TWI674560B - Behavior analysis system and method of vehicle - Google Patents
Behavior analysis system and method of vehicle Download PDFInfo
- Publication number
- TWI674560B TWI674560B TW107127494A TW107127494A TWI674560B TW I674560 B TWI674560 B TW I674560B TW 107127494 A TW107127494 A TW 107127494A TW 107127494 A TW107127494 A TW 107127494A TW I674560 B TWI674560 B TW I674560B
- Authority
- TW
- Taiwan
- Prior art keywords
- time interval
- license plate
- etag
- information
- identification
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000008859 change Effects 0.000 claims abstract description 31
- 230000006399 behavior Effects 0.000 claims description 79
- 238000009434 installation Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000012549 training Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 206010000117 Abnormal behaviour Diseases 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 238000012880 independent component analysis Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
Landscapes
- Traffic Control Systems (AREA)
Abstract
一種車輛的行為分析系統及方法。此行為分析方法包括下列步驟。偵測車道行經車輛的eTag資訊。擷取包括行經車輛的車牌之影像。取得數個時間區間內在那些車道上所偵測到車輛的識別資訊。針對各時間區間,將相同車道上所偵測到的eTag資訊與偵測到的車牌配對,以產生多組配對組合。各配對組合記錄某一時間區間內相同車道上所有偵測到的eTag資訊與車牌。比對不同時間區間的配對組合,以判斷各車輛的識別資訊是否符合辨識變更行為,而此辨識變更行為是不同時間區間的配對組合不相符。藉此,可提供自動化車輛識別辨識及行為分析的功能。A vehicle behavior analysis system and method. This behavior analysis method includes the following steps. Detect eTag information of vehicles passing by the lane. Capture an image that includes the license plates of passing vehicles. Obtain identification information of vehicles detected in those lanes in several time intervals. For each time interval, the detected eTag information on the same lane is matched with the detected license plate to generate multiple sets of matching combinations. Each pairing combination records all detected eTag information and license plates on the same lane in a certain time interval. The pairing combinations in different time intervals are compared to determine whether the identification information of each vehicle conforms to the identification change behavior, and the identification change behavior is that the pairing combinations in different time intervals do not match. Thereby, the functions of automatic vehicle identification and behavior analysis can be provided.
Description
本發明是有關於一種車輛識別分析技術,且特別是有關於一種車輛的行為分析系統及方法。 The invention relates to a vehicle identification and analysis technology, and in particular to a vehicle behavior analysis system and method.
自國道人工收費取消之後,現今eTag(或是無線電射頻識別(Radio Frequency Identification,RFID))在車輛上的掛載率已相當高。依據交通部資料統計可知,超過80%的車輛有安裝eTag。另一方面,由於法律規定車輛須掛載車牌才准許上路,因此一般正常的使用者都會對其車輛安裝車牌。然而,仍有部分使用者未遵守交通法規正常掛上合法車牌、或是更換車牌。車牌與eTag是用來辨識車輛的重要識別資訊,但eTag與車牌屬於個人資料,受個資法保護,除非有必要性的原因,否則無法直接透過eTag去查詢使用者之車牌。此外,目前對於一些異常的行為(例如,自行更換車牌、偽造車牌等)查詢的方式,通常是先由交通警察發現用路人的不正常行為(例如,飆車、改裝、超速等違反交通規則之行為),再 透過手持裝置連線到監理機關的資料庫,才能得知查詢車輛是否有異常的行為。也就是說,現有車輛識別資訊的查詢方式都要經由人工,而未有自動化的機制。 After the cancellation of national tolls, the mounting rate of eTags (or Radio Frequency Identification (RFID)) on vehicles is quite high. According to statistics from the Ministry of Communications, more than 80% of vehicles have eTags installed. On the other hand, because the law requires vehicles to carry license plates before they are allowed to go on the road, generally normal users will install license plates on their vehicles. However, there are still some users who fail to comply with traffic regulations to publish legal license plates or change license plates. License plates and eTags are important identification information used to identify vehicles. However, eTags and license plates are personal data and are protected by personal information laws. Unless necessary reasons cannot be used to directly query the user's license plate through eTag. In addition, the current search methods for some abnormal behaviors (such as changing license plates by themselves, forging license plates, etc.) are usually first discovered by traffic police as abnormal behaviors of passersby (such as speeding, modification, speeding, etc.) ),again By connecting to the database of the supervisory authority through the handheld device, you can know whether the query vehicle has abnormal behavior. That is to say, the existing query methods of vehicle identification information are all manual, and there is no automated mechanism.
有鑑於此,本發明提供一種車輛的行為分析系統及方法,其提供自動雙重辨識機制,並基於辨識所得資訊來判斷辨識變更行為。 In view of this, the present invention provides a vehicle behavior analysis system and method, which provides an automatic dual identification mechanism and judges the identification change behavior based on the information obtained from the identification.
本發明車輛的行為分析系統,各車輛的識別資訊包括eTag及車牌。而此行為分析系統包括前端辨識系統及後端辨識系統。前端辨識系統射於某一路段的一或多條車道,並包括eTag讀取器及影像擷取單元。eTag讀取器透過連接的eTag天線偵測行經車輛的eTag資訊,而各eTag天線對應於一條車道。各影像擷取單元對應於一條車道,並擷取包括行車車輛之車牌的影像。後端辨識系統取得數個時間區間內在那些車道上所偵測到車輛的識別資訊。針對各時間區間,後端辨識系統將相同車道上所偵測到的eTag資訊與相同車道上所偵測到的車牌配對,以產生多組配對組合。各配對組合記錄某一時間區間內相同車道上所有偵測到的eTag資訊與車牌。後端辨識系統比對不同時間區間的配對組合,以判斷各車輛的識別資訊是否符合辨識變更行為,而此辨識變更行為是不同時間區間的配對組合不相符。 In the vehicle behavior analysis system of the present invention, the identification information of each vehicle includes an eTag and a license plate. The behavior analysis system includes a front-end identification system and a back-end identification system. The front-end identification system shoots one or more lanes on a certain road section, and includes an eTag reader and an image capture unit. The eTag reader detects the eTag information of passing vehicles through the connected eTag antenna, and each eTag antenna corresponds to a lane. Each image capturing unit corresponds to a lane and captures an image including a license plate of a driving vehicle. The back-end identification system obtains identification information of vehicles detected on those lanes in several time intervals. For each time interval, the back-end identification system matches the eTag information detected on the same lane with the license plate detected on the same lane to generate multiple sets of matching combinations. Each pairing combination records all detected eTag information and license plates on the same lane in a certain time interval. The back-end identification system compares pairing combinations in different time intervals to determine whether the identification information of each vehicle conforms to the identification change behavior, and the identification change behavior is that the pairing combinations in different time intervals do not match.
本發明車輛的行為分析方法,各車輛的識別資訊包括 eTag及車牌。而此行為分析方法包括下列步驟。偵測一或多條車道行經車輛的eTag資訊。擷取包括行經車輛的車牌之影像。取得數個時間區間內在那些車道上所偵測到車輛的識別資訊。針對各時間區間,將相同車道上所偵測到的eTag資訊與相同車道上所偵測到的車牌配對,以產生多組配對組合。各配對組合記錄某一時間區間內相同車道上所有偵測到的eTag資訊與車牌。比對不同時間區間的配對組合,以判斷各車輛的識別資訊是否符合辨識變更行為,而此辨識變更行為是不同時間區間的配對組合不相符。 According to the vehicle behavior analysis method of the present invention, the identification information of each vehicle includes eTag and license plate. The behavior analysis method includes the following steps. Detect eTag information of vehicles passing by one or more lanes. Capture an image that includes the license plates of passing vehicles. Obtain identification information of vehicles detected in those lanes in several time intervals. For each time interval, the eTag information detected on the same lane is matched with the license plate detected on the same lane to generate multiple sets of matching combinations. Each pairing combination records all detected eTag information and license plates on the same lane in a certain time interval. The pairing combinations in different time intervals are compared to determine whether the identification information of each vehicle conforms to the identification change behavior, and the identification change behavior is that the pairing combinations in different time intervals do not match.
基於上述,本發明實施例車輛的行為分析系統及方法,以eTag與車牌辦識配對為基礎,透過大量的車牌與eTag的配對組合,產生一套學習機制,並據以自動判斷使用者的行為,使行為判斷結果可作為監理站、交通大隊、或刑警隊的參考依據。 Based on the above, the vehicle behavior analysis system and method of the embodiments of the present invention are based on the pairing of eTag and license plate identification, and generate a set of learning mechanisms through a large number of matching combinations of license plates and eTags, and automatically determine the user's behavior based on this. , So that the behavior judgment results can be used as a reference for supervision stations, transportation brigades, or criminal police teams.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
1‧‧‧行為分析系統 1‧‧‧Behavior Analysis System
10‧‧‧前端辨識系統 10‧‧‧ Front-end identification system
11、51‧‧‧通訊收發器 11, 51‧‧‧communication transceiver
13、13a、13b‧‧‧eTag天線 13, 13a, 13b‧‧‧eTag antenna
14‧‧‧eTag讀取器 14‧‧‧eTag Reader
15‧‧‧影像辨識裝置 15‧‧‧Image recognition device
151、151a、151b‧‧‧影像擷取單元 151, 151a, 151b‧‧‧Image Acquisition Unit
153‧‧‧車牌辨識模組 153‧‧‧License plate recognition module
19、59‧‧‧處理器 19, 59‧‧‧ processor
L1、L2‧‧‧車道 L1, L2‧‧‧ lane
50‧‧‧後端辨識系統 50‧‧‧back-end identification system
57‧‧‧儲存器 57‧‧‧Storage
571‧‧‧車牌辨識模組 571‧‧‧License plate recognition module
573‧‧‧行為分析模組 573‧‧‧Behavior Analysis Module
575‧‧‧信賴資料庫 575‧‧‧trust database
577‧‧‧訓練資料庫 577‧‧‧ Training Database
S310~S390、S410~S490‧‧‧步驟 S310 ~ S390, S410 ~ S490‧‧‧step
圖1是依據本發明一實施例之行為分析系統的元件方塊圖。 FIG. 1 is a component block diagram of a behavior analysis system according to an embodiment of the present invention.
