TWI740313B - Virtual measurement method, device, and computer readbale storage medium - Google Patents
Virtual measurement method, device, and computer readbale storage medium Download PDFInfo
- Publication number
- TWI740313B TWI740313B TW108146365A TW108146365A TWI740313B TW I740313 B TWI740313 B TW I740313B TW 108146365 A TW108146365 A TW 108146365A TW 108146365 A TW108146365 A TW 108146365A TW I740313 B TWI740313 B TW I740313B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- measurement
- prediction
- production
- virtual
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 87
- 238000005259 measurement Methods 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 25
- 238000004590 computer program Methods 0.000 claims description 6
- 238000007689 inspection Methods 0.000 claims description 6
- 238000010801 machine learning Methods 0.000 claims description 5
- 238000013179 statistical model Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明涉及測量領域,具體涉及一種虛擬量測方法、裝置及電腦可讀存儲介質。 The invention relates to the field of measurement, in particular to a virtual measurement method, device and computer readable storage medium.
在半導體或面板的生產製程中,需要即時量測加工後產品的膜厚或線寬等尺寸資料,以確保製程正確。早期通常採用抽檢的方式進行量測,但製程逐年複雜、精度也急劇增加,不得不增加抽檢頻率以達到效果。但是,量測機台的造價昂貴,且自動化建置需要空間與龐大的經費支出,因此,現有的量測方式成本較高。 In the production process of semiconductors or panels, it is necessary to measure the film thickness or line width of the processed product in real time to ensure that the process is correct. In the early days, sampling was usually used for measurement, but the manufacturing process was complicated year by year and the accuracy increased sharply, so the frequency of sampling had to be increased to achieve the effect. However, the cost of the measurement machine is expensive, and the automation construction requires space and huge expenditure. Therefore, the cost of the existing measurement method is relatively high.
鑒於以上內容,有必要提出一種虛擬量測方法、裝置及電腦可讀存儲介質,以解決上述問題。 In view of the above content, it is necessary to propose a virtual measurement method, device and computer-readable storage medium to solve the above-mentioned problems.
本發明的第一方面提供一種虛擬量測方法,包括:獲取至少一台生產裝置的生產資料;利用所述生產資料,藉由一預測模型推算已量測產品與未量測產品的預測資料,所述預測資料包括產品的尺寸資料。 The first aspect of the present invention provides a virtual measurement method, which includes: obtaining production data of at least one production device; using the production data to calculate the predicted data of the measured product and the unmeasured product through a prediction model, The forecast data includes size data of the product.
進一步地,在推算所述預測資料後,所述方法還包括:獲 取對已量測產品進行抽檢的量測資料;判斷所述量測資料與所述預測資料之間的差值是否在預設範圍內;當所述差值不在預設範圍內時,利用所述生產資料和所述量測資料更新所述預測模型。 Further, after the prediction data is calculated, the method further includes: obtaining Take the measurement data that has been sampled on the measured product; determine whether the difference between the measurement data and the prediction data is within a preset range; when the difference is not within the preset range, use all Update the prediction model with the production data and the measurement data.
進一步地,更新所述預測模型的步驟具體為:生成一使用者介面以顯示所述量測資料與所述預測資料之間的差值和所述預設範圍;接收更新預測模型的指令;利用所述生產資料和所述量測資料重建或調整所述預測模型。 Further, the step of updating the prediction model specifically includes: generating a user interface to display the difference between the measurement data and the prediction data and the preset range; receiving an instruction to update the prediction model; using The production data and the measurement data are used to reconstruct or adjust the prediction model.
進一步地,在推算所述預測資料後,所述方法還包括:判斷是否預測成功;若未預測成功,則發出報警資訊;若預測成功,則生成一使用者介面以顯示所述預測資料。 Further, after the prediction data is calculated, the method further includes: determining whether the prediction is successful; if the prediction is not successful, sending an alarm message; if the prediction is successful, generating a user interface to display the prediction data.
