[go: up one dir, main page]

TWI614721B - Detection of defects embedded in noise for inspection in semiconductor manufacturing - Google Patents

Detection of defects embedded in noise for inspection in semiconductor manufacturing Download PDF

Info

Publication number
TWI614721B
TWI614721B TW102117611A TW102117611A TWI614721B TW I614721 B TWI614721 B TW I614721B TW 102117611 A TW102117611 A TW 102117611A TW 102117611 A TW102117611 A TW 102117611A TW I614721 B TWI614721 B TW I614721B
Authority
TW
Taiwan
Prior art keywords
pixels
features
pixel
image frame
feature
Prior art date
Application number
TW102117611A
Other languages
Chinese (zh)
Other versions
TW201401231A (en
Inventor
傑森Z 林
Original Assignee
克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克萊譚克公司 filed Critical 克萊譚克公司
Publication of TW201401231A publication Critical patent/TW201401231A/en
Application granted granted Critical
Publication of TWI614721B publication Critical patent/TWI614721B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • G01N2021/95615Inspecting patterns on the surface of objects using a comparative method with stored comparision signal
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

一實施例係關於一種用於在一製造基板上偵測缺陷之裝置。該裝置包含經配置以自該製造基板獲得影像圖框之一成像工具。該裝置進一步包含一資料處理系統,該資料處理系統包含經組態以針對一影像圖框中之像素計算特徵且將該影像圖框中之該等像素劃分為像素之特徵界定群組之電腦可讀程式碼。該電腦可讀程式碼進一步經組態以選擇一特徵界定群組,且針對該所選特徵界定群組產生一多維特徵分佈。另一實施例係關於一種自一測試影像圖框及多個參考影像圖框偵測缺陷之方法。亦揭示其他實施例、態樣及特徵。 One embodiment relates to an apparatus for detecting defects on a manufactured substrate. The apparatus includes an imaging tool configured to obtain an image frame from the fabricated substrate. The apparatus further includes a data processing system including a computer-configurable group configured to calculate features for pixels in an image frame and to divide the pixels in the image frame into pixels Read the code. The computer readable code is further configured to select a feature defining group and to generate a multidimensional feature distribution for the selected feature defining group. Another embodiment relates to a method for detecting defects from a test image frame and a plurality of reference image frames. Other embodiments, aspects, and features are also disclosed.

Description

在半導體製造中用於檢測之雜訊中所內嵌之缺陷之偵測 Detection of defects embedded in noise used in semiconductor manufacturing

本發明大體上係關於晶圓及標線片檢測裝置及使用晶圓及標線片檢測裝置的方法。 The present invention generally relates to wafer and reticle inspection devices and methods of using wafer and reticle inspection devices.

自動檢測及檢視系統在針對半導體及相關微電子產業之程序控制及產量管理中為重要的。此等系統包含以光學及電子束(e-束)為主之系統。 Automated inspection and inspection systems are important in program control and yield management for the semiconductor and related microelectronics industries. These systems include optical and electron beam (e-beam) based systems.

在半導體器件之製造中,在開發及製造製程中早期的缺陷檢測對於縮短產品開發循環及增加製造產量變得愈加重要。使用先進的晶圓及標線片檢測系統以偵測、檢視及分類缺陷並將肇因資訊(root cause information)回饋回至製造製程以防止此等缺陷繼續發生。相關缺陷之尺寸與應用至半導體器件之製造之設計規則有直接比例關係。由於應用之設計規則持續縮減,檢測系統上效能需求在成像解析度及速率(每小時處理之缺陷)之兩者方面增加。 In the manufacture of semiconductor devices, early defect detection in development and manufacturing processes has become increasingly important to shorten product development cycles and increase manufacturing throughput. Advanced wafer and reticle inspection systems are used to detect, view and classify defects and return root cause information back to the manufacturing process to prevent such defects from continuing. The size of the associated defect is directly proportional to the design rules applied to the fabrication of the semiconductor device. As the design rules of the application continue to shrink, the performance requirements on the inspection system increase in both imaging resolution and rate (defects per hour of processing).

一實施例係關於一種自一測試影像圖框及多個參考影像圖框偵測缺陷之方法。計算測試影像圖框及參考影像圖框中之像素之特徵,且將此等影像圖框中之像素劃分為像素之特徵界定群組。選擇一特徵界定群組,且針對該所選特徵界定群組而產生一多維特徵分佈。 An embodiment relates to a method for detecting defects from a test image frame and a plurality of reference image frames. The features of the pixels in the test image frame and the reference image frame are calculated, and the pixels in the image frame are divided into feature defining groups of pixels. A feature defining group is selected and a multi-dimensional feature distribution is generated for defining the group for the selected feature.

此外,可判定多維特徵分佈中之一正常叢集,且可偵測出正常叢集之外之異常點。可定位與異常點相關聯之缺陷像素,且可標記及/或報告缺陷像素。 In addition, one of the multi-dimensional feature distributions can be determined to be normal clusters, and abnormal points outside the normal cluster can be detected. Defective pixels associated with anomalous points can be located and defective pixels can be marked and/or reported.

一實施例係關於一種在一製造基板上偵測缺陷之裝置。該裝置包含經配置以自該製造基板獲得影像圖框之一成像工具。裝置進一步包含一資料處理系統,該資料處理系統包含經組態以執行偵測缺陷之一方法之電腦可讀程式碼,該方法將像素劃分為特徵界定群組且產生群組特定之特徵分佈以便偵測異常點。 One embodiment relates to a device for detecting defects on a manufactured substrate. The apparatus includes an imaging tool configured to obtain an image frame from the fabricated substrate. The apparatus further includes a data processing system including computer readable code configured to perform one of the methods of detecting defects, the method dividing pixels into feature defining groups and generating group-specific feature distributions Detect abnormal points.

亦揭示其他實施例、態樣及特徵。 Other embodiments, aspects, and features are also disclosed.

200‧‧‧影像圖框/圖框區域 200‧‧‧Image frame/frame area

202‧‧‧垂直線 202‧‧‧ vertical line

204‧‧‧水平線段 204‧‧‧ horizontal line segment

206‧‧‧開放空間 206‧‧‧Open space

300‧‧‧特徵分佈曲線圖 300‧‧‧Characteristic distribution graph

302‧‧‧正常叢集 302‧‧‧Normal cluster

304‧‧‧點 304‧‧ points

400‧‧‧特徵分佈曲線圖 400‧‧‧Characteristic distribution graph

402‧‧‧正常叢集 402‧‧‧Normal cluster

404‧‧‧點 404‧‧‧ points

510‧‧‧成像工具 510‧‧‧ imaging tools

520‧‧‧活動基板支撐架 520‧‧‧Active substrate support

525‧‧‧目標基板 525‧‧‧Target substrate

530‧‧‧偵測器 530‧‧‧Detector

540‧‧‧資料處理系統 540‧‧‧Data Processing System

542‧‧‧處理器 542‧‧‧ processor

544‧‧‧記憶體 544‧‧‧ memory

545‧‧‧電腦可讀程式碼 545‧‧‧ computer readable code

546‧‧‧資料儲存系統 546‧‧‧Data Storage System

550‧‧‧系統控制器 550‧‧‧System Controller

552‧‧‧處理器 552‧‧‧ processor

554‧‧‧記憶體 554‧‧‧ memory

555‧‧‧電腦可讀程式碼 555‧‧‧Computer readable code

556‧‧‧資料儲存系統 556‧‧‧Data Storage System

圖1為描繪根據本發明之一實施例在影像資料中偵測缺陷之一方法之一流程圖。 1 is a flow chart depicting one method of detecting defects in image data in accordance with an embodiment of the present invention.

圖2為描繪根據本發明之一實施例之一影像圖框內之一例示性檢測區域之一圖式。 2 is a diagram depicting one of an exemplary detection region within an image frame in accordance with an embodiment of the present invention.

圖3與圖4展示自類似於圖2中描繪之定框區域之一檢測區域之一影像圖框產生之例示性二維特徵分佈圖。 3 and 4 show an exemplary two-dimensional feature map generated from an image frame of one of the detection regions similar to the framed region depicted in FIG.

圖5為根據本發明之一實施例可經利用用於自動檢測製造基板之一檢測裝置之一示意圖。 Figure 5 is a schematic illustration of one of the detection devices that can be utilized for automated inspection of a fabricated substrate in accordance with an embodiment of the present invention.

根據本發明之一實施例,可用來自至少兩個晶粒之影像以執行缺陷偵測。與晶粒(其中的缺陷待偵測)相關聯之影像可稱為測試影像,且與其他晶粒相關聯之影像可稱為參考影像。 According to an embodiment of the invention, images from at least two dies may be used to perform defect detection. An image associated with a die (where the defect is to be detected) may be referred to as a test image, and an image associated with other die may be referred to as a reference image.

本申請案揭示一創新技術以改良在檢測製造的半導體基板期間之缺陷偵測之敏感度。特定言之,技術改良偵測可在一多維特徵空間上一特徵分佈曲線圖(多維信號)中「雜訊中所內嵌」之缺陷之敏感度。 This application discloses an innovative technique to improve the sensitivity of defect detection during the inspection of fabricated semiconductor substrates. In particular, the technical improvement detection can be sensitive to the defects of "embedded in noise" in a feature distribution graph (multidimensional signal) on a multidimensional feature space.

為形成特徵分佈曲線圖,多維特徵空間中之各點可經指派有一群體值(population value)。例如,若在圖框區域中存在一百個像素具有相同測試及參考特徵,則特徵點之群體值經指派為一百。 To form a feature distribution graph, points in the multidimensional feature space may be assigned a population value. For example, if there are one hundred pixels in the frame area with the same test and reference features, the population value of the feature points is assigned to one hundred.

在美國專利第7,440,607號中先前揭示之技術中,由於特徵分佈曲線圖源自測試影像及多個參考影像,特徵分佈曲線圖較佳地基於一圖框之區域內之像素之特徵而形成。因為合格(正常)像素之多個特徵值落於特定標稱範圍內,一正常叢集(正常分佈)通常藉由合格像素在特徵分佈曲線圖中之特徵分佈形成。缺陷像素因為其等之特徵值之一或多者並未落於標稱範圍內而變成特徵分佈曲線圖中之異常點。 In the technique previously disclosed in U.S. Patent No. 7,440,607, since the feature profile is derived from a test image and a plurality of reference images, the feature profile is preferably formed based on features of pixels within the area of a frame. Since multiple eigenvalues of a qualified (normal) pixel fall within a particular nominal range, a normal cluster (normal distribution) is typically formed by the feature distribution of the qualified pixels in the feature distribution graph. A defective pixel becomes an abnormal point in the feature distribution curve because one or more of its characteristic values do not fall within the nominal range.

為了改良缺陷偵測,可使用更多特徵以產生特徵分佈曲線圖。然而,申請人已判定當使用多於兩個維度時,藉由特徵分佈曲線圖中之合格像素形成之正常叢集(正常分佈)常常變得稀疏,使得難以自正常叢集區分出異常。 To improve defect detection, more features can be used to generate a feature profile. However, Applicants have determined that when more than two dimensions are used, the normal cluster (normal distribution) formed by the qualified pixels in the feature profile often becomes sparse, making it difficult to distinguish anomalies from normal clusters.

相形之下,根據本發明之一實施例,一圖框之像素基於一或多個參考特徵而被劃分為個別的特徵界定群組。隨後,可選擇像素群組之一者,且可基於所選擇群組(不包含群組外之像素)內之像素之測試及參考特徵形成特徵分佈曲線圖。 In contrast, in accordance with an embodiment of the present invention, a pixel of a frame is divided into individual feature definition groups based on one or more reference features. Subsequently, one of the groups of pixels can be selected, and a feature profile can be formed based on the test and reference features of the pixels within the selected group (excluding pixels outside the group).

申請人已判定此技術在其允許偵測出先前未經偵測之缺陷方面為有利的。此係因為先前未經偵測缺陷係內嵌於基於一圖框中之所有像素之正常叢集周圍之「雜訊」中。相形之下,當正常叢集為基於一所選特徵界定群組中之像素時此等缺陷變成可偵測異常點。此係因為當針對一個別之像素群組建立一個別分佈曲線圖時,可自曲線圖有效移除可歸屬於非所選群組之雜訊。 Applicants have determined that this technique is advantageous in that it allows for the detection of previously undetected defects. This is because the previously undetected defects are embedded in the "noise" around the normal cluster of all pixels based on a frame. In contrast, when a normal cluster defines pixels in a group based on a selected feature, the defects become detectable anomalies. This is because when a different distribution graph is created for a different pixel group, the noise that can be attributed to the non-selected group can be effectively removed from the graph.

圖1為描繪根據本發明之一實施例在一影像資料中偵測缺陷之一方法100之一流程圖。影像資料可包含一測試影像及對應參考影像。參考及測試影像可各劃分為若干圖框。各圖框可涵蓋一晶粒之一局部 區域中之顯著數量像素。圖框可為矩形或正方形。例如,512×512或1024×1024像素可形成一正方形圖框。 1 is a flow chart depicting one method 100 of detecting defects in an image data in accordance with an embodiment of the present invention. The image data may include a test image and a corresponding reference image. Reference and test images can be divided into several frames. Each frame can cover a part of a die A significant number of pixels in the area. The frame can be rectangular or square. For example, 512 x 512 or 1024 x 1024 pixels can form a square frame.

特徵計算Feature calculation

方法100之第一步驟102涉及計算參考及測試影像中之像素之參考特徵及測試特徵。參考及測試特徵可如下文經判定。 The first step 102 of the method 100 involves calculating reference features and test features of pixels in the reference and test images. Reference and test features can be determined as follows.

一參考特徵可被定義為與多個參考影像上之一相同(對應)像素位置相關聯之一些性質。例如,參考特徵可為跨相同像素位置處之多個參考晶粒之灰階之平均值或中值。作為另一實施例,一參考特徵可為跨像素位置處之多個參考晶粒之灰階之值域或偏差。 A reference feature can be defined as some of the properties associated with the same (corresponding) pixel location on one of the plurality of reference images. For example, the reference feature can be the average or median of the gray levels across multiple reference dies at the same pixel location. As another example, a reference feature can be a range or deviation of gray levels of a plurality of reference dies at pixel locations.

源自一像素位置之一參考特徵亦可包含像素位置周圍之資訊。例如,可首先計算在各參考影像上之像素位置處居中之一三像素寬乘三像素高區域(或相對於像素位置界定之其他局部區域)之局部值域或局部平均值,且接著此等局域值域或平均值可用以導出像素位置之參考特徵。例如,跨多個晶粒之局部平均值之一中值可為像素位置之參考特徵之一者。可根據此等原理導出許多其他特徵。 One of the reference features originating from a pixel location may also include information around the pixel location. For example, a local value range or a local average of one of three pixel wide by three pixel high regions (or other local regions defined relative to pixel locations) centered at a pixel location on each reference image may be first calculated, and then The local value range or average can be used to derive a reference feature for the pixel location. For example, a median value that is one of the local averages across multiple dies may be one of the reference features of the pixel location. Many other features can be derived from these principles.

一測試特徵可源自測試影像及多個參考影像上之一像素位置。一測試特徵之一實例為測試影像上之灰階與參考影像上之灰階之平均值之間之差。一測試特徵之另一實例為測試影像上之灰階與參考影像上之灰階之中值之間之差。類似於一參考特徵,源自一像素位置之一測試特徵亦可包含像素位置周圍之資訊。例如,在測試影像上之像素位置處居中之一三像素寬乘三像素高區域(或相對於像素位置界定之其他局部區域)周圍之一局部平均值可用於計算對於在多個參考影像上之對應位置之一三像素寬乘三像素高區域周圍之局部平均值之平均值之差。 A test feature can be derived from a test image and a pixel location on a plurality of reference images. An example of a test feature is the difference between the grayscale on the test image and the average of the grayscales on the reference image. Another example of a test feature is the difference between the grayscale on the test image and the midtone of the grayscale on the reference image. Similar to a reference feature, one of the test features originating from a pixel location may also contain information around the pixel location. For example, a local average around one of the three-pixel wide by three-pixel high regions (or other local regions defined relative to the pixel locations) at the pixel location on the test image can be used to calculate for multiple reference images. The difference between the average values of the local averages around the three-pixel wide by three-pixel high region of one of the corresponding positions.

特徵界定群組及群組特定特徵分佈Feature definition group and group specific feature distribution

在第二步驟104中,一圖框之像素可被劃分為特徵界定群組。在 此步驟中,使用至少一特徵以自檢測區域中之其他像素分離出像素之至少一群組。例如,一密集圖案化區域之像素通常具有多於一開放區域中之像素之局部灰階值域變動。因此,一局部灰階值域可用作為用於將像素劃分為不同群體群組之一特徵。 In a second step 104, the pixels of a frame can be divided into feature defining groups. in In this step, at least one feature is used to separate at least one group of pixels from other pixels in the detection region. For example, a pixel of a densely patterned region typically has local grayscale value domain variations for pixels in more than one open region. Therefore, a local gray scale value field can be used as one feature for dividing pixels into different group groups.

在第三步驟106中,可針對像素之一或多個所選群組而產生一多維特徵分佈。相較之下,一先前技術將使用一影像圖框之所有像素以產生待用於異常點偵測之一多維特徵分佈。 In a third step 106, a multi-dimensional feature distribution can be generated for one or more selected groups of pixels. In contrast, a prior art would use all of the pixels of an image frame to produce a multi-dimensional feature distribution to be used for abnormal point detection.

例如,考量如在圖2中描繪之影像圖框200中展示之檢測區域。如展示,影像圖框200包含垂直線202、水平線段204及開放空間206。 For example, consider the detection area as shown in image frame 200 depicted in FIG. As shown, image frame 200 includes vertical line 202, horizontal line segment 204, and open space 206.

一先前技術將使用圖框200中之所有像素以產生一多維特徵分佈。相較之下,目前揭示技術首先基於根據第二步驟104之一計算特徵而將圖框200中之像素劃分為群組。 A prior art would use all of the pixels in frame 200 to produce a multi-dimensional feature distribution. In contrast, the present disclosure technique first divides pixels in the frame 200 into groups based on calculating features in accordance with one of the second steps 104.

在一第一實例中,使用一局部灰階值域或其他計算特徵,圖框200之像素可被分成包含具有垂直線202及水平線段204兩者之像素之一第一群組以及包含具有開放空間206之像素之一第二群組。在一第二實例中,圖框200之像素可被分成包含具有垂直線202之像素之一第一群組、包含水平線段204之像素之一第二群組及包含具有開放空間206之像素之一第三群組。 In a first example, using a local grayscale range or other computational feature, the pixels of frame 200 can be divided into a first group comprising one of the pixels having both vertical line 202 and horizontal line 204 and including having an open A second group of pixels of space 206. In a second example, the pixels of frame 200 can be divided into a first group comprising one of the pixels having a vertical line 202, a second group comprising one of the horizontal line segments 204, and a pixel having an open space 206. A third group.

隨後,根據第三步驟106可選擇特徵界定群組之一或多者,且可獨立地針對所選群組之各者產生一多維特徵分佈。 Subsequently, one or more of the feature defining groups may be selected according to a third step 106, and a multi-dimensional feature distribution may be generated independently for each of the selected groups.

正常叢集判定Normal clustering decision

方法100之第四步驟108可針對各群組特定特徵分佈判定落於點之正常叢集(正常分佈)中之像素。根據本發明之實施例,可存在若干有效方法用於界定像素之正常叢集。 A fourth step 108 of method 100 may determine pixels that fall within a normal cluster (normal distribution) of points for each group-specific feature distribution. In accordance with embodiments of the present invention, there may be several effective methods for defining a normal cluster of pixels.

用以識別正常叢集之一方法為基於形成於多維特徵空間中之信號分佈之一點位置之局部鄰域中之群體(population)。針對二維實例, 可使用針對在二維信號分佈中之一給定點上居中之(例如)一五像素寬乘五像素高正方形區域內之點之總群體之一預定群體密度臨限值作為判定給定點是否為正常之一臨限值。若群體值大於群體密度臨限值,則點可被視為正常。 One method for identifying normal clusters is based on populations in local neighborhoods of one of the point locations of the signal distribution formed in the multidimensional feature space. For 2D instances, A predetermined population density threshold may be used for determining whether a given point is normal for one of a total population of points within a one-to-five-pixel wide by five-pixel high square region centered at a given point in the two-dimensional signal distribution. One of the limits. If the population value is greater than the population density threshold, the point can be considered normal.

用於識別正常分佈之另一方法為基於信號分佈中之點當中之連通性。針對二維實例,若在信號分佈中一預定距離內存在其他點,則一點可被視為正常。 Another method for identifying normal distribution is based on connectivity among the points in the signal distribution. For a two-dimensional instance, if there are other points within a predetermined distance in the signal distribution, then one point can be considered normal.

其他方法亦可用以界定正常分佈。作為一實例,若一點滿足上述兩個準則,則該點可被視為正常。原則上,若存在具有相同或類似特徵之相當數量像素,則其等被視為正常且沒有缺陷。 Other methods can also be used to define the normal distribution. As an example, if one point satisfies the above two criteria, the point can be considered normal. In principle, if there are a significant number of pixels with the same or similar characteristics, they are considered normal and have no defects.

異常點偵測Abnormal point detection

第五步驟110可識別為統計異常點之像素,其可為測試基板上之缺陷之指示。如上描述,已識別群組特定特徵分佈中之點之正常叢集。非經識別為在正常叢集內之各點可視為一候選點。一候選點可含有對應於一或多個實際缺陷的一或多個像素。 The fifth step 110 can be identified as a pixel of the statistical anomaly point, which can be an indication of a defect on the test substrate. As described above, a normal cluster of points in a group-specific feature distribution has been identified. Points that are not identified as being within a normal cluster can be considered a candidate point. A candidate point can contain one or more pixels corresponding to one or more actual defects.

為允許對於錯誤之一些裕度,在宣告一點為缺陷之前允許一容限範圍。在界定容限範圍中可存在不同方法。一方法為一固定容限範圍。在一二維實例中,容限範圍可為自一正常點至候選點之一預定距離。若候選點佈置於距任意正常點遠於預定距離之一距離處時,其可經宣告為一缺陷點,因為與候選點相關聯之像素可被認為是缺陷的。更複雜規則(諸如使得預定距離為參考特徵之一函數)亦可被添加於界定容限範圍中。作為一實例,距離可為被界定為跨多個參考晶粒之平均灰階之一參考特徵之一函數。 To allow for some margin of error, allow a tolerance range before declaring a defect. Different methods can exist in defining the tolerance range. One method is a fixed tolerance range. In a two-dimensional example, the tolerance range may be a predetermined distance from a normal point to one of the candidate points. If the candidate point is placed at a distance from any normal point that is one distance away from the predetermined distance, it can be declared as a defective point because the pixel associated with the candidate point can be considered defective. More complex rules, such as making the predetermined distance a function of one of the reference features, may also be added to the defined tolerance range. As an example, the distance may be a function of one of the reference features defined as one of the average gray levels across the plurality of reference dies.

為達成識別實際缺陷及排除製程缺陷(nuisance)中之最佳性能,諸如容限範圍之參數經調諧。各缺陷點可在多維特徵空間中被檢視,且容限範圍可經調諧以獲取對應於所關注缺陷之點,而排除對應於製 程缺陷之點。 To achieve the best performance in identifying actual defects and eliminating process nuisance, parameters such as tolerance ranges are tuned. Each defect point can be viewed in the multi-dimensional feature space, and the tolerance range can be tuned to obtain a point corresponding to the defect of interest, and the corresponding system is excluded. The point of the defect.

缺陷像素識別Defective pixel recognition

如上描述,可在第五步驟110期間在一群組特定特徵分佈中偵測異常點,且與異常點相關聯之像素可被認為是缺陷的。應注意在多維特徵空間中,各點表示具有特定特徵特性之一或多個像素。然而,像素在圖框區域中所處之實際像素位置可未直接留存於特徵分佈中。因此,必需執行額外處理以根據第六步驟112定位此等缺陷像素。 As described above, anomalous points may be detected in a particular set of features during a fifth step 110, and pixels associated with the outliers may be considered defective. It should be noted that in a multi-dimensional feature space, each point represents one or more pixels having a particular characteristic characteristic. However, the actual pixel location at which the pixel is in the frame region may not remain directly in the feature distribution. Therefore, additional processing must be performed to locate such defective pixels in accordance with the sixth step 112.

一旦定位出與異常點相關聯之缺陷像素,此等缺陷像素可根據第七步驟114經標記及報告。在一實施例中,可向工具操作者及/或一工程資料庫進行報告,使得可進行缺陷之研究。在一些實施例中,其中實施本缺陷偵測之方法之工具亦可包含用於偵測分析及識別之方法。在其他實施例中,偵測及分析之兩個功能可分開實施。 Once the defective pixels associated with the abnormal points are located, the defective pixels can be marked and reported according to the seventh step 114. In one embodiment, the tool operator and/or an engineering database can be reported so that the defect can be studied. In some embodiments, the means in which the method of detecting the defect is implemented may also include methods for detecting analysis and identification. In other embodiments, the two functions of detection and analysis can be implemented separately.

實例特徵分佈曲線圖Instance feature distribution curve

圖3與圖4展示自類似於在圖2中描繪之圖框區域200(因其具有垂直線202、水平線段204及開放空間206)之一檢測區域之一影像圖框產生之例示性二維特徵分佈曲線圖。曲線圖中之一較暗點指示具有與該點相關聯之值域內之特徵值之像素之一較大群體。 3 and 4 illustrate an exemplary two-dimensional image generated from an image frame of one of the detection regions of the frame region 200 (which has a vertical line 202, a horizontal line segment 204, and an open space 206) similar to that depicted in FIG. Feature distribution graph. One of the darker points in the graph indicates a larger population of pixels having feature values within the range of values associated with the point.

圖3中之特徵分佈曲線圖300產生自影像圖框200中之所有像素。正常叢集302可在曲線圖中清晰可見。在此情況中,存在與實際缺陷像素相關聯之一點304。然而,在此特徵分佈300中,點304落於正常叢集302之邊緣附近之「雜訊」中。因此,在此分佈中點304並不識別為一異常點。 The feature distribution graph 300 in FIG. 3 is generated from all of the pixels in the image frame 200. The normal cluster 302 can be clearly seen in the graph. In this case, there is a point 304 associated with the actual defective pixel. However, in this feature distribution 300, the point 304 falls in the "noise" near the edge of the normal cluster 302. Therefore, the point 304 is not recognized as an abnormal point in this distribution.

相較之下,圖4中之特徵分佈曲線圖400僅產生自影像圖框200中之垂直線202之像素。正常叢集402在曲線圖中同樣清晰可見。圖4中之正常叢集402實質上小於(緊密於)圖3中之正常叢集302。在此情況中,與實際缺陷的像素相關聯之點404在正常叢集402外。因此,在此 特徵分佈400中,點404被識別為一異常點。 In contrast, the feature distribution graph 400 in FIG. 4 is only generated from the pixels of the vertical line 202 in the image frame 200. Normal cluster 402 is also clearly visible in the graph. The normal cluster 402 in FIG. 4 is substantially smaller (closer) than the normal cluster 302 in FIG. In this case, the point 404 associated with the pixel of the actual defect is outside of the normal cluster 402. So here In the feature distribution 400, the point 404 is identified as an abnormal point.

裝置之高層次圖High level diagram of the device

圖5為根據本發明之一實施例可利用於製造基板之檢測之一檢測裝置之一示意圖。如在圖5中展示,檢測裝置包含一成像工具510、一活動基板支撐架520、一偵測器530、一資料處理系統540及一系統控制器550。 Figure 5 is a schematic illustration of one of the detection devices that can be utilized to fabricate a substrate in accordance with an embodiment of the present invention. As shown in FIG. 5, the detecting device includes an imaging tool 510, a movable substrate support 520, a detector 530, a data processing system 540, and a system controller 550.

在一實施例中,成像工具510包括一電子束(e-束)成像行。在一替代實施例中,成像工具510包括一光學成像裝置。根據本發明之一實施例,成像工具510包含電子器件以控制及調節成像之放大。 In an embodiment, imaging tool 510 includes an electron beam (e-beam) imaging line. In an alternate embodiment, imaging tool 510 includes an optical imaging device. In accordance with an embodiment of the present invention, imaging tool 510 includes electronics to control and adjust the magnification of the imaging.

活動基板支撐架520可包括一平移機構以固持一目標基板525。目標基板525可為(例如)一半導體晶圓或針對微影之一標線片。偵測器530為用於特定成像裝置之一適當偵測器,且資料處理系統540經組態以處理來自偵測器530之影像資料。資料處理系統540亦可包含一處理器542、用於保存電腦可讀程式碼545之記憶體544、用於儲存資料之一資料儲存系統546及多種其他組件,諸如一系統匯流排、輸入/輸出介面等。 The movable substrate support frame 520 can include a translation mechanism to hold a target substrate 525. The target substrate 525 can be, for example, a semiconductor wafer or a reticle for lithography. The detector 530 is a suitable detector for one of the particular imaging devices, and the data processing system 540 is configured to process the image data from the detector 530. The data processing system 540 can also include a processor 542, a memory 544 for storing computer readable code 545, a data storage system 546 for storing data, and various other components, such as a system bus, input/output. Interface and so on.

系統控制器550可通信耦合至成像工具510以便電性地控制成像工具510之操作。系統控制器550亦可包含一處理器522、用於保存電腦可讀程式碼555之記憶體554、用於儲存資料之一資料儲存系統556及多種其他組件,諸如一系統匯流排、輸入/輸出介面等。 System controller 550 can be communicatively coupled to imaging tool 510 to electrically control the operation of imaging tool 510. The system controller 550 can also include a processor 522, a memory 554 for storing computer readable code 555, a data storage system 556 for storing data, and various other components, such as a system bus, input/output. Interface and so on.

結論in conclusion

在以上描述中,給定眾多特定細節以提供本發明之實施例之一透澈瞭解。然而,本發明之圖解說明實施例中以上描述並非旨在詳盡或限制本發明至所揭示之精確形式。熟習相關技術者將瞭解本發明可在沒有特定細節之一或多者或具有其他方法、組件等之情況下加以實踐。 In the above description, numerous specific details are set forth to provide a thorough understanding of the embodiments of the invention. However, the above description of the present invention is not intended to be exhaustive or to limit the invention to the precise form disclosed. Those skilled in the art will appreciate that the present invention may be practiced without one or more of the specific details or other methods, components and the like.

在其他情況中,未詳細展示或描述已為人所熟知的結構或操作以避免混淆本發明之態樣。儘管針對闡釋性目的而在本文中描述本發明之特定實施例及針對本發明之實例,然熟習相關技術者將瞭解多種等效修改可能在本發明之範疇內。 In other instances, structures or operations that are well known are not shown or described in detail to avoid obscuring aspects of the invention. While the invention has been described with respect to the specific embodiments of the present invention and the embodiments of the present invention, it will be understood by those skilled in the art that various equivalent modifications may be within the scope of the invention.

鑑於以上詳細描述可進行本發明之此等修改。用於下文申請專利範圍中之術語不應理解為限制本發明至在說明書及申請專利範圍內揭示之特定實施例。實情係,應藉由下文申請專利範圍判定本發明之範疇,其應根據申請專利範圍解釋之已制定原理加以理解。 Such modifications of the invention are possible in light of the above detailed description. The terms used in the following claims are not to be construed as limiting the invention. In fact, the scope of the invention should be determined by the following claims, which should be construed in accordance with the principles defined in the claims.

510‧‧‧成像工具 510‧‧‧ imaging tools

520‧‧‧活動基板支撐架 520‧‧‧Active substrate support

525‧‧‧目標基板 525‧‧‧Target substrate

530‧‧‧偵測器 530‧‧‧Detector

540‧‧‧資料處理系統 540‧‧‧Data Processing System

542‧‧‧處理器 542‧‧‧ processor

544‧‧‧記憶體 544‧‧‧ memory

545‧‧‧電腦可讀程式碼 545‧‧‧ computer readable code

546‧‧‧資料儲存系統 546‧‧‧Data Storage System

550‧‧‧系統控制器 550‧‧‧System Controller

552‧‧‧處理器 552‧‧‧ processor

554‧‧‧記憶體 554‧‧‧ memory

555‧‧‧電腦可讀程式碼 555‧‧‧Computer readable code

556‧‧‧資料儲存系統 556‧‧‧Data Storage System

Claims (16)

一種用於在一製造基板上偵測缺陷之裝置,該裝置包括:一成像工具,其經配置以自該製造基板獲得影像圖框;及一資料處理系統,其包含一處理器、記憶體及該記憶體中之電腦可讀程式碼,該電腦可讀程式碼經組態以針對一影像圖框中之像素計算特徵;將具有在多個特定範圍之值內的該等特徵之值之該影像圖框中的像素與該影像圖框中的其他像素分離,使得經分離之該等像素形成像素之一特徵界定群組;僅針對屬於像素之該特徵界定群組的該影像圖框中之該等像素產生一多維特徵分佈;判定該多維特徵分佈中之一正常叢集;及偵測在該正常叢集之外之該多維特徵分佈中之異常點。 An apparatus for detecting a defect on a manufacturing substrate, the apparatus comprising: an imaging tool configured to obtain an image frame from the manufacturing substrate; and a data processing system including a processor, a memory, and Computer readable code in the memory, the computer readable code configured to calculate features for pixels in an image frame; the value of the features having values within a plurality of specific ranges The pixels in the image frame are separated from other pixels in the image frame such that the separated pixels form one of the pixel feature defining groups; only the image frame that defines the group for the feature belonging to the pixel The pixels generate a multi-dimensional feature distribution; determine a normal cluster in the multi-dimensional feature distribution; and detect anomalies in the multi-dimensional feature distribution outside the normal cluster. 如請求項1之裝置,其中該電腦可讀程式碼進一步經組態以定位與該等異常點相關聯之缺陷像素。 The device of claim 1, wherein the computer readable code is further configured to locate defective pixels associated with the abnormal points. 如請求項2之裝置,其中該電腦可讀程式碼進一步經組態以報告該等缺陷像素。 The device of claim 2, wherein the computer readable code is further configured to report the defective pixels. 如請求項1之裝置,其中該等特徵包含參考特徵,且其中一參考特徵為與位於多個參考影像上之一像素位置相關聯之一性質。 The device of claim 1, wherein the features comprise reference features, and wherein one of the reference features is associated with one of pixel locations located on the plurality of reference images. 如請求項4之裝置,其中該等特徵進一步包含測試特徵,且其中一測試特徵源自一測試影像及該多個參考影像上之一像素位置。 The device of claim 4, wherein the features further comprise test features, and wherein one of the test features is derived from a test image and a pixel location on the plurality of reference images. 如請求項4之裝置,其中該性質包括在該像素位置處之灰階之一範圍。 The device of claim 4, wherein the property comprises a range of gray levels at the pixel location. 如請求項4之裝置,其中該性質包含來自在該像素位置處居中之 一局部範圍像素之資訊。 The device of claim 4, wherein the property comprises from a center at the pixel location A partial range of pixel information. 一種自一測試影像圖框及多個參考影像圖框偵測缺陷之方法,該方法包括:藉由一影像裝置成像固持於一活動基板支撐架上之一製造基板之一局部區域以產生該測試影像圖框;及使用包含一處理器、記憶體及該記憶體中之電腦可讀程式碼之一資料處理系統以執行步驟,其包含:針對該測試影像圖框及該多個參考影像圖框中之多個像素計算特徵;將具有在多個特定範圍之值內的該等特徵之值之該影像圖框中的像素與該影像圖框中的其他像素分離,使得經分離之該等像素形成像素之一特徵界定群組;僅針對屬於像素之該特徵界定群組的該等像素產生一多維特徵分佈;判定該多維特徵分佈中之一正常叢集;及偵測在該正常叢集之外之該多維特徵分佈中之異常點。 A method for detecting a defect from a test image frame and a plurality of reference image frames, the method comprising: imaging a portion of a substrate on a movable substrate support frame by an image device to generate the test An image frame; and a data processing system including a processor, a memory, and a computer readable code in the memory to perform the step, the method comprising: the test image frame and the plurality of reference image frames a plurality of pixel computing features; separating pixels in the image frame having values of the features within a plurality of specific ranges from other pixels in the image frame such that the separated pixels Forming a feature defining group of pixels; generating a multidimensional feature distribution only for the pixels belonging to the feature defining group of pixels; determining a normal cluster in the multidimensional feature distribution; and detecting outside the normal cluster Anomalous points in the multidimensional feature distribution. 如請求項8之方法,其進一步包括:定位與該等異常點相關聯之缺陷像素。 The method of claim 8, further comprising: locating defective pixels associated with the abnormal points. 如請求項9之方法,其進一步包括:標記該等缺陷像素。 The method of claim 9, further comprising: marking the defective pixels. 如請求項8之方法,其中該等特徵包含參考特徵,且其中一參考特徵為與位於該多個參考影像圖框上之一像素相位置相關聯之一性質。 The method of claim 8, wherein the features comprise reference features, and wherein one of the reference features is one of a property associated with a pixel phase location on the plurality of reference image frames. 如請求項11之方法,其中該等特徵進一步包含測試特徵,且其中一測試特徵源自一測試影像圖框及該多個參考影像圖框上之一像素位置。 The method of claim 11, wherein the features further comprise test features, and wherein one of the test features is derived from a test image frame and a pixel location on the plurality of reference image frames. 如請求項11之方法,其中該性質包括在該像素位置處之灰階之一範圍。 The method of claim 11, wherein the property comprises a range of gray levels at the pixel location. 如請求項11之方法,其中該性質包含來自在該像素位置處居中之一局部範圍像素之資訊。 The method of claim 11, wherein the property comprises information from a local range of pixels centered at the pixel location. 一種儲存經組態以執行一方法之電腦可讀程式碼之非暫時性有形資料儲存媒體,該方法包括:針對測試影像圖框及參考影像圖框中之像素計算特徵;使用針對該測試影像圖框及該多個參考影像圖框中之該等像素所計算之該等特徵以將屬於像素之一特徵界定群組之像素與不屬於像素之該特徵界定群組之其他像素分離;僅針對屬於像素之該特徵界定群組的該等像素產生一多維特徵分佈;判定該多維特徵分佈中之一正常叢集;及偵測在該正常叢集之外之該多維特徵分佈中之異常點。 A non-transitory tangible data storage medium storing computer readable code configured to perform a method, the method comprising: calculating features for pixels in a test image frame and a reference image frame; using a test image for the test image The frames and the pixels calculated by the pixels in the plurality of reference image frames are separated by separating pixels belonging to one of the feature definition groups of the pixel from other pixels of the feature definition group not belonging to the pixel; The feature of the pixel defines the pixels of the group to produce a multi-dimensional feature distribution; determining one of the normal clusters of the multi-dimensional feature distribution; and detecting anomalies in the multi-dimensional feature distribution outside the normal cluster. 如請求項15之非暫時性有形資料儲存媒體,其中該方法進一步包括:定位與該等異常點相關聯之缺陷像素;及標記該等缺陷像素。 The non-transitory tangible data storage medium of claim 15, wherein the method further comprises: locating defective pixels associated with the abnormal points; and marking the defective pixels.
TW102117611A 2012-06-27 2013-05-17 Detection of defects embedded in noise for inspection in semiconductor manufacturing TWI614721B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/534,899 2012-06-27
US13/534,899 US9916653B2 (en) 2012-06-27 2012-06-27 Detection of defects embedded in noise for inspection in semiconductor manufacturing

Publications (2)

Publication Number Publication Date
TW201401231A TW201401231A (en) 2014-01-01
TWI614721B true TWI614721B (en) 2018-02-11

Family

ID=49777740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102117611A TWI614721B (en) 2012-06-27 2013-05-17 Detection of defects embedded in noise for inspection in semiconductor manufacturing

Country Status (7)

Country Link
US (1) US9916653B2 (en)
EP (1) EP2867919A1 (en)
KR (1) KR101934151B1 (en)
CN (1) CN104520983A (en)
IL (1) IL236402B (en)
TW (1) TWI614721B (en)
WO (1) WO2014004682A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570796B2 (en) 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
WO2010014609A2 (en) 2008-07-28 2010-02-04 Kla-Tencor Corporation Computer-implemented methods, computer-readable media, and systems for classifying defects detected in a memory device area on a wafer
US9189844B2 (en) * 2012-10-15 2015-11-17 Kla-Tencor Corp. Detecting defects on a wafer using defect-specific information
US9865512B2 (en) 2013-04-08 2018-01-09 Kla-Tencor Corp. Dynamic design attributes for wafer inspection
US9310320B2 (en) 2013-04-15 2016-04-12 Kla-Tencor Corp. Based sampling and binning for yield critical defects
US9772562B2 (en) 2013-12-05 2017-09-26 Asml Netherlands B.V. Method and apparatus for measuring a structure on a substrate, models for error correction, computer program products for implementing such methods and apparatus
KR101924487B1 (en) * 2013-12-17 2018-12-03 에이에스엠엘 네델란즈 비.브이. Yield estimation and control
CN103853817B (en) * 2014-01-16 2016-03-23 首都师范大学 Spatial Singularity Mining Method Based on Massive Statistical Data in GIS
US9846934B2 (en) 2015-04-13 2017-12-19 Anchor Semiconductor Inc. Pattern weakness and strength detection and tracking during a semiconductor device fabrication process
US9767548B2 (en) * 2015-04-24 2017-09-19 Kla-Tencor Corp. Outlier detection on pattern of interest image populations
US10186026B2 (en) 2015-11-17 2019-01-22 Kla-Tencor Corp. Single image detection
US10535131B2 (en) * 2015-11-18 2020-01-14 Kla-Tencor Corporation Systems and methods for region-adaptive defect detection
KR20180076592A (en) 2016-12-28 2018-07-06 삼성전자주식회사 Method for measuring semiconductor device
US10620135B2 (en) * 2017-07-19 2020-04-14 Kla-Tencor Corp. Identifying a source of nuisance defects on a wafer
US10600177B2 (en) * 2017-08-09 2020-03-24 Kla-Tencor Corporation Nuisance reduction using location-based attributes
US10520589B2 (en) 2017-10-16 2019-12-31 Sensors Unlimited, Inc. Multimode ROIC pixel with laser range finding (LRF) capability
US10955551B2 (en) 2017-10-16 2021-03-23 Sensors Unlimited, Inc. Pixel output processing circuit with laser range finding (LRF) capability
US10872406B2 (en) 2018-04-13 2020-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Hot spot defect detecting method and hot spot defect detecting system
US12369722B2 (en) 2018-05-23 2025-07-29 L&P Property Management Company Method of disassembling pocketed spring assembly with dimensionally stabilizing substrate
US11013340B2 (en) 2018-05-23 2021-05-25 L&P Property Management Company Pocketed spring assembly having dimensionally stabilizing substrate
CN109495291B (en) * 2018-09-30 2021-11-16 创新先进技术有限公司 Calling abnormity positioning method and device and server
WO2021039591A1 (en) * 2019-08-23 2021-03-04 コニカミノルタ株式会社 Assessment standard generation device, assessment device, assessment standard generation program, and assessment program
CN115984284B (en) * 2023-03-21 2023-05-19 黄海造船有限公司 X-ray ship body weld image detection method for ship maintenance
US20250245815A1 (en) * 2024-01-31 2025-07-31 Kla Corporation Adaptive and robust detection of large defects and image misalignment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181760A1 (en) * 2001-06-01 2002-12-05 Norio Asai Hole inspection apparatus and method
US7127099B2 (en) * 2001-05-11 2006-10-24 Orbotech Ltd. Image searching defect detector
US7440607B1 (en) * 2004-11-03 2008-10-21 Kla-Tencor Corporation Outlier substrate inspection
TW201113515A (en) * 2009-06-23 2011-04-16 Hermes Microvision Inc Method for characterizing identified defects during charged particle beam inspection and application thereof
TW201128183A (en) * 2009-07-01 2011-08-16 Kla Tencor Corp Monitoring of time-varying defect classification performance

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233397B2 (en) * 2002-10-01 2009-03-04 株式会社東京精密 Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus
KR101027832B1 (en) * 2003-05-09 2011-04-07 올림푸스 가부시키가이샤 Fault correction device and its correction method
JP4357355B2 (en) * 2004-05-07 2009-11-04 株式会社日立ハイテクノロジーズ Pattern inspection method and apparatus
US7397552B2 (en) * 2004-09-27 2008-07-08 Applied Materials, Israel, Ltd. Optical inspection with alternating configurations
JP2006220644A (en) * 2005-01-14 2006-08-24 Hitachi High-Technologies Corp Pattern inspection method and apparatus
EP1929474A2 (en) * 2005-08-30 2008-06-11 Camtek Ltd. An inspection system and a method for inspecting a diced wafer
US8391585B2 (en) * 2006-12-28 2013-03-05 Sharp Kabushiki Kaisha Defect detecting device, defect detecting method, image sensor device, image sensor module, defect detecting program, and computer-readable recording medium
JP4876019B2 (en) * 2007-04-25 2012-02-15 株式会社日立ハイテクノロジーズ Defect inspection apparatus and method
US8126255B2 (en) * 2007-09-20 2012-02-28 Kla-Tencor Corp. Systems and methods for creating persistent data for a wafer and for using persistent data for inspection-related functions
KR20090100615A (en) * 2008-03-20 2009-09-24 삼성전자주식회사 Fault detection method
US7756658B2 (en) * 2008-05-14 2010-07-13 Kla-Tencor Corp. Systems and methods for detecting defects on a wafer and generating inspection results for the wafer
JP5260183B2 (en) * 2008-08-25 2013-08-14 株式会社日立ハイテクノロジーズ Defect inspection method and apparatus
JP2011047724A (en) * 2009-08-26 2011-03-10 Hitachi High-Technologies Corp Apparatus and method for inspecting defect
JP5537282B2 (en) * 2009-09-28 2014-07-02 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
KR20120007328A (en) * 2010-07-14 2012-01-20 주식회사 탑 엔지니어링 Array test device
DE102010060375A1 (en) * 2010-11-05 2012-05-10 Hseb Dresden Gmbh inspection procedures
US8312401B2 (en) * 2011-01-13 2012-11-13 Elitetech Technology Co., Ltd. Method for smart defect screen and sample
JP5608575B2 (en) * 2011-01-19 2014-10-15 株式会社日立ハイテクノロジーズ Image classification method and image classification apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127099B2 (en) * 2001-05-11 2006-10-24 Orbotech Ltd. Image searching defect detector
US20020181760A1 (en) * 2001-06-01 2002-12-05 Norio Asai Hole inspection apparatus and method
US7440607B1 (en) * 2004-11-03 2008-10-21 Kla-Tencor Corporation Outlier substrate inspection
TW201113515A (en) * 2009-06-23 2011-04-16 Hermes Microvision Inc Method for characterizing identified defects during charged particle beam inspection and application thereof
TW201128183A (en) * 2009-07-01 2011-08-16 Kla Tencor Corp Monitoring of time-varying defect classification performance

Also Published As

Publication number Publication date
IL236402B (en) 2018-10-31
US9916653B2 (en) 2018-03-13
KR20150034206A (en) 2015-04-02
WO2014004682A1 (en) 2014-01-03
EP2867919A1 (en) 2015-05-06
US20140002632A1 (en) 2014-01-02
IL236402A0 (en) 2015-02-26
KR101934151B1 (en) 2018-12-31
CN104520983A (en) 2015-04-15
TW201401231A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
TWI614721B (en) Detection of defects embedded in noise for inspection in semiconductor manufacturing
US10600175B2 (en) Dynamic care areas for defect detection
US10628935B2 (en) Method and system for identifying defects of integrated circuits
JP5543872B2 (en) Pattern inspection method and pattern inspection apparatus
KR20170005379A (en) Using high resolution full die image data for inspection
US9262821B2 (en) Inspection recipe setup from reference image variation
KR102352701B1 (en) Defect detection on transparent or translucent wafers
CN110763696B (en) Method and system for wafer image generation
CN105074896A (en) Pattern-measuring apparatus and semiconductor-measuring system
TW201511157A (en) Method and system for detecting repeated defects on semiconductor wafers using design data
JP2013257304A5 (en)
KR20160022377A (en) Wafer inspection using free-form care areas
CN109285791B (en) Design layout-based rapid online defect diagnosis, classification and sampling method and system
KR20210105335A (en) Classification of defects in semiconductor specimens
US8682058B2 (en) Defect analysis method, apparatus, and recording medium using pattern dependence degree
CN113919276B (en) System, method and non-transitory computer readable medium for inspecting semiconductor samples
JP5321775B2 (en) Pattern inspection method and pattern inspection apparatus
JP2011054804A (en) Method and system for management of semiconductor manufacturing device
CN111052178B (en) Interference reduction using location-based attributes
CN120356850B (en) An intelligent processing monitoring system for integrated circuit chips
CN110741466B (en) Broadband plasma inspection based on disturbance point map