圖2是依據本發明一實施例之前端辨識系統的示意圖。 FIG. 2 is a schematic diagram of a front-end identification system according to an embodiment of the present invention.
圖3是依據本發明一實施例之行為分析方法-訓練階段的流程圖。 3 is a flowchart of a behavior analysis method-training phase according to an embodiment of the present invention.
圖4是依據本發明一實施例之行為分析方法-比對階段的流 程圖。 4 is a flow of a behavior analysis method-comparison phase according to an embodiment of the present invention Process map.
圖1是依據本發明一實施例之行為分析系統1的元件方塊圖。請參照圖1,行為分析系統1包括前端辨識系統10及後端辨識系統50。 FIG. 1 is a block diagram of components of a behavior analysis system 1 according to an embodiment of the present invention. Referring to FIG. 1, the behavior analysis system 1 includes a front-end recognition system 10 and a back-end recognition system 50.
前端辨識系統10至少包括但不僅限於通訊收發器11、一或數個eTag天線13、一或數個eTag讀取器14、影像辨識裝置15、及處理器19。 The front-end identification system 10 includes, but is not limited to, a communication transceiver 11, one or more eTag antennas 13, one or more eTag readers 14, an image recognition device 15, and a processor 19.
通訊收發器11可以是支援第三代(3G)、第四代(4G)或更後世代行動通訊、乙太網路(Ethernet)或光纖數據機或其他網路存取裝置,從而與外界相互通訊。 The communication transceiver 11 can support third generation (3G), fourth generation (4G) or later generation mobile communication, Ethernet or fiber modem or other network access devices, so as to interact with the outside world. communication.
eTag(或是RFID)讀取器14透過連接的eTag天線13偵測行經車輛的eTag資訊,而各eTag天線13對應於一條車道。 The eTag (or RFID) reader 14 detects the eTag information of the passing vehicle through the connected eTag antenna 13, and each eTag antenna 13 corresponds to a lane.
影像辨識裝置15包括一或數個影像擷取單元151及車牌辨識模組153。各影像擷取單元151包括鏡頭、影像感測器等元件,且例如是相機、攝影機等裝置,並用以對一條車道拍攝影像。車牌辨識模組153可以是影像辨識晶片、處理器或電路,並用以辨識影像中的車牌。 The image recognition device 15 includes one or more image capturing units 151 and a license plate recognition module 153. Each image capturing unit 151 includes components such as a lens and an image sensor, and is a device such as a camera or a video camera, and is used to capture an image of a lane. The license plate recognition module 153 may be an image recognition chip, a processor, or a circuit, and is used to recognize the license plate in the image.
處理器19耦接通訊收發器11、eTag讀取器14及影像辨識裝置15,處理器19並可以是中央處理器(CPU)、微控制器、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)或其他類似元件或上述元件的組合。 The processor 19 is coupled to the communication transceiver 11, the eTag reader 14, and the image recognition device 15. The processor 19 may be a central processing unit (CPU), a microcontroller, a programmable controller, and a special application integrated circuit ( Application Specific Integrated Circuit, ASIC) or other similar components or a combination of the above.
請參照圖2是依據本發明一實施例之前端辨識系統1的示意圖。前端辨識系統1設於某一路段上。此路段包括車道L1,L2,eTag天線13a與影像擷取單元151a是對應車道L1,而eTag天線13b與影像擷取單元151b是對應車道L2。也就是說,行經車道L1的車輛識別資訊(包括eTag資訊和車牌)可被eTag天線13a與影像擷取單元151a偵測到,而行經車道L2的車輛識別資訊可被eTag天線13b與影像擷取單元151b偵測到。需說明的是,圖2所示對於各元件及車道的設置位置及數量可依據需求而自行調整,本發明實施例不加以限制。 Please refer to FIG. 2, which is a schematic diagram of a front-end identification system 1 according to an embodiment of the present invention. The front-end identification system 1 is set on a certain road section. This section includes lanes L1, L2, eTag antenna 13a and image capture unit 151a correspond to lane L1, and eTag antenna 13b and image capture unit 151b correspond to lane L2. That is to say, the vehicle identification information (including eTag information and license plate) passing the lane L1 can be detected by the eTag antenna 13a and the image capturing unit 151a, and the vehicle identification information passing the lane L2 can be captured by the eTag antenna 13b and the image Unit 151b detected. It should be noted that the positions and numbers of the components and lanes shown in FIG. 2 can be adjusted according to requirements, which is not limited in the embodiment of the present invention.
值得注意的是,eTag天線13a,13b的讀取範圍不同於影像擷取單元151且通常形成扇型讀取範圍。在大部份的多車道應用情境中,eTag天線13有可能讀取到相鄰車道或是前後車輛的eTag,配對錯誤率可能因此而大幅增加。而本發明實施例將會透過大量數據分析來提升配對成功率,待後續實施例詳述。 It is worth noting that the reading range of the eTag antennas 13a and 13b is different from the image capturing unit 151 and usually forms a fan-shaped reading range. In most multi-lane application scenarios, the eTag antenna 13 may read the eTags of adjacent lanes or front and rear vehicles, and the pairing error rate may increase significantly. The embodiments of the present invention will improve the success rate of pairing through a large amount of data analysis, which will be detailed in the subsequent embodiments.
而後端辨識系統50至少包括但不僅限於通訊收發器51、儲存器57及處理器59。後端辨識系統50可以是桌上型電腦、伺服器或工作站。 The back-end identification system 50 includes, but is not limited to, a communication transceiver 51, a storage 57 and a processor 59. The backend identification system 50 may be a desktop computer, a server, or a workstation.
通訊收發器51可以是支援3G、4G或更後世代行動通訊、乙太網路或光纖數據機或其他網路存取裝置,從而與外界相互通訊。 The communication transceiver 51 may support 3G, 4G or later generation mobile communication, Ethernet or fiber optic modem or other network access devices, so as to communicate with the outside world.
儲存器57可以是任何型態的固定或可移動隨機存取記憶 體(Radom Access Memory,RAM)、唯讀記憶體(Read Only Memory,ROM)、快閃記憶體(flash memory)、傳統硬碟(hard disk drive,HDD)、固態硬碟(solid-state drive,SSD)或類似元件,並用以記錄程式碼、軟體模組(例如,車牌辨識模組571、行為分析模組573等)、信賴資料庫575、訓練資料庫577、影像、配對組合及其他資料或檔案,其詳細內容待後續實施例詳述。 The memory 57 may be any type of fixed or removable random access memory RAM (Radom Access Memory, RAM), Read Only Memory (ROM), flash memory (flash memory), traditional hard disk drive (HDD), solid-state drive (solid-state drive, SSD) or similar components and used to record code, software modules (for example, license plate recognition module 571, behavior analysis module 573, etc.), trust database 575, training database 577, images, pairing combinations and other data or Archives, the details of which will be detailed in the following embodiments.
處理器59耦接通訊收發器51及儲存器57,處理器59並可以是CPU、微控制器、可程式化控制器、ASIC或其他類似元件或上述元件的組合。 The processor 59 is coupled to the communication transceiver 51 and the memory 57. The processor 59 may be a CPU, a microcontroller, a programmable controller, an ASIC, or other similar components or a combination of the foregoing components.
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中針對車輛識別之收集、訓練及分析流程。下文中,將搭配行為分析系統1中的各項裝置、元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。 In order to facilitate the understanding of the operation flow of the embodiments of the present invention, a number of embodiments will be described in detail below for the collection, training, and analysis processes for vehicle recognition in the embodiments of the present invention. Hereinafter, the method described in the embodiment of the present invention will be described with various devices, components, and modules in the behavior analysis system 1. Each process of the method can be adjusted according to the implementation situation, and is not limited to this.
圖3是依據本發明一實施例之行為分析方法-訓練階段之流程圖。請參照圖3,前端辨識系統1的eTag讀取器14透過對應於各車道的eTag天線13偵測一或數條車道行經車輛的eTag資訊,而各影像擷取單元151則擷取包括行經車輛的車牌之影像,以取得數個時間區間(例如,0.5、1、2秒等)內在那些車道上所偵測到車輛的識別資訊,從而對車輛的識別資訊進行資料收集(步驟S310)。這些時間區間可設定為固定相同或依據需求而調整。也就是說,每間隔設定的時間區間,前端辨識系統1即可取得某一路 段所偵測到的eTag資訊及車牌影像。 3 is a flowchart of a behavior analysis method-training phase according to an embodiment of the present invention. Referring to FIG. 3, the eTag reader 14 of the front-end identification system 1 detects the eTag information of vehicles passing by one or more lanes through the eTag antenna 13 corresponding to each lane, and each image capturing unit 151 captures the vehicles including passing vehicles. To obtain the identification information of the vehicles detected in those lanes within several time intervals (for example, 0.5, 1, 2 seconds, etc.), thereby collecting data on the identification information of the vehicle (step S310). These time intervals can be set to be the same or adjusted as needed. In other words, the front-end identification system 1 can obtain a certain path every time interval set. ETag information and license plate image detected by the segment.
接著,前端辨識系統1中的車牌辨識模組153對車牌影像進行辨識(步驟S330)。車牌辨識模組153例如是利用硬體辨識機制來辨識影像中的車牌(即,車牌號碼),也就是說,車牌辨識模組153是經設計針對車牌辨識的特殊晶片或處理電路。 Next, the license plate recognition module 153 in the front-end recognition system 1 recognizes the license plate image (step S330). The license plate recognition module 153 uses, for example, a hardware recognition mechanism to recognize the license plate (ie, license plate number) in the image, that is, the license plate recognition module 153 is a special chip or processing circuit designed for license plate recognition.
值得注意的是,車牌辨識模組153是內建的第一道硬體車牌辦識,其特色為辨識速度較快。然而,受天氣、燈光、車牌缺損等因素影響,難免會造成辦識錯誤。因此,當第一道的車牌辨識模組153偵測到車輛後,會先進行第一重的車牌辨識,從而得出前端車牌辨識結果。而處理器19會將前端車牌辨識結果、包括車牌的影像(即,影像擷取單元151所拍攝的影像)、以及偵測的eTag資訊透過通訊收發器11傳送給後端辨識系統50。 It is worth noting that the license plate recognition module 153 is the first built-in hardware license plate recognition, which is characterized by faster recognition speed. However, due to factors such as weather, lighting, and missing license plates, it will inevitably lead to misunderstanding. Therefore, when the first license plate recognition module 153 detects the vehicle, the first license plate recognition will be performed first to obtain the front-end license plate recognition result. The processor 19 transmits the front-end license plate recognition result, the image including the license plate (that is, the image captured by the image capture unit 151), and the detected eTag information to the back-end recognition system 50 through the communication transceiver 11.
後端辨識系統50的處理器59可透過通訊收發器51取得前端辨識系統10在數個時間區間內在車道上所偵測到車輛的識別資訊,車牌辨識模組571則對車牌影像進行第二道的車牌辨識(步驟S350)。車牌辨識模組571例如是利用軟體偵測(例如,AdaBoost演算法、主成份分析(Principal Component Analysis,PCA)、獨立成份分析(Independent Component Analysis,ICA)、人工智慧(AI)分類器等)可將不合理的資料過濾(例如,車牌被切割、照片明顯無法判斷等),並據以得出後端車牌辨識結果。車牌辨識模組571還可透過軟體自我學習的方式(例如,機器學習(machine learning)等)增加判斷的正確率。 The processor 59 of the back-end recognition system 50 can obtain the identification information of the vehicle detected by the front-end recognition system 10 on the lane in several time intervals through the communication transceiver 51, and the license plate recognition module 571 performs the second lane on the license plate image. License plate recognition (step S350). The license plate recognition module 571 can be detected by software (for example, AdaBoost algorithm, Principal Component Analysis (PCA), Independent Component Analysis (ICA), artificial intelligence (AI) classifier, etc.) Filter irrational data (for example, the license plate is cut, the picture is obviously indeterminate, etc.), and use it to obtain the back-end license plate recognition result. The license plate recognition module 571 can also increase the accuracy of the judgment through software self-learning (for example, machine learning, etc.).
車牌辨識模組571會比對後端車牌辨識結果與相同車牌影像對應之前端車牌辨識結果比對,以判斷兩道結果是否相符(步驟S370)。而當步驟S330及S350兩道車牌辦識皆為相同車牌(即,車牌號碼相同)時,車牌辨識模組571才會判定前端及後端車牌識辦結果為正確且合理。 The license plate recognition module 571 compares the recognition result of the back-end license plate with the recognition result of the front-end license plate corresponding to the same license plate image to determine whether the two results match (step S370). However, when both the license plate recognition steps S330 and S350 are the same license plate (ie, the license plate number is the same), the license plate recognition module 571 will determine that the front-end and rear-end license plate recognition results are correct and reasonable.
針對這些經判斷為正確且合理(相符)的車牌辨識結果,處理器59會與eTag資訊進行交叉比對(步驟S390),以形成配對組合,從而將這些配對組合存入訓練資料庫577。於本實施例中,針對各時間區間,處理器59將相同車道上所偵測到的eTag資訊與相同車道上所偵測到的車牌配對,以產生多組配對組合。舉例來說,針對多車道的情況,處理器59需要先將車牌辨識模組153,571與eTag讀取器14校正時間,並確認時間為一致(即,eTag讀取器14讀取eTag資訊的時間區間與車牌辨識模組153,571所辨識影像的對應時間區間一致)後開始配對。前端及後端辨識系統10,50先收集一段時間的辨識資料,來作為配對的基礎,此階段稱作「訓練階段」(training stage)。處理器59會將同一時間區間內(例如,同一秒內)同車道的車牌辨識結果與同一時間區間內(例如,同一秒內)同車道偵測到的eTag資訊進行配對。也就是說,各配對組合記錄某一時間區間內相同車道上所有偵測到的eTag資訊與車牌。而由於eTag天線13的讀取範圍可能涉及到兩條以上的車道,因此單一車牌可能會對應多個eTag資訊。處理器59會將所有可能的配對組合全部寫入「訓練表格(training table)」並同時紀錄此次配 對的時間區間,且記錄在訓練資料庫577中。 For these license plate recognition results that are judged to be correct and reasonable (matching), the processor 59 performs cross-comparison with the eTag information (step S390) to form pairing combinations, thereby storing these pairing combinations in the training database 577. In this embodiment, for each time interval, the processor 59 pairs the eTag information detected on the same lane with the license plate detected on the same lane to generate multiple sets of pairing combinations. For example, in the case of multiple lanes, the processor 59 needs to first correct the time of the license plate recognition modules 153, 571 and the eTag reader 14 and confirm that the time is the same (that is, the time interval of the eTag reader 14 reading the eTag information). And the corresponding time interval of the image recognized by the license plate recognition module 153, 571), and then start pairing. The front-end and back-end identification systems 10, 50 first collect identification data for a period of time as a basis for matching, and this phase is called a "training stage". The processor 59 matches the license plate recognition result of the same lane in the same time interval (for example, within the same second) with the eTag information detected in the same lane in the same time interval (for example, within the same second). That is, each pairing combination records all detected eTag information and license plates on the same lane in a certain time interval. And because the reading range of the eTag antenna 13 may involve more than two lanes, a single license plate may correspond to multiple eTag information. The processor 59 will write all possible pairing combinations into the `` training table '' and record the matching at the same time The right time interval is recorded in the training database 577.
接著,請參照圖4是依據本發明一實施例之行為分析方法-比對階段之流程圖。處理器59會初始化車輛行為的相關參數(例如,起點時間、起點位置、多車道之路段、迄點時間、迄點位置等),設定活動狀態觀察時間寬度(△t s )(即,統計時間間距,用於挑選部分時間區間的配對組合),並初始化時序編號n為0(步驟S410)。處理器59接著對訓練資料庫577中的配對組合以特定統計時間(例如,一個月、三個月或半年等)進行統計。當收集資料量足夠時(例如,一個月、或半年以上之車輛配對組合),舉例來說,若將每30分鐘設定為一個時段(即,一個統計時間區間),則處理器59可將每日分為48個時段(即,48個統計時間區間)。處理器59將透過計算公式(1)來判斷是否寫入信賴資料庫575:|Di×Wi|<T...(1)Di為第一與第二時間區間的時間差,此第一時間區間(t=tn)對應最近(新)一次的配對組合,而第二時間區間對應第一時間區間之前上一次相同配對組合;Wi為權重(weight);T為門檻值(Threshold)。換句而言,處理器59是將此時間差Di進行加權運算(步驟S450),並判斷時間差的加權運算結果是否小於門檻值T(步驟S470)。若此加權運算結果小於門檻值T,則處理器59將此時間區間對應的配對組合輸入(記錄)到信賴資料庫575(步驟S480)。反之,若此加權運算結果未小於門檻值T,則處理器59會調整統計時間區間(觀察時間寬度△t s )(返回步驟S410)。需注意的是,門檻值T可因應實 務設定之參數而調整。 4 is a flowchart of a behavior analysis method-comparison phase according to an embodiment of the present invention. Relevant parameters (e.g., starting time, starting position, the multi-lane road, until the point in time, until the point position, etc.) of the vehicle behavior processor 59 initializes, to set the width of the active state observation time (△ t s) (i.e., statistical time Pitch, used to select pairing combinations for some time intervals), and initialize the timing number n to 0 (step S410). The processor 59 then counts the pairing combinations in the training database 577 at a specific statistical time (eg, one month, three months, or six months, etc.). When the amount of collected data is sufficient (e.g., one month, or more than six months of vehicle matching combinations), for example, if every 30 minutes is set as a time period (that is, a statistical time interval), the processor 59 may The day is divided into 48 periods (ie, 48 statistical time intervals). The processor 59 will determine whether to write into the trusted database 575 through the calculation formula (1): | Di × Wi | <T ... (1) Di is the time difference between the first and second time intervals, and this first time interval (t = t n ) corresponds to the most recent (new) pairing combination, and the second time interval corresponds to the last same pairing combination before the first time interval; Wi is weight; T is threshold. In other words, the processor 59 performs a weighting operation on the time difference Di (step S450), and determines whether the weighted operation result of the time difference is smaller than the threshold value T (step S470). If the result of the weighting operation is less than the threshold value T, the processor 59 inputs (records) the pairing combination corresponding to the time interval to the trust database 575 (step S480). Conversely, if this operation does not result weighted less than the threshold T, the statistics processor 59 will adjust the time interval (time width observed △ t s) (returning to step S410). It should be noted that the threshold T can be adjusted according to the parameters set in practice.
接著,行為分析模組573對信賴資料庫575中記錄的配對組合進行自動化的比對流程(步驟S)。於本實施例中,行為分析模組573可(例如,透過SQL程式語法(group))比對特定觀察區間寬度內不同時間區間的配對組合,以判斷各車輛的識別資訊是否符合辨識變更行為(步驟S490)。 Next, the behavior analysis module 573 performs an automatic comparison process on the pairing combinations recorded in the trust database 575 (step S). In this embodiment, the behavior analysis module 573 can (for example, through SQL program syntax) compare matching combinations of different time intervals within a specific observation interval width to determine whether the identification information of each vehicle conforms to the identification change behavior ( Step S490).
辨識變更行為是不同時間區間的配對組合不相符。舉例而言,假設時間區間t2在時間區間t1之後(即,時間區間t2晚於時間區間t1),而車牌為Pi(i為正整數),eTag資訊為Ej(j為正整數)。若統計時間區間中的數個配對組合中有一個eTag資訊對應到兩張(以上)車牌,則透過時間排序可以觀察eTag資訊與車牌對應的時間。若時間區間t1之前所統計配對組合中eTag資訊E1皆對應車牌P1,但此時間區間t1之後對應不同的車牌P2,則行為分析模組573判斷此辨識變更行為是更換車牌行為。而若時間區間t1之前所統計配對組合中eTag資訊E1皆對應車牌P1,且時間區間t1之後對應車牌P2,但時間區間t2之後又對應車牌P1,則行為分析模組573判斷此辨識變更行為是來回更換車牌行為。 The identification change behavior is that the pairing combinations in different time intervals do not match. For example, suppose time interval t2 is after time interval t1 (that is, time interval t2 is later than time interval t1), the license plate is P i (i is a positive integer), and eTag information is E j (j is a positive integer). If there is one eTag information corresponding to two (or more) license plates in several matching combinations in the statistical time interval, the time corresponding to the eTag information and the license plate can be observed through time sorting. If the eTag information E 1 in the pairing combination counted before the time interval t1 corresponds to the license plate P 1 , but after this time interval t 1 corresponds to a different license plate P 2 , the behavior analysis module 573 judges that the identification change behavior is a license plate replacement behavior. If the eTag information E 1 in the pairing combination counted before the time interval t1 corresponds to the license plate P 1 and after the time interval t1 corresponds to the license plate P 2 , but after the time interval t 2 corresponds to the license plate P 1 , the behavior analysis module 573 judges this Recognizing the change behavior is to change the license plate back and forth.
若數個配對組合中同一車牌對應到兩張(以上)eTag資訊,仍可透過時間排序可以觀察所有配對組合。若時間區間t1的配對組合是車牌P3對應於eTag群組(包括至少兩個不同eTag資訊),且時間區間t2的配對組合仍是車牌P3對應於相同eTag群組,則行為分析模組573判斷此辨識變更行為是安裝複數eTag行為。而 若時間區間t1之前所統計配對組合中車牌P3對應eTag資訊E2,但時間區間t1之後所統計配對組合中的車牌P3對應eTag資訊E3,則行為分析模組573判斷此辨識變更行為是更換eTag行為。 If there are two (or more) eTag information corresponding to the same license plate in several matching combinations, you can still observe all the matching combinations by time sorting. If the pairing combination of time interval t1 is the license plate P 3 corresponding to the eTag group (including at least two different eTag information), and the pairing combination of time interval t2 is still the license plate P 3 corresponding to the same eTag group, the behavior analysis module 573 determines that this identification change behavior is the installation of plural eTag behaviors. And if the license plate P 3 in the pairing combination counted before the time interval t1 corresponds to the eTag information E 2 , but the license plate P 3 in the pairing combination counted after the time interval t 1 corresponds to the eTag information E 3 , the behavior analysis module 573 judges the identification change The behavior is to replace the eTag behavior.
值得注意的是,前述比對流程會進入迴圈運作,行為分析模組573會接收來自同一時間區間的eTag資訊與車牌並以車道區分的配對組合,且依據上一個訓練階段(training stage)所記錄信賴資料庫577中對應的歷史配對組合,而於更新最新一筆資料後,判斷目前最新通過的車輛的車牌與eTag資訊之間是否有特殊的辨識變更行為。 It is worth noting that the aforementioned comparison process will enter a loop operation, and the behavior analysis module 573 will receive a pairing combination of eTag information from the same time interval and the license plate and distinguish it by lanes, and according to the previous training stage (training stage) Record the corresponding historical pairing combination in the trust database 577, and after updating the latest data, determine whether there is a special identification change between the license plate and eTag information of the currently passed vehicle.
綜上所述,本發明實施例是在欲偵測的主要幹道或任何路段上的一個或數條車道安裝前端辨識系統,且不需要知道車牌在官方資料對應的eTag資訊,即可透過即時且自動化的方式配對eTag資訊與車牌。接著,本發明實施例收集過去針對駕駛行為的歷史紀錄,再搭配演算法與門檻,從而決定所有可能的eTag資訊與車牌配對組合。而這些配對組合則可進一步作為行為分析的依據及相關人員的回饋、甚至是刑事案件的參考依據。 In summary, the embodiment of the present invention installs a front-end identification system on one or more lanes on the main road or any road section to be detected, and does not need to know the eTag information corresponding to the official data of the license plate. An automated way to pair eTag information with a license plate. Next, the embodiment of the present invention collects historical records of driving behaviors in the past, and then uses algorithms and thresholds to determine all possible combinations of eTag information and license plates. These matching combinations can be further used as the basis for behavior analysis and feedback from related personnel, even for criminal cases.
本發明實施例包括以下特點及功效:本發明實施例將eTag資訊與車牌配對,不須取得官方資料庫所記錄eTag資訊與車牌真正的對應關係,透過歷史紀錄來自動化判斷合理的配對組合。 The embodiment of the present invention includes the following features and effects: In the embodiment of the present invention, eTag information is matched with a license plate without obtaining the true correspondence between the eTag information and the license plate recorded in the official database, and the reasonable matching combination is automatically determined through historical records.
本發明實施例使用自動化過濾方式:考慮到車道可能有數台車輛同時通過,前端所偵測到eTag資訊與車輛的對應關係並 不一定是正確的,需要透過更大量的配對組合來確認合理的配對組合,從而避免使用單一的門檻值而造成錯誤的配對判斷。 The embodiment of the present invention uses an automatic filtering method: considering that there may be several vehicles passing through the lane at the same time, the corresponding relationship between the eTag information detected by the front end and the vehicle is It is not necessarily correct, and it is necessary to confirm a reasonable pairing combination through a larger number of pairing combinations, so as to avoid using a single threshold to cause wrong pairing judgment.
本發明實施例透過不同的配對組合,分類進行個別的統計,以篩選出適合後續行為分析的統計資料。 In the embodiment of the present invention, individual statistics are classified and classified through different pairing combinations to select statistical data suitable for subsequent behavior analysis.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107127494A TWI674560B (en) | 2018-08-07 | 2018-08-07 | Behavior analysis system and method of vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107127494A TWI674560B (en) | 2018-08-07 | 2018-08-07 | Behavior analysis system and method of vehicle |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI674560B true TWI674560B (en) | 2019-10-11 |
| TW202008322A TW202008322A (en) | 2020-02-16 |
Family
ID=69023497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107127494A TWI674560B (en) | 2018-08-07 | 2018-08-07 | Behavior analysis system and method of vehicle |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI674560B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI694410B (en) * | 2019-10-24 | 2020-05-21 | 中華電信股份有限公司 | Container terminal control system combined with ai image detection and identification |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6747687B1 (en) * | 2000-01-11 | 2004-06-08 | Pulnix America, Inc. | System for recognizing the same vehicle at different times and places |
| CN104933870A (en) * | 2015-05-21 | 2015-09-23 | 中兴软创科技股份有限公司 | Vehicle fake plate identification method and device based on vehicle behavior analysis |
| TW201626290A (en) * | 2015-01-09 | 2016-07-16 | 裕勤科技股份有限公司 | Vehicle recognition and detection system, vehicle information collection method, vehicle information detection method and vehicle information inquiry method |
| TW201714151A (en) * | 2015-10-05 | 2017-04-16 | Chunghwa Telecom Co Ltd | Vehicle identifier matching method utilizes function values to show corresponding degree between two types of identifiers and establish two types of identifier corresponding tables among plural articles |
-
2018
- 2018-08-07 TW TW107127494A patent/TWI674560B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6747687B1 (en) * | 2000-01-11 | 2004-06-08 | Pulnix America, Inc. | System for recognizing the same vehicle at different times and places |
| TW201626290A (en) * | 2015-01-09 | 2016-07-16 | 裕勤科技股份有限公司 | Vehicle recognition and detection system, vehicle information collection method, vehicle information detection method and vehicle information inquiry method |
| CN104933870A (en) * | 2015-05-21 | 2015-09-23 | 中兴软创科技股份有限公司 | Vehicle fake plate identification method and device based on vehicle behavior analysis |
| TW201714151A (en) * | 2015-10-05 | 2017-04-16 | Chunghwa Telecom Co Ltd | Vehicle identifier matching method utilizes function values to show corresponding degree between two types of identifiers and establish two types of identifier corresponding tables among plural articles |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI694410B (en) * | 2019-10-24 | 2020-05-21 | 中華電信股份有限公司 | Container terminal control system combined with ai image detection and identification |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202008322A (en) | 2020-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7630515B2 (en) | Method of and apparatus for setting image-capturing conditions, and computer program | |
| CN109961106B (en) | Training method and device for trajectory classification model, and electronic device | |
| CN108090458B (en) | Human body falling detection method and device | |
| CN112307868B (en) | Image recognition method, electronic device and computer readable medium | |
| CN112257660B (en) | Method, system, equipment and computer readable storage medium for removing invalid passenger flow | |
| CN104933870B (en) | Vehicle fake plate identification method and device based on vehicle behavior analysis | |
| CN110414376B (en) | Method for updating face recognition model, face recognition camera and server | |
| KR102260123B1 (en) | Apparatus for Sensing Event on Region of Interest and Driving Method Thereof | |
| CN107256394A (en) | Driver information and information of vehicles checking method, device and system | |
| CN111382808A (en) | Vehicle detection processing method and device | |
| CN113591520A (en) | Image identification method, intrusion object detection method and device | |
| WO2021184628A1 (en) | Image processing method and device | |
| CN104504906A (en) | A license plate recognition method and system | |
| US20230012137A1 (en) | Pedestrian search method, server, and storage medium | |
| CN108647106A (en) | Using abnormality eliminating method, storage medium and computer equipment | |
| CN110322687B (en) | Method and device for determining running state information of target intersection | |
| US20190088038A1 (en) | Same vehicle detection device, toll collection facility, same vehicle detection method, and program | |
| TWI674560B (en) | Behavior analysis system and method of vehicle | |
| CN114118271A (en) | Image determination method, device, storage medium and electronic device | |
| CN110929704A (en) | License plate number matching method and device, storage medium and electronic device | |
| US7467069B2 (en) | Method and apparatus for extracting information from an array of hazardous material sensors | |
| CN111291597B (en) | An image-based crowd situation analysis method, device, equipment and system | |
| CN113674224B (en) | A monitoring point management method and device | |
| CN111145212A (en) | Target tracking processing method and device | |
| CN113077018A (en) | Target object identification method and device, storage medium and electronic device |