進一步地,所述方法還包括:獲取所述生產資料與已量測產品的量測資料;利用所述生產資料與所述量測資料建立所述預測模型,所述預測模型為機器學習模型。 Further, the method further includes: acquiring the production materials and measurement data of the measured product; using the production materials and the measurement data to establish the prediction model, the prediction model being a machine learning model.
進一步地,獲取所述生產資料與已量測產品的量測資料的步驟具體為:接收至少一所述生產裝置發出的所述生產資料與至少一量測裝置發出的所述量測資料;對所述生產資料與所述量測資料進行抽取、轉換與載入;將所述生產資料與所述量測資料存儲於一分析資料庫中。 Further, the step of obtaining the production data and the measurement data of the measured product specifically includes: receiving the production data sent by at least one production device and the measurement data sent by at least one measurement device; The production data and the measurement data are extracted, converted and loaded; the production data and the measurement data are stored in an analysis database.
進一步地,所述方法還包括:每隔預定時間,對比多個所述量測裝置對同一產品的量測資料,以校正所述量測資料。 Further, the method further includes: comparing the measurement data of the same product by a plurality of the measurement devices at a predetermined time interval to calibrate the measurement data.
進一步地,所述尺寸資料包括產品的膜厚與線寬。 Further, the size information includes the film thickness and line width of the product.
本發明的第二方面提供一種虛擬量測裝置,所述裝置包括處理器及存儲器,所述存儲器上存儲有若干電腦程式,所述處理器用於執行存儲器中存儲的電腦程式時實現上述虛擬量測方法的步驟。 A second aspect of the present invention provides a virtual measurement device. The device includes a processor and a memory. The memory stores a number of computer programs. The processor is used to execute the computer programs stored in the memory to implement the virtual measurement. Method steps.
本發明的第三方面提供一種電腦可讀存儲介質,所述電腦 可讀存儲介質存儲有多條指令,多條所述指令可被一個或者多個處理器執行,以實現上述虛擬量測方法的步驟。 The third aspect of the present invention provides a computer-readable storage medium, the computer The readable storage medium stores a plurality of instructions, and the plurality of instructions may be executed by one or more processors to implement the steps of the virtual measurement method described above.
上述虛擬量測方法、裝置及電腦可讀存儲介質,能夠藉由一預測模型推算已量測產品和未量測產品的預測資料,從而能夠實現工業生產中的虛擬量測,降低抽檢的頻率,節省檢測成本,提升了虛擬量測的準確性和可靠性。 The aforementioned virtual measurement method, device and computer-readable storage medium can use a predictive model to calculate the predicted data of the measured product and the unmeasured product, thereby realizing virtual measurement in industrial production and reducing the frequency of random inspections. It saves inspection costs and improves the accuracy and reliability of virtual measurement.
100:虛擬量測裝置 100: Virtual measuring device
200:生產裝置 200: production device
300:量測裝置 300: Measuring device
10:存儲器 10: memory
20:處理器 20: processor
30:虛擬量測設定程式 30: Virtual measurement setting program
40:通信單元 40: communication unit
50:顯示單元 50: display unit
60:輸入單元 60: input unit
101:獲取模組 101: Get modules
102:訓練模組 102: Training Module
103:預測模組 103: Prediction Module
104:使用者介面控制模組 104: User Interface Control Module
105:判斷模組 105: Judgment Module
106:報警模組 106: Alarm module
107:對比模組 107: Comparison module
圖1係本發明一個實施例的虛擬量測裝置的應用環境示意圖。 Fig. 1 is a schematic diagram of an application environment of a virtual measurement device according to an embodiment of the present invention.
圖2係本發明一個實施例的虛擬量測裝置的架構示意圖。 FIG. 2 is a schematic diagram of the architecture of a virtual measurement device according to an embodiment of the present invention.
圖3係本發明一個實施例的虛擬量測設定程式的功能模組圖。 FIG. 3 is a functional module diagram of a virtual measurement setting program according to an embodiment of the present invention.
圖4係本發明一個實施例的虛擬量測方法的流程圖。 Fig. 4 is a flowchart of a virtual measurement method according to an embodiment of the present invention.
如下具體實施方式將結合上述附圖進一步說明本發明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
為了使本發明的目的、技術方案及優點更加清楚明白,以下結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅用以解釋本發明,並不用於限定本發明。基於本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。 In order to make the objectives, technical solutions, and advantages of the present invention clearer, the following further describes the present invention in detail with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not used to limit the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
進一步需要說明的是,在本文中,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、物品或者裝置不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、物品或者裝置所固有的要素。在沒有更多限制的 情況下,由語句“包括一個......”限定的要素,並不排除在包括該要素的過程、方法、物品或者裝置中還存在另外的相同要素。 It should be further noted that, in this article, the terms "include", "include" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements , And also include other elements not explicitly listed, or elements inherent to the process, method, article, or device. Without more restrictions In this case, the element defined by the sentence "including a..." does not exclude the existence of other same elements in the process, method, article or device that includes the element.
請參閱圖1,為本發明虛擬量測裝置運行環境的較佳實施例的示意圖。在一實施方式中,虛擬量測裝置100與至少一生產裝置200、至少一量測裝置300通信連接。
Please refer to FIG. 1, which is a schematic diagram of a preferred embodiment of the operating environment of the virtual measurement device of the present invention. In one embodiment, the
所述生產裝置200可為半導體或面板的生產製程中所使用的生產裝置,例如黃光製程的一組生產機台,包括但不限於,預清洗機台、光阻塗布機、預烤機、曝光機、顯影機、後烤機等;可以理解,生產裝置也可為其他裝置,例如鍍膜機、錫膏印刷機等。
The
所述量測裝置300用於量測產品的多種尺寸。例如線寬、膜厚等。可以理解,量測的尺寸不限於此,可依據需求設置。例如,所述尺寸資料還可包括產品整體或部分結構的長寬高尺寸、角度等資料。
The
請參閱圖2,為本發明虛擬量測裝置100較佳實施例的示意圖。
Please refer to FIG. 2, which is a schematic diagram of a preferred embodiment of the
在一實施方式中,所述虛擬量測裝置100包括存儲器10、處理器20以及存儲在所述存儲器10中並可在所述處理器20上運行的虛擬量測設定程式30。所述處理器20執行所述虛擬量測設定程式30時實現虛擬量測方法實施例中的步驟,例如圖4所示的步驟S401~S409。或者,所述處理器20執行所述虛擬量測設定程式30時實現虛擬量測設定程式實施例中各模組的功能,例如圖3中的模組101~107。
In one embodiment, the
所述虛擬量測設定程式30可以被分割成一個或多個模組,所述一個或者多個模組被存儲在所述存儲器10中,並由所述處理器20執行,以完成本發明。所述一個或多個模組可以是能夠完成特定功能的一系列電腦程式指令段,所述指令段用於描述所述虛擬量測設定程式30在所述虛擬量測裝置100中的執行過程。例如,所述虛擬量測設定程式30可以被分割成圖3中的獲取模組101、
訓練模組102、預測模組103、使用者介面控制模組104、判斷模組105、報警模組106及對比模組107。各模組具體功能參見下圖3中各模組的功能。
The virtual
