TWI669589B - Maximum power tracking method for solar cell and system thereof suitable for real-time online environment - Google Patents
Maximum power tracking method for solar cell and system thereof suitable for real-time online environment Download PDFInfo
- Publication number
- TWI669589B TWI669589B TW107130069A TW107130069A TWI669589B TW I669589 B TWI669589 B TW I669589B TW 107130069 A TW107130069 A TW 107130069A TW 107130069 A TW107130069 A TW 107130069A TW I669589 B TWI669589 B TW I669589B
- Authority
- TW
- Taiwan
- Prior art keywords
- output
- maximum power
- solar cell
- microcontroller
- fuzzy
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000004891 communication Methods 0.000 claims abstract description 21
- 238000012549 training Methods 0.000 claims abstract description 16
- 210000004027 cell Anatomy 0.000 claims description 64
- 238000013528 artificial neural network Methods 0.000 claims description 32
- 230000008859 change Effects 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 210000002569 neuron Anatomy 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims 1
- 230000001537 neural effect Effects 0.000 abstract description 6
- 230000036632 reaction speed Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Control Of Electrical Variables (AREA)
- Photovoltaic Devices (AREA)
Abstract
本發明係有關於一種適用於即時線上環境的太陽能電池最大功率追蹤方法及系統,其主要係令最大功率追蹤系統之微控制器供連結接收太陽能電池之電壓、電流訊號、及環境之照度與溫度資料,且於微控制器內建有模糊擾動法,令PWM驅動器連接於微控制器與直流/直流轉換器之間,且令直流/直流轉換器與太陽能電池連接,以由微控制器輸出不同責任週期的PWM訊號驅動PWM驅動器而驅動直流/直流轉換器進行輸出,於人機介面中進行類神經網路法之訓練,並將訓練好的權值經由通訊模組傳輸至微控制器;據此,不僅能依據目前位置適時調整擾動量大小,並提供較精確的追蹤控制,且其反應速度非常快,令最大功率追蹤更適合於即時線上環境,並可減輕微控制器負擔,讓其能適合於全年不同環境。 The invention relates to a solar cell maximum power tracking method and system suitable for a real-time online environment, which mainly enables a microcontroller of a maximum power tracking system to connect and receive the voltage, current signal, and ambient illuminance and temperature of the solar cell. Data, and a fuzzy perturbation method built into the microcontroller, so that the PWM driver is connected between the microcontroller and the DC/DC converter, and the DC/DC converter is connected to the solar cell to be output by the microcontroller. The duty cycle PWM signal drives the PWM driver to drive the DC/DC converter for output, performs neural network-like training in the human-machine interface, and transmits the trained weights to the microcontroller via the communication module; In this way, not only can the disturbance amount be adjusted according to the current position, but also provide more accurate tracking control, and the reaction speed is very fast, which makes the maximum power tracking more suitable for the online environment, and can reduce the burden on the microcontroller, so that it can Suitable for different environments throughout the year.
Description
本發明係有關於一種適用於即時線上環境的太陽能電池最大功率追蹤方法及系統,尤其是指一種不僅能依據目前位置適時調整擾動量大小,並提供較精確的追蹤控制,且其反應速度非常快,令最大功率追蹤更適合於即時線上環境,並可減輕微控制器負擔,讓其能適合於全年不同環境,而在其整體施行使用上更增實用功效特性之適用於即時線上環境的太陽能電池最大功率追蹤方法及系統創新設計者。 The invention relates to a solar cell maximum power tracking method and system suitable for a real-time online environment, in particular to a method for not only adjusting the amount of disturbance according to the current position, but also providing more accurate tracking control, and the reaction speed is very fast. The solar power is suitable for the real-time online environment, and the burden on the microcontroller can be reduced, so that it can be adapted to different environments throughout the year, and the solar energy is applied to the real-time online environment. Battery maximum power tracking method and system innovation designer.
按,現有太陽能電池最大功率追蹤方法主要包含硬體技術與軟體技術兩方面,硬體技術如實際量測法〔Actual Measurement〕與功率補償法〔Power Compensation Method〕;軟體技術方法甚多,主要為擾動觀 察法〔Perturbation & Observation,P & O〕、增量電導法〔Incremental Conductance Algorithm〕及模糊邏輯法〔Fuzzy Logic Method〕等。硬體技術由於成本較高,因此較少人採用;軟體技術大多將追蹤方法撰寫於微控制器或控制晶片中,再透過脈波寬度調變〔PWM〕技術控制轉換器輸出,以達到最大功率追蹤目的。 According to the existing solar cell maximum power tracking method, it mainly includes two aspects of hardware technology and software technology. Hardware technology such as Actual Measurement and Power Compensation Method; software technology methods are mostly Disturbance view Perturbation & Observation (P & O), Incremental Conductance Algorithm, and Fuzzy Logic Method. Hardware technology is less expensive because of its higher cost; software technology mostly writes tracking methods in microcontrollers or control chips, and then controls the converter output through pulse width modulation (PWM) technology to achieve maximum power. Tracking purpose.
其中,就常見之太陽能電池最大功率追蹤方法,請參閱102年9月21日公告之第I409611號「太陽能電池最大功率追蹤方法」,所述太陽能電池之輸出電源經由一轉換單元改變直流電壓值並輸出至一負載,轉換單元是由一脈寬調變訊號控制,脈寬調變訊號之脈寬比改變時太陽能電池之輸出電流與電壓亦改變,最大功率追蹤方法包含以下步驟:(A)設定三初始之脈寬調變訊號,且該等脈寬調變訊號之脈寬比由小而大依序為第一、第二、第三脈寬比,並傳送至轉換單元;(B)分別量取太陽能電池於第一、第二、第三脈寬比下之輸出電流與輸出電壓值;(C)計算出太陽能電池分別於第一、第二、第三脈寬比下之輸出功率,並分別令為第一、第二、第三輸出功率;(D)如果第一、第二、第三輸出功率依序遞增,則求取一脈寬間隔值,並令第二脈寬比成為新第一脈寬比,令第三脈寬比成為新第二脈寬比,令第三脈寬比加上脈寬間隔值成為新第三脈寬比,以新第一、第二、第三脈寬比重複步驟B;(E)如果第一、第二、第三輸出功率依序遞減,則求取一脈寬間隔值,並令第 二脈寬比成為新第三脈寬比,令第一脈寬比成為新第二脈寬比,令第一脈寬比減該脈寬間隔值成為新第一脈寬比,以新第一、第二、第三脈寬比重複步驟B;(F)如果第二輸出功率大於第一輸出功率、且第二輸出功率也大於第三輸出功率,則以二項次曲線公式求取新第二脈寬比,並量測計算新第二輸出功率;(G)如果新第二輸出功率與原第二輸出功率間之差值大於新第二輸出功率之預定比例,則以新第二脈寬比帶入二項次曲線公式求取另一新第二脈寬比,並量測計算新第二輸出功率,重複步驟F;及(I)如果新第二輸出功率與原第二輸出功率間之差值小於新第二輸出功率之預定比例,則新第二輸出功率為最大輸出功率。 Among them, as for the common method of tracking the maximum power of the solar cell, please refer to "Ice Battery Maximum Power Tracking Method" published on September 21, 102, the output power of the solar cell is changed by a conversion unit and the DC voltage value is changed. Output to a load, the conversion unit is controlled by a pulse width modulation signal, and the output current and voltage of the solar cell also change when the pulse width ratio of the pulse width modulation signal is changed. The maximum power tracking method includes the following steps: (A) setting The first initial pulse width modulation signal, and the pulse width ratio of the pulse width modulation signals is small and large, and the first, second, and third pulse width ratios are sequentially transmitted to the conversion unit; (B) respectively Measure the output current and the output voltage value of the solar cell at the first, second, and third pulse width ratios; (C) calculate the output power of the solar cell at the first, second, and third pulse width ratios, And respectively, the first, second, and third output powers are respectively; (D) if the first, second, and third output powers are sequentially incremented, a pulse width interval value is obtained, and the second pulse width ratio is made New first pulse width ratio, order The three-pulse width ratio becomes the new second pulse width ratio, so that the third pulse width ratio plus the pulse width interval value becomes the new third pulse width ratio, and step B is repeated with the new first, second, and third pulse width ratios; E) if the first, second, and third output powers are sequentially decreased, then a pulse width interval value is obtained, and The second pulse width ratio becomes the new third pulse width ratio, so that the first pulse width ratio becomes the new second pulse width ratio, so that the first pulse width ratio minus the pulse width interval value becomes the new first pulse width ratio, and the new first Repeating step B with the second and third pulse width ratios; (F) if the second output power is greater than the first output power and the second output power is greater than the third output power, then the new parameter is obtained by the binomial curve formula a second pulse width ratio, and measuring a new second output power; (G) if the difference between the new second output power and the original second output power is greater than a predetermined ratio of the new second output power, then the new second pulse The width ratio is taken into the second-order curve formula to obtain another new second pulse width ratio, and the new second output power is calculated and measured, and step F is repeated; and (I) if the new second output power and the original second output power The difference between the two is less than a predetermined ratio of the new second output power, and the new second output power is the maximum output power.
