TWI688761B - 缺陷顯示方法 - Google Patents
缺陷顯示方法 Download PDFInfo
- Publication number
- TWI688761B TWI688761B TW107101927A TW107101927A TWI688761B TW I688761 B TWI688761 B TW I688761B TW 107101927 A TW107101927 A TW 107101927A TW 107101927 A TW107101927 A TW 107101927A TW I688761 B TWI688761 B TW I688761B
- Authority
- TW
- Taiwan
- Prior art keywords
- defect
- defects
- type
- correlation information
- information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/24—Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本發明中提供一種缺陷顯示方法。該方法包含自一晶圓之一影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及根據其對應指派缺陷類型顯示該複數個缺陷中之至少一些。
Description
本文中所提供之實施例揭示一種顯示方法,且更特定言之,揭示一種用於半導體製造操作程序中之缺陷再檢測之顯示方法。
在半導體製造程序之各個步驟中,圖案缺陷在製造程序期間可出現於晶圓、晶片及/或光罩上,這可在極大程度上降低良率。為了滿足製造程序之高產出率及高良率之需求,操作員需要經由在鑄造設備之顯示器部分中顯示在觀測下之物件之各種圖案之圖形使用者介面(GUI)再檢測晶圓、晶片及/或光罩;且在最早階段儘可能識別圖案缺陷。令人遺憾地,識別圖案缺陷可耗費大量操作員之時間,由此對產出量有不良影響。
在本發明之一些實施例中,提供一種缺陷顯示方法。該方法包含自晶圓之影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及根據其對應指派缺陷類型顯示該複數個缺陷中之至少一些。
在本發明之一些實施例中,該缺陷顯示方法進一步包含獲取關於該缺陷與其缺陷類型之間的缺陷群組資訊之使用者輸入及判定該使用者輸入是否包括對該組相關性之一或多個更新。
在本發明之一些實施例中,該缺陷顯示方法進一步包含回應於該使用者輸入包括對該組相關性之一或多個更新,更新關於該缺陷群組資訊之訓練資料,將經更新訓練資料併入至儲存於知識推薦伺服器中之知識檔案中及根據經更新訓練資料根據其對應更新缺陷類型而顯示該複數個缺陷中之至少一些。
在本發明之一些實施例中,揭示一種非暫時性電腦可讀媒體。該電腦媒體儲存一組指令,該組指令可由自動缺陷分類伺服器之一或多個處理器執行以使得該伺服器執行方法,包含自晶圓影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及指令顯示器根據其對應指派缺陷類型而顯示該複數個缺陷中之至少一些。
在本發明之一些實施例中,提供一種缺陷顯示系統。該缺陷顯示系統包含經組態以自晶圓影像獲取缺陷群組資訊之處理器,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及經組態以根據其對應指派缺陷類型顯示該複數個缺陷中之至少一些之顯示器。
100:電子束檢測(EBI)系統
101:主腔室
102:裝載/鎖定腔室
104:電子束工具
106:設備前端模組(EFEM)
106a:第一裝載埠
106b:第二裝載埠
200:機動載物台
202:晶圓固持器
203:晶圓
204:物鏡總成
204a:極片
204b:控制電極
204c:偏轉器
204d:激磁線圈
206:電子偵測器
206a:電子感測器表面
206b:電子感測器表面
208:物鏡孔徑
210:聚光透鏡
212:射束限制孔徑
214:電子槍孔徑
216:陽極
218:陰極
220:原電子束
222:次電子束
300:缺陷再檢測系統
310:晶圓檢測系統
320:自動缺陷分類(ADC)伺服器/ADC伺服器/缺陷分類伺服器
322:通信介面
324:處理器
330:知識推薦伺服器
332:處理器
334:儲存裝置
340:人機互動介面
342:顯示器
344:輸入裝置
400:程序
405~460:步驟
800:電腦系統/運算系統
802:匯流排
804:處理器/硬體處理器
806:主記憶體
808:唯讀記憶體(ROM)
810:儲存裝置
812:顯示器
814:輸入裝置
816:游標控制件
818:通信介面
820:網路鏈路
822:區域網路
824:主電腦
826:網際網路服務提供者(ISP)
828:網際網路
830:伺服器
圖1為說明符合本發明之實施例之例示性電子束檢測(EBI)系統的示意圖。
圖2為說明符合本發明之實施例的可為圖1之例示性電子束檢測之一部分的例示性電子束工具之示意圖。
圖3為說明符合本發明之實施例的例示性缺陷再檢測系統之方塊圖。
圖4為說明符合本發明之實施例的缺陷再檢測系統之缺陷識別、分
類、顯示、再檢測及更新之例示性程序之流程圖。
圖5為說明符合本發明之實施例的缺陷分類以供操作員再檢測之例示性顯示介面之示意圖。
圖6為說明符合本發明之實施例的針對操作員之選擇切換缺陷分類之例示性GUI頁面之示意圖。
圖7為說明符合本發明之實施例的新缺陷類型在缺陷分類期間之例示性建立程序之圖表。
圖8為可實施本文中所描述之實施例之例示性電腦系統之方塊圖。
現將詳細參考例示性實施例,其實例說明於附圖中。以下描述參考附圖,其中除非另外表示,否則不同圖式中之相同編號表示相同或類似元件。闡述於例示性實施例之以下描述中之實施並不表示符合本發明的所有實施。實情為,其僅為符合關於所附申請專利範圍中所列舉的本發明之態樣的設備及方法之實例。
為了促進及加速缺陷圖案識別程序,在缺陷再檢測程序期間,自動地識別半導體晶圓上之缺陷且將其分為各種缺陷類型。雖然可自動地執行缺陷分類,但始終需要使用者之干預以確認所識別缺陷經恰當排序及分組。因此,如何高效地將所識別缺陷呈現給操作員之方式影響缺陷識別程序之效率,且進一步影響製造程序之產出率。
現參考圖1,其為說明符合本發明之實施例的例示性電子束檢測(EBI)系統之示意圖。圖1說明符合本發明之實施例的例示性電子束檢測(EBI)系統100。如圖1中所示,EBI系統100包括主腔室101、裝載/鎖定腔室102、電子束工具104及設備前端模組(EFEM)106。電子束工具104位於
主腔室101內。EFEM 106包括第一裝載埠106a及第二裝載埠106b。EFEM 106可包括額外裝載埠。第一裝載埠106a及第二裝載埠106b收納容納晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或待檢測之樣本的晶圓匣(晶圓及樣本在下文統稱為「晶圓」)。EFEM 106中之一或多個機械臂(未展示)將晶圓運輸至裝載/鎖定腔室102。裝載/鎖定腔室102連接至裝載/鎖定真空泵系統(未展示),其移除裝載/鎖定腔室102中之氣體分子以達至低於大氣壓之第一壓力。在達至第一壓力之後,一或多個機械臂(未展示)將晶圓自裝載/鎖定腔室102運輸至主腔室101。主腔室101連接至主腔室真空泵系統(未展示),其移除主腔室101中之氣體分子以達至低於第一壓力之第二壓力。在達至第二壓力之後,晶圓經受電子束工具104之檢測。
現參考圖2,其為說明符合本發明之實施例的可為圖1之例示性電子束檢測之一部分的例示性電子束工具之示意圖。圖2說明符合本發明之實施例之電子束工具104之例示性組件。如圖2中所示,電子束工具104包括機動載物台200及晶圓固持器202,該晶圓固持器由機動載物台200支撐以固持待檢測之晶圓203。電子束工具104進一步包括物鏡總成204、電子偵測器206(其包括電子感測器表面206a及206b)、物鏡孔徑208、聚光透鏡210、射束限制孔徑212、電子槍孔徑214、陽極216及陰極218。在一個實施例中,物鏡總成204可包括經修改擺動物鏡延遲浸沒透鏡(swing objective retarding immersion lens,SORIL),其包括極片204a、控制電極204b、偏轉器204c及激磁線圈204d。電子束工具104可另外包括能量色散X射線光譜儀(energy dispersive X-ray spectrometer,EDS)偵測器(未展示)以表徵晶圓上之材料。
藉由在陽極216與陰極218之間施加電壓來自陰極218發射原電子束220。原電子束220穿過電子槍孔徑214及射束限制孔徑212,此兩者可判定進入駐存在射束限制孔徑212下方之聚光透鏡210之電子束的大小。聚光透鏡210在射束進入物鏡孔徑208之前聚焦原電子束220,以在射束進入物鏡總成204之前設定電子束之大小。偏轉器204c偏轉原電子束220以促進晶圓上之射束掃描。舉例而言,在掃描程序中,偏轉器204c可受控制以在不同時間點將原電子束220依序偏轉至晶圓203之頂部表面的不同部位上,以提供用於晶圓203之不同部分的影像重建構之資料。此外,偏轉器204c亦可經控制以在不同時間點將原電子束220偏轉至晶圓203在特定部位處之不同側上,以提供用於彼部位處之晶圓結構的立體影像重建構之資料。另外,在一些實施例中,陽極216及陰極218可經組態以產生多個原電子束220,且電子束工具104可包括複數個偏轉器204c以同時將多個原電子束220投影至晶圓之不同部分/側,從而為晶圓203之不同部分的影像重建構提供資料。
激磁線圈204d及極片204a產生在極片204a之一端處開始且在極片204a之另一端處終止的磁場。晶圓203之正由原電子束220掃描的部分可浸沒於磁場中且可帶電,此又產生一電場。該電場減少原電子束220在碰撞晶圓之前在靠近晶圓之表面處的撞擊能量。與極片204a電隔離之控制電極204b控制晶圓上之電場,以防止晶圓之微拱起並確保適當射束聚焦。
可在接收原電子束220之後自晶圓203之該部分發射次電子束222。次電子束222可在電子偵測器206之感測器表面206a及206b上形成射束點(例如,射束點240a及240b中之一者)。電子偵測器206可產生表示射束點之強度之信號(例如,電壓、電流等等),且將該信號提供至處理系統(圖2中
未展示)。次電子束222及所得射束點之強度可根據晶圓203之外部及/或內部結構而變化。此外,如上文所論述,原電子束220可投影至晶圓之頂部表面的不同部位及/或特定部位處之晶圓之不同側上,以產生具不同強度之次電子束222(及所得射束點)。因此,藉由以晶圓203之部位映射射束點之強度,處理系統可重建反映晶圓203之內部及/或外部結構的影像。
現參考圖3,其為說明符合本發明之實施例的例示性缺陷再檢測系統之方塊圖。一旦獲取晶圓影像,可將晶圓影像傳輸至電腦系統,其中該系統可識別晶圓影像上之缺陷且根據缺陷類型將缺陷分類成各類別。缺陷資訊進一步顯示在人機互動介面之顯示器部分中且可經由人機互動介面之輸入裝置收集操作員之回饋。
參考圖3,缺陷再檢測系統300包括晶圓檢測系統310、自動缺陷分類(ADC)伺服器320、電耦接至ADC伺服器320之知識推薦伺服器330及電耦接至ADC伺服器320之人機互動介面340。晶圓檢測系統310可為關於圖1所描述之電子束檢測(EBI)系統100。應瞭解,ADC伺服器320、知識推薦伺服器330及人機互動介面340可為EBI系統100之部分及/或遠離EBI系統100。
晶圓檢測系統310可為可產生晶圓之檢測影像之任何檢測系統。晶圓可為半導體晶圓基板,或具有一或多個磊晶層及/或程序膜之半導體晶圓基板。晶圓檢測系統310可為任何當前可用或開發中之晶圓檢測系統。本發明之實施例並不限制晶圓檢測系統310之特定類型,只要其可產生符合現代半導體鑄造技術的具有足夠高的解析度(例如,小於20nm)以觀測晶圓上之關鍵特徵之晶圓影像。
ADC伺服器320具有電耦接至晶圓檢測系統310以接收晶圓影像之通
信介面322。ADC伺服器320亦包括處理器324,其經組態以分析晶圓影像,且藉由使用缺陷知識檔案偵測及分類晶圓影像上出現之晶圓缺陷。缺陷知識檔案可由操作員手動提供至ADC伺服器320。替代地,缺陷知識檔案可藉由知識推薦伺服器330自動地提供至ADC伺服器320,該知識推薦伺服器將在下文詳細描述。
知識推薦伺服器330電耦接至ADC伺服器320。知識推薦伺服器330包括處理器332及儲存裝置334。處理器332經組態以構建複數個缺陷知識檔案,且將該複數個缺陷知識檔案儲存在儲存裝置334中。
該複數個缺陷知識檔案含有與在晶圓製造程序之各個階段期間產生之各種類型之缺陷相關之資訊。晶圓製造程序之各個階段可包括但不限於微影程序、蝕刻程序、化學機械拋光(CMP)程序及互連形成程序。在微影程序中產生之缺陷可包括但不限於歸因於PR劣化或雜質之光致抗蝕劑(RP)殘餘物缺陷、剝落缺陷、橋接缺陷、氣泡缺陷及歸因於圖案位移之虛設圖案缺失缺陷。在蝕刻程序中產生之缺陷可包括但不限於蝕刻殘餘物缺陷、過度蝕刻缺陷及斷路缺陷。在CMP程序中產生之缺陷可包括但不限於漿料殘餘物缺陷、凹陷缺陷、及歸因於拋光速率之方差之侵蝕缺陷及歸因於拋光之刮擦。在互連形成程序中產生之缺陷可包括但不限於虛線缺陷、空隙缺陷、擠壓缺陷及橋接缺陷。
處理器332經組態以基於複數個缺陷斑塊影像構建複數個缺陷知識檔案。該複數個缺陷斑塊影像可由晶圓檢測工具產生,該晶圓檢測工具諸如圖2中所說明之電子束工具104。缺陷斑塊影像為含有缺陷之晶圓之一部分的小影像(例如,34×34像素)。缺陷斑塊影像在缺陷上通常居中,且包括缺陷之鄰近像素。
人機互動介面340電耦接至ADC伺服器320。人機互動介面340至少包括顯示器342及輸入裝置344。人機互動介面340經構建以在缺陷再檢測系統300與操作員之間交換缺陷及缺陷分類資訊。
一旦選擇知識檔案,ADC伺服器320之處理器324處理自檢測系統310發送之晶圓影像且識別在各種半導體製造程序中產生之缺陷。將所識別缺陷發送至人機互動介面340之顯示器342以用於將缺陷資訊顯示給操作員供再檢測及確認。若操作員觀測到缺陷之分類之任何偏差或錯誤,則輸入裝置344可用於經由人機互動介面340將回饋缺陷資訊提供至ADC伺服器320。
應瞭解,顯示器342可為展示文本及圖形影像之任何類型之電腦輸出表面及投影機構,包括但不限於陰極射線管(CRT)、液晶顯示器(LCD)、發光二極體(LED)、氣體電漿、觸控式螢幕或其他影像投影技術,以用於將資訊顯示至電腦使用者。亦應瞭解,輸入裝置344可為用於將資料及控制信號自操作員提供至缺陷再檢測系統300之任何類型之電腦硬體設備。輸入裝置344可包括但不限於鍵盤、滑鼠、掃描器、數位相機、操縱桿、軌跡球、游標方向按鍵、觸控式螢幕監視器或音訊/視訊指揮系統等等,以用於將方向資訊及命令選擇傳達至處理器及/或用於控制顯示器上之游標移動。輸入裝置通常具有兩個軸線(第一軸線(例如,x)及第二軸線(例如,y))上之兩個自由度,此允許裝置指定平面中之位置。
現參考圖4,其為說明符合本發明之實施例的缺陷再檢測系統之缺陷識別、分類、顯示、再檢測及更新之例示性程序之流程圖。程序400可由缺陷再檢測系統執行,該缺陷再檢測系統包括缺陷分類伺服器(例如,圖3中之ADC伺服器320)及人機互動介面裝置(例如,至少具有顯示器342及輸
入裝置344的圖3中之人機互動介面340)。缺陷分類伺服器可藉由通信電纜或經由網路無線地耦接至檢測工具(例如,圖2中之電子束工具104)、人機互動介面裝置(例如,圖3中之人機互動介面340)及知識推薦伺服器(例如,圖3中之知識推薦伺服器330)。
如圖4中所說明,首先,在步驟405處,缺陷分類伺服器獲取由檢測系統產生之晶圓檢測影像。在步驟410處,缺陷分類伺服器檢測且分析該檢測影像。可採用檢測之取樣方法以改良檢測程序之產出率。在步驟415處,缺陷分類伺服器自動地自所檢測影像識別缺陷。可藉由處理樣本之所獲取影像且比較經處理影像資料與儲存於缺陷分類伺服器所採用之知識檔案中之缺陷資訊而實現缺陷之識別。樣本之所獲取影像之處理包括至少俘獲樣本之影像中所展示之圖案之幾何特徵。且在步驟420處,基於用於缺陷分類伺服器中之缺陷分類之知識檔案中之訓練資料而自動地將所識別缺陷分組成各缺陷類型。經偵測具有類似幾何特徵之缺陷可分組在一起。此類幾何特徵可包括側面之數目、角數目、尺寸、形狀或其任何特徵之組合。在一些實施例中,並非所有缺陷均可附屬於指定缺陷類型或可被視為可能需要來自操作員之輸入的缺陷之雜項類型(例如,參見來自圖6之Others類別)。
使用所識別缺陷與缺陷類型之間的相關性,在步驟425處,缺陷再檢測系統(例如,圖3之顯示器342)顯示圖形使用者介面(GUI)頁面,其展示所識別缺陷與對應分類缺陷類型之間的相關性。圖5中說明例示性GUI頁面,其將在下文中進一步詳細地解釋。
所顯示自動分組缺陷資訊可允許操作員迅速再檢測所識別缺陷及缺陷類型且提供關於缺陷分類結果之回饋。此回饋可為在操作員基於其經驗
判斷未發現缺陷分類之偏差或錯誤時(例如,在顯示器342上)顯示之當前分類之確認。此回饋亦可在操作員基於其經驗判斷發現缺陷分類之偏差或錯誤時致使將缺陷重新指派為另一缺陷類型。在步驟430處,獲取來自操作員之關於將缺陷指派為缺陷類型之此等輸入。
在接收到操作員之輸入之後,缺陷分類伺服器在步驟435處比較對當前知識檔案中所儲存之缺陷分類資訊之確認/指派,且在步驟440處進一步判定缺陷及其對應指派缺陷類型之當前相關性與當前知識檔案中之所儲存預設缺陷分類資訊之間是否存在任何更新。若已經判定存在任何更新,則取代操作員之輸入且由操作員指派之缺陷類型被視為適合的且進一步將其指派至缺陷。
若存在對缺陷與其對應缺陷類型之間的相關性之更新,則缺陷分類伺服器在步驟445處基於操作員之回饋將該缺陷指派為其適合的缺陷類型。此外,缺陷再檢測系統在步驟450處繼續更新其關於缺陷及對應缺陷類型之訓練資料。將經更新訓練資料併入於知識檔案中且立即用於進行中之缺陷分類程序中以用於分類所識別之其餘缺陷。該程序循環回至步驟420以進一步對缺陷進行自動分組以供顯示經更新GUI頁面,其展示缺陷與對應缺陷類型之間的更新相關性。
知識推薦伺服器之處理器(例如,圖3中之知識推薦伺服器330之處理器332)經組態以實施缺陷資料訓練方法,其包括在步驟450處更新訓練資料。此經更新訓練資料可用於輔助分組當前樣本或隨後樣本之缺陷及缺陷類型(例如,自動分組步驟420)。
來自操作員之關於缺陷與其指派缺陷類型之間的相關性資訊之所獲取輸入有助於構建及更新訓練資料。舉例而言,該處理器可獲取此輸入。
此後比較缺陷相關性資訊之所獲取輸入與當前知識檔案中缺陷與對應缺陷類型之間的所儲存一組缺陷相關性資訊。所儲存之該組缺陷相關性可基於自動分組步驟420中提供之分組功能。
在一些實施例中,所儲存之該組缺陷相關性資訊中之缺陷與缺陷相關性資訊之經接收輸入共享同一缺陷。若所顯示缺陷相關性為恰當的,則操作員可確認相關性資訊且該確認可用於更新訓練資料。詳言之,知識伺服器之處理器保留複數個缺陷與對應缺陷類型之間的所儲存該組缺陷相關性資訊。
若並不認為所顯示缺陷相關性為準確的,則操作員可更新相關性資訊。歸因於此更新,處理器可藉由指令記憶體藉由缺陷與對應缺陷類型之間的經接收輸入缺陷相關性資訊替代所儲存缺陷相關性資訊而更新訓練資料。缺陷相關性資訊之操作員之輸入可取代知識檔案中之所儲存缺陷相關性資訊。
若尚未將所顯示缺陷指派為缺陷類型或若已經將所顯示缺陷指派為可能需要來自操作員之輸入的缺陷之雜項類型(例如,參見來自圖6之Others類別),則操作員可將所顯示缺陷指派為新缺陷類型或現有缺陷類型。歸因於此更新,處理器可藉由新增使缺陷與新缺陷類型相關之新缺陷類型或藉由將該缺陷指派為現有缺陷類型而更新知識檔案中之訓練資料。
在一些實施例中,若在步驟440處已經判定不存在任何更新,則由操作員再檢測及核准由ADC伺服器提供之自動分組缺陷資訊。在步驟460之後,完成該程序。
現參考圖5,其為說明符合本發明之實施例的缺陷分類以供操作員再檢測之例示性顯示介面之示意圖。如圖5中所示,以將屬於同一缺陷類型
之缺陷分組在一起且以同一行顯示的方式將所識別及分類缺陷顯示在顯示器342之圖形使用者介面(GUI)頁面中。
所顯示缺陷類型行可包括觀測下之晶圓之一或多個識別缺陷。一或多個所識別缺陷可具有不同定向、角度、大小、尺寸或其他幾何特性,但所有缺陷應具有類似關鍵幾何特性,諸如直線數目及曲線數目,以使其屬於同一類型之幾何形狀及同一缺陷類型。
一個GUI頁面可同時以多行顯示多於一個缺陷類型,其中每個缺陷類型具有多個識別缺陷。以一行將屬於同一缺陷類型之缺陷分組且顯示在一起,其中缺陷共享同一缺陷類型。以ADC伺服器320之處理器324識別之次序逐行置放多個類型之缺陷。應瞭解,多個類型之缺陷亦可以任何其他次序逐行置放,該次序為ADC伺服器320處理之次序且可引入更高便利性及效率以供操作員區分及確認各行之間的缺陷之類型。亦應瞭解,屬於一缺陷類型之經分組缺陷可經組態以以另一方式顯示,諸如豎直地、經由四分體等等,以允許操作員以較快方式再檢測缺陷。
為了促進操作員之再檢測程序,缺陷行可被各種顏色之矩形環繞。以直觀方式告知操作員缺陷之分類。應瞭解,其他突出顯示顯示器設計可用於使得分組資訊對於操作員而言突出且在人體工程學上合理,以使得再檢測程序變得更平坦且更快。
在缺陷檢測之一個處理步驟中,有可能識別到超過幾個類型之缺陷。捲軸可用於在缺陷之類型之數目充足時促進再檢測。捲軸之位置可表示GUI頁面中當前螢幕之位置,且捲軸之長度可表示當前螢幕中缺陷之類型相對於GUI頁面中缺陷之總體類型之百分比。操作員可向上及向下捲動以在一個回合之再檢測中完成GUI頁面中之缺陷及缺陷類型之再檢測。
一旦進行再檢測程序,若尚未觀測到缺陷分類之偏差或錯誤,則操作員可按下「下一個/完成/確認」按鈕以確認GUI頁面中再檢測之完成及移動至下一步驟。若已經觀測到缺陷分類之偏差或錯誤且在缺陷再檢測之GUI頁面中被操作員標記出來,則操作員可點擊錯誤地指派為一缺陷類型之缺陷,且將該缺陷重新指派為正確缺陷類型。可使用色碼以在螢幕中顯示缺陷類型之改變。
現參考圖6,其為說明符合本發明之實施例的針對操作員之選擇切換缺陷分類之例示性GUI頁面之示意圖。
在一些實施例中,缺陷類型可經分組且以縮寫命名,且藉由選擇標籤呈現給操作員。可在再檢測程序開始時或在操作員進行先例缺陷類型之再檢測時提示操作員缺陷類型之選擇頁面。操作員具有選擇待再檢測之下一個缺陷類型之靈活性。在選定待再檢測之下一個缺陷類型之後,螢幕可跳轉為用於選定缺陷類型之缺陷再檢測之GUI頁面。
若在缺陷再檢測之先例GUI頁面中操作員已經引起缺陷分類之改變,如圖4之流程圖中所解釋,則訓練資料可發送至知識推薦伺服器330且更新關於缺陷及缺陷類型之知識檔案。經更新知識檔案可發送回至ADC伺服器320,以使得ADC伺服器320可基於經更新知識檔案相應地重新指派其餘缺陷。藉此,當操作員如圖6中所示在GUI頁面處選擇及切換為再檢測下一組缺陷類型時,指派為選定缺陷類型之缺陷已經為使用先前知識檔案之經更新及錯誤指派之缺陷,若有的話,已經移除/新增。
現參考圖7,其為說明符合本發明之實施例的缺陷分類期間之新缺陷類型之例示性建立程序之圖表。在缺陷分類程序中,有可能將缺陷分為知識檔案中之任何現有缺陷類型,且亦有可能並不決定缺陷屬於知識檔案中
之任何現有缺陷類型。在此情境下,可建立新缺陷類型。
在將缺陷指派為適合的缺陷類型之程序中基於各種缺陷之幾何特性以樹型演算法將缺陷分為各種缺陷類型。作為實例,在處理器324接收缺陷之後,樹型演算法之第一層可具有兩個分支,缺陷類型1及缺陷類型2,如圖7中所示。在缺陷類型2下,存在兩個分支:一個為缺陷類型3且一個為缺陷類型4。若決定所接收缺陷相較於缺陷類型1具有缺陷類型2之更多特性,且若所接收缺陷與缺陷類型2之間的類似性滿足或超出信賴等級,則將其分類為分支缺陷類型2以作為第一步驟。該信賴等級可由操作員預設為較佳值,例如70%。此後,ADC伺服器320之處理器324可繼續比較所接收缺陷與缺陷類型2下之子類別,該等子類別在此例示性實施例中為缺陷類型3及缺陷類型4。若所接收缺陷與缺陷類型3及缺陷類型4之比較中無一者滿足或超出類似性之信賴等級,則判定所接收缺陷為一種新類型的缺陷。處理器324經組態以在此情況下建立新缺陷類型,且將所接收缺陷分類為新近建立之缺陷類型。
新缺陷類型之建立為前向追蹤步驟。新缺陷類型之類型節點經組態以位於平行於原始類型節點之節點處,在此等級下所接收缺陷無法被分類為該等級之任何缺陷類型。在此狀況下,在滿足或超出類似性之信賴等級之情況下並不將所接收缺陷分類為缺陷類型3及缺陷類型4中之一者。因此,建立平行於缺陷類型3及缺陷類型4的與缺陷類型5在缺陷類型2下處於樹型演算法之同一等級的新缺陷類型之類型節點。
現參考圖8,其為上面可實施本文中所描述之實施例之例示性電腦系統之方塊圖。藉由電腦系統800實施上文所描述之知識推薦伺服器及缺陷分類伺服器中之至少一者可。
電腦系統800包括用於傳達資訊之匯流排802或其他通信機構及與匯流排802耦接以用於處理資訊之一或多個硬體處理器804(出於簡單性目的表示為處理器804;例如圖3之知識推薦伺服器330之處理器332或缺陷分類伺服器320之處理器324)。舉例而言,硬體處理器804可為一或多個微處理器。
電腦系統800亦包括耦接至匯流排802以用於儲存待由處理器804執行之資訊及指令之主記憶體806,諸如隨機存取記憶體(RAM)或其他動態儲存裝置。主記憶體806亦可用於在待由處理器804執行之指令之執行期間儲存暫時變數或其他中間資訊。此類指令在儲存於可由處理器804存取之非暫時性儲存媒體中之後使得電腦系統800進入經定製以執行以該等指令指定之操作之專用機器。
電腦系統800進一步包括耦接至匯流排802以用於儲存用於處理器804之靜態資訊及指令的唯讀記憶體(ROM)808或其他靜態儲存裝置。諸如磁碟、光碟或USB隨身碟(快閃磁碟機)等等之儲存裝置810(例如,圖3之知識推薦伺服器330之儲存裝置334)經提供且耦接至匯流排802以用於儲存資訊及指令。
電腦系統800可經由匯流排802耦接至顯示器812。包括字母數字及其他按鍵之輸入裝置814耦接至匯流排802以用於將資訊及命令選擇傳達至處理器804。另一類型之使用者輸入裝置為游標控制件816。
運算系統800可包括用以實施圖形使用者介面(GUI)之使用者介面模組,GUI可作為由一或多個運算裝置執行之可執行軟體程式碼儲存於大容量儲存裝置中。藉助於實例,此及其他模組可包括組件(諸如,軟體組件、物件導向軟體組件、類別組件及任務組件)、處理程序、函式、欄
位、程序、副常式、程式碼之片段、驅動程式、韌體、微碼、電路系統、資料、資料庫、資料結構、表、陣列及變數。模組可包括例如圖3中所說明之系統300之一或多個組件。
電腦系統800可使用定製硬佈線邏輯、一或多個ASIC或FPGA、韌體及/或程式邏輯來實施本文中所描述之技術,結合電腦系統之定製硬佈線邏輯、一或多個ASIC或FPGA、韌體及/或程式邏輯致使電腦系統800或使電腦系統800程式化為專用機器。根據一些實施例,回應於處理器804執行含於主記憶體806中之一或多個指令之一或多個序列,由電腦系統800執行本文中所描述之操作、功能性及技術及其他特徵。可將此類指令自諸如儲存裝置810之另一儲存媒體讀取至主記憶體806中。含於主記憶體806中之指令序列之執行致使處理器804執行本文中所描述之方法步驟(例如,圖4之程序400或圖7之程序700)。在替代實施例中,可代替或結合軟體指令而使用硬佈線電路系統。
如本文中所使用之術語「非暫時性媒體」指代儲存致使機器以特定方式操作之資料及/或指令之任何非暫時性媒體。此類非暫時性媒體可包含非揮發性媒體及/或揮發性媒體。舉例而言,非揮發性媒體可包括光碟或磁碟,諸如儲存裝置810。揮發性媒體可包括動態記憶體,諸如主記憶體806。非暫時性媒體包括例如軟碟、軟性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體、CD-ROM、任何其他光學資料儲存媒體、圖案具有孔之任何實體媒體、RAM、PROM及EPROM、快閃EPROM、NVRAM、快閃記憶體、暫存器、快取記憶體、任何其他記憶體晶片或匣以及上述者之網路化版本。
非暫時性媒體不同於傳輸媒體但可結合傳輸媒體使用。傳輸媒體可
參與在儲存媒體之間傳送資訊。舉例而言,傳輸媒體可包括同軸電纜、銅線及光纖,包括包含匯流排802之電線。傳輸媒體亦可呈聲波或光波形式,諸如在無線電波及紅外資料通信期間產生之聲波或光波。
可在將一或多個指令之一或多個序列攜載至處理器804以供執行時涉及各種形式之媒體。舉例而言,該等指令起初可攜載於遠端電腦之磁碟或固態磁碟機上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送指令。在電腦系統800本端之數據機可接收電話線上之資料,且使用紅外傳輸器以將資料轉換成紅外信號。紅外偵測器可接收紅外信號中攜載之資料且適合的電路系統可將資料置於匯流排802上。匯流排802將資料攜載至主記憶體806,處理器804自該主記憶體擷取及執行該等指令。可視需要在由處理器804執行之前或之後將由主記憶體806接收之該等指令儲存於儲存裝置810上。
電腦系統800亦可包括耦接至匯流排802之通信介面818。通信介面818(例如,圖3之缺陷分類伺服器320之通信介面322或知識推薦伺服器330之任何通信介面(未展示))可提供至網路鏈路820之雙向資料通信耦接,該網路鏈路可連接至區域網路822。舉例而言,通信介面818可為整合服務數位網路(ISDN)卡、電纜數據機、衛星數據機或數據機以將資料通信連接提供至對應類型之電話線。作為另一實例,通信介面818可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此實施方案中,通信介面818可發送且接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。
網路鏈路820可通常經由一或多個網路將資料通信提供至其他資料裝置。舉例而言,網路鏈路820可經由區域網路822將一連接提供至主電腦
824或由網際網路服務提供者(ISP)826操作之資料設備。ISP 826繼而可經由現在通常被稱作「網際網路」828之世界性封包資料通信網路提供資料通信服務。區域網路822及網際網路828兩者皆使用攜載數位資料流之電信號、電磁信號或光學信號。經由各種網路之信號及網路鏈路820上且經由通信介面818之信號可為實例形式之傳輸媒體,該等信號將數位資料攜載至電腦系統800及自電腦系統800攜載數位資料。
電腦系統800可經由網路、網路鏈路820及通信介面818發送消息及接收資料,包括程式碼。在網際網路實例中,伺服器830可經由網際網路828、ISP 826、區域網路822及通信介面818傳輸用於應用程式之經請求程式碼。
所接收程式碼可在其被接收時由處理器804執行,及/或儲存於儲存裝置810或其他非揮發性儲存器中以供稍後執行。在一些實施例中,伺服器830可提供資訊以供顯示於顯示器上。
根據上述所揭示實施例,缺陷再檢測系統包括知識推薦伺服器,其可將經推薦知識檔案提供至可藉由使用知識檔案對缺陷進行分類之缺陷分類伺服器。相較於其中使用者需要直觀地分析新近獲取晶圓檢測影像之典型缺陷再檢測系統且花費大量時間搜索用於缺陷分類之知識檔案,亦即一旦在無使用者干預之情況下產生晶圓檢測影像,所揭示實施例之缺陷再檢測系統可在即時情境下執行整個缺陷再檢測程序。因此,提高缺陷再檢測程序之產出率。
另外,典型缺陷再檢測系統依賴於使用者經驗以選擇用於缺陷分類之知識檔案,這可致使不準確的缺陷分類結果。相比之下,所揭示實施例之知識推薦系統基於自缺陷斑塊影像要求之缺陷特徵參數搜索知識檔案,
這可產生更準確結果。
可使用以下條項來進一步描述實施例:
1.一種缺陷顯示方法,包含:自一晶圓之一影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及根據其對應指派缺陷類型顯示該複數個缺陷中之至少一些。
2.如條項1之缺陷顯示方法,進一步包含,獲取關於該缺陷與其缺陷類型之間的該缺陷群組資訊之一使用者輸入;及判定該使用者輸入是否包括對該組相關性之一或多個更新。
3.如條項2之缺陷顯示方法,進一步包含,回應於該使用者輸入包括對該組相關性之一或多個更新,更新關於該缺陷群組資訊之訓練資料。
4.如條項3之缺陷顯示方法,進一步包含,將該經更新訓練資料併入至一所儲存知識檔案中;及根據該經更新訓練資料根據其對應更新缺陷類型而顯示該複數個缺陷中之至少一些。
5.如條項2之缺陷顯示方法,進一步包含,回應於該使用者輸入包括對該組相關性之一或多個更新,根據對該組相關性之該一或多個更新將一經更新缺陷類型指派至該缺陷。
6.如條項2之缺陷顯示方法,其中該所獲取使用者輸入為對該複數個缺陷與其對應缺陷類型之間的該組相關性之確認。
7.如條項2之缺陷顯示方法,其中該所獲取使用者輸入為對該複數個缺陷與其對應缺陷類型之間的一第二組相關性之一指派。
8.如條項1之缺陷顯示方法,其中顯示該複數個缺陷中之至少一些進一步包含根據其對應指派缺陷類型以複數個行顯示複數個缺陷群組。
9.如條項1之缺陷顯示方法,其中該組相關性包含指派至一第一缺陷類型之一第一組缺陷及指派至一第二缺陷類型之一第二組缺陷。
10.如條項9之缺陷顯示方法,其中顯示包含以一視覺方式將該第一組缺陷與該第二組缺陷區分開。
11.如條項1之缺陷顯示方法,其中藉由指派並非一知識檔案之該訓練資料中之一新缺陷類型而獲得該所獲取缺陷群組資訊,該指派包含:比較該缺陷與一知識檔案之訓練資料中之缺陷類型之一樹型演算法;回應於該比較傳回類似性之小於一預設值之一信賴等級而建立一新缺陷類型;以及將該缺陷指派為該新缺陷類型。
12.如條項11之缺陷顯示方法,其中比較該缺陷與該知識檔案之訓練資料中之缺陷類型之該樹型演算法進一步包含:在第一等級下比較該缺陷與缺陷類型之類別,在第二等級下比較該缺陷與缺陷類型之類別,以及判定類似性之該信賴等級小於一預設值之該第二等級之該比較,且其中建立該新缺陷類型進一步包含在缺陷類型之該樹型演算法之該第二等級處建立該新缺陷類型。
13.一種儲存一組指令之非暫時性電腦可讀媒體,該組指令可由一
伺服器之一或多個處理器執行以使得該伺服器執行一方法,包含:自一晶圓之一影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及指令一顯示器根據其對應指派缺陷類型而顯示該複數個缺陷中之至少一些。
14.如條項13之非暫時性電腦可讀媒體,其中該組指令可由該伺服器之一或多個處理器執行以使得該伺服器進一步執行:獲取關於該缺陷與其缺陷類型之間的該缺陷群組資訊之一使用者輸入;及判定該使用者輸入是否包括對該組相關性之一或多個更新。
15.如條項14之非暫時性電腦可讀媒體,其中該組指令可由該伺服器之一或多個處理器執行以使得該伺服器進一步執行:回應於該使用者輸入包括對該組相關性之一或多個更新,更新關於該缺陷群組資訊之訓練資料。
16.如條項15之非暫時性電腦可讀媒體,其中該組指令可由該伺服器之一或多個處理器執行以使得該伺服器進一步執行:指令一知識推薦伺服器將該經更新訓練資料併入至儲存於該知識推薦伺服器中之一所儲存知識檔案中;以及指令該顯示器根據該經更新訓練資料根據其對應更新缺陷類型而顯示該複數個缺陷中之至少一些。
17.如條項14之非暫時性電腦可讀媒體,其中該組指令可由該伺服器之一或多個處理器執行以使得該伺服器進一步執行:
回應於該使用者輸入包括對該組相關性之一或多個更新,根據對該組相關性之該一或多個更新將一經更新缺陷類型指派至該缺陷。
18.如條項14之非暫時性電腦可讀媒體,其中該所獲取使用者輸入為對該複數個缺陷與其對應缺陷類型之間的該組相關性之確認。
19.如條項14之非暫時性電腦可讀媒體,其中該所獲取使用者輸入為該複數個缺陷與其對應缺陷類型之間的一第二組相關性之一指派。
20.如條項13之非暫時性電腦可讀媒體,其中該顯示該複數個缺陷中之至少一些進一步包含根據其對應指派缺陷類型以複數個行顯示複數個缺陷群組。
21.如條項13之非暫時性電腦可讀媒體,其中該組相關性包含指派至一第一缺陷類型之一第一組缺陷及指派至一第二缺陷類型之一第二組缺陷。
22.如條項21之非暫時性電腦可讀媒體,其中該顯示包含以一視覺方式將該第一組缺陷與該第二組缺陷區分開。
23.如條項13之非暫時性電腦可讀媒體,其中藉由指派並非一知識檔案之該訓練資料中之一新缺陷類型而獲得該所獲取缺陷群組資訊,該指派包含,比較該缺陷與一知識檔案之訓練資料中之缺陷類型之一樹型演算法;回應於該比較傳回類似性之小於一預設值之一信賴等級而建立一新缺陷類型;以及將該缺陷指派為該新缺陷類型。
24.如條項23之非暫時性電腦可讀媒體,其中比較該缺陷與該知識
檔案之訓練資料中之缺陷類型之該樹型演算法進一步包含:在第一等級下比較該缺陷與缺陷類型之類別,在第二等級下比較該缺陷與缺陷類型之類別,以及判定類似性之該信賴等級小於一預設值之該第二等級之該比較,且其中建立該新缺陷類型進一步包含在缺陷類型之該樹型演算法之該第二等級處建立該新缺陷類型。
25.一種缺陷顯示系統,包含:一處理器,其經組態以自一晶圓之一影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及一顯示器,其經組態以根據其對應指派缺陷類型而顯示該複數個缺陷中之至少一些。
26.如條項25之缺陷顯示系統,進一步包含,一輸入裝置,其經組態以獲取關於該缺陷與其缺陷類型之間的該缺陷群組資訊之一使用者輸入;及該處理器,其進一步經組態以判定該使用者輸入是否包括對該組相關性之一或多個更新。
27.一種用於輔助區分一晶圓之一影像上之一或多個缺陷之缺陷資料訓練方法,該方法包含:接收一缺陷與一對應缺陷類型之間的缺陷相關性資訊之一使用者輸入;比較該缺陷與該對應缺陷類型之間的該輸入缺陷相關性資訊與複數個缺陷與對應缺陷類型之間的所儲存之一組缺陷相關性資訊;以及
基於該比較而更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊。
28.如條項27之缺陷資料訓練方法,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含:藉由該缺陷與對應缺陷類型之間的該輸入缺陷相關性資訊替換該缺陷與對應缺陷類型之間的該所儲存缺陷相關性資訊。
29.如條項27之缺陷資料訓練方法,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含:將該缺陷與對應缺陷類型之間的該輸入缺陷相關性資訊新增至複數個缺陷與對應缺陷類型之間的所儲存之該組缺陷相關性資訊。
30.如條項27之缺陷資料訓練方法,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含:保留複數個缺陷與對應缺陷類型之間的所儲存之該組缺陷相關性資訊。
31.如條項27至30中任一項之缺陷資料訓練方法,進一步包含將經更新之該組缺陷相關性資訊發送至經組態以分類一晶圓之一影像之缺陷以供顯示之一缺陷分類伺服器。
32.一種儲存一組指令之非暫時性電腦可讀媒體,該組指令可由一伺服器之一或多個處理器執行以使得該伺服器執行用於輔助區分一晶圓之一影像上之一或多個缺陷之一方法,該方法包含:接收一缺陷與一對應缺陷類型之間的缺陷相關性資訊之一使用者輸入;比較該缺陷與該對應缺陷類型之間的該輸入缺陷相關性資訊與複數
個缺陷與對應缺陷類型之間的所儲存之一組缺陷相關性資訊;以及基於該比較而更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊。
33.如條項32之非暫時性電腦可讀媒體,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含:藉由該缺陷與對應缺陷類型之間的該輸入缺陷相關性資訊替換該缺陷與對應缺陷類型之間的該所儲存缺陷相關性資訊。
34.如條項32之非暫時性電腦可讀媒體,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含:將該缺陷與對應缺陷類型之間的該輸入缺陷相關性資訊新增至複數個缺陷與對應缺陷類型之間的所儲存之該組缺陷相關性資訊。
35.如條項32之非暫時性電腦可讀媒體,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含:保留複數個缺陷與對應缺陷類型之間的所儲存之該組缺陷相關性資訊。
36.如條項32至35中任一項之非暫時性電腦可讀媒體,其中該組指令可由該伺服器之一或多個處理器執行以使得該伺服器進一步執行:將經更新之該組缺陷相關性資訊發送至經組態以分類一晶圓之一影像之缺陷以供顯示之一缺陷分類伺服器。
雖然已經結合各種實施例描述本發明,但自本說明書之考量及本文中揭示之本發明之實踐,本發明之其他實施例對於熟習此項技術者將顯而易見。意欲本說明書及實例僅視為例示性的,其中本發明之真正範疇及精神藉由以下申請專利範圍指示。
400‧‧‧程序
405~460‧‧‧步驟
Claims (15)
- 一種缺陷顯示方法,其包含, 自一晶圓之一影像獲取缺陷群組資訊,其中該缺陷群組資訊包括自該影像識別之複數個缺陷與一或多個對應指派缺陷類型之間的一組相關性;及 根據其對應指派缺陷類型顯示該複數個缺陷中之至少一些。
- 如請求項1之缺陷顯示方法,其進一步包含, 獲取關於該缺陷與其缺陷類型之間的該缺陷群組資訊之一使用者輸入;及 判定該使用者輸入是否包括對該組相關性之一或多個更新。
- 如請求項2之缺陷顯示方法,其進一步包含, 回應於該使用者輸入包括對該組相關性之一或多個更新,更新關於該缺陷群組資訊之訓練資料。
- 如請求項3之缺陷顯示方法,其進一步包含, 將該經更新訓練資料併入至一所儲存知識檔案中;及 根據該經更新訓練資料根據其對應更新缺陷類型而顯示該複數個缺陷中之至少一些。
- 如請求項2之缺陷顯示方法,其進一步包含, 回應於該使用者輸入包括對該組相關性之一或多個更新,根據對該組相關性之該一或多個更新將一經更新缺陷類型指派至該缺陷。
- 如請求項2之缺陷顯示方法,其中該所獲取使用者輸入為對該複數個缺陷與其對應缺陷類型之間的該組相關性之確認。
- 如請求項2之缺陷顯示方法,其中該所獲取使用者輸入為對該複數個缺陷與其對應缺陷類型之間的一第二組相關性之一指派。
- 如請求項1之缺陷顯示方法,其中顯示該複數個缺陷中之至少一些進一步包含:根據其對應指派缺陷類型以複數個行顯示複數個缺陷群組。
- 如請求項1之缺陷顯示方法,其中該組相關性包含指派至一第一缺陷類型之一第一組缺陷及指派至一第二缺陷類型之一第二組缺陷,且/或 其中顯示包含以一視覺方式將該第一組缺陷與該第二組缺陷區分開。
- 如請求項1之缺陷顯示方法,其中藉由指派並非一知識檔案之該訓練資料中之一新缺陷類型而獲得該所獲取缺陷群組資訊,該指派包含: 比較該缺陷與一知識檔案之訓練資料中之缺陷類型之一樹型演算法; 回應於該比較傳回類似性之小於一預設值之一信賴等級而建立一新缺陷類型;以及 將該缺陷指派為該新缺陷類型。
- 如請求項1之缺陷顯示方法,其中比較該缺陷與該知識檔案之訓練資料中之缺陷類型之該樹型演算法進一步包含: 在第一等級下比較該缺陷與缺陷類型之類別, 在第二等級下比較該缺陷與缺陷類型之類別,以及 判定類似性之該信賴等級小於一預設值之該第二等級之該比較,且 其中建立該新缺陷類型進一步包含在缺陷類型之該樹型演算法之該第二等級處建立該新缺陷類型。
- 一種用於輔助區分一晶圓之一影像上之一或多個缺陷之缺陷資料訓練方法,該方法包含, 接收一缺陷與一對應缺陷類型之間的缺陷相關性資訊之一使用者輸入; 比較該缺陷與該對應缺陷類型之間的該輸入缺陷相關性資訊與複數個缺陷與對應缺陷類型之間的所儲存之一組缺陷相關性資訊;以及 基於該比較而更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊。
- 如請求項12之缺陷資料訓練方法,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含: 藉由該缺陷與對應缺陷類型之間的該輸入缺陷相關性資訊替換該缺陷與對應缺陷類型之間的該所儲存缺陷相關性資訊。
- 如請求項12之缺陷資料訓練方法,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含: 將該缺陷與對應缺陷類型之間的該輸入缺陷相關性資訊新增至複數個缺陷與對應缺陷類型之間的所儲存之該組缺陷相關性資訊。
- 如請求項12之缺陷資料訓練方法,其中更新所儲存之該組缺陷相關性資訊中該缺陷與該對應缺陷類型之間的該相關性資訊包含: 保留複數個缺陷與對應缺陷類型之間的所儲存之該組缺陷相關性資訊。
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762447558P | 2017-01-18 | 2017-01-18 | |
| US62/447,558 | 2017-01-18 | ||
| US201862616407P | 2018-01-11 | 2018-01-11 | |
| US62/616,407 | 2018-01-11 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201840969A TW201840969A (zh) | 2018-11-16 |
| TWI688761B true TWI688761B (zh) | 2020-03-21 |
Family
ID=61163670
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107101927A TWI688761B (zh) | 2017-01-18 | 2018-01-18 | 缺陷顯示方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US11416979B2 (zh) |
| TW (1) | TWI688761B (zh) |
| WO (1) | WO2018134290A1 (zh) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018134290A1 (en) * | 2017-01-18 | 2018-07-26 | Asml Netherlands B.V. | Defect displaying method |
| US11238579B2 (en) * | 2017-01-18 | 2022-02-01 | Asml Netherlands B.V. | Defect pattern grouping method and system |
| US11321633B2 (en) * | 2018-12-20 | 2022-05-03 | Applied Materials Israel Ltd. | Method of classifying defects in a specimen semiconductor examination and system thereof |
| US11249626B2 (en) * | 2019-01-30 | 2022-02-15 | Netflix, Inc. | Interactive interface for identifying defects in video content |
| JP6788291B1 (ja) * | 2019-06-03 | 2020-11-25 | 株式会社イクシス | 点検支援システム |
| CN117999577A (zh) * | 2022-09-06 | 2024-05-07 | 宁德时代新能源科技股份有限公司 | 检测方法、检测装置及存储介质 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6999614B1 (en) * | 1999-11-29 | 2006-02-14 | Kla-Tencor Corporation | Power assisted automatic supervised classifier creation tool for semiconductor defects |
| US20060078189A1 (en) * | 2004-09-29 | 2006-04-13 | Naoki Hosoya | Method and apparatus for inspection |
| US20060133661A1 (en) * | 2004-12-17 | 2006-06-22 | Hitachi High-Technologies Corporation | Pattern inspection apparatus |
| CN1845305A (zh) * | 2005-04-08 | 2006-10-11 | 力晶半导体股份有限公司 | 晶片缺陷检测方法与系统以及存储媒体 |
| TW201411760A (zh) * | 2012-08-14 | 2014-03-16 | Kla Tencor Corp | 自動化檢測情境產生 |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6072574A (en) * | 1997-01-30 | 2000-06-06 | Micron Technology, Inc. | Integrated circuit defect review and classification process |
| US6477265B1 (en) * | 1998-12-07 | 2002-11-05 | Taiwan Semiconductor Manufacturing Company | System to position defect location on production wafers |
| US7283659B1 (en) * | 2002-01-09 | 2007-10-16 | Kla-Tencor Technologies Corporation | Apparatus and methods for searching through and analyzing defect images and wafer maps |
| US7602962B2 (en) * | 2003-02-25 | 2009-10-13 | Hitachi High-Technologies Corporation | Method of classifying defects using multiple inspection machines |
| US7729529B2 (en) | 2004-12-07 | 2010-06-01 | Kla-Tencor Technologies Corp. | Computer-implemented methods for detecting and/or sorting defects in a design pattern of a reticle |
| US7676077B2 (en) * | 2005-11-18 | 2010-03-09 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
| JP5433631B2 (ja) * | 2011-05-20 | 2014-03-05 | 株式会社日立ハイテクノロジーズ | 半導体デバイスの欠陥検査方法およびそのシステム |
| JP5581286B2 (ja) * | 2011-09-09 | 2014-08-27 | 株式会社日立ハイテクノロジーズ | 欠陥検査方法および欠陥検査装置 |
| JP6078234B2 (ja) * | 2012-04-13 | 2017-02-08 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
| US9869712B2 (en) * | 2015-04-23 | 2018-01-16 | Macronix International Co., Ltd. | Method and system for detecting defects of wafer by wafer sort |
| US9922269B2 (en) | 2015-06-05 | 2018-03-20 | Kla-Tencor Corporation | Method and system for iterative defect classification |
| US10436720B2 (en) * | 2015-09-18 | 2019-10-08 | KLA-Tenfor Corp. | Adaptive automatic defect classification |
| WO2018134290A1 (en) * | 2017-01-18 | 2018-07-26 | Asml Netherlands B.V. | Defect displaying method |
| WO2020011648A1 (en) * | 2018-07-13 | 2020-01-16 | Asml Netherlands B.V. | Pattern grouping method based on machine learning |
-
2018
- 2018-01-18 WO PCT/EP2018/051171 patent/WO2018134290A1/en not_active Ceased
- 2018-01-18 US US16/479,190 patent/US11416979B2/en active Active
- 2018-01-18 TW TW107101927A patent/TWI688761B/zh active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6999614B1 (en) * | 1999-11-29 | 2006-02-14 | Kla-Tencor Corporation | Power assisted automatic supervised classifier creation tool for semiconductor defects |
| US20060078189A1 (en) * | 2004-09-29 | 2006-04-13 | Naoki Hosoya | Method and apparatus for inspection |
| US20060133661A1 (en) * | 2004-12-17 | 2006-06-22 | Hitachi High-Technologies Corporation | Pattern inspection apparatus |
| CN1845305A (zh) * | 2005-04-08 | 2006-10-11 | 力晶半导体股份有限公司 | 晶片缺陷检测方法与系统以及存储媒体 |
| TW201411760A (zh) * | 2012-08-14 | 2014-03-16 | Kla Tencor Corp | 自動化檢測情境產生 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190370950A1 (en) | 2019-12-05 |
| WO2018134290A1 (en) | 2018-07-26 |
| TW201840969A (zh) | 2018-11-16 |
| US11416979B2 (en) | 2022-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI688761B (zh) | 缺陷顯示方法 | |
| US11238579B2 (en) | Defect pattern grouping method and system | |
| US11450122B2 (en) | Methods and systems for defect inspection and review | |
| JP5715873B2 (ja) | 欠陥分類方法及び欠陥分類システム | |
| TWI845876B (zh) | 電子束檢測設備、用於對準一晶圓影像與一參考影像之方法及相關之非暫時性電腦可讀媒體 | |
| JP2008294361A (ja) | 欠陥観察装置及び欠陥観察方法 | |
| CN115769255A (zh) | 扫描电子显微镜图像锚定阵列的设计 | |
| US11650576B2 (en) | Knowledge recommendation for defect review | |
| US20090030867A1 (en) | Reviewing apparatus, recipe setting method for reviewing apparatus and reviewing system | |
| TWI899325B (zh) | 基於可解釋深度學習之缺陷偵測及分類 |