所稱處理器20可以是中央處理單元(Central Processing Unit,CPU),還可以是其他通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現成可程式設計閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式設計邏輯器件、分立門或者電晶體邏輯器件、分立硬體元件等。通用處理器可以是微處理器或者所述處理器20也可以是任何常規的處理器等,所述處理器20可以利用各種介面與匯流排連接虛擬量測裝置100的各個部分。
The so-called
所述存儲器10可用於存儲所述虛擬量測設定程式30和/或模組,所述處理器20藉由運行或執行存儲在所述存儲器10內的電腦程式和/或模組,以及調用存儲在存儲器10內的資料,實現所述虛擬量測裝置100的各種功能。所述存儲器10可以包括高速隨機存取存儲器,還可以包括非易失性存儲器,例如硬碟、存儲器、插接式硬碟,智慧存儲卡(Smart Media Card,SMC),安全數位(Secure Digital,SD)卡,快閃存儲器卡(Flash Card)、至少一個磁碟存儲器件、快閃存儲器器件、或其他非易失性固態存儲器件。
The
在一實施方式中,所述虛擬量測裝置100還包括通信單元40、顯示單元50與輸入單元60。通信單元40、顯示單元50與輸入單元60分別與處理器20電連接。
In one embodiment, the
所述通信單元40用於藉由有線或無線的方式與生產裝置200、量測裝置300或其他電腦裝置建立通信連接。所述通信單元40可為有線通信單元或無線通訊單元。
The
所述顯示單元50用於顯示處理器20的處理結果。顯示單元50可包括至少一個顯示幕或觸控式螢幕。
The
所述輸入單元60用於輸入各種資訊或指令。輸入單元60可包括鍵盤、滑鼠、觸控式螢幕等中的一種或多種。
The
本領域技術人員可以理解,所述示意圖僅是虛擬量測裝置100的示例,並不構成對虛擬量測裝置100的限定,可以包括比圖示更多或更少的部件,或者組合某些部件,或者不同的部件,例如所述虛擬量測裝置100還可以包括網路接入設備、匯流排等。
Those skilled in the art can understand that the schematic diagram is only an example of the
圖3為本發明虛擬量測設定程式較佳實施例的功能模組圖。 FIG. 3 is a functional module diagram of a preferred embodiment of the virtual measurement setting program of the present invention.
參閱圖3所示,虛擬量測設定程式30可以包括獲取模組101、訓練模組102、預測模組103、使用者介面控制模組104、判斷模組105、報警模組106及對比模組107。在一實施方式中,上述模組可以為存儲於所述存儲器10中且可被所述處理器20調用執行的可程式化軟體指令。可以理解的是,在其他實施方式中,上述模組也可為固化於所述處理器20中的程式指令或固件(firmware)。
Referring to FIG. 3, the virtual
所述獲取模組101用於獲取生產資料與量測資料。
The
在一實施方式中,所述獲取模組101用於獲取生產裝置200發出的生產資料,以及量測裝置300發出的量測資料。
In one embodiment, the
所述生產資料包括所述生產裝置200的生產參數,以黃光製程的機台為例,生產參數包括數值型或名目型參數,數值型參數包括與光阻相關的溫度、時間、電壓、電流、轉速等,名目型參數包括託盤的編碼等。
The production materials include the production parameters of the
所述量測資料包括生產裝置200所生產的產品的尺寸資料,所述尺寸資料包括產品的膜厚與線寬,但不限於此,所述尺寸資料還可包括產品整體或部分結構的長寬高尺寸、角度等資料。
The measurement data includes the size data of the product produced by the
在一實施方式中,所述獲取模組101還用於接收更新預測模型的指令。
In one embodiment, the
所述訓練模組102用於依據生產資料與量測資料建立與更新預測模型。所述預測模型可為統計模型或機器學習模型。
The
所述預測模組103用於依據即時的生產資料,藉由預測模型推算已量測產品與未量測產品的預測資料,所述預測資料包括產品的尺寸資料。
The
所述使用者介面控制模組104用於生成使用者介面,以藉由顯示單元50顯示該使用者介面。
The user
在一實施方式中,所述使用者介面控制模組104生成一使用者介面以顯示所述預測資料。
In one embodiment, the user
在一實施方式中,所述使用者介面控制模組104還用於生成一使用者介面以顯示所述量測資料與所述預測資料之間的差值與差值的預設範圍。
In one embodiment, the user
所述判斷模組105用於判斷所述量測資料與所述預測資料之間的差值是否在所述預設範圍內。
The
所述判斷模組105還用於判斷是否成功推算出預測資料。
The
所述報警模組106用於在預測失敗時,發出報警資訊。
The
所述對比模組107用於對比多個所述量測裝置300對同一產品的量測資料,以校正所述量測資料。
The
圖4為本發明一實施方式中虛擬量測方法的流程圖。根據不同的需求,所述流程圖中步驟的順序可以改變,某些步驟可以省略。 Fig. 4 is a flowchart of a virtual measurement method in an embodiment of the present invention. According to different needs, the order of the steps in the flowchart can be changed, and some steps can be omitted.
步驟S401,利用生產資料與量測資料建立預測模型。 Step S401, using production data and measurement data to establish a prediction model.
在一實施方式中,先獲取生產裝置200的生產資料,與量測裝置300對生產裝置200所生產的產品進行量測所獲得的量測資料;再利用所述生產資料與量測資料建立預測模型。
In one embodiment, the production materials of the
所述生產資料與相應的量測資料可存儲於分析資料庫中,所述分析資料庫包括多個樣本資料,每一樣本資料包括一生產裝置200的生產資料及相應產品的量測資料。
The production data and corresponding measurement data can be stored in an analysis database. The analysis database includes a plurality of sample data, and each sample data includes the production data of a
所述生產資料可包括生產裝置200的多個生產參數,以黃光製程的機台為例,生產參數包括數值型或名目型參數,數值型參數包括與光阻相關的溫度、時間、電壓、電流、轉速等,名目型參數包括託盤的編碼等;量測資料可包括膜厚與線寬。
The production materials may include multiple production parameters of the
又如,當生產裝置200為鍍膜機時,其生產資料可包括靶材與基材之間的間距、鍍膜氣體濃度、鍍膜時間、靶材濺射速度,以及齒輪旋轉速度中的一種或多種;量測資料可包括膜厚與線寬。
For another example, when the
再如,當生產裝置200為錫膏印刷機時,其生產資料可包括刮刀壓力、印刷速度、脫模速度與脫模距離等參數;量測資料可包括錫膏高度、錫膏面積及錫膏體積。
For another example, when the
在一實施方式中,獲取生產資料與量測資料的步驟具體包括:接收至少一所述生產裝置200發出的所述生產資料與至少一量測裝置300發出的所述量測資料;對所述生產資料與所述量測資料進行抽取、轉換與載入(Extract-Transform-Load,ETL);將所述生產資料與所述量測資料存儲於分析資料庫中。
In one embodiment, the step of obtaining production materials and measurement data specifically includes: receiving the production materials issued by at least one of the
所述預測模型為統計模型或機器學習模型,例如CNN或RNN神經網路模型。在利用多個生產資料與相應的量測資料建立預測模型後,再將測試樣本資料登錄到預測模型中進行測試,當測試結果符合預設要求後,該預測模型可應用到虛擬量測中。可以理解,在預測模型建立之後,隨著樣本資料的不斷增加,可繼續用新的樣本資料來更新預測模型。在建立所述預測模型時,可加入領域知識或分析者的經驗。 The prediction model is a statistical model or a machine learning model, such as a CNN or RNN neural network model. After establishing a prediction model using multiple production data and corresponding measurement data, the test sample data is then logged into the prediction model for testing. When the test results meet the preset requirements, the prediction model can be applied to virtual measurement. It can be understood that after the prediction model is established, as the sample data continues to increase, the prediction model can continue to be updated with new sample data. When building the predictive model, domain knowledge or analyst experience can be added.
在一實施方式中,可針對不同組的生產裝置200、不同的量測目標、不同的量測點分別建立一個預測模型,之後根據切割後的產品聚合成一個產品的預測值。
In one embodiment, a prediction model can be established for different groups of
步驟S402,獲取生產資料。 Step S402: Obtain production materials.
具體地,獲取至少一台生產裝置200即時的生產資料。
Specifically, real-time production materials of at least one
步驟S403,藉由預測模型同時推算已量測產品的預測資料與未量測產品的預測資料。 In step S403, the forecast data of the measured product and the forecast data of the unmeasured product are simultaneously calculated by the forecast model.
具體地,利用獲取到的生產資料,藉由預測模型適配出已量測產品的預測資料,以及預測未量測產品的預測資料。所述預測資料包括產品的尺寸資料,藉由所述預測資料可預測產品是否合格。 Specifically, the obtained production data is used to adapt the prediction data of the measured product and the prediction data of the unmeasured product through the prediction model. The prediction data includes size data of the product, and whether the product is qualified can be predicted by the prediction data.
步驟S404,判斷是否預測成功。 In step S404, it is judged whether the prediction is successful.
如果預測成功,則進入步驟S406;如果預測失敗,則進入步驟S405,發出報警資訊。 If the prediction is successful, then go to step S406; if the prediction fails, then go to step S405 to issue an alarm message.
具體地,當沒有獲取到生產資料,或沒有成功推算出預測資料時,判斷模組105判斷預測失敗,報警模組106可將報警資訊發送至電腦整合製造(Computer Integrated Manufacturing,CIM)工程師,或發送至製造執行系統(Manufacturing Execution System,MES),以便於工程師及時處理異常。報警模組106也可控制顯示單元發出預警提示。
Specifically, when the production data is not obtained or the prediction data is not successfully calculated, the
步驟S406,生成一使用者介面以顯示所述預測資料。 In step S406, a user interface is generated to display the forecast data.
當預測成功時,生成一使用者介面,顯示單元50可顯示該使用者介面以顯示所述預測資料,供工程師參考。
When the prediction is successful, a user interface is generated, and the
步驟S407,獲取對未量測產品進行抽檢的量測資料。 Step S407: Obtain measurement data for random inspection of unmeasured products.
為了避免錯誤預測對後續生產造成損失,在不增加工廠負擔的情況下,利用對未量測產品出貨前進行的抽檢程式中的量測資料,來驗證預測資 料。步驟S407非必要步驟,可視工廠的生產情況,例如是否趕貨,或是產品的精密度來決定。 In order to avoid the loss of follow-up production due to incorrect predictions, without increasing the burden on the factory, the measurement data in the random inspection program carried out before the shipment of the unmeasured products is used to verify the forecast data. material. Step S407 is a non-essential step, which can be determined according to the production situation of the factory, such as whether the goods are on-demand or the precision of the product.
步驟S408,判斷所述量測資料與所述預測資料之間的差值是否在預設範圍內。 Step S408: Determine whether the difference between the measurement data and the prediction data is within a preset range.
所述預設範圍為可允許的誤差範圍,可依據需求設置。若判斷所述量測資料與所述預測資料之間的差值超出所述預設範圍,則進入步驟S409;若判斷所述量測資料與所述預測資料之間的差值在所述預設範圍內,則該預測模型可繼續使用,回到步驟S402。 The preset range is an allowable error range, which can be set according to requirements. If it is determined that the difference between the measurement data and the prediction data exceeds the preset range, step S409 is entered; if it is determined that the difference between the measurement data and the prediction data is within the prediction If it is within the range, the prediction model can continue to be used, and return to step S402.
步驟S409,利用生產資料與量測資料更新預測模型。 In step S409, the prediction model is updated using production data and measurement data.
在更新所述預測模型時,可刪除原預測模型並依據分析資料庫中的原有的與新獲取的生產資料與量測資料,重建新的預測模型,也可僅調整原預測模型,例如調整所述初始統計模型參數或機器學習模型的總層數(比如,隱藏層的層數)與/或每一層的神經元數。在更新預測模型之後,回到步驟S402。 When updating the prediction model, the original prediction model can be deleted and the new prediction model can be reconstructed based on the original and newly acquired production data and measurement data in the analysis database, or only the original prediction model can be adjusted, such as adjusting The initial statistical model parameters or the total number of layers of the machine learning model (for example, the number of hidden layers) and/or the number of neurons in each layer. After updating the prediction model, return to step S402.
在一實施方式中,步驟S409具體包括以下步驟。 In one embodiment, step S409 specifically includes the following steps.
首先,生成一使用者介面以顯示所述量測資料與所述預測資料之間的差值與所述預設閾值。 First, a user interface is generated to display the difference between the measurement data and the prediction data and the preset threshold.
其次,接收更新預測模型的指令。 Second, receive instructions to update the prediction model.
然後,利用所述生產資料與所述量測資料重建或修改所述預測模型。 Then, using the production data and the measurement data to reconstruct or modify the prediction model.
在其他實施方式中,步驟S401可以省略,利用建立好的預測模型即可實現虛擬量測。 In other embodiments, step S401 can be omitted, and the virtual measurement can be realized by using the established prediction model.
在其他實施方式中,步驟S404~S409也可以省略。 In other embodiments, steps S404 to S409 may also be omitted.
在其他實施方式中,該方法還可包括步驟:每隔預定時間,對比多個所述量測裝置300對同一產品的量測資料,以校正所述量測資料。
In other embodiments, the method may further include the step of comparing the measurement data of the same product by a plurality of the
可以理解,對於同一產品同一膜層,經過多台量測裝置300的量測,可得到多個量測資料,對比多個量測資料可供廠內人員校正量測裝置300。
It can be understood that for the same product and the same film layer, multiple measurement data can be obtained through measurement by
上述虛擬量測裝置100、方法及電腦可讀存儲介質,能夠獲取至少一台生產裝置的生產資料;利用所述生產資料,藉由一預測模型推算已量測產品的預測資料和未量測產品的預測資料,所述預測資料包括產品的尺寸資料;獲取對已量測產品進行抽檢的量測資料,因此,上述虛擬量測裝置100、方法及電腦可讀存儲介質能夠實現工業生產中的虛擬量測,用較小的成本改善量測品質。另外,上述虛擬量測裝置100、方法及電腦可讀存儲介質還能夠判斷所述量測資料與所述預測資料之間的差值是否在預設範圍內;當所述差值超出所述預設範圍時,利用所述生產資料和所述量測資料更新所述預測模型。因此,上述虛擬量測裝置100、方法及電腦可讀存儲介質能夠降低抽檢的頻率,節省檢測成本;還能夠對預測資料進行監控,避免錯誤預測對後續生產造成影響,提升了虛擬量測的準確性和可靠性。
The above-mentioned
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, this publication clearly meets the requirements of a patent for invention, so it filed a patent application in accordance with the law. However, the above are only the preferred embodiments of the present invention, and cannot limit the scope of the patent application in this case. All the equivalent modifications or changes made by persons familiar with the technique of the present application in accordance with the spirit of the present invention shall be covered by the scope of the following patent applications.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108146365A TWI740313B (en) | 2019-12-18 | 2019-12-18 | Virtual measurement method, device, and computer readbale storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW108146365A TWI740313B (en) | 2019-12-18 | 2019-12-18 | Virtual measurement method, device, and computer readbale storage medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202125305A TW202125305A (en) | 2021-07-01 |
| TWI740313B true TWI740313B (en) | 2021-09-21 |
Family
ID=77908780
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW108146365A TWI740313B (en) | 2019-12-18 | 2019-12-18 | Virtual measurement method, device, and computer readbale storage medium |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI740313B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201822039A (en) * | 2016-12-14 | 2018-06-16 | 台灣積體電路製造股份有限公司 | Method and apparatus for speeding up gate-level simulation |
| TW201841066A (en) * | 2017-01-23 | 2018-11-16 | 荷蘭商Asml荷蘭公司 | Generate predictive data for controlling or monitoring a production process |
| TW201921271A (en) * | 2017-06-18 | 2019-06-01 | 美商科文特股份有限公司 | System and method for critical parameter identification, processing model correction, and variability analysis in a virtual semiconductor device manufacturing environment |
| TWM583566U (en) * | 2019-05-24 | 2019-09-11 | 國立虎尾科技大學 | Cutting tool service life prediction equipment |
| TW201946188A (en) * | 2018-03-20 | 2019-12-01 | 日商東京威力科創股份有限公司 | Self-aware and correcting heterogenous platform incorporating integrated semiconductor processing modules and method for using same |
-
2019
- 2019-12-18 TW TW108146365A patent/TWI740313B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201822039A (en) * | 2016-12-14 | 2018-06-16 | 台灣積體電路製造股份有限公司 | Method and apparatus for speeding up gate-level simulation |
| TW201841066A (en) * | 2017-01-23 | 2018-11-16 | 荷蘭商Asml荷蘭公司 | Generate predictive data for controlling or monitoring a production process |
| TW201921271A (en) * | 2017-06-18 | 2019-06-01 | 美商科文特股份有限公司 | System and method for critical parameter identification, processing model correction, and variability analysis in a virtual semiconductor device manufacturing environment |
| TW201946188A (en) * | 2018-03-20 | 2019-12-01 | 日商東京威力科創股份有限公司 | Self-aware and correcting heterogenous platform incorporating integrated semiconductor processing modules and method for using same |
| TWM583566U (en) * | 2019-05-24 | 2019-09-11 | 國立虎尾科技大學 | Cutting tool service life prediction equipment |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202125305A (en) | 2021-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9002492B2 (en) | Methods and apparatuses for utilizing adaptive predictive algorithms and determining when to use the adaptive predictive algorithms for virtual metrology | |
| TWI673228B (en) | Unsteady detection device, unsteady detection system, and unsteady detection method | |
| US10545486B2 (en) | Systems, methods, devices, and computer readable medium for real and near-real time sensor data capture and analysis | |
| CN112989550A (en) | Virtual measurement method, device and computer readable storage medium | |
| US11022469B2 (en) | Correction of sensor data in a multi-sensor internet of things environment | |
| CN114441469A (en) | Calibration method and device of moisture meter and computer equipment | |
| JP2020047847A (en) | Data processing method, data processor and data processing program | |
| CN114819636A (en) | Industrial production data processing method and system based on SPC detection | |
| CN110084379A (en) | Method for calibrating instrument to be calibrated by applying artificial intelligence cloud computing | |
| CN119439648A (en) | Exposure system, photolithography machine and exposure control method | |
| TWI740313B (en) | Virtual measurement method, device, and computer readbale storage medium | |
| US10499124B1 (en) | Detection of malfunctioning sensors in a multi-sensor internet of things environment | |
| US20230296987A1 (en) | Tool drift compensation with machine learning | |
| CN113781013A (en) | Coating color point monitoring method, system, medium and terminal | |
| CN109213057B (en) | Intelligent diagnosis device and method | |
| CN116879223A (en) | Near infrared moisture meter calibration method, device, equipment and readable storage medium | |
| CN107991003B (en) | Test method, device, equipment and storage medium for temperature sensor time constant | |
| CN115062273A (en) | Photoelectric sensor precision control method and system for industrial internet | |
| WO2025055411A1 (en) | Rubber quality inspection method and apparatus, medium, device, and program product | |
| CN115493634A (en) | Calibration method, device and related products of linear sensor | |
| CN114329877A (en) | Device, method and readable storage medium for abnormality monitoring of machine process parameters | |
| CN119644947A (en) | Panel printing monitoring method, device and medium based on Internet of things | |
| TWI804126B (en) | Timer calibration method and electronic device | |
| CN119089573A (en) | Digital system and method for automobile parts based on digital twin | |
| US11687066B2 (en) | Virtual cross metrology-based modeling of semiconductor fabrication processes |