請再參閱公告於102年1月11日之第I382646號「具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法」,其包含:以一第一交流電壓檢出器檢出一交流電源系統之電壓後送至一帶通濾波器,且該帶通濾波器之中心頻率為該交流電源系統之基本波頻率,以便該帶通濾波器獲得該交流電源系統之基本波成份,其中該基本波成份係為一弦波信號;以一相移電路將該帶通濾波器所產生之弦波信號進行超前90度相移;以一乘法器將經過90度相移之後的該弦波信號及一最大功率追蹤控制電路之輸出信號相乘得到一垂直向量信號;以一加法器將該垂直向量信號與該第一交流電壓檢出器所檢出之電壓信號相加,進而獲得一輸出電壓參考信號;以一第二交流電壓檢出器檢出一直流/交流電力轉換器之輸出濾波器之輸出電壓並送至一減法器之一輸入端,該減法器之 另一輸入端係連接該加法器,且該減法器係將該輸出電壓參考信號與該直流/交流電力轉換器之輸出電壓進行相減;以一波形控制電路接收該減法器之輸出信號並形成一調變信號;以一脈寬調變電路接收該波形控制電路所輸出之調變信號並送至一驅動電路,該驅動電路係產生一組驅動信號控制該直流/交流電力轉換器之電力電子開關組。 Please refer to the "Control Method for Voltage Controlled DC/AC Power Converters with Maximum Power Tracking", published on January 11, 102, No. I382646, which includes: detecting a first AC voltage detector The voltage of the AC power system is sent to a bandpass filter, and the center frequency of the bandpass filter is the fundamental wave frequency of the AC power system, so that the bandpass filter obtains the fundamental wave component of the AC power system, wherein The fundamental wave component is a sine wave signal; the sine wave signal generated by the band pass filter is phase-shifted by 90 degrees by a phase shift circuit; the sine wave signal after a phase shift of 90 degrees by a multiplier And multiplying an output signal of a maximum power tracking control circuit to obtain a vertical vector signal; adding an vertical vector signal to the voltage signal detected by the first AC voltage detector by an adder to obtain an output voltage a reference signal; detecting, by a second AC voltage detector, an output voltage of an output filter of the DC/AC power converter and sending it to an input of a subtractor, the subtractor The other input is connected to the adder, and the subtractor subtracts the output voltage reference signal from the output voltage of the DC/AC power converter; and receives the output signal of the subtractor by a waveform control circuit and forms a modulation signal; receiving a modulation signal outputted by the waveform control circuit by a pulse width modulation circuit and sending the signal to a driving circuit, wherein the driving circuit generates a set of driving signals to control the power of the DC/AC power converter Electronic switch set.
請再參閱公開於94年12月7日之第200723665號「利用阻抗匹配法之太陽光伏系統最大功率追蹤技術」,步驟包含:量測該太陽光伏系統之一開路電壓(Voc)值及一短路電流(Ise)值;將該開路電壓值除以該短路電流值再乘以一修正常數(K),得到該太陽光伏系統中之一阻抗值;根據該阻抗值,決定該太陽光伏系統之一最佳電壓值與一最佳電流值;以及根據該最佳電壓值與該最佳電流值,決定後續最大功率點,使得該太陽光伏系統維持在該最大功率點上。 Please refer to 2007023665, "Using Impedance Matching Method for Maximum Power Tracking Technology of Solar Photovoltaic System", which is disclosed on December 7, 1994. The steps include: measuring the open circuit voltage (V oc ) value of the solar photovoltaic system and a a short circuit current (I se ) value; dividing the open circuit voltage value by the short circuit current value and multiplying the correction constant (K) to obtain an impedance value in the solar photovoltaic system; determining the solar photovoltaic system according to the impedance value An optimal voltage value and an optimal current value; and determining a subsequent maximum power point based on the optimal voltage value and the optimal current value such that the solar photovoltaic system is maintained at the maximum power point.
請再參閱公開於104年7月1日之第201525643號「以Fuzzy DR-LMS演算法估測太陽能板最大功率點之電壓」,包括:取得已知照度值與最大功率電壓值,以照度值為Fuzzy DR-LMS濾波器的輸入值,最大功率的電壓值則為濾波器的輸出值,利用調適型濾波器的估測能力,經過Fuzzy DR-LMS演算法調整濾波器之係數;以及根據該濾波器係數的調整,取得照度與最大功率電壓值之間的關係,直接利用濾波係數進而估測下一筆照度的最大 功率電壓;藉以省去複雜的太陽能板最大功率點追踨運算,簡化並加速太陽能最大功率的追蹤流程。 Please refer to 201525643, “Recommended to estimate the maximum power point of the solar panel by the Fuzzy DR-LMS algorithm”, which is published on July 1, 104, including: obtaining the known illuminance value and the maximum power voltage value, and the illuminance value. For the input value of the Fuzzy DR-LMS filter, the maximum power voltage value is the output value of the filter, and the coefficient of the filter is adjusted by the Fuzzy DR-LMS algorithm using the estimation capability of the adaptive filter; Adjust the filter coefficient to obtain the relationship between the illuminance and the maximum power voltage value, and directly use the filter coefficient to estimate the maximum illuminance Power voltage; to eliminate the need for complex solar panel maximum power point tracking operation, simplify and accelerate the tracking process of solar energy maximum power.
請再參閱公開於103年6月1日之第201421188號「增加照度引用率於改善太陽能電池最大功率追蹤之電壓預測方法」,其包含有:取得相當數量之實際照度數據;以灰預測方式介入前三筆照度數據來預測下一時間點的預測照度數據;利用插值法加入預測照度數據於實際照度數據中增加照度數據;以擾動觀察法追蹤最大功率電壓點取樣值;以該最大功率電壓點取樣值驅動控制單元逐步調整電壓,使太陽能電池在兩取樣值之間具有更平滑的供電性能。 Please refer to the 201421188 “Improving Illumination Citation Rate for Improving the Maximum Power Tracking of Solar Cells” published on June 1, 103, which includes: obtaining a considerable amount of actual illuminance data; intervening in grey prediction The first three stroke illuminance data is used to predict the predicted illuminance data at the next time point; the illuminance data is added to the actual illuminance data by using the interpolation method to add the predicted illuminance data; the maximum power voltage point sampling value is tracked by the disturbance observation method; The sampled value drives the control unit to gradually adjust the voltage so that the solar cell has a smoother power supply between the two samples.
又,現今一般太陽能電池最大功率追蹤方法所常見大多皆係採用擾動觀察法進行最大功率追蹤,此方法雖具有簡單易於實現的優點,但在實際操作施行使用上卻仍然發現,其追蹤速度過於緩慢,且容易在最大功效點附加震盪,致令其在整體施行使用上仍存在有改進之空間。 Moreover, most of the current general solar cell maximum power tracking methods use the perturbation observation method for maximum power tracking. Although this method has the advantages of being simple and easy to implement, it still finds that the tracking speed is too slow in actual operation and implementation. And it is easy to add shock at the maximum efficiency point, so there is still room for improvement in the overall implementation.
緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之結構及缺失再予以研究改良,提供一種適用於即時線上環境的太陽能電池最大功率追蹤方法及系統,以期達到更佳實用價值性之目的者。 Therefore, the inventor has in view of this, and has been rich in design development and actual production experience of the relevant industry for many years, and has researched and improved the existing structure and defects to provide a solar cell maximum power tracking method and system suitable for real-time online environment. In order to achieve better practical value for the purpose.
本發明之主要目的在於提供一種適用於即時線上環境的太 陽能電池最大功率追蹤方法及系統,其主要係不僅能依據目前位置適時調整擾動量大小,並提供較精確的追蹤控制,且其反應速度非常快,令最大功率追蹤更適合於即時線上環境,並可減輕微控制器負擔,讓其能適合於全年不同環境,而在其整體施行使用上更增實用功效特性者。 The main object of the present invention is to provide a suitable environment for the online environment. The maximum power tracking method and system of the solar battery can not only adjust the disturbance amount according to the current position, but also provide more accurate tracking control, and the reaction speed is very fast, so that the maximum power tracking is more suitable for the online environment. It can also reduce the burden on the microcontroller, so that it can be adapted to different environments throughout the year, and it is more practical and useful in its overall implementation.
本發明適用於即時線上環境的太陽能電池最大功率追蹤方法之主要目的與功效,係由以下具體技術手段所達成:其主要係於最大功率追蹤包含有前級微控制器內建之該模糊擾動法及後級與該微控制器連接之人機介面進行之該類神經網路法〔ANN〕;該模糊擾動法〔FMPPT〕主要係應用模糊推論法則推估下一次的擾動量:其係先進行擾動觀察法:藉由將太陽能電池之輸出電壓與電流回授至該最大功率追蹤系統之該微控制器,藉由該微控制器送出不同責任週期的PWM訊號驅動PWM驅動器,以利用該PWM驅動器驅動改變該直流/直流轉換器的輸出,並進一步改變該太陽能電池的端電壓及輸出功率;在此同時,觀察相關照度〔L ux 〕及溫度〔T〕,並比較該直流/直流轉換器輸出變動前後該太陽能電池的輸出電壓與輸出功率的大小來決定下次之輸出為增加或減少;再進行模糊擾動法:其係藉由模糊推論引擎決定下次擾動的量,當工作點離最大功率點〔Pmax〕遠時,其擾動量大;反之則
減小擾動量,輸入功率變化量〔△P〕與電壓變化量〔△V〕,而輸出則為責任週期調整量〔△D〕,將兩個輸入變數均分割為七個模糊區間,以建立模糊知識庫;其形式為:R i :If△P is A1 and△V is B1 Then△D is C1;進行類神經網路法〔ANN〕:利用前級之該模糊擾動法所收集到的輸入/輸出資料對藉由類神經網路進行學習訓練,輸入層為5個輸入變數,分別為太陽能電池輸出電壓〔V pv 〕、太陽能電池輸出電流〔I pv 〕、太陽能電池功率〔P pv 〕、照度〔L ux 〕及溫度〔T〕,給予初始輸入矩陣x (0)=[V pv I pv P pv L ux T] T ,期望輸出d,並隨機產生權值矩陣w (1)及w (2)、偏權值矩陣b (1)及b (2),其值均勻分佈於[0,1]間,其中期望輸出d為模糊擾動法的輸出電壓(FMPPT(V out )),第二層為含有5個神經元的隱藏層,故總共有25個權值w ji(j=i=1~5)與5個偏權值b h(h=1~5),第三層輸出層為達到最大功率所需之責任週期變化量,由1個神經元所構成,總共含有5個權值w k(k=1~5)與1個偏權值b 1;執行前向傳遞〔forward propagation〕運算,
本發明適用於即時線上環境的太陽能電池最大功率追蹤方法的較佳實施例,其中,進一步執行向後傳遞〔backpropagation〕運算,利用最小均方誤差準則修正隱藏層及輸出層權值,則
本發明適用於即時線上環境的太陽能電池最大功率追蹤方法的較佳實施例,其中,該α數值在0.5至0.99之間,該η數值在0.01~0.5之間。 The present invention is applicable to a preferred embodiment of a solar cell maximum power tracking method in a real-time online environment wherein the alpha value is between 0.5 and 0.99 and the η value is between 0.01 and 0.5.
本發明適用於即時線上環境的太陽能電池最大功率追蹤方 法的較佳實施例,其中,該人機介面係為LabVIEW-Matlab介面,以將資料饋入Matlab進行重新訓練。 The invention is applicable to the maximum power tracking of solar cells in a real-time online environment A preferred embodiment of the method, wherein the human interface is a LabVIEW-Matlab interface for feeding data into Matlab for retraining.
本發明適用於即時線上環境的太陽能電池最大功率追蹤系統之主要目的與功效,係由以下具體技術手段所達成:係包含有適用於即時線上環境的太陽能電池最大功率追蹤方法,其主要係令最大功率追蹤系統包括有微控制器、PWM〔Pulse Width Modulation,脈波寬度調變〕驅動器、直流/直流轉換器、通訊模組及人機介面;其中:該微控制器,其供連結接收太陽能電池之電壓、電流訊號、及環境之照度與溫度資料,且於該微控制器內建有模糊擾動法〔FMPPT〕;該PWM驅動器,其與該微控制器連接,以由該微控制器輸出不同責任週期的PWM訊號驅動該PWM驅動器;該直流/直流轉換器,其與該PWM驅動器連接,且令該直流/直流轉換器與該太陽能電池連接,而能利用該PWM驅動器驅動該直流/直流轉換器進行輸出;該通訊模組,其與該微控制器連接;該人機介面,其與該通訊模組連接,該人機介面中進行類神經網路法之訓練,並將訓練好的權值經由該通訊模組傳輸至該微控制器。 The main purpose and function of the solar cell maximum power tracking system applicable to the instant online environment are achieved by the following specific technical means: the method includes the maximum power tracking method of the solar cell suitable for the on-line environment, and the main system is the largest The power tracking system comprises a microcontroller, a PWM (Pulse Width Modulation) driver, a DC/DC converter, a communication module and a human machine interface; wherein: the microcontroller is configured to receive and receive a solar cell Voltage, current signal, and ambient illuminance and temperature data, and a fuzzy perturbation method [FMPPT] is built in the microcontroller; the PWM driver is connected to the microcontroller to output different signals from the microcontroller The PWM signal of the duty cycle drives the PWM driver; the DC/DC converter is connected to the PWM driver, and the DC/DC converter is connected to the solar cell, and the PWM driver can be used to drive the DC/DC conversion Outputting the communication module, which is connected to the microcontroller; the human machine interface, and the communication module The group is connected, and the human-machine interface is trained in the neural network method, and the trained weight is transmitted to the microcontroller via the communication module.
本發明適用於即時線上環境的太陽能電池最大功率追蹤系統的較佳實施例,其中,該直流/直流轉換器之輸出端連接直流負載、蓄電池任一種。 The present invention is applicable to a preferred embodiment of a solar cell maximum power tracking system in a real-time online environment, wherein the output of the DC/DC converter is connected to either a DC load or a battery.
本發明適用於即時線上環境的太陽能電池最大功率追蹤系統的較佳實施例,其中,該直流/直流轉換器之輸出端同時連接該直流負載與該蓄電池。 The present invention is applicable to a preferred embodiment of a solar cell maximum power tracking system in a real-time online environment, wherein the output of the DC/DC converter simultaneously connects the DC load to the battery.
本發明適用於即時線上環境的太陽能電池最大功率追蹤系統的較佳實施例,其中,該直流/直流轉換器為SEPIC轉換器。 The present invention is applicable to a preferred embodiment of a solar cell maximum power tracking system for a real-time online environment, wherein the DC/DC converter is a SEPIC converter.
本發明適用於即時線上環境的太陽能電池最大功率追蹤系統的較佳實施例,其中,該通訊模組係進行RS-485介面與TCP/IP介面之間的訊號轉換。 The present invention is applicable to a preferred embodiment of a solar cell maximum power tracking system in a real-time online environment, wherein the communication module performs signal conversion between the RS-485 interface and the TCP/IP interface.
本發明適用於即時線上環境的太陽能電池最大功率追蹤系統的較佳實施例,其中,該人機介面係採用LabVIEW圖形監控軟體,於該人機介面中利用Matlab軟體提供類神經網路程式碼。 The present invention is applicable to a preferred embodiment of a solar cell maximum power tracking system in a real-time online environment, wherein the human-machine interface adopts LabVIEW graphics monitoring software, and the Matlab software is used to provide a neural network code in the human-machine interface.
(1)‧‧‧最大功率追蹤系統 (1)‧‧‧Maximum power tracking system
(11)‧‧‧微控制器 (11)‧‧‧Microcontrollers
(12)‧‧‧PWM驅動器 (12)‧‧‧PWM driver
(13)‧‧‧直流/直流轉換器 (13)‧‧‧DC/DC converter
(14)‧‧‧通訊模組 (14) ‧‧‧Communication Module
(15)‧‧‧人機介面 (15) ‧‧‧Human Machine Interface
(2)‧‧‧太陽能電池 (2) ‧‧‧ solar cells
(3)‧‧‧直流負載 (3) ‧ ‧ DC load
(4)‧‧‧蓄電池 (4) ‧‧‧Battery
第一圖:本發明之系統架構示意圖 First: Schematic diagram of the system architecture of the present invention
第二圖:本發明之太陽能電池功率〔PPV〕與電壓〔VPV〕曲線圖 Second: the solar cell power [P PV ] and voltage [V PV ] curves of the present invention
第三圖:本發明之擾動觀察法動作流程示意圖 Third figure: Schematic diagram of the action flow of the disturbance observation method of the present invention
第四圖:本發明之模糊控制系統方塊圖 Figure 4: Block diagram of the fuzzy control system of the present invention
第五圖:本發明之輸入模糊歸屬函數示意圖〔功率變化量〕 Figure 5: Schematic diagram of the input fuzzy attribution function of the present invention [power variation]
第六圖:本發明之輸入模糊歸屬函數示意圖〔電壓變化量〕 Figure 6: Schematic diagram of the input fuzzy attribution function of the present invention [voltage variation]
第七圖:本發明之輸出模糊歸屬函數示意圖〔責任週期變化量〕 Figure 7: Schematic diagram of the output fuzzy attribution function of the present invention [change of duty cycle]
第八圖:本發明之類神經網路於最大功率追蹤架構示意圖 Figure 8: Schematic diagram of the maximum power tracking architecture of the neural network of the present invention
第九圖:本發明之最大功率追蹤流程示意圖 Figure 9: Schematic diagram of the maximum power tracking process of the present invention
第十圖:本發明之模糊擾動法〔FMPPT〕最大功率追蹤狀況曲線圖〔照度20000 lux〕 Figure 10: Maximum power tracking condition curve of the fuzzy perturbation method [FMPPT] of the present invention (illuminance 20000 lux)
第十一圖:本發明之模糊擾動法〔FMPPT〕最大功率追蹤狀況曲線圖〔照度40000 lux〕 Figure 11: Maximum power tracking condition curve of the fuzzy perturbation method [FMPPT] of the present invention (illuminance 40000 lux)
第十二圖:本發明之類神經網路法〔ANN〕最大功率追蹤狀況曲線圖〔照度20000 lux〕 Twelfth figure: The maximum power tracking condition curve of the neural network method [ANN] of the present invention (illuminance 20000 lux)
第十三圖:本發明之類神經網路法〔ANN〕最大功率追蹤狀況曲線圖〔照度40000 lux〕 Thirteenth figure: The maximum power tracking condition curve of the neural network method [ANN] of the present invention (illuminance 40,000 lux)
第十四圖:本發明之模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤狀況比較曲線圖 Figure 14: Comparison of the tracking state of the fuzzy perturbation method [FMPPT] and the neural network-like method [ANN] of the present invention
第十五圖:本發明之模糊擾動法〔FMPPT〕與類神經網 路法〔ANN〕追蹤點附近區域放大圖 The fifteenth figure: the fuzzy perturbation method [FMPPT] and the neural network of the present invention Magnification of the area near the roadway [ANN] tracking point
第十六圖:本發明之重新訓練後的模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤狀況比較曲線圖 Figure 16: Comparison of the tracking state of the fuzzy perturbation method [FMPPT] and the neural network-like method [ANN] after the retraining of the present invention
第十七圖:本發明之重新訓練後的模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤點附近區域放大圖 Figure 17: Enlarged map of the vicinity of the tracking point after the retraining fuzzy perturbation method [FMPPT] and the neural network method [ANN] of the present invention
為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:首先,請參閱第一圖本發明之系統架構示意圖所示,本發明主要係令最大功率追蹤系統(1)包括有微控制器(11)、PWM〔Pulse Width Modulation,脈波寬度調變〕驅動器(12)、直流/直流轉換器(13)、通訊模組(14)及人機介面(15);其中:該微控制器(11),其供連結接收太陽能電池(2)之電壓、電流訊號、及環境之照度與溫度資料,且於該微控制器(11)內建有模糊擾動法〔FMPPT〕;該PWM驅動器(12),其與該微控制器(11)連接,以由該微控制器(11)輸出不同責任週期的PWM訊號驅動該PWM驅動器(12); 該直流/直流轉換器(13),其與該PWM驅動器(12)連接,且令該直流/直流轉換器(13)與該太陽能電池(2)連接,並於該直流/直流轉換器(13)之輸出端連接直流負載(3)、蓄電池(4)任一種,或係於該直流/直流轉換器(13)之輸出端同時連接該直流負載(3)與該蓄電池(4),該直流/直流轉換器(13)可為SEPIC轉換器,使得不僅於輸出電壓沒有極性相反的問題,且能進行升壓操作,並於調整其責任週期比D的值時能使轉換電路工作於升壓或降壓,以增加該太陽能電池(2)之種類與電壓範圍選擇彈性,而能利用該PWM驅動器(12)驅動該直流/直流轉換器(13)進行輸出;該通訊模組(14),其與該微控制器(11)連接,該通訊模組(14)能進行RS-485介面與TCP/IP介面之間的訊號轉換;該人機介面(15),其與該通訊模組(14)連接,該人機介面(15)係採用LabVIEW圖形監控軟體,於該人機介面(15)中利用Matlab軟體提供類神經網路程式碼,使得能啟動該LabVIEW圖形監控軟體中的Matlab Script Node功能,以在Matlab環境中進行類神經網路法之訓練,並將訓練好的權值經由該通訊模組(14)傳輸至該微控制器(11)。 For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, the following is a detailed description, and please refer to the drawings and drawings: First, please refer to 1 is a schematic diagram of a system architecture of the present invention. The present invention mainly provides a maximum power tracking system (1) including a microcontroller (11), a PWM (Pulse Width Modulation) driver (12), a DC/DC converter (13), a communication module (14), and a human-machine interface (15); wherein: the microcontroller (11) is configured to receive and receive the voltage, current signal, and environment of the solar cell (2) Illumination and temperature data, and a fuzzy perturbation method [FMPPT] is built in the microcontroller (11); the PWM driver (12) is connected to the microcontroller (11) to be used by the microcontroller ( 11) output PWM signals with different duty cycles to drive the PWM driver (12); The DC/DC converter (13) is connected to the PWM driver (12), and the DC/DC converter (13) is connected to the solar cell (2), and the DC/DC converter (13) The output end is connected to either the DC load (3), the battery (4), or the output of the DC/DC converter (13) is simultaneously connected to the DC load (3) and the battery (4), the DC The /DC converter (13) can be a SEPIC converter, so that not only the output voltage has no opposite polarity problem, but also can perform the boosting operation, and the switching circuit can be operated to boost when the duty cycle ratio D is adjusted. Or stepping down to increase the flexibility of the type and voltage range of the solar cell (2), and the PWM driver (12) can be used to drive the DC/DC converter (13) for output; the communication module (14), It is connected to the microcontroller (11), and the communication module (14) can perform signal conversion between the RS-485 interface and the TCP/IP interface; the human interface (15), and the communication module ( 14) Connection, the human-machine interface (15) adopts the LabVIEW graphical monitoring software, and the Matlab software provides the class in the human-machine interface (15). The neural network code enables the Matlab Script Node function in the LabVIEW graphical monitoring software to be trained in the neural network method in the Matlab environment, and the trained weights are transmitted through the communication module (14). Transfer to the microcontroller (11).
而本發明於操作使用上,其係包含有前級該微控制器(11) 內建之該模糊擾動法及後級該人機介面(15)進行之該類神經網路法〔ANN〕。 The present invention, in operational use, includes a pre-stage microcontroller (11) The fuzzy perturbation method built in and the neural network method [ANN] performed by the human-machine interface (15) in the latter stage.
該模糊擾動法〔FMPPT〕主要係應用模糊推論法則推估下一次的擾動量:其係先進行擾動觀察法:主要藉由將該太陽能電池(2)之輸出電壓與電流回授至該最大功率追蹤系統(1)之該微控制器(11),藉由該微控制器(11)送出不同責任週期的PWM訊號驅動該PWM驅動器(12),以利用該PWM驅動器(12)驅動改變該直流/直流轉換器(13)的輸出,並進一步改變該太陽能電池(2)的端電壓及輸出功率;在此同時,觀察相關照度〔L ux 〕及溫度〔T〕,並比較該直流/直流轉換器(13)輸出變動前後該太陽能電池(2)的輸出電壓與輸出功率的大小來決定下次之輸出為增加或減少。 The fuzzy perturbation method [FMPPT] mainly uses the fuzzy inference rule to estimate the next disturbance amount: it first performs the disturbance observation method: mainly by returning the output voltage and current of the solar cell (2) to the maximum power. The microcontroller (11) of the tracking system (1) drives the PWM driver (12) by sending a PWM signal of different duty cycle by the microcontroller (11) to use the PWM driver (12) to drive and change the DC /DC converter (13) output, and further change the terminal voltage and output power of the solar cell (2); at the same time, observe the relevant illuminance [ L ux ] and temperature [ T ], and compare the DC / DC conversion The output voltage and the output power of the solar cell (2) before and after the output of the device (13) determine whether the next output is increased or decreased.
請再一併參閱第二圖本發明之太陽能電池功率〔PPV〕與電壓〔VPV〕曲線圖所示,設定在最大功率點〔Pmax〕左側為A區、右側為B區;於該A區時,欲使功率往最大功率點〔Pmax〕移動,則須提高該太陽能電池(2)的輸出電壓,即降低責任週期比D;而在B區時,欲使功率往最大功率點〔Pmax〕移動,則須降低該太陽能電池(2)的輸出電壓,即提高責任週期比D,其提高或降低的量,即稱為擾動量。請再一併參閱第三圖本發明之擾動觀察法動作流程示意圖所示,於讀取該太陽能電池(2)的電壓和電流後, 予以計算輸出功率,若本次輸出功率大於前次輸出功率,則該微控制器(11)將調整責任週期〔D〕使輸出功率朝同一個方向變動;反之,若本次輸出功率小於前次輸出功率,則在下一個責任週期〔D〕時改變輸出功率的變動方向。 Please refer to the second diagram of the solar cell power [P PV ] and voltage [V PV ] graphs of the present invention, and set the left side of the maximum power point [P max ] to the A area and the right side to the B area; In the A zone, if the power is to be moved to the maximum power point [P max ], the output voltage of the solar cell (2) must be increased, that is, the duty cycle ratio D is lowered; and in the B zone, the power is required to be the maximum power point. When [P max ] is moved, the output voltage of the solar cell (2) must be lowered, that is, the duty cycle ratio D is increased, and the amount of increase or decrease is called the disturbance amount. Please refer to the third figure again. The schematic diagram of the operation diagram of the disturbance observation method of the present invention shows that after reading the voltage and current of the solar cell (2), the output power is calculated, if the current output power is greater than the previous output power. , the microcontroller (11) will adjust the duty cycle [D] to make the output power change in the same direction; conversely, if the output power is less than the previous output power, the output power is changed in the next duty cycle [D]. The direction of change.
再進行模糊擾動法:其係藉由模糊推論引擎決定下次擾動的量,當工作點離最大功率點〔Pmax〕遠時,其擾動量大;反之則減小擾動量。請再一併參閱第四圖本發明之模糊控制系統方塊圖所示,其係輸入功率變化量〔△P〕與電壓變化量〔△V〕,而輸出則為責任週期調整量〔△D〕,請再一併參閱第五圖本發明之輸入與輸出的模糊歸屬函數示意圖〔功率變化量〕、第六圖本發明之輸入與輸出的模糊歸屬函數示意圖〔電壓變化量〕及第七圖本發明之輸入與輸出的模糊歸屬函數示意圖〔責任週期變化量〕所示,其中LN為大的負、MN為中的負、SN為小的負、ZE為零、LP為大的正、MP為中的正、SP為小的正,由於兩個輸入變數均分割為七個模糊區間,因此知識庫將包含49〔7×7〕條推論引擎,如表1所示:
其形式如下:R i :If△P is A1 and△V is B1 Then△D is C1 Its form is as follows: R i : If ΔP is A 1 and ΔV is B 1 Then ΔD is C 1
舉例而言,第10條模糊規則:R10:If△P is MN and△V is SN Then△D is SN For example, the 10th fuzzy rule: R 10 : If ΔP is MN and ΔV is SN Then ΔD is SN
R10說明若功率變化量為中的負〔MN〕,即功率下降,且電壓變化量為小的負〔SN〕,則判斷工作在A區,此時需增加電壓以往最大功率點〔Pmax〕移動〔由A2移至A1〕,因此責任週期〔D〕變化量須為小的負〔SN〕,即微幅調小。 R 10 indicates that if the amount of power change is medium negative [MN], that is, the power is decreased, and the voltage change amount is small negative [SN], it is judged that the operation is in the A zone, and the voltage is required to increase the previous maximum power point [P max 〕 Move [from A2 to A1], so the duty cycle [D] must be small negative [SN], that is, the small amplitude is small.
再以第45條模糊規則為例:R45:If△P is LP and△V is SN Then△D is MP Take the 45th fuzzy rule as an example: R 45 : If △P is LP and △V is SN Then △D is MP
R45說明若功率變化量為大的正〔LP〕,即功率大幅增加,且電壓變化量為小的負〔SN〕,則判斷工作在B區,此時需減少電壓以繼續往最大功率點移動〔由B2移至B1〕,因此責任週期變化量須為中的正〔MP〕,即中幅調大。 R 45 shows that if the power change amount is large positive [LP], that is, the power is greatly increased, and the voltage change amount is small negative [SN], it is judged that the operation is in the B zone, and the voltage needs to be reduced to continue to the maximum power point. Move [from B2 to B1], so the duty cycle change must be medium positive [MP], that is, the medium amplitude is increased.
進行類神經網路法〔ANN〕:請再一併參閱第八圖本發明之類神經網路於最大功率追蹤架構示意圖所示,利用類神經之倒傳遞演算法進行資料訓練可分成下列幾個步驟: Perform Neural Network-like Method [ANN]: Please refer to the eighth diagram again. The neural network of the present invention is shown in the schematic diagram of the maximum power tracking architecture. The data training using the neural-like inverse transfer algorithm can be divided into the following step:
步驟1:給予初始輸入矩陣x (0)=[V pv I pv P pv L ux T] T ,期望 輸出d,並隨機產生權值矩陣w (1)及w (2)、偏權值矩陣b (1)及b (2),其值均勻分佈於[0,1]間,其中期望輸出d為模糊擾動法的輸出電壓(FMPPT(V out ))。 Step 1: Give the initial input matrix x (0) = [ V pv I pv P pv L ux T ] T , expect the output d , and randomly generate the weight matrix w (1) and w (2) , the weighted matrix b (1) and b (2) , whose values are evenly distributed between [0, 1], where the expected output d is the output voltage of the fuzzy perturbation method (FMPPT( V out )).
步驟2:執行前向傳遞〔forward propagation〕運算 Step 2: Perform a forward propagation operation
隱藏層輸出y (1)=f (1)(net (1)),其中f (1)為一雙曲線轉移函數,
輸出層輸出y (2)=f (2)(net (2)),其中f (2)為一雙曲線轉移函數,y (2)為類神經網路輸出電壓(ANN(V out )),誤差δ (2)=d-y (2)=FMPPT(V out )-ANN(V out ) Output layer output y (2) = f (2) ( net (2) ), where f (2) is a hyperbolic transfer function and y (2) is the neural network output voltage (ANN( V out )), Error δ (2) = d - y (2) = FMPPT( V out )-ANN( V out )
步驟3:執行向後傳遞〔backpropagation〕運算 Step 3: Perform a backpropagation operation
利用最小均方誤差準則修正隱藏層及輸出層權值,則
步驟3.1:調整輸出層權值w (2)對E的影響 Step 3.1: Adjust the impact of the output layer weight w (2) on E
步驟3.2:調整輸出層權值w (1)對E的影響 Step 3.2: Adjust the impact of the output layer weight w (1) on E
步驟3.3:調整各層權值 Step 3.3: Adjust the weight of each layer
其中w (1)(t+1)為第(t+1)時間〔或疊代次數〕隱藏層的權值,w (2)(t+1)為第(t+1)時間輸出層的權值,α為一衡量常數〔momentum constant〕,η為一學習率〔learning rate constant〕常數,α與η通常由使用者依據經驗或實驗設定,其值介於0與1之間。一般而言,α數值在0.5至0.99之間,η數值則在0.01~0.5之間,α數值大小會影響學習收斂速度,η值則會影響學習效果。 Where w (1) ( t +1) is the weight of the ( t +1) time [or iteration number] hidden layer, and w (2) ( t +1) is the ( t +1) time output layer The weight, α is a constant constant [momentum constant], η is a learning rate constant, and α and η are usually set by the user based on experience or experiment, and the value is between 0 and 1. In general, the alpha value is between 0.5 and 0.99, and the η value is between 0.01 and 0.5. The magnitude of α affects the learning convergence rate, and the value of η affects the learning effect.
步驟4:重複步驟2及步驟3,直至達到設定的疊代次數或程式收斂至誤差範圍內。 Step 4: Repeat steps 2 and 3 until the set number of iterations is reached or the program converges within the error range.
以下將藉由類神經網路法進行資料訓練進行詳細說明,利用 前級該微控制器(11)之該模糊擾動法所收集到的輸入/輸出資料,對後級該人機介面(15)藉由類神經網路進行學習訓練,請再一併參閱第八圖本發明之類神經網路於最大功率追蹤架構示意圖所示,輸入層為5個輸入變數,分別為太陽能電池輸出電壓〔V pv 〕、太陽能電池輸出電流〔I pv 〕、太陽能電池功率〔P pv 〕、照度〔L ux 〕及溫度〔T〕,第二層為含有5個神經元的隱藏層,故總共有25個權值w ji(j=i=1~5)與5個偏權值b h(h=1~5),第三層輸出層為達到最大功率所需之責任週期變化量,由1個神經元所構成,總共含有5個權值W k(k=1~5)與1個偏權值b 1。 The following is a detailed description of the data training by the neural network-like method, using the input/output data collected by the fuzzy perturbation method of the pre-stage microcontroller (11), and the human-machine interface (15) for the latter stage. For learning and training through a neural network, please refer to the eighth diagram. The neural network of the present invention is shown in the schematic diagram of the maximum power tracking architecture. The input layer is 5 input variables, respectively, the solar cell output voltage [ V Pv ], solar cell output current [ I pv ], solar cell power [ P pv ], illuminance [ L ux ] and temperature [ T ], the second layer is a hidden layer containing 5 neurons, so there are a total of 25 rights The value w ji ( j = i =1~5) and the 5 partial weights b h ( h =1~5) , the third layer of the output layer is the duty cycle change required to reach the maximum power, by 1 neuron The total consists of five weights W k ( k =1~5) and one partial weight b 1 .
在上述過程中,前級該微控制器(11)所使用的模糊擾動法能夠克服傳統擾動觀察法在最大功率點搖擺不定的缺點,且為能精確而快速地追蹤最大功率點〔Pmax〕,使得於後級該人機介面(15)利用前級該微控制器(11)所收集到的輸入/輸出資料對藉由類神經網路進行學習訓練,於訓練過程中,為使訓練資料能涵蓋所有可能的環境情況,於本發明中即利用重新訓練機制,其做法為:1.在後級追蹤階段,該微控制器(11)模糊擾動法於每隔一段時間〔如15秒〕執行一次,其所產生的輸出電壓與後級該人機介面(15)類神經網路的輸出電壓進行比較,當二者誤差大於1%時〔即〕,則將此相關資料收集起來;2.啟動該通訊模組(14)LabVIEW-Matlab介面,將資料饋入Matlab進行重新訓練;3.將訓練好 的權值透過該通訊模組(14)RS485轉TCP傳送至該微控制器(11)進行最大功率追蹤控制〔請再一併參閱第九圖本發明之最大功率追蹤流程示意圖所示〕。 In the above process, the fuzzy perturbation method used by the pre-stage micro-controller (11) can overcome the shortcoming of the conventional perturbation observation method at the maximum power point, and can accurately and quickly track the maximum power point [P max ]. In the latter stage, the human-machine interface (15) uses the input/output data collected by the pre-stage micro-controller (11) to perform learning training through the neural network, and during the training process, the training data is used. It can cover all possible environmental conditions. In the present invention, the retraining mechanism is utilized, which is: 1. In the latter stage of tracking, the microcontroller (11) fuzzy perturbation method is used at regular intervals (such as 15 seconds). Execute once, the output voltage produced by it is compared with the output voltage of the human-machine interface (15) neural network in the latter stage, when the error between the two is greater than 1% [ie ], then collect the relevant data; 2. Start the communication module (14) LabVIEW-Matlab interface, feed the data into Matlab for retraining; 3. Pass the trained weight through the communication module (14) RS485 to TCP is transmitted to the microcontroller (11) for maximum power tracking control (please refer to the ninth diagram of the present invention for the maximum power tracking process diagram).
如此一來,使得本發明於進行實驗測試時,先設定該太陽能電池(2)最大輸出功率Pmax=25W、開路電壓VOC=21.7V、短路電流ISC=1.31A、該蓄電池(4)充電電壓14.2~15V、該蓄電池(4)容量17Ah,請再一併參閱第十圖本發明之模糊擾動法〔FMPPT〕最大功率追蹤狀況曲線圖〔照度20000 lux〕、第十一圖本發明之模糊擾動法〔FMPPT〕最大功率追蹤狀況曲線圖〔照度40000 lux〕、第十二圖本發明之類神經網路法〔ANN〕最大功率追蹤狀況曲線圖〔照度20000 lux〕、第十三圖本發明之類神經網路法〔ANN〕最大功率追蹤狀況曲線圖〔照度40000 lux〕、第十四圖本發明之模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤狀況比較曲線圖及第十五圖本發明之模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤點附近區域放大圖所示,由於其比較平均百分比誤差e%=1.4935%〔>1%〕,因此啟動重新訓練機制。經訓練後的各層權值如下所示:隱藏層權值 In this way, when the invention is tested in the experiment, the solar cell (2) has a maximum output power P max = 25 W, an open circuit voltage V OC = 21.7 V, a short-circuit current I SC = 1.31 A, and the battery (4). Charging voltage 14.2~15V, the battery (4) capacity 17Ah, please refer to the tenth figure of the present invention, the fuzzy perturbation method [FMPPT] maximum power tracking condition graph (illuminance 20000 lux), the eleventh figure of the present invention Fuzzy perturbation method [FMPPT] maximum power tracking condition graph [illuminance 40000 lux], twelfth map, neural network method [ANN] of the present invention, maximum power tracking condition graph (illuminance 20000 lux), thirteenth map The neural network method [ANN] of the invention, the maximum power tracking condition graph (illuminance 40000 lux), the fourteenth graph, the fuzzy perturbation method [FMPPT] of the present invention and the neural network method [ANN] tracking state comparison graph and The fifteenth figure shows the enlarged perturbation map of the vicinity of the tracking point of the fuzzy perturbation method [FMPPT] and the neural network method [ANN] of the present invention, and since it compares the average percentage error e%=1.4935% [>1%], it starts Retraining mechanism The weights of the trained layers are as follows: hidden layer weights
隱藏層偏權值 Hidden layer bias
輸出層權值 Output layer weight
輸出層偏權值 Output layer bias value
請再一併參閱第十六圖本發明之重新訓練後的模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤狀況比較曲線圖及第十七圖本發明之重新訓練後的模糊擾動法〔FMPPT〕與類神經網路法〔ANN〕追蹤點附近區域放大圖所示,於經訓練後,其平均誤差已降至e%=0.732%,上述之平均誤差定義如下:
藉由以上所述,本發明之使用實施說明可知,本發明與現有技術手段相較之下,本發明主要係具有下列優點: From the above, the implementation description of the present invention shows that the present invention has the following advantages in comparison with the prior art means:
1.本發明於前級微控制器係使用模糊擾動法〔FMPPT〕, 使得能依據目前位置適時調整擾動量大小,因此能避免在最大功率點附近震盪的缺點,並提供較精確的追蹤控制。 1. The present invention uses a fuzzy perturbation method [FMPPT] in the pre-stage microcontroller. It can adjust the amount of disturbance according to the current position, so it can avoid the disadvantage of oscillating near the maximum power point and provide more accurate tracking control.
2.本發明於後級人機介面使用類神經網路法〔ANN〕,使得其輸入與輸出僅需要一些代數運算,反應速度非常快,連帶令最大功率追蹤更適合於即時線上環境。 2. The invention uses the neural network method [ANN] in the human-machine interface of the latter stage, so that its input and output only need some algebraic operation, and the reaction speed is very fast, and the maximum power tracking is more suitable for the real-time online environment.
3.本發明重新訓練機制藉由人機介面之LabVIEW-Matlab介面的Matlab Script Node功能在Matlab環境中進行訓練,除可減輕微控制器負擔,更可使得最大功率追蹤控制系統能適合於全年不同環境。 3. The retraining mechanism of the present invention is trained in the Matlab environment by the Matlab Script Node function of the LabVIEW-Matlab interface of the human machine interface, in addition to reducing the burden on the microcontroller, and making the maximum power tracking control system suitable for the whole year. Different environments.
然而前述之實施例或圖式並非限定本發明之產品結構或使用方式,任何所屬技術領域中具有通常知識者之適當變化或修飾,皆應視為不脫離本發明之專利範疇。 However, the above-described embodiments or drawings are not intended to limit the structure or the use of the present invention, and any suitable variations or modifications of the invention will be apparent to those skilled in the art.
綜上所述,本發明實施例確能達到所預期之使用功效,又其所揭露之具體構造,不僅未曾見諸於同類產品中,亦未曾公開於申請前,誠已完全符合專利法之規定與要求,爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, the embodiments of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in similar products, nor has it been disclosed before the application, and has completely complied with the provisions of the Patent Law. And the request, the application for the invention of a patent in accordance with the law, please forgive the review, and grant the patent, it is really sensible.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107130069A TWI669589B (en) | 2018-08-29 | 2018-08-29 | Maximum power tracking method for solar cell and system thereof suitable for real-time online environment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107130069A TWI669589B (en) | 2018-08-29 | 2018-08-29 | Maximum power tracking method for solar cell and system thereof suitable for real-time online environment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI669589B true TWI669589B (en) | 2019-08-21 |
| TW202009628A TW202009628A (en) | 2020-03-01 |
Family
ID=68316337
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107130069A TWI669589B (en) | 2018-08-29 | 2018-08-29 | Maximum power tracking method for solar cell and system thereof suitable for real-time online environment |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI669589B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI751507B (en) * | 2020-03-06 | 2022-01-01 | 崑山科技大學 | Methods for building model, judging operation state and predicting maximum power generation of solar cell |
| TWI776199B (en) * | 2020-08-04 | 2022-09-01 | 崑山科技大學 | Parameter estimation method for solar cell double-diode model |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101694942A (en) * | 2009-10-16 | 2010-04-14 | 山东电力研究院 | Maximum power tracing method |
| CN102012714A (en) * | 2009-09-04 | 2011-04-13 | 立锜科技股份有限公司 | Maximum power tracking method and circuit for solar panel |
| TW201211723A (en) * | 2010-09-13 | 2012-03-16 | Jwo Hwu Yi | A novel maximum power point tracking configuration and method for a photovoltaic power system |
| TW201237587A (en) * | 2011-03-04 | 2012-09-16 | Spirox Corp | Renewable energy generating system with maximum power point tracking function and maximum power point tracking (MPPT) method |
| TWI419345B (en) * | 2011-11-04 | 2013-12-11 | Univ Nat Taiwan Science Tech | Photovoltaic power apparatus and analog circuit for tracking maximum power thereof |
| TWI426370B (en) * | 2011-06-01 | 2014-02-11 | Nat Univ Chin Yi Technology | A maximum power point tracking method for photovoltaic module arrays |
| CN103744467A (en) * | 2013-12-16 | 2014-04-23 | 浙江大学 | Maximum power tracking device for solar cell of miniature satellite power system and control method thereof |
| TWI481989B (en) * | 2012-11-27 | 2015-04-21 | Univ Nat Sun Yat Sen | A system of solar power generator with power tracker |
| TWI487239B (en) * | 2012-08-15 | 2015-06-01 | Atomic Energy Council | Household power parallel converter applied to solar power generation system with maximum power tracking effect |
| TWI493317B (en) * | 2014-03-20 | 2015-07-21 | Univ Kun Shan | Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method |
| CN204557276U (en) * | 2015-03-30 | 2015-08-12 | 无锡清莲新能源科技有限公司 | The photovoltaic system of maximum power tracing |
| TW201535091A (en) * | 2014-03-07 | 2015-09-16 | China Steel Corp | Maximum power tracking method and system for use in thermoelectric module |
| CN106020326A (en) * | 2016-06-12 | 2016-10-12 | 安徽理工大学 | Rapid photovoltaic module maximum power tracking system and method |
| TWM532042U (en) * | 2016-06-29 | 2016-11-11 | Univ Dayeh | Model-based maximum-power tracker and solar power generation device thereof |
| TW201643589A (en) * | 2015-06-02 | 2016-12-16 | 群光電能科技股份有限公司 | Maximum power point tracking circuit and electrical power generating system and maximum power point tracking method |
| TWI600997B (en) * | 2016-10-18 | 2017-10-01 | A solar power system maximum power tracking device |
-
2018
- 2018-08-29 TW TW107130069A patent/TWI669589B/en not_active IP Right Cessation
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102012714A (en) * | 2009-09-04 | 2011-04-13 | 立锜科技股份有限公司 | Maximum power tracking method and circuit for solar panel |
| CN101694942A (en) * | 2009-10-16 | 2010-04-14 | 山东电力研究院 | Maximum power tracing method |
| TW201211723A (en) * | 2010-09-13 | 2012-03-16 | Jwo Hwu Yi | A novel maximum power point tracking configuration and method for a photovoltaic power system |
| TW201237587A (en) * | 2011-03-04 | 2012-09-16 | Spirox Corp | Renewable energy generating system with maximum power point tracking function and maximum power point tracking (MPPT) method |
| TWI426370B (en) * | 2011-06-01 | 2014-02-11 | Nat Univ Chin Yi Technology | A maximum power point tracking method for photovoltaic module arrays |
| TWI419345B (en) * | 2011-11-04 | 2013-12-11 | Univ Nat Taiwan Science Tech | Photovoltaic power apparatus and analog circuit for tracking maximum power thereof |
| TWI487239B (en) * | 2012-08-15 | 2015-06-01 | Atomic Energy Council | Household power parallel converter applied to solar power generation system with maximum power tracking effect |
| TWI481989B (en) * | 2012-11-27 | 2015-04-21 | Univ Nat Sun Yat Sen | A system of solar power generator with power tracker |
| CN103744467A (en) * | 2013-12-16 | 2014-04-23 | 浙江大学 | Maximum power tracking device for solar cell of miniature satellite power system and control method thereof |
| TW201535091A (en) * | 2014-03-07 | 2015-09-16 | China Steel Corp | Maximum power tracking method and system for use in thermoelectric module |
| TWI493317B (en) * | 2014-03-20 | 2015-07-21 | Univ Kun Shan | Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method |
| CN204557276U (en) * | 2015-03-30 | 2015-08-12 | 无锡清莲新能源科技有限公司 | The photovoltaic system of maximum power tracing |
| TW201643589A (en) * | 2015-06-02 | 2016-12-16 | 群光電能科技股份有限公司 | Maximum power point tracking circuit and electrical power generating system and maximum power point tracking method |
| CN106020326A (en) * | 2016-06-12 | 2016-10-12 | 安徽理工大学 | Rapid photovoltaic module maximum power tracking system and method |
| TWM532042U (en) * | 2016-06-29 | 2016-11-11 | Univ Dayeh | Model-based maximum-power tracker and solar power generation device thereof |
| TWI600997B (en) * | 2016-10-18 | 2017-10-01 | A solar power system maximum power tracking device |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI751507B (en) * | 2020-03-06 | 2022-01-01 | 崑山科技大學 | Methods for building model, judging operation state and predicting maximum power generation of solar cell |
| TWI776199B (en) * | 2020-08-04 | 2022-09-01 | 崑山科技大學 | Parameter estimation method for solar cell double-diode model |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202009628A (en) | 2020-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Putri et al. | Maximum power point tracking for photovoltaic using incremental conductance method | |
| CN108170200B (en) | Improved particle swarm MPPT algorithm based on dynamic inertia weight and multi-threshold restart condition | |
| CN102801363B (en) | A kind of photovoltaic system maximum power point-tracing control method based on adaptive prediction | |
| CN102291050A (en) | Maximum power point tracking method and device for photovoltaic power generation system | |
| CN102981549B (en) | Real-time tracking and predicting control method for maximum photovoltaic power point | |
| CN112821448B (en) | A Method of Applying Deep Learning to Microgrid Islanding Detection | |
| CN101078942A (en) | Maximum power tracking capture photovoltaic control method with self-adaptive search algorithm | |
| CN112711294B (en) | Global maximum power point tracking method for photovoltaic array under local shielding | |
| CN104965558A (en) | Photovoltaic power generation system maximum power tracking method and apparatus considering the factor of haze | |
| TWI391807B (en) | A maximum power tracking system and method for photovoltaic power generation systems | |
| Rajasekar et al. | Application of modified particle swarm optimization for maximum power point tracking under partial shading condition | |
| Hosseini et al. | Design and construction of photovoltaic simulator based on dual-diode model | |
| TWI669589B (en) | Maximum power tracking method for solar cell and system thereof suitable for real-time online environment | |
| CN110362146A (en) | A kind of adaptive M PPT control strategy based on variable step perturbation observation method | |
| CN118282233B (en) | A single-phase inverter energy control system and method based on hybrid modulation strategy | |
| CN111324167A (en) | Photovoltaic power generation maximum power point tracking control method and device | |
| CN105207606A (en) | DMPPT photovoltaic power generation module based on time-sharing self-adaptive MCT algorithm | |
| Xu et al. | NSNPSO-INC: A simplified particle swarm optimization algorithm for photovoltaic MPPT combining natural selection and conductivity incremental approach | |
| CN115987086A (en) | On-line Control Method of Single Switch DC-DC Converter Based on Neural Network | |
| CN114690840B (en) | MPPT control system with preposed power monitoring and balancing functions | |
| CN116048135B (en) | Photovoltaic cleaning robot endurance optimization method | |
| CN103186160A (en) | Self-adjustment control method for maximum power point tracing of photovoltaic power generation | |
| Mufa’ary et al. | Comparison of FLC and ANFIS Methods to Keep Constant Power Based on Zeta Converter | |
| CN112083753A (en) | Maximum power point tracking control method of photovoltaic grid-connected inverter | |
| CN108227818B (en) | Adaptive step-size photovoltaic maximum power tracking method and system based on conductance increment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |