[go: up one dir, main page]

TWI611301B - Resource utilization analysis and prediction system and method for cloud environment - Google Patents

Resource utilization analysis and prediction system and method for cloud environment Download PDF

Info

Publication number
TWI611301B
TWI611301B TW104140279A TW104140279A TWI611301B TW I611301 B TWI611301 B TW I611301B TW 104140279 A TW104140279 A TW 104140279A TW 104140279 A TW104140279 A TW 104140279A TW I611301 B TWI611301 B TW I611301B
Authority
TW
Taiwan
Prior art keywords
performance
module
prediction
analysis
resource
Prior art date
Application number
TW104140279A
Other languages
Chinese (zh)
Other versions
TW201721454A (en
Inventor
Yong-Wei Lin
Ren-Xian Zheng
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW104140279A priority Critical patent/TWI611301B/en
Publication of TW201721454A publication Critical patent/TW201721454A/en
Application granted granted Critical
Publication of TWI611301B publication Critical patent/TWI611301B/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

雲端環境之資源使用率分析預測系統與方法 Resource utilization analysis and prediction system and method for cloud environment

本發明係關於一種資源使用率分析預測系統與方法,特別為利用少量或大量的歷史效能資料來進行分析預測,並透過預測結果,預先決定是否自動擴展虛擬機資源之雲端環境之資源使用率分析預測系統與方法。 The invention relates to a resource utilization rate analysis and prediction system and method, in particular to analyze and predict using a small amount or a large amount of historical performance data, and predetermine whether to automatically expand the resource utilization analysis of the cloud environment of the virtual machine resource through the prediction result. Forecasting systems and methods.

隨者雲端技術越來越成熟,越來越多的大型雲端供應商提供雲的服務,如租用虛擬機給客戶使用,然而在龐大的服務後面,如何有效管理巨大運算資源是很重要的,因此如何讓使用者使用起來順暢又不浪費運算資源是一個極欲解決的問題。以往虛擬機在資源不足時,可以透過自動擴展(auto-scaling)的技術動態的增加虛擬機的資源,讓使用者的服務品質維持一定的水準,但是如果資源達到上限時才進行調整的動作,往往使用者的服務品質已經下降,導致使用者對於服務的評價低落,如果過早進行自動擴展的話將會浪費運算資源,因此若能事先預測出虛擬機的效能趨勢就可以即早自動擴展,也不浪費資源。 With the cloud technology becoming more and more mature, more and more large cloud providers provide cloud services, such as renting virtual machines for customers. However, behind the huge services, how to effectively manage huge computing resources is very important. How to make the user use smoothly and not waste computing resources is an extremely problem to be solved. In the past, when virtual resources were insufficient, the virtual machine could dynamically increase the resources of the virtual machine through the auto-scaling technology to maintain the user's service quality. However, if the resource reaches the upper limit, the adjustment will be performed. Often the quality of the user's service has declined, resulting in a low user evaluation of the service. If the automatic expansion is too early, the computing resources will be wasted. Therefore, if the performance trend of the virtual machine can be predicted in advance, it can be automatically expanded as soon as possible. No waste of resources.

由此可見,上述習用方式仍有諸多缺失,仍有改善空間,亟 待加以改良。 It can be seen that there are still many shortcomings in the above-mentioned methods of use, and there is still room for improvement. To be improved.

發明人鑑於上述習用方式所衍生的各項缺點,乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終於成功研發完成本發明一種雲端環境之資源使用率分析預測系統與方法。 In view of the shortcomings derived from the above-mentioned conventional methods, the inventors have improved and innovated, and after years of painstaking research, finally succeeded in research and development of a resource utilization analysis and prediction system and method for a cloud environment of the present invention.

本發明提供一種雲端環境之資源使用率分析預測系統,包含,一設定模組,該設定模組係提供一輸入介面,並利用該輸入介面設定一設定參數,其中該設定參數係為一預測時間、一短期分析歷史效能數量、一時間區塊數量、一長期分析歷史效能數量、一監控間隔、一監控資源項目、一自動擴展門檻值及一自動縮減門檻值,一效能蒐集模組,該效能蒐集模組係接收該設定模組之該設定參數,並依據該設定參數中的該監控間隔與該監控資源項目,定期取得該監控資源項目之數據,並儲存,一效能預測模組,該效能預測模組係依據該效能蒐集模組所儲存之該監控資源項目之數據進行一短期效能分析預測及一長期效能分析預測,以及一動態資源調整模組,該動態資源調整模組係依據該效能預測模組之該短期效能分析預測及該長期效能分析預測判斷資源的自動擴展資源或自動減縮資源。 The present invention provides a resource usage analysis and prediction system for a cloud environment, comprising: a setting module, wherein the setting module provides an input interface, and uses the input interface to set a setting parameter, wherein the setting parameter is a prediction time a short-term analysis of the historical performance quantity, the number of time blocks, a long-term analysis historical performance quantity, a monitoring interval, a monitoring resource item, an automatic expansion threshold and an automatic reduction threshold, a performance collection module, the performance The collection module receives the setting parameter of the setting module, and periodically obtains data of the monitoring resource item according to the monitoring interval and the monitoring resource item in the setting parameter, and stores, and a performance prediction module, the performance The prediction module performs a short-term performance analysis prediction and a long-term performance analysis prediction according to the data of the monitoring resource item stored in the performance collection module, and a dynamic resource adjustment module, wherein the dynamic resource adjustment module is based on the performance The short-term performance analysis prediction of the prediction module and the prediction of the long-term performance analysis Automatic expansion of resources or reduction of resources.

該效能預測模組更包含一短期效能分析預測模組及一長期效能分析預測模組,其中該短期效能分析預測模組係利用該短期效能分析預測計算該預測時間內效能資料的變化率以推估預測時間的效能,以及該長期效能分析預測模組係利用長期效能分析預測透過分群演算法分群一特定區間內的效能資料,取出複數個代表該特定區間內的效能資料以推估出 未來資源的預測值。 The performance prediction module further includes a short-term performance analysis prediction module and a long-term performance analysis prediction module, wherein the short-term performance analysis prediction module uses the short-term performance analysis to predict and calculate the change rate of the performance data during the prediction time to push Estimating the effectiveness of the prediction time, and the long-term performance analysis prediction module uses the long-term performance analysis to predict the performance data in a specific interval by the clustering algorithm, and extracts a plurality of performance data representing the specific interval to estimate The predicted value of future resources.

該動態資源調整模組更包含一判斷模組、一自動擴展模組及一自動縮減模組,其中該判斷模組係依據該設定模組與該效能預測模組之效能預測,自動判斷是否動態調整資源並命令該自動擴展模組進行自動擴展資源及該自動縮減模組自行進行自動減縮資源。 The dynamic resource adjustment module further includes a determination module, an automatic expansion module and an automatic reduction module, wherein the determination module automatically determines whether the dynamic is based on the performance prediction of the setting module and the performance prediction module. The resource is adjusted and the automatic expansion module is instructed to automatically expand the resource and the automatic reduction module automatically reduces the resources by itself.

本發明提供一種雲端環境之資源使用率分析預測方法,步驟包含:透過一設定模組之一輸入介面設定預測一預測目標之一設定參數;一效能蒐集模組依據該設定參數蒐集該預測目標之效能資料;一效能預測模組依據該設定參數及該預測目標之效能資料透過一短期效能分析預測模組計算效能資料的變化率以推估效能,以及透過一長期效能分析預測模組藉由分群演算法分群一特定區間內的效能資料,取出複數個代表該特定區間內的效能資料以推估出未來資源的預測值;以及一動態資源調整模組透過一判斷模組係依據該設定模組與該效能預測模組之效能預測,自動判斷是否動態調整資源並命令一自動擴展模組進行自動擴展資源及一自動縮減模組自行進行自動減縮資源。 The present invention provides a resource usage analysis and prediction method for a cloud environment, the method comprising: setting a parameter for predicting a prediction target through one input interface of a setting module; and collecting, by the performance collection module, the prediction target according to the setting parameter Performance data; a performance prediction module based on the set parameters and the performance data of the forecast target through a short-term performance analysis forecast module to calculate the rate of change of the performance data to estimate the performance, and through a long-term performance analysis prediction module by clustering The algorithm groups the performance data in a specific interval, and extracts a plurality of performance data representing the specific interval to estimate the predicted value of the future resource; and a dynamic resource adjustment module according to the setting module according to the determination module With the performance prediction of the performance prediction module, it is automatically determined whether the resource is dynamically adjusted and an automatic expansion module is commanded to automatically expand the resource and an automatic reduction module automatically reduces the resource by itself.

本發明提供之雲端環境之資源使用率分析預測系統與方法,透過預測未來效能趨勢,可動態調整雲端資源,精準的分配雲端資源,讓用戶的服務維持一定的效能。 The resource utilization analysis and prediction system and method for the cloud environment provided by the invention can dynamically adjust cloud resources and accurately allocate cloud resources by predicting future performance trends, so that the user's service maintains certain performance.

本發明的短期效能分析預測及長期效能分析預測,可根據不同的情況或時間自動使用不同的方法預測。當預測目標效能變化量較大時,可透過短期效能分析預測,透過分析不同時間的變化率預測出未來的效能。 而預測目標效能較規律時,可透過長期效能分析預測,透過分群技術去除偏差較大的效能資料,保留具代表性的群來統計出預測的效能,此外,短期效能分析預測及長期效能分析預測可同時應用於預測目標上,提供更穩固的預測方式確保用戶服務的品質。 The short-term performance analysis prediction and the long-term performance analysis prediction of the present invention can be automatically predicted using different methods according to different situations or times. When the predicted target performance change is large, the short-term performance analysis can be used to predict the future performance by analyzing the rate of change at different times. When the target performance is predicted to be more regular, the long-term performance analysis and prediction can be used to remove the biased performance data through the clustering technique, and the representative group can be retained to calculate the prediction performance. In addition, the short-term performance analysis prediction and the long-term performance analysis prediction Can be applied to forecasting targets at the same time, providing a more robust forecasting method to ensure the quality of user services.

再者,本發明的短期效能分析預測透過分析不同時間點下效能的變化率,並給予不同時間的變化量不同權重,有效的推估出未來的效能趨勢。長期效能分析預測則選取多個代表性的群做統計,預測出來的效能較不會是極端的值,準確度較高。 Furthermore, the short-term performance analysis prediction of the present invention effectively estimates the future performance trend by analyzing the rate of change of performance at different time points and giving different weights of changes at different times. Long-term performance analysis predicts the selection of multiple representative groups for statistics, and the predicted performance is less extreme and has higher accuracy.

100‧‧‧資源池 100‧‧‧ resource pool

101‧‧‧網路 101‧‧‧Network

102‧‧‧實體機 102‧‧‧ physical machine

103‧‧‧實體機 103‧‧‧ physical machine

104‧‧‧實體機 104‧‧‧ physical machine

105‧‧‧虛擬機 105‧‧‧Virtual Machine

106‧‧‧虛擬機 106‧‧‧Virtual Machine

107‧‧‧虛擬機 107‧‧‧Virtual Machine

108‧‧‧虛擬機 108‧‧‧Virtual Machine

109‧‧‧虛擬機 109‧‧‧Virtual Machine

110‧‧‧虛擬機 110‧‧‧Virtual Machine

200‧‧‧雲端環境之資源使用率分析預測系統 200‧‧‧Resource Usage Analysis and Prediction System for Cloud Environment

210‧‧‧設定模組 210‧‧‧Setting module

220‧‧‧效能蒐集模組 220‧‧‧Efficient collection module

230‧‧‧效能預測模組 230‧‧‧Performance Prediction Module

240‧‧‧動態資源調整模組 240‧‧‧Dynamic Resource Adjustment Module

231‧‧‧短期效能分析預測模組 231‧‧‧Short-term performance analysis prediction module

232‧‧‧長期效能分析預測模組 232‧‧‧Long-term performance analysis and prediction module

241‧‧‧判斷模組 241‧‧‧Judgement module

242‧‧‧自動擴展模組 242‧‧‧Automatic expansion module

243‧‧‧自動縮減模組 243‧‧‧Automatic reduction module

S510~S560‧‧‧步驟流程 S510~S560‧‧‧Step process

圖1 係為本發明之雲端環境之資源使用率分析預測系統的環境配置圖。 FIG. 1 is an environment configuration diagram of a resource usage analysis and prediction system of a cloud environment according to the present invention.

圖2 係為本發明之雲端環境之資源使用率分析預測系統的架構圖。 2 is an architectural diagram of a resource usage analysis and prediction system for a cloud environment of the present invention.

圖3 係為本發明之效能預測模組的架構圖。 FIG. 3 is an architectural diagram of the performance prediction module of the present invention.

圖4 係為本發明之動態資源調整模組的架構圖。 4 is an architectural diagram of a dynamic resource adjustment module of the present invention.

圖5 係為本發明之雲端環境之資源使用率分析預測系統的架構圖之流程圖。 FIG. 5 is a flow chart of the architecture diagram of the resource usage analysis and prediction system of the cloud environment of the present invention.

圖6 係為本發明之短期效能分析預測流程之結果示意圖。 Figure 6 is a schematic diagram showing the results of the short-term performance analysis and prediction process of the present invention.

圖7係為本發明之短期效能分析預測流程之結果示意圖。 FIG. 7 is a schematic diagram showing the results of the short-term performance analysis and prediction process of the present invention.

圖8係為本發明之長期效能分析預測流程之結果示意圖。 FIG. 8 is a schematic diagram showing the results of the long-term performance analysis and prediction process of the present invention.

以下將參照相關圖式,說明依本發明之多語系語音辨識裝置 及其方法之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。 Hereinafter, a multilingual speech recognition apparatus according to the present invention will be described with reference to related drawings. For the sake of understanding, the same components in the following embodiments are denoted by the same reference numerals.

請參閱圖1,如圖所示,為本發明之雲端環境之資源使用率分析預測系統的環境配置圖,資源池100包含實體機102、實體機103和實體機104,並透過網路101連通。其中實體機102、實體機103和實體機104的作業系統可以為Citrix XenServer、KVM、或VMware ESXi作為提供虛擬化的基礎設施,在實體機102、實體機103和實體機104上分別執行虛擬機105、虛擬機106、虛擬機107、虛擬機108、虛擬機109、和虛擬機110。以XenServer為例,多台XenServer可以組成一個資源池,在資源池100中的資源可以共享,當虛擬機在資源池100中的實體機102執行時,若遭遇實體機102中央處理器資源不足時,可以透過即時遷移的方式,將虛擬機遷移至中央處理器資源充足的實體機103上執行。除此之外若虛擬機資源不足時,但實體機資源仍然充足時,可以透過雲端技術自動擴展虛擬機的資源。 Referring to FIG. 1, the environment configuration diagram of the resource usage analysis and prediction system of the cloud environment of the present invention is shown in the figure. The resource pool 100 includes a physical machine 102, a physical machine 103, and a physical machine 104, and is connected through the network 101. . The operating systems of the physical machine 102, the physical machine 103, and the physical machine 104 may be a virtualized infrastructure for Citrix XenServer, KVM, or VMware ESXi, and the virtual machines are respectively executed on the physical machine 102, the physical machine 103, and the physical machine 104. 105. Virtual machine 106, virtual machine 107, virtual machine 108, virtual machine 109, and virtual machine 110. Taking XenServer as an example, multiple XenServers can form a resource pool, and resources in the resource pool 100 can be shared. When the virtual machine is executed by the physical machine 102 in the resource pool 100, if the central processor resources of the physical machine 102 are insufficient, The virtual machine can be migrated to the physical machine 103 with sufficient central processor resources by means of instant migration. In addition, if the virtual machine resources are insufficient, but the physical machine resources are still sufficient, the virtual machine resources can be automatically expanded through the cloud technology.

請參閱圖2,如圖所示,為本發明之雲端環境之資源使用率分析預測系統的架構圖,雲端環境之資源使用率分析預測系統200,包含設定模組210、效能蒐集模組220、效能預測模組230、和動態資源調整模組240。雲端環境之資源使用率分析預測系統200可以設置在任一實體機、虛擬機上執行或獨立於資源池外的一台可連通資源池的機器。設定模組210提供輸入介面,讓使用者可以輸入預測的時間、短期效能分析預測使用的歷史效能數量、時間區塊數量、長期效能分析使用的歷史效能數量、監控間隔、監控資源項目、自動擴展門檻值和自動縮減門檻值。監控資源項目可以有中 央處理器使用率、記憶體使用率、硬碟寫入速率、硬碟讀取速度、網路接收速度、網路傳送速度、session數量使用率、連線數量使用率等,但不限於這些項目。針對每一個資源項目設定自動擴展門檻值,自動擴展門檻值是執行動態資源調整模組240用來判斷是否需要執行動作,當效能預測模組230預測出來的數值超過自動擴展門檻值時,執行動態資源調整模組240的動作。除了自動擴展門檻值,還須針對每一資源項目輸入自動縮減門檻值,自動縮減門檻值是執行動態資源調整模組240用來判斷是否需要執行動作,當目前效能使用率低於自動縮減門檻值時,執行動態資源調整模組240的動作。效能蒐集模組220接收設定模組210的參數,監控間隔與監控資源項目,定期取得監控資源項目的數據,並且儲存下來,以供效能預測模組230使用。監控的方式可以透過Nagios或其它現有的工具達成。 Referring to FIG. 2, the architecture diagram of the resource usage analysis and prediction system of the cloud environment of the present invention is shown in the figure. The resource usage analysis and prediction system 200 of the cloud environment includes a setting module 210 and a performance collection module 220. The performance prediction module 230 and the dynamic resource adjustment module 240. The resource usage analysis and prediction system 200 of the cloud environment may be configured to execute on any physical machine, virtual machine, or a machine connected to a resource pool outside the resource pool. The setting module 210 provides an input interface, allowing the user to input the predicted time, the short-term performance analysis to predict the historical performance quantity used, the number of time blocks, the historical performance quantity used for long-term performance analysis, the monitoring interval, the monitoring resource item, and the automatic expansion. Threshold value and automatic reduction threshold. Monitoring resource projects can be medium Central processor usage, memory usage, hard disk write rate, hard disk read speed, network receive speed, network transfer speed, session usage, connection usage, etc., but not limited to these items . An automatic expansion threshold is set for each resource item, and the automatic expansion threshold is used by the execution dynamic resource adjustment module 240 to determine whether an action needs to be performed. When the predicted value of the performance prediction module 230 exceeds the automatic expansion threshold, the execution dynamic is performed. The operation of the resource adjustment module 240. In addition to the automatic expansion threshold, an automatic reduction threshold is also input for each resource item. The automatic reduction threshold is used by the execution dynamic resource adjustment module 240 to determine whether an action needs to be performed. When the current performance usage is lower than the automatic reduction threshold At this time, the action of the dynamic resource adjustment module 240 is executed. The performance collection module 220 receives the parameters of the setting module 210, monitors the interval and monitors the resource items, and periodically acquires the data of the monitoring resource items, and stores them for use by the performance prediction module 230. The way to monitor can be achieved through Nagios or other existing tools.

請參閱圖3,如圖所示,為本發明之效能預測模組的架構圖,其中,效能預測模組230包含短期效能分析預測模組231與長期效能分析預測模組232,短期效能分析預測模組231接收設定模組210的參數與效能蒐集模組220的效能資訊。設定模組210的參數包含預測的時間、短期效能分析預測使用的歷史效能數量、監控的項目、監控間隔、與各個監控項目的自動擴展門檻值與自動縮減門檻值。 Please refer to FIG. 3 , which is an architectural diagram of the performance prediction module of the present invention. The performance prediction module 230 includes a short-term performance analysis prediction module 231 and a long-term performance analysis prediction module 232 , and short-term performance analysis and prediction. The module 231 receives the parameters of the setting module 210 and the performance information of the performance collecting module 220. The parameters of the setting module 210 include the predicted time, the historical performance quantity used for the short-term performance analysis prediction, the monitored item, the monitoring interval, the automatic expansion threshold value and the automatic reduction threshold value of each monitoring item.

短期效能分析預測模組231的預測資源方式為,PredictByRecentData(t,t',h,n,Uc),其中

Figure TWI611301BD00001
Figure TWI611301BD00002
Analysis of the predicted short-term performance prediction module 231 is a resource embodiment, PredictByRecentData (t, t ', h, n, U c), wherein
Figure TWI611301BD00001
Figure TWI611301BD00002

Uc={uc,t ,uc,t-h ,uc,t-2h ,uc,t-3h ,...,uc,t-nh ,...} U c ={u c , t , u c , th , u c , t-2h , u c , t-3h , ... , u c , t-nh , ...}

dc,t',k=t'-t+kh d c , t ', k =t ' -t+kh

Figure TWI611301BD00003
其中,C為監控項目類別的集合,c為資源,t為目前時間,t'為預測的時間點,h為每隔h分鐘蒐集一次效能資訊,n為使用的歷史效能數量,也就是目前時間往前n筆為使用的範圍,Uc為資源c的歷史效能資料的集合,uc,t為時間t時的資源c的效能,dc,t',k為預測時間t'與以目前時間為基準過去第k筆效能資訊產生的時間相差的值,wc,n,k為資源c在過去歷史效能資料中的第k筆的權重,rc,t為時間t時的資源c的使用率變化量。
Figure TWI611301BD00003
Where C is the set of monitoring item categories, c is the resource, t is the current time, t ' is the predicted time point, h is the performance information collected every hour, n is the historical performance quantity used, that is, the current time The forward n is the range of use, U c is the set of historical performance data of resource c, u c , t is the performance of resource c at time t, d c , t ', k is the predicted time t ' and current The time is the value of the time difference generated by the k-th performance information in the past, w c , n , k is the weight of the kth of the resource c in the past historical performance data, and r c , t is the resource c of the time t The amount of usage change.

長期效能分析預測模組232接收設定模組210的設定參數與效能蒐集模組220的效能資訊。設定模組210的參數包含預測的時間、時間區塊數量、長期效能分析使用的歷史效能數量、監控的項目、監控間隔、與各個監控項目的自動擴展門檻值與自動縮減門檻值。長期效能分析預測模組232的預測步驟如下:將一天的時間分為b個區塊,若b=24,則一天可分為00:00:00~00:59:99、01:00:00~01:59:59、23:00:00~23:59:59二十四個區塊;取出想要預測的時間所在區塊的歷史效能資料;每筆監控資料作為一個向量vi,c,其中vi,c為在時間i資源c的使用量; 長期效能分析使用的歷史效能數量e,對e天內該區間的所有向量做分群,分群方法為k-means,得到k群,其中相似度計算方式可採用Euclidean Distance;去除大小排在後面一半的群,因這些群較小,較不能代表此區間的效能,因 此用前

Figure TWI611301BD00004
群的中心點來計算平均做為預測的效能vaverage,c,其中vaverage,c代 表資源c預測的效能;以及
Figure TWI611301BD00005
,其中centroidi,c為資源c,群i的中心點。 The long-term performance analysis prediction module 232 receives the setting parameters of the setting module 210 and the performance information of the performance collecting module 220. The parameters of the setting module 210 include the predicted time, the number of time blocks, the historical performance quantity used for long-term performance analysis, the monitored items, the monitoring interval, the automatic expansion threshold value and the automatic reduction threshold value of each monitoring item. The prediction step of the long-term performance analysis prediction module 232 is as follows: divide the time of day into b blocks, and if b=24, the day can be divided into 00:00:00~00:59:99, 01:00:00 ~01:59:59, 23:00:00~23:59:59 twenty-four blocks; take out the historical performance data of the block where the time is to be predicted; each monitoring data is used as a vector v i , c , where v i , c is the amount of resource c used at time i; the historical performance quantity e used for long-term performance analysis, grouping all the vectors of the interval in e days, and the grouping method is k-means, and k group is obtained, wherein The similarity calculation method can adopt Euclidean Distance; remove the group whose size is ranked in the latter half. Because these groups are small, they are less representative of the performance of this interval, so before use
Figure TWI611301BD00004
The center point of the group to calculate the average as the predicted performance v average , c , where v average , c represents the performance of the resource c prediction;
Figure TWI611301BD00005
, where centroid i , c is the resource c, the center point of group i.

請參閱圖4,如圖所示,為本發明之動態資源調整模組的架構圖,動態資源調整模組240包含三個模組,分別為判斷模組241、自動擴展模組242、自動縮減模組243。判斷模組241會接收效能預測模組230的預測結果和目前的資源使用率,並判斷預測的效能是否會超過自動擴展門檻值或目前資源使用率是否低於自動縮減門檻值,超過則執行自動擴展模組242,低於則執行自動縮減模組243。自動擴展模組242可增加虛擬機資源所分配到的數量,如虛擬機原先配置一顆一核心的中央處理器,在執行完後可分配成一顆二核心的中央處理器。反之自動縮減模組243可減少虛擬機分配的資源。 Please refer to FIG. 4 , which is a structural diagram of the dynamic resource adjustment module of the present invention. The dynamic resource adjustment module 240 includes three modules, namely, a determination module 241, an automatic expansion module 242, and an automatic reduction. Module 243. The judging module 241 receives the prediction result of the performance prediction module 230 and the current resource usage rate, and determines whether the predicted performance exceeds the automatic expansion threshold or whether the current resource usage rate is lower than the automatic reduction threshold. The expansion module 242 is lower than the automatic reduction module 243. The automatic expansion module 242 can increase the number of virtual machine resources allocated. For example, the virtual machine is originally configured with a core CPU, and can be allocated as a two-core central processor after execution. Conversely, the auto-reduction module 243 can reduce the resources allocated by the virtual machine.

請參閱圖5,為本發明之雲端環境之資源使用率分析預測系統的架構圖之流程圖,分別以短期效能分析預測和長期效能分析預測說明。 Please refer to FIG. 5 , which is a flowchart of an architecture diagram of a resource usage analysis and prediction system for a cloud environment according to the present invention, which is respectively described by short-term performance analysis prediction and long-term performance analysis prediction.

短期效能分析預測流程:步驟S510:透過設定模組讓使用者輸入預測的時間t'、短期效能分析預測使用的歷史效能數量n、監控間隔h、監控項目類別的集合C、自動擴展門檻值T1和自動縮減門檻值T2,其中T1={t1,1 ,t1,2 ,...,t1,S},T2={t2,1 ,t2,2 ,...,t2,S},t1,1為中央處理器使用率自動擴展的門檻值和t2,1為中央處 理器使用率縮減資源的門檻值,s=|C|;同時執行步驟S520和步驟S530,步驟S520判斷應執行短期效能分析預測或執行長期效能分析預測,當目前時間t,若t%h=0,則執行短期效能分析 預測,若

Figure TWI611301BD00006
,則執行長期效能分析預測,兩者可同時執行, 這邊假設執行短期效能分析預測;步驟S530啟動效能蒐集模組,並每隔h分鐘執行一次,每個監控項目的效能資料集合為Uc,c為監控項目或資源,如中央處理器使用率;步驟S540執行短期效能分析預測時,分析效能資料,將步驟S530的效能資料Uc和使用者想要預測的時間t'和使用的效能資料歷史範圍n作為輸入,目前時間t,帶入到
Figure TWI611301BD00007
舉例如下:目前時間為17:00,中央處理器使用率50%,預測的時間點為17:10,每2分鐘蒐集一次效能資訊,過去的中央處理器效能資訊,16:48 10%、16:50 20%、16:52 30%、16:54 35%、16:56 20%、16:58 45%,此時PredictByRecentData(t,t',h,n,U c )=106.32,如下表1及圖6所示:
Figure TWI611301BD00008
Figure TWI611301BD00009
又一舉例如下:目前時間為17:00,中央處理器使用率20%,預測的時間點為17:10,每2分鐘蒐集一次效能資訊,過去的中央處理器效能資訊,16:48 10%、16:50 40%、16:52 20%、16:54 10%、16:56 30%、16:58 25%,PredictByRecentData(t,t',h,n,U c )=14.12,如下表2及圖7所示:
Figure TWI611301BD00010
步驟S560判斷預測結果是否超過T1或目前監控項目使用率低於T2,若超過則執行自動擴展模組。 Short-term performance analysis and prediction process: Step S510: Let the user input the predicted time t through the setting module, the historical performance quantity used for the short-term performance analysis prediction, the monitoring interval h, the set C of the monitoring item category, and the automatic expansion threshold T1 And automatically reducing the threshold value T2, where T1={t 1 , 1 , t 1 , 2 , ... , t 1 , S }, T2={t 2 , 1 , t 2 , 2 , ... , t 2 , S }, t 1 , 1 is a threshold for automatic expansion of the CPU usage and t 2 , 1 is a threshold for reducing the resource usage of the CPU, s=|C|; and performing steps S520 and S530 simultaneously, Step S520 determines whether short-term performance analysis prediction or long-term performance analysis prediction should be performed. When current time t, if t%h=0, perform short-term performance analysis prediction, if
Figure TWI611301BD00006
Long-term performance analysis and prediction is performed, both can be performed at the same time, here we assumed that the implementation of short-term performance analysis and forecasting; step S530 to start collecting module performance, and perform a h every minute, each monitoring project performance data collection for the U c , c is a monitoring project or resource, such as central processor usage; when performing short-term performance analysis and prediction in step S540, analyzing performance data, the performance data U c of step S530 and the time t ' and the performance of the user want to predict Data history range n as input, current time t, brought into
Figure TWI611301BD00007
For example, the current time is 17:00, the CPU usage is 50%, and the predicted time is 17:10. The performance information is collected every 2 minutes. The past CPU performance information, 16:48 10%, 16 :50 20%, 16:52 30 %, 16:54 35%, 16:56 20%, 16:58 45%, at this time PredictByRecentData ( t,t',h,n,U c )=106.32, as shown in the following table 1 and Figure 6:
Figure TWI611301BD00008
Figure TWI611301BD00009
Another example is as follows: the current time is 17:00, the CPU usage is 20%, and the predicted time is 17:10. The performance information is collected every 2 minutes. The past CPU performance information, 16:48 10% , 16:50 40%, 16:52 20%, 16:54 10 %, 16:56 30%, 16:58 25%, PredictByRecentData ( t,t',h,n,U c )=14.12, as shown in the following table 2 and Figure 7:
Figure TWI611301BD00010
Step S560 determines whether the prediction result exceeds T1 or the current monitoring item usage rate is lower than T2, and if it exceeds, executes the automatic expansion module.

長期效能分析預測流程:步驟S510透過設定模組讓使用者輸入預測的時間t'、時間區塊數量b、長期效能分析使用的歷史效能數量e、監控間隔h、監控資源項目C、自動擴展門檻值T1和自動縮減門檻值T2,其中T1={t1,1 ,t1,2 ,...,t1,S},T2={t2,1 ,t2,2 ,...,t2,S},t1,1為中央處理器使用率自動擴展的門檻值和t2,1為中央處 理器使用率縮減資源的門檻值,s=|C|;同時執行步驟S520和步驟S530,步驟S520判斷應執行長期效能分析預測;步驟S530啟動效能蒐集模組,並每隔h分鐘執行一次,不同時間點下的資源c所蒐集到的資料作為一個向量vi,c,其中vi,c為在時間i資源c的使用量;長期效能分析使用的歷史效能數量e,對e天內該區間的所有向量做分群,假設時間區塊數量b=24,執行流程550,將一天24小時劃分為24個區塊,每個區塊為1小時,如00:00:00到00:59:59,23:00:00至23:59:59為最後一個區塊,然後取出e天內,預測時間所在區塊的所有歷史效能資料,對這些向量做分群,分群方法為k-means,得到k群,其中相似度計算方式可採用Euclidean Distance,分群完成後,取前

Figure TWI611301BD00011
群的中心點來計算平均做為預測的效能。 舉例如下:目前時間為16:50,預測的時間點為17:00,每10分鐘蒐集一次效能資訊,上個月過去的中央處理器效能資訊,總共有180筆,中央處理器使用率分別為0%~10% 10筆,10%~20% 15筆,20%~30% 20筆,30%~40% 65筆,40%~50% 30筆,50%~60% 15筆,60%~70% 10筆,70%~80% 5筆,80%~90% 5筆,90%~100% 5筆,100% 0筆,完整歷史效能請參照附錄,利用k-means對這些歷史效能做分群,k=5,,如下表3及圖8所示:
Figure TWI611301BD00012
Figure TWI611301BD00013
其中,群2、群1、和群5大小為前
Figure TWI611301BD00014
群,統計這三個群的平均,因此vaverage=42.7,42.7即為中央處理器使用率預測值;步驟S560判斷預測結果是否超過T1或目前監控項目使用率低於T2,若超過則執行自動擴展模組。 Long-term performance analysis and prediction process: Step S510 allows the user to input the predicted time t ' , the number of time blocks b, the historical performance quantity e used for long-term performance analysis, the monitoring interval h, the monitoring resource item C, and the automatic expansion threshold through the setting module. The value T1 and the automatic reduction threshold T2, where T1={t 1 , 1 , t 1 , 2 , ... , t 1 , S }, T2={t 2 , 1 , t 2 , 2 , ... , t 2 , S }, t 1 , 1 is the threshold for the automatic expansion of the CPU usage and t 2 , 1 is the threshold of the CPU usage reduction, s=|C|; and step S520 and steps are simultaneously performed S530, step S520 determines that the long-term performance analysis and prediction should be performed; step S530 starts the performance collection module, and executes once every h minutes, and the data collected by the resource c at different time points is used as a vector v i , c , where v i , c is the amount of resource c used at time i; the historical performance quantity e used for long-term performance analysis, grouping all the vectors of the interval in e days, assuming the number of time blocks b=24, executing process 550, one day 24 hours is divided into 24 blocks, each block is 1 hour, such as 00:00:00 to 00:59 :59, 23:00:00 to 23:59:59 is the last block, and then take out all historical performance data of the block where the time is predicted within e days, and group these vectors, the grouping method is k-means, Obtain k group, in which the similarity calculation method can adopt Euclidean Distance, after grouping is completed, before taking
Figure TWI611301BD00011
The center point of the group is used to calculate the average as the predictive performance. For example, the current time is 16:50, the predicted time point is 17:00, and the performance information is collected every 10 minutes. The central processor performance information of the past month has a total of 180, and the CPU usage is 0%~10% 10 strokes, 10%~20% 15 strokes, 20%~30% 20 strokes, 30%~40% 65 strokes, 40%~50% 30 strokes, 50%~60% 15 strokes, 60% ~70% 10 strokes, 70%~80% 5 strokes, 80%~90% 5 strokes, 90%~100% 5 strokes, 100% 0 strokes, complete historical performance, please refer to the appendix, using k-means for these historical performance Do grouping, k=5, as shown in Table 3 below and Figure 8:
Figure TWI611301BD00012
Figure TWI611301BD00013
Among them, group 2, group 1, and group 5 are the size
Figure TWI611301BD00014
Group, the average of the three groups is counted, so v average = 42.7, 42.7 is the CPU processor usage prediction value; step S560 determines whether the prediction result exceeds T1 or the current monitoring item usage rate is lower than T2, and if it exceeds, the automatic execution is performed. Expansion module.

綜上可見,本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請 貴局核准本件發明專利申請案,以勵創作,至感德便。 In summary, the present invention has achieved the desired effect under the prior art, and is not familiar with the skill of the art, and its progress and practicality have been consistent with patents. Apply for the requirements, and file a patent application in accordance with the law, and ask your bureau to approve the application for the invention patent, in order to encourage creation, to the sense of virtue.

以上所述僅為舉例性,而非為限制性者。其它任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應該包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any other equivalent modifications or alterations of the present invention are intended to be included in the scope of the appended claims.

200‧‧‧雲端環境之資源使用率分析預測系統 200‧‧‧Resource Usage Analysis and Prediction System for Cloud Environment

210‧‧‧設定模組 210‧‧‧Setting module

220‧‧‧效能蒐集模組 220‧‧‧Efficient collection module

230‧‧‧效能預測模組 230‧‧‧Performance Prediction Module

240‧‧‧動態資源調整模組 240‧‧‧Dynamic Resource Adjustment Module

Claims (5)

一種雲端環境之資源使用率分析預測系統,包含:一設定模組,該設定模組係提供一輸入介面,並利用該輸入介面設定一設定參數,其中該設定參數係為一預測時間、一短期分析歷史效能數量、一時間區塊數量、一長期分析歷史效能數量、一監控間隔、一監控資源項目、一自動擴展門檻值及一自動縮減門檻值;一效能蒐集模組,該效能蒐集模組係接收該設定模組之該設定參數,並依據該設定參數中的該監控間隔與該監控資源項目,定期取得該監控資源項目之數據,並儲存;一效能預測模組,該效能預測模組係依據該效能蒐集模組所儲存之該監控資源項目之數據進行一短期效能分析預測及一長期效能分析預測;以及一動態資源調整模組,該動態資源調整模組係依據該效能預測模組之該短期效能分析預測及該長期效能分析預測判斷資源的自動擴展資源或自動減縮資源。 A cloud environment resource utilization analysis and prediction system includes: a setting module, wherein the setting module provides an input interface, and uses the input interface to set a setting parameter, wherein the setting parameter is a prediction time and a short term Analysis of historical performance quantity, number of time blocks, a long-term analysis historical performance quantity, a monitoring interval, a monitoring resource item, an automatic expansion threshold and an automatic reduction threshold; a performance collection module, the performance collection module Receiving the setting parameter of the setting module, and periodically acquiring and storing the data of the monitoring resource item according to the monitoring interval and the monitoring resource item in the setting parameter; a performance prediction module, the performance prediction module Performing a short-term performance analysis prediction and a long-term performance analysis prediction according to the data of the monitoring resource item stored in the performance collection module; and a dynamic resource adjustment module, the dynamic resource adjustment module is based on the performance prediction module The short-term performance analysis prediction and the long-term performance analysis predictive resources automatically expand resources Automatic reduction of resources. 如申請專利範圍第1所述之雲端環境之資源使用率分析預測系統,該效能預測模組更包含一短期效能分析預測模組及一長期效能分析預測模組,其中該短期效能分析預測模組係利用該短期效能分析預測計算該預測時間內效能資料的變化率以推估預測時間的效能,以及該長期效能分析預測模組係利用長期效能分析預測透過分群演算法分群一特定區間內的效能資料,取出複數個代表該特定區間內的效能資料以推估出未來資源的預測值。 For example, the resource usage analysis and prediction system of the cloud environment described in claim 1 further includes a short-term performance analysis prediction module and a long-term performance analysis prediction module, wherein the short-term performance analysis prediction module The short-term performance analysis is used to predict the rate of change of the performance data in the prediction time to estimate the performance of the prediction time, and the long-term performance analysis prediction module uses the long-term performance analysis to predict the effectiveness of the clustering algorithm in a specific interval. Data, taking out a plurality of performance data representing the specific interval to estimate the predicted value of future resources. 如申請專利範圍第1所述之雲端環境之資源使用率分析預測系統,該動態資源調整模組更包含一判斷模組、一自動擴展模組及一自動縮減 模組,其中該判斷模組係依據該設定模組與該效能預測模組之效能預測,自動判斷是否動態調整資源並命令該自動擴展模組進行自動擴展資源及該自動縮減模組自行進行自動減縮資源。 For example, the resource usage analysis and prediction system of the cloud environment described in claim 1 further includes a judgment module, an automatic expansion module, and an automatic reduction. The module, wherein the judging module automatically determines whether to dynamically adjust resources according to the performance prediction of the setting module and the performance prediction module, and commands the auto expansion module to automatically expand resources and automatically reduce the auto-reduction module. Reduce resources. 一種雲端環境之資源使用率分析預測方法,步驟包含:透過一設定模組之一輸入介面設定預測一預測目標之一設定參數;一效能蒐集模組依據該設定參數蒐集該預測目標之效能資料;一效能預測模組依據該設定參數及該預測目標之效能資料透過一短期效能分析預測模組計算效能資料的變化率以推估效能,以及透過一長期效能分析預測模組藉由分群演算法分群一特定區間內的效能資料,取出複數個代表該特定區間內的效能資料以推估出未來資源的預測值;以及一動態資源調整模組透過一判斷模組係依據該設定模組與該效能預測模組之效能預測,自動判斷是否動態調整資源並命令一自動擴展模組進行自動擴展資源及一自動縮減模組自行進行自動減縮資源。 A resource usage analysis and prediction method for a cloud environment, the method comprising: setting a parameter for predicting a prediction target through one input interface of a setting module; and collecting, by the performance collection module, the performance data of the prediction target according to the setting parameter; A performance prediction module estimates performance by predicting the rate of change of the performance data by a short-term performance analysis prediction module based on the set parameter and the performance data of the prediction target, and grouping by a long-term performance analysis prediction module by a clustering algorithm The performance data in a specific interval, the plurality of performance data representing the specific interval are extracted to estimate the predicted value of the future resource; and a dynamic resource adjustment module is based on the setting module and the performance through a determining module The performance prediction of the prediction module automatically determines whether the resource is dynamically adjusted and commands an automatic expansion module to automatically expand the resource and an automatic reduction module to automatically reduce the resource by itself. 如申請專利範圍第4所述之雲端環境之資源使用率分析預測方法,其中該設定參數係為一預測時間、一短期分析歷史效能數量、一時間區塊數量、一長期分析歷史效能數量、一監控間隔、一監控資源項目、一自動擴展門檻值及一自動縮減門檻值。 The resource usage analysis and prediction method of the cloud environment as described in claim 4, wherein the setting parameter is a prediction time, a short-term analysis historical performance quantity, a time block quantity, a long-term analysis historical performance quantity, and a Monitoring interval, a monitoring resource item, an automatic expansion threshold, and an automatic reduction threshold.
TW104140279A 2015-12-02 2015-12-02 Resource utilization analysis and prediction system and method for cloud environment TWI611301B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104140279A TWI611301B (en) 2015-12-02 2015-12-02 Resource utilization analysis and prediction system and method for cloud environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140279A TWI611301B (en) 2015-12-02 2015-12-02 Resource utilization analysis and prediction system and method for cloud environment

Publications (2)

Publication Number Publication Date
TW201721454A TW201721454A (en) 2017-06-16
TWI611301B true TWI611301B (en) 2018-01-11

Family

ID=59687645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140279A TWI611301B (en) 2015-12-02 2015-12-02 Resource utilization analysis and prediction system and method for cloud environment

Country Status (1)

Country Link
TW (1) TWI611301B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719320B (en) * 2019-09-18 2022-05-27 上海联蔚数字科技集团股份有限公司 Method and equipment for generating public cloud configuration adjustment information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719082A (en) * 2009-12-24 2010-06-02 中国科学院计算技术研究所 Method and system for dispatching application requests in virtual calculation platform
US20120166624A1 (en) * 2007-06-22 2012-06-28 Suit John M Automatic determination of required resource allocation of virtual machines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120166624A1 (en) * 2007-06-22 2012-06-28 Suit John M Automatic determination of required resource allocation of virtual machines
CN101719082A (en) * 2009-12-24 2010-06-02 中国科学院计算技术研究所 Method and system for dispatching application requests in virtual calculation platform

Also Published As

Publication number Publication date
TW201721454A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
US11836578B2 (en) Utilizing machine learning models to process resource usage data and to determine anomalous usage of resources
US11175953B2 (en) Determining an allocation of computing resources for a job
Dogani et al. Multivariate workload and resource prediction in cloud computing using CNN and GRU by attention mechanism.
JP5218390B2 (en) Autonomous control server, virtual server control method and program
CN104516784B (en) A kind of method and system for predicting the task resource stand-by period
CN105607952B (en) Method and device for scheduling virtualized resources
JP7040319B2 (en) Operation management device, destination recommended method and destination recommended program
WO2017147331A1 (en) User behavior-based dynamic resource adjustment
CN105320559A (en) Scheduling method and device of cloud computing system
CN108132840B (en) Resource scheduling method and device in distributed system
WO2015066979A1 (en) Machine learning method for mapreduce task resource configuration parameters
CN104156296A (en) System and method for intelligently monitoring large-scale data center cluster computing nodes
CN118312324B (en) A GPU cluster service management system and scheduling method
CN119536958B (en) Method, system, medium and program product for balancing host power consumption and temperature
CN106779272A (en) A kind of Risk Forecast Method and equipment
CN119149209B (en) GPU cluster data sharing method for AI model training
TWI611301B (en) Resource utilization analysis and prediction system and method for cloud environment
CN107203256B (en) Energy-saving distribution method and device under network function virtualization scene
Li et al. The extreme counts: modeling the performance uncertainty of cloud resources with extreme value theory
CN119645636A (en) Method, device, equipment, medium and product for formulating elastic expansion strategy
Kumar et al. Resource provisioning in cloud computing using prediction models: A survey
Ismaeel et al. Real-time energy-conserving vm-provisioning framework for cloud-data centers
US20170364581A1 (en) Methods and systems to evaluate importance of performance metrics in data center
KR102062332B1 (en) An Memory Bandwidth Management Method and Apparatus for Latency-sensitive Workload
JP6787032B2 (en) Control devices, control methods, and control programs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees