[go: up one dir, main page]

TWI669101B - Heart sound processing method and system with eigenvalue detection - Google Patents

Heart sound processing method and system with eigenvalue detection Download PDF

Info

Publication number
TWI669101B
TWI669101B TW106142991A TW106142991A TWI669101B TW I669101 B TWI669101 B TW I669101B TW 106142991 A TW106142991 A TW 106142991A TW 106142991 A TW106142991 A TW 106142991A TW I669101 B TWI669101 B TW I669101B
Authority
TW
Taiwan
Prior art keywords
heart sound
data
feature value
signal
eigenvalue
Prior art date
Application number
TW106142991A
Other languages
Chinese (zh)
Other versions
TW201924602A (en
Inventor
鐘國家
Original Assignee
國立高雄應用科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄應用科技大學 filed Critical 國立高雄應用科技大學
Priority to TW106142991A priority Critical patent/TWI669101B/en
Publication of TW201924602A publication Critical patent/TW201924602A/en
Application granted granted Critical
Publication of TWI669101B publication Critical patent/TWI669101B/en

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一種心音處理方法包含:將一心音訊號進行切割,以獲得數個心音訊號片段;將該心音訊號片段進行連續小波轉換,以獲得一CWT資料;或將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料;及利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本特徵值進行比對判別,以產生一比對結果。 A heart sound processing method includes: cutting a heart sound signal to obtain a plurality of heart sound signal segments; performing continuous wavelet transform on the heart sound signal segment to obtain a CWT data; or performing a short time interval Fourier transform on the heart sound signal segment, Obtaining an STFT data; and calculating, by using the CWT data or the STFT data, at least one eigenvalue and at least one eigenvector, and generating a correlation value from the eigenvalue, or comparing the eigenvalue with the same eigenvalue, To produce a comparison result.

Description

採用特徵值偵測之心音處理方法及其系統 Heart sound processing method and system using eigenvalue detection

本發明係關於一種採用特徵值偵測之心音〔heart sound〕處理方法及其系統;特別是關於一種採用心臟病理〔cardiopathy〕特徵值偵測之心音處理方法及其系統。 The present invention relates to a heart sound processing method and system thereof using feature value detection; and more particularly to a heart sound processing method and system using cardiopathy feature value detection.

習用心臟病理偵測之心音處理之相關技術,例如:中華民國專利公開第201244691號之〝心音/心臟疾病風險之判別系統及其方法〞發明專利申請案,其揭示一種心音/心臟疾病風險之判別系統。該心音/心臟疾病風險之判別系統包含一訊號接收單元、一訊號處理單元、一儲存單元、一輸出單元及一顯示單元。 A related art of cardiac sound processing for cardiac pathological detection, for example, a discriminating system for heart sound/heart disease risk and a method thereof in the Republic of China Patent Publication No. 201244691, and a method for inventing a patent, which discloses a discrimination of heart sound/heart disease risk system. The heart sound/heart disease risk discrimination system comprises a signal receiving unit, a signal processing unit, a storage unit, an output unit and a display unit.

承上,該訊號接收單元用以接收一心音訊號A,且該心音訊號包含數個心音頻率。該訊號處理單元包含一第一運算單元、一濾波單元、一第二運算單元及一比對單元。該第一運算單元對心音訊號進行基於心音訊號的絕對值取自然對數之一數值後,將該數值與心音訊號之乘積之特殊函數運算〔例如,X=cAln|A'|,其中c可為任意數值或函數值〕,以產生一第一運算訊號。當A≠0時,A'=A;當A=0時,A'=R〔R≧1,且R為實數〕。該濾波單元對該第一運算訊號進行濾波,以產生一濾波訊號。該第二運算單元對該濾波訊號進行轉換運算,以產生一對應影像圖譜數據,且依該對應影像圖譜數據產生一影像圖譜資料。 The signal receiving unit is configured to receive a heart sound signal A, and the heart sound signal includes a plurality of heart rate. The signal processing unit includes a first operation unit, a filtering unit, a second operation unit, and a comparison unit. The first operation unit performs a special function calculation on the heart sound signal based on the absolute value of the heart sound signal as a natural logarithm, and then multiplies the value by the product of the heart sound signal (for example, X=cAln|A'|, where c can be Any value or function value] to generate a first operational signal. When A ≠ 0, A' = A; when A = 0, A' = R [R ≧ 1, and R is a real number]. The filtering unit filters the first operational signal to generate a filtered signal. The second operation unit performs a conversion operation on the filtered signal to generate a corresponding image map data, and generates an image map data according to the corresponding image map data.

承上,該儲存單元用以儲存有關心臟疾病之一預定心音圖譜資料,而該輸出單元為一無線傳送模組或有線傳輸模組。該比對單元進行比對該影像圖譜資料及預定心音圖譜資料,並產生一比對結果。接著,該輸出單元輸出該比對結果之訊號至該顯示單元,以顯示生理狀態及/或後續處理方法。 The storage unit is configured to store a predetermined heart sound spectrum data related to a heart disease, and the output unit is a wireless transmission module or a wired transmission module. The comparison unit compares the image map data with the predetermined heart sound map data and generates a comparison result. Then, the output unit outputs a signal of the comparison result to the display unit to display a physiological state and/or a subsequent processing method.

然而,前述第201244691號之心音處理技術必需先產生影像圖譜資料,再將該影像圖譜資料與預定心音圖譜資料進行比對。因此,前述第201244691號之心音處理技術仍存在進一步改良之需求。前述中華民國專利申請案僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 However, the heart sound processing technique of the aforementioned No. 201244691 must first generate image map data, and then compare the image map data with the predetermined heart sound map data. Therefore, there is still a need for further improvement in the heart sound processing technology of the aforementioned No. 201244691. The foregoing patent application of the Republic of China is merely a reference to the technical background of the present invention and the state of the art is not intended to limit the scope of the present invention.

有鑑於此,本發明為了滿足上述需求,其提供一種採用特徵值偵測之心音處理方法及其系統,將一心音訊號進行切割,以獲得數個心音訊號片段,且將該心音訊號片段進行連續小波轉換,以獲得一CWT資料,且將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料,利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本特徵值進行比對判別,以產生一比對結果,以便大幅提升心臟病理偵測之方便性。 In view of the above, the present invention provides a heart sound processing method and system for eigenvalue detection, which cuts a heart sound signal to obtain a plurality of heart sound signal segments, and continuously performs the heart sound signal segment. Wavelet transform to obtain a CWT data, and performing short-time Fourier transform on the heart sound signal segment to obtain an STFT data, and calculating at least one feature value and at least one feature vector by using the CWT data or the STFT data, and The eigenvalue produces a correlation value, or the eigenvalue is compared with the same eigenvalue to produce a comparison result, so as to greatly improve the convenience of cardiac pathological detection.

本發明之主要目的係提供一種採用特徵值偵測之心音處理方法及其系統,其將一心音訊號進行切割,以獲得數個心音訊號片段,且將該心音訊號片段進行連續小波轉換,以獲得一CWT資料,且將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料,利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本 特徵值進行比對判別,以產生一比對結果,以達成提供由心音進行輔助心臟病理偵測之目的。 The main object of the present invention is to provide a method for processing heart sounds using feature value detection and a system thereof, which cuts a heart sound signal to obtain a plurality of heart sound signal segments, and performs continuous wavelet transform on the heart sound signal segments to obtain a CWT data, and performing a short-time Fourier transform on the heart sound signal segment to obtain an STFT data, using the CWT data or the STFT data to generate at least one eigenvalue and at least one eigenvector, and generating a correlation from the eigenvalue The value, or the feature value, is the same as The eigenvalues are compared and determined to produce a comparison result for the purpose of providing heart pathological detection by heart sound.

為了達成上述目的,本發明較佳實施例之採用特徵值偵測之心音處理方法包含:將一心音訊號進行切割,以獲得數個心音訊號片段;將該心音訊號片段進行連續小波轉換,以獲得一CWT資料;或將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料;及利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本特徵值進行比對判別,以產生一比對結果。 In order to achieve the above object, a heart sound processing method using feature value detection according to a preferred embodiment of the present invention includes: cutting a heart sound signal to obtain a plurality of heart sound signal segments; and performing continuous wavelet transform on the heart sound signal segment to obtain a CWT data; or performing a short-time Fourier transform on the heart sound signal segment to obtain an STFT data; and calculating at least one eigenvalue and at least one eigenvector using the CWT data or the STFT data, and generating a feature value from the eigenvalue The correlation value, or the feature value is compared with the same eigenvalue to produce a comparison result.

本發明較佳實施例利用該相關數值進行判斷另一量測心音訊號之至少一CWT資料或至少一STFT資料,以產生另一比對結果。 The preferred embodiment of the present invention uses the correlation value to determine at least one CWT data or at least one STFT data of another measured heart sound signal to generate another comparison result.

本發明較佳實施例之該比對結果包含一心室分隔缺損、一心室分隔部之比對結果、一心房分隔缺損或一心房分隔部之比對結果。 The alignment of the preferred embodiment of the invention comprises a ventricular septal defect, a comparison of the ventricle dividers, an atrial septal defect or an atrial septum.

本發明較佳實施例之該特徵值之相關數值包含一正相關性數值或一互相關性數值。 The correlation value of the characteristic value of the preferred embodiment of the invention comprises a positive correlation value or a cross correlation value.

本發明較佳實施例之該心音訊號包含一第一心音S1訊號及一第二心音S2訊號,且該特徵值由該第二心音S2訊號產生。 In the preferred embodiment of the present invention, the heart sound signal includes a first heart sound S1 signal and a second heart sound S2 signal, and the feature value is generated by the second heart sound S2 signal.

本發明較佳實施例之該正相關性數值及互相關性數值用以建立一先天心室分隔模型。 The positive correlation value and the cross-correlation value of the preferred embodiment of the present invention are used to establish a congenital ventricular separation model.

本發明較佳實施例之該先天心室分隔模型為一相關數值模型。 The congenital ventricular separation model of the preferred embodiment of the invention is a related numerical model.

本發明較佳實施例利用該CWT資料、STFT資料與超音波資料進行預先比對,以尋找一最大頻率點聲音、一最高振幅位置聲音及至少一聲音間隔區間。 In the preferred embodiment of the present invention, the CWT data, the STFT data and the ultrasonic data are pre-aligned to find a maximum frequency point sound, a highest amplitude position sound, and at least one sound interval interval.

本發明較佳實施例採用皮爾遜積差相關係數計算該CWT資料及STFT資料。 The preferred embodiment of the present invention calculates the CWT data and the STFT data using the Pearson product difference correlation coefficient.

為了達成上述目的,本發明另一較佳實施例之採用特徵值偵測之心音處理系統包含;一心音接收單元,其用以接收至少一心音訊號;一心音處理單元,其將該心音訊號進行切割,以獲得數個心音訊號片段,且將該心音訊號片段進行連續小波轉換,以獲得一CWT資料,或將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料;一資料儲存單元,其用以儲存至少一樣本特徵值;及一輸出單元,其用以輸出一相關數值;其中利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本特徵值進行比對判別,以產生一比對結果。 In order to achieve the above object, a heart sound processing system using feature value detection according to another preferred embodiment of the present invention includes: a heart sound receiving unit for receiving at least one heart sound signal; and a heart sound processing unit for performing the heart sound signal Cutting to obtain a plurality of heart sound signal segments, and performing continuous wavelet transform on the heart sound signal segment to obtain a CWT data, or performing short-time Fourier transform on the heart sound signal segment to obtain an STFT data; a data storage unit And the output unit is configured to output a correlation value, wherein the CWT data or the STFT data is used to generate at least one eigenvalue and at least one eigenvector, and the eigenvalue is generated by the eigenvalue A correlation value, or the eigenvalue is compared with the same eigenvalue to produce a comparison result.

本發明較佳實施例之該心音接收單元包含一第一接收單元及一第二接收單元。 The heart sound receiving unit of the preferred embodiment of the present invention comprises a first receiving unit and a second receiving unit.

本發明較佳實施例之該心音接收單元貼附於一人體皮膚表面上。 The heart sound receiving unit of the preferred embodiment of the present invention is attached to a surface of a human skin.

本發明較佳實施例之該特徵值之相關數值包含一正相關性數值或一互相關性數值。 The correlation value of the characteristic value of the preferred embodiment of the invention comprises a positive correlation value or a cross correlation value.

本發明較佳實施例之該心音訊號包含一第一心音S1訊號及一第二心音S2訊號,且該特徵值由該第二心音S2訊號產生。 In the preferred embodiment of the present invention, the heart sound signal includes a first heart sound S1 signal and a second heart sound S2 signal, and the feature value is generated by the second heart sound S2 signal.

本發明較佳實施例之該正相關性數值及互相關性數值用以建立一先天心室分隔模型。 The positive correlation value and the cross-correlation value of the preferred embodiment of the present invention are used to establish a congenital ventricular separation model.

本發明較佳實施例之該先天心室分隔模型為一相關數值模型。 The congenital ventricular separation model of the preferred embodiment of the invention is a related numerical model.

本發明較佳實施例之該心音訊號片段之頻率選取介於1Hz至100Hz之間。 In the preferred embodiment of the present invention, the frequency of the heart sound signal segment is selected between 1 Hz and 100 Hz.

本發明較佳實施例之該心音訊號片段包含一預定心音訊號數量,且每個該心音訊號片段之預定心音訊號數量相同。 In the preferred embodiment of the present invention, the heart sound signal segment includes a predetermined number of heart sound signals, and the predetermined number of heart sound signals of each of the heart sound signal segments is the same.

本發明較佳實施例當該心音訊號片段包含一心音雜音訊號時,利用偵測該心音雜音訊號方式進行心臟病理偵測。 In the preferred embodiment of the present invention, when the heart sound signal segment includes a heart sound murmur signal, the heart path detection is performed by detecting the heart sound murmur signal.

S1‧‧‧步驟 S1‧‧‧ steps

S2‧‧‧步驟 S2‧‧‧ steps

S3‧‧‧步驟 S3‧‧‧ steps

S4A‧‧‧步驟 S4A‧‧‧ steps

S4B‧‧‧步驟 S4B‧‧‧ steps

10‧‧‧心音接收單元 10‧‧‧heart sound receiving unit

20‧‧‧心音處理單元 20‧‧‧heart sound processing unit

30‧‧‧資料儲存單元 30‧‧‧Data storage unit

40‧‧‧輸出單元 40‧‧‧Output unit

第1圖:本發明較佳實施例之採用特徵值偵測之心音處理系統之方塊圖。 Figure 1 is a block diagram of a heart sound processing system employing feature value detection in accordance with a preferred embodiment of the present invention.

第2圖:本發明較佳實施例之採用特徵值偵測之心音處理方法之流程圖。 2 is a flow chart of a heart sound processing method using feature value detection according to a preferred embodiment of the present invention.

第3(a)及3(b)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統採用心音資料及心電圖資料之波形示意圖。 3(a) and 3(b) are diagrams showing waveforms of heart sound data and electrocardiogram data by a heart sound processing system using feature value detection according to a preferred embodiment of the present invention.

第4(A)及4(B)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第一心音資料及第二心音資料之波形示意圖。 4(A) and 4(B) are diagrams showing waveforms of the first heart sound data and the second heart sound data detected by the heart rate processing system using the feature value detection in the preferred embodiment of the present invention.

第5(A)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第一病患之心音資料連續小波轉換後,顯示輕微大動脈回流及輕微大動脈狹窄狀況之波形示意圖。 FIG. 5(A) is a schematic diagram showing the waveform of a slight aortic regurgitation and a slight aortic stenosis after the continuous wavelet transform of the heart sound data of the first patient is detected by the heart sound processing system using the feature value detection in the preferred embodiment of the present invention.

第5(B)圖:本發明較佳實施例之採用特徵值偵測之心音 處理系統偵測第二病患之心音資料連續小波轉換後,顯示連續性心雜音及開放性動脈導管狀況之波形示意圖。 Figure 5(B): Heart sound of eigenvalue detection according to a preferred embodiment of the present invention The processing system detects the heartbeat data of the second patient and displays the waveform of the continuous cardiac murmur and the open arterial catheter condition after continuous wavelet transformation.

第6(A)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第一病患之心音資料短時距傅立葉轉換後,顯示輕微大動脈回流及大動脈狹窄輕微狀況之波形示意圖。 Figure 6 (A): The heart sound processing system using the feature value detection of the preferred embodiment of the present invention detects the heart sound data of the first patient, and displays the waveform of a slight aortic regurgitation and a slight aortic stenosis after a short time interval Fourier transform schematic diagram.

第6(B)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第二病患之心音資料短時距傅立葉轉換後,顯示連續性心雜音及開放性動脈導管狀況之波形示意圖。 Figure 6(B): The heart sound processing system using the feature value detection according to the preferred embodiment of the present invention detects the heart sound data of the second patient and displays the continuous cardiac murmur and the open arterial catheter condition after the short-time Fourier transform The waveform diagram.

第7(A)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統將第一病患之原始心音資料、CWT資料及STFT資料進行比對之波形示意圖。 FIG. 7(A) is a schematic diagram showing the waveform of the original heart sound data, CWT data and STFT data of the first patient by using the heart rate processing system with feature value detection according to a preferred embodiment of the present invention.

第7(B)圖:本發明較佳實施例之採用特徵值偵測之心音處理系統將第二病患之原始心音資料、CWT資料及STFT資料進行比對之波形示意圖。 FIG. 7(B) is a waveform diagram showing the comparison of the original heart sound data, the CWT data and the STFT data of the second patient by the heart sound processing system using the feature value detection according to the preferred embodiment of the present invention.

為了充分瞭解本發明,於下文將例舉較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below and are not intended to limit the invention.

本發明較佳實施例之採用心臟病理特徵值偵測之心音處理方法及其系統適用於各種心臟病理偵測裝置及其相關應用設備,例如:各類型居家照護〔home care〕系統、醫療器材自動控制系統〔例如:醫療檢查系統〕、遠距醫療照護系統或醫療教學系統,但其並非用以限定本發明之範圍。 The heart sound processing method and system thereof using cardiac pathological feature value detection according to a preferred embodiment of the present invention are applicable to various cardiac pathological detecting devices and related application devices, for example, various types of home care systems, medical equipment automatic A control system (eg, a medical examination system), a telemedicine system, or a medical teaching system is not intended to limit the scope of the invention.

第1圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統之方塊圖。請參照第1圖所示,舉例而言,本發明較佳實施例之用於心臟病理偵測之心音處理系統包含一心音接收單元10、一心音處理單元20、一資料儲 存單元30及一輸出單元40,且該心音接收單元10、資料儲存單元30及輸出單元40適當連接至該心音處理單元20。舉例而言,該心音接收單元10包含一第一接收單元及一第二接收單元,且該心音接收單元10貼附於一人體皮膚表面上。 1 is a block diagram showing a heart sound processing system using feature value detection in accordance with a preferred embodiment of the present invention. Referring to FIG. 1 , for example, a heart sound processing system for cardiac pathology detection according to a preferred embodiment of the present invention includes a heart sound receiving unit 10, a heart sound processing unit 20, and a data storage. The memory unit 30 and an output unit 40 are connected to the heart sound processing unit 20 as appropriate. For example, the heart sound receiving unit 10 includes a first receiving unit and a second receiving unit, and the heart sound receiving unit 10 is attached to a human skin surface.

請再參照第1圖所示,舉例而言,該資料儲存單元30用以儲存數個超音波資料或心臟病理超音波資料樣本,以便比對連續小波轉換及短時距傅立葉轉換處理之心音資料,以建立時間與頻率的相關聯性樣本,如此日後據此可進行心臟病理偵測。 Referring to FIG. 1 again, for example, the data storage unit 30 is configured to store a plurality of ultrasonic data or cardiac pathological ultrasound data samples for comparing the heart sound data of the continuous wavelet transform and the short-time Fourier transform processing. To establish a correlation sample of time and frequency, so that cardiac pathology can be performed accordingly.

第2圖揭示本發明較佳實施例之採用特徵值偵測之心音處理方法之流程圖,其對應於第1圖之用於心臟病理偵測之心音處理系統。請參照第1及2圖所示,本發明較佳實施例之採用特徵值偵測之心音處理方法包含步驟S1:首先,將一心音訊號或一心音訊號片段及其它訊號〔例如:ECG,electrocardiogram〕以適當量測裝置〔例如:AUDICOR廠牌之量測裝置〕接收後進行切割,以獲得數個心音訊號片段〔fragment〕。 FIG. 2 is a flow chart showing a heart sound processing method using feature value detection according to a preferred embodiment of the present invention, which corresponds to the heart sound processing system for cardiac pathology detection of FIG. 1. Referring to FIGS. 1 and 2, the method for processing heart sounds using feature value detection according to a preferred embodiment of the present invention includes the step S1: first, a heart sound signal or a heart sound signal segment and other signals (eg, ECG, electrocardiogram) ] After receiving it with an appropriate measuring device (for example, the measuring device of the AUDICOR brand), it is cut to obtain a plurality of heart sound signal fragments.

第3(a)及3(b)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統採用心音資料及心電圖資料之波形示意圖。請參照第3(a)圖所示,本發明較佳實施例之用於心臟病理偵測之心音處理系統同時接收兩個接收單元之兩個心音訊號,因此其形成二個心音圖〔PCG,phonocardiogram〕。相對的,請參照第3(b)圖所示,本發明較佳實施例之用於心臟病理偵測之心音處理系統同時接收對應的心電圖〔ECG〕資料。 3(a) and 3(b) are diagrams showing waveforms of heart sound data and electrocardiogram data using a heart rate processing system using feature value detection according to a preferred embodiment of the present invention. Referring to FIG. 3(a), the heart sound processing system for cardiac pathology detection of the preferred embodiment of the present invention simultaneously receives two heart sound signals of two receiving units, so that two heart sound maps (PCG, Phonocardiogram]. In contrast, referring to FIG. 3(b), the heart sound processing system for cardiac pathology detection of the preferred embodiment of the present invention simultaneously receives corresponding electrocardiogram (ECG) data.

一般而言,心音包含第一心音S1、第二心音S2、第三心音S3及第四心音S4,且心音由心肌收縮、心臟瓣膜關閉、血液沖擊心室壁或大動脈壁所引起震動而產 生的聲音。在心臟收縮及舒張時,產生第一心音S1及第二心音S2,因此其極易偵測〔例如:聽診器或儀器〕。至於第三心音S3,可在兒童時期或青少年時期可偵測,而第四心音S4則極不易偵測。 In general, the heart sound includes a first heart sound S1, a second heart sound S2, a third heart sound S3, and a fourth heart sound S4, and the heart sound is caused by vibration caused by myocardial contraction, heart valve closure, blood impact ventricular wall or aortic wall. The voice of life. When the heart contracts and relaxes, the first heart sound S1 and the second heart sound S2 are generated, so that it is extremely easy to detect (for example, a stethoscope or an instrument). As for the third heart sound S3, it can be detected during childhood or adolescence, while the fourth heart sound S4 is extremely difficult to detect.

第4(A)及4(B)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第一心音資料及第二心音資料之波形示意圖,其於心臟周圍區域不同部位以貼片〔patch〕偵測之心音資料。舉例而言,該心音訊號片段選擇包含一預定心音訊號數量〔例如:400筆〕,且每個該心音訊號片段之預定心音訊號數量選擇相同。另外,該心音訊號片段之頻率選取介於1Hz至100Hz之間或其它低頻區間。 4(A) and 4(B) are diagrams showing waveforms of the first heart sound data and the second heart sound data detected by the heart rate processing system using the feature value detection according to a preferred embodiment of the present invention, which are different in the area around the heart. The heart sound data detected by the patch. For example, the heart sound signal segment selection includes a predetermined number of heart sound signals (for example, 400 pens), and the predetermined number of heart sound signals of each of the heart sound signal segments is selected to be the same. In addition, the frequency of the heart sound signal segment is selected between 1 Hz and 100 Hz or other low frequency intervals.

請再參照第1及2圖所示,本發明較佳實施例之採用特徵值偵測之心音處理方法包含步驟S2:接著,將該心音訊號片段進行連續小波轉換〔continuous wavelet transformation,CWT〕處理,以獲得一CWT資料,其顯示一第一種時間與頻率的心臟病理波形。 Referring to FIG. 1 and FIG. 2 again, the heart sound processing method using feature value detection according to the preferred embodