將海平面影像SLP分為複數個像素區塊PB並計算其相應的標示值L,離散餘弦轉換器20比較各像素區塊PB之標示值L和門檻值THRS,以區分各像素區塊PB為海洋SEA或天空SKY,進而取得離散海平面影像DSLP及海平面線SL。卡爾曼濾波器30電性連接離散餘弦轉換器20以接收離散海平面影像DSLP及海平面線SL,卡爾曼濾波器30儲存前次海平面影像BSLP以及前次海平面線BSL,卡爾曼濾波器30根據前次海平面影像BSLP及前次海平面線BSL修正離散海平面影像DSLP及海平面線SL。透過離散餘弦轉換器20和卡爾曼濾波器30的設置,使海平面影像SLP較為穩定,並去除海平面起伏較大的海平面影像。 Please refer to Figures 1 to 3, which are the layout diagram of the sea level imaging system of the present invention, the schematic diagram of the sea level image after passing through the discrete cosine converter, and the schematic diagram of the sea level image after passing through the discrete cosine converter. As shown in FIGS. 1 to 3, the sea level imaging system of the present invention includes an image extractor 10, a discrete cosine converter 20, and a Kalman filter 30. The image capture device 10 captures the sea level image SLP. The discrete cosine converter 20 is electrically connected to the image capture device 10 to receive the sea level image SLP. The discrete cosine converter 20 divides the sea level image SLP into a plurality of pixel blocks PB and calculates the corresponding label value L. The discrete cosine converter 20 compares the label value L of each pixel block PB and the threshold value THRS to distinguish each pixel block PB. The pixel block PB is ocean SEA or sky SKY, and then the discrete sea level image DSLP and sea level line SL are obtained. The Kalman filter 30 is electrically connected to the discrete cosine converter 20 to receive the discrete sea level image DSLP and the sea level line SL. The Kalman filter 30 stores the previous sea level image BSLP and the previous sea level line BSL, and the Kalman filter 30 Revise the discrete sea level image DSLP and sea level SL based on the previous sea level image BSLP and the previous sea level line BSL. Through the setting of the discrete cosine converter 20 and the Kalman filter 30, the sea level image SLP is more stable, and sea level images with large sea level fluctuations are removed.
具體而言,如第2圖所示,離散餘弦轉換器20將海平面影像SLP分為複數個像素區塊PB,各像素區塊PB具有複數個像素,複數個像素區塊PB的數量相異或相同於複數個像素的數量;舉例而言,離散餘弦轉換器20將海平面影像SLP分為64個像素區塊PB,各像素區塊PB具有64個像素,當然可依據海平面影像SLP的實際尺寸進行像素區塊PB和像素的數量調整,而未侷限於本發明所列舉的範圍。 Specifically, as shown in FIG. 2, the discrete cosine converter 20 divides the sea level image SLP into a plurality of pixel blocks PB. Each pixel block PB has a plurality of pixels, and the number of the plurality of pixel blocks PB is different Or the same as the number of a plurality of pixels; for example, the discrete cosine converter 20 divides the sea level image SLP into 64 pixel blocks PB, and each pixel block PB has 64 pixels. Of course, it can be based on the sea level image SLP. The actual size is adjusted for the pixel block PB and the number of pixels, and is not limited to the scope listed in the present invention.
接著,離散餘弦轉換器20計算各像素區塊PB之複數個像素的直流係數值和複數個交流係數值,其運算公式如下(設定像素的數量為64,1個直流係數值和63個交流係數值): ,i,j=0,1,2.....,7 其中,Pmn指的是在輸入的像素區塊PB內相對應(m,n)的像素值,每個DCT區塊共有8x8個像素,因此i,j=0~7代表每個像素區塊PB的位置,εi ,εj是一個變 數係數,唯有在i=j=0時,εi ,εj設為,其餘情況(i,j=1~7),ε i ,ε j 則設為 。 Next, the discrete cosine converter 20 calculates the DC coefficient values and the AC coefficient values of the plurality of pixels in each pixel block PB, and its calculation formula is as follows (set the number of pixels to 64, 1 DC coefficient value and 63 AC coefficients value): , I,j =0 , 1 , 2..... , 7 Among them, P mn refers to the pixel value corresponding to (m,n) in the input pixel block PB, and each DCT block has a total of 8x8 Pixels, so i , j =0~7 represent the position of each pixel block PB, ε i , ε j is a variable coefficient, only when i = j = 0 , ε i , ε j are set to , In other cases ( i,j =1~7), ε i ,ε j are set to .
離散餘弦轉換器20平均各像素區塊PB之63個交流係數值以取得平均係數值,並找出各像素區塊PB的平均係數值之最大係數值,離散餘弦轉換器20將各像素區塊PB之平均係數值和最大係數值相除以取得標示值L(亦即, ,為平均係數值,為平均係數值),設定門檻值THRS為0.1。 The discrete cosine converter 20 averages the 63 AC coefficient values of each pixel block PB to obtain the average coefficient value, and finds the maximum coefficient value of the average coefficient value of each pixel block PB, and the discrete cosine converter 20 converts each pixel block Divide the average coefficient value and the maximum coefficient value of PB to obtain the label value L (that is, , Is the average coefficient value, Is the average coefficient value), and set the threshold THRS to 0.1.
續言之,如第3圖所示,單個像素區塊PB之標示值L若小於門檻值THRS(其數值為0.1),單個像素區塊PB標示為天空SKY(第3圖之白色區塊);單個像素區塊PB之標示值L若大於門檻值THRS(其數值為0.1),單個像素區塊PB標示為海洋SEA(第3圖之黑色區塊),接著將靠近海洋SEA之所屬為天空SKY之各像素區塊PB互相連接為海平面線SL,從而取得離散海平面影像DSLP及海平面線SL。 In addition, as shown in Figure 3, if the label value L of a single pixel block PB is less than the threshold THRS (the value is 0.1), the single pixel block PB is labeled SKY (the white block in Figure 3) ; If the label value L of a single pixel block PB is greater than the threshold value THRS (the value is 0.1), a single pixel block PB is marked as ocean SEA (the black block in Figure 3), and then the SEA that is close to the ocean belongs to the sky Each pixel block PB of SKY is connected to each other as a sea level line SL, so as to obtain a discrete sea level image DSLP and a sea level line SL.
請參閱第4圖,其為卡爾曼濾波器30之作動機制圖。如第4圖所示,卡爾曼濾波器30根據前次狀態預估下次狀態,其預估公式如下:
P k =F k P k-1 F k T +Q k 其中,為k狀態的估計值(例如速度或座標),為前次狀態(k-1狀態)的預測結果,B k μ k-1為估計中的雜訊;P k 是誤差共變異數(亦即誤差值),主要估算k狀態的不確定性,P k-1為前次狀態(k-1狀態)的誤差變異數,P k 透過P k-1和狀態轉換矩陣(F k 和F k T )可將不確定性雜訊加入到P k 的預估,並且由於預測模型也可能會有誤差值,因此額外在加入Q k (誤差值),F k 和F k T 為狀態轉換矩陣,Q k 為過濾雜訊。 P k = F k P k -1 F k T + Q k where, Is the estimated value of the k state (such as speed or coordinates), Is the prediction result of the previous state (k-1 state), B k μ k -1 is the noise in the estimation; P k is the error covariance (that is, the error value), which mainly estimates the uncertainty of the k state, variation of the number of errors P k -1 is the previous state of the (k-1 state), the transformation matrix P k (F k and F k T) -1 P k through state and the noise can be added to the uncertainty of P k Prediction, and because the prediction model may also have an error value, Q k (error value) is additionally added, F k and F k T are state transition matrices, and Q k is noise filtering.
請參閱第5圖,其為本發明之海平面影像圖。舉例來說,如第5圖所示,並搭配第4圖,紅點為海平面線SL的2個點(此為k-1狀態的海平面線,相當於),搭配B k μ k-1的運算,能取得k狀態的海平面線()。 Please refer to Figure 5, which is a sea level image diagram of the present invention. For example, as shown in Figure 5 and in conjunction with Figure 4, the red dots are 2 points of the sea level line SL (this is the sea level line in the k-1 state, which is equivalent to ), with the calculation of B k μ k -1 , the sea level line of state k can be obtained ( ).
續言之,考慮權重值K k (卡爾曼增益值)將前述公式修正如下:
將前述原理應用於海平面影像,包括前次海平面影像BSLP以及前次海平面線BSL所對應的座標值及風速,為卡爾曼濾波器30所預測出的當前海平面影像以及當前海平面線所對應的座標值及風速,卡爾曼濾波器30比對當前海平面影像和當前海平面線和離散海平面影像DSLP及海平面線SL,以修正離散海平面影像DSLP及海平面線SL,最後修正後離散海平面影像DSLP以修正後海平面線為基準透視轉換為穩定海平面影像。 Apply the aforementioned principles to sea level images, Including the coordinate value and wind speed corresponding to the previous sea level image BSLP and the previous sea level line BSL, For the current sea level image predicted by the Kalman filter 30 and the coordinate value and wind speed corresponding to the current sea level line, the Kalman filter 30 compares the current sea level image with the current sea level line and the discrete sea level image DSLP and The sea level line SL uses the modified discrete sea level image DSLP and the sea level line SL, and finally the modified discrete sea level image DSLP uses the modified sea level line as the basis for perspective conversion into a stable sea level image.
需提及的是,在一實施例中,影像擷取器10設置於無人船中,離散餘弦轉換器20和卡爾曼濾波器30設置於遠端的電腦;因此,影像擷取器10和離散餘弦轉換器20和卡爾曼濾波器30為皆有設置對應的無線收發器,以透過無線的方式傳送海平面影像SLP。在另一實施例中,影像擷取器10設置於無人船中,離散餘弦轉換器20和卡爾曼濾波器30設置於遠端的電腦,並具有雲端伺服器,雲端伺服器和影像擷取器10及遠端的電腦網路連接;影像擷取器10傳送海平面影像SLP至雲端伺服器,遠端的電腦在跟雲端伺服器連接以取得海平面影像 SLP。前述配置僅為舉例,當然也可為其他較佳的配置,而未侷限於本發明所列舉的範圍。 It should be mentioned that, in one embodiment, the image capture device 10 is installed in an unmanned ship, and the discrete cosine converter 20 and the Kalman filter 30 are installed in a remote computer; therefore, the image capture device 10 and the discrete Both the cosine converter 20 and the Kalman filter 30 are equipped with corresponding wireless transceivers to transmit the sea level image SLP wirelessly. In another embodiment, the image capture device 10 is installed in an unmanned ship, the discrete cosine converter 20 and the Kalman filter 30 are installed in a remote computer, and it has a cloud server, a cloud server, and an image capture device. 10 and the remote computer network connection; the image capture device 10 sends the sea level image SLP to the cloud server, and the remote computer is connected to the cloud server to obtain the sea level image SLP. The foregoing configuration is only an example, of course, it can also be other preferred configurations, and is not limited to the scope of the present invention.
觀前所述,本發明之海平面影像系統,透過離散餘弦轉換器20和卡爾曼濾波器30的設置,使海平面影像SLP較為穩定,並去除海平面起伏較大的海平面影像。總括而言,本發明之海平面影像系統,具有如上述的優點,能取得較為理想的海平面影像。 As mentioned above, the sea level imaging system of the present invention uses the discrete cosine converter 20 and the Kalman filter 30 to stabilize the sea level image SLP and remove the sea level image with large sea level fluctuations. In conclusion, the sea level imaging system of the present invention has the above-mentioned advantages and can obtain a more ideal sea level image.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above descriptions are merely illustrative and not restrictive. Any equivalent modifications or alterations that do not depart from the spirit and scope of the present invention should be included in the scope of the appended patent application.
10:影像擷取器 10: Image grabber
20:離散餘弦轉換器 20: Discrete Cosine Converter
30:卡爾曼濾波器 30: Kalman filter
BSLP:前次海平面影像 BSLP: Last sea level image
BSL:前次海平面線 BSL: Last sea level line
DSLP:離散海平面影像 DSLP: Discrete sea level image
L:標示值 L: marked value
PB:像素區塊 PB: pixel block
SKY:天空 SKY: sky
SEA:海洋 SEA: Ocean
SL:海平面線 SL: sea level
SLP:海平面影像 SLP: Sea level image
THRS:門檻值 THRS: Threshold
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109104367A TWI744795B (en) | 2020-02-12 | 2020-02-12 | Sea level image detection system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109104367A TWI744795B (en) | 2020-02-12 | 2020-02-12 | Sea level image detection system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202134999A TW202134999A (en) | 2021-09-16 |
| TWI744795B true TWI744795B (en) | 2021-11-01 |
Family
ID=78777370
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109104367A TWI744795B (en) | 2020-02-12 | 2020-02-12 | Sea level image detection system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI744795B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI799181B (en) * | 2022-03-10 | 2023-04-11 | 國立臺中科技大學 | Method of establishing integrate network model to generate complete 3d point clouds from sparse 3d point clouds and segment parts |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201430366A (en) * | 2013-01-18 | 2014-08-01 | Nat Applied Res Laboratories | Technology for applications of microwave radar to shoreline and topographic survey in an intertidal zone |
| US9217643B1 (en) * | 2009-01-08 | 2015-12-22 | Trex Enterprises Corp. | Angles only navigation system |
| TWI590190B (en) * | 2016-05-26 | 2017-07-01 | 財團法人成大水利海洋研究發展文教基金會 | Method for image recognition of liquid |
-
2020
- 2020-02-12 TW TW109104367A patent/TWI744795B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9217643B1 (en) * | 2009-01-08 | 2015-12-22 | Trex Enterprises Corp. | Angles only navigation system |
| TW201430366A (en) * | 2013-01-18 | 2014-08-01 | Nat Applied Res Laboratories | Technology for applications of microwave radar to shoreline and topographic survey in an intertidal zone |
| TWI590190B (en) * | 2016-05-26 | 2017-07-01 | 財團法人成大水利海洋研究發展文教基金會 | Method for image recognition of liquid |
Non-Patent Citations (1)
| Title |
|---|
| 吳立中、滕春慈、林燕璋,卡爾曼濾波應用於潮位實測數據分析之初步研究,http://www.tsoe.org.tw/downloads/thesis/2019D077.pdf,2019/11/30 * |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202134999A (en) | 2021-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101861722B1 (en) | Method of processing video data and image processing circuit | |
| US8934711B2 (en) | Apparatus and method of processing image | |
| US8243989B2 (en) | Collaborative tracking | |
| CN108198221A (en) | A kind of automatic stage light tracking system and method based on limb action | |
| CN101405566A (en) | Building shape change detecting method, and building shape change detecting system | |
| WO2018040105A1 (en) | System and method for food recognition, food model training method, refrigerator and server | |
| TWI744795B (en) | Sea level image detection system | |
| CN112085768B (en) | Optical flow information prediction method, device, electronic equipment and storage medium | |
| CN103649999A (en) | Content-adaptive systems, methods and apparatus for determining optical flow | |
| CN110402456B (en) | Anomaly detection system, anomaly detection method, and storage medium | |
| JP2019100817A (en) | Position estimation device, position estimation method and terminal device | |
| WO2021174539A1 (en) | Object detection method, mobile platform, device and storage medium | |
| JP2016123044A (en) | Subject tracking device, control method thereof, and program | |
| US10205911B2 (en) | Method and system for detecting running | |
| CN115705662A (en) | Object color recognition method, device, electronic equipment and storage medium | |
| CN114663745A (en) | Position locking method, terminal device, system and medium for underwater equipment | |
| CN110598771A (en) | Visual target identification method and device based on deep semantic segmentation network | |
| CN101127121A (en) | A Target Tracking Algorithm Based on Adaptive Initial Search Point Prediction | |
| Shao et al. | Real-time tracking of moving objects on a water surface | |
| CN108447067A (en) | It is a kind of that the visible images sea horizon detection method being fitted with RANSAC is cut out based on energy seam | |
| D’Souza et al. | Effectiveness of a camera as a UAV mounted search sensor for target detection: An experimental investigation | |
| WO2025138741A1 (en) | Method and apparatus for determining tightness state of line, device, and storage medium | |
| AU2011331381A1 (en) | Change detection in video data | |
| CN109522893A (en) | A kind of quick detection method of aerial noncooperative target balloon key point | |
| JP2020061596A (en) | Difference detection device and difference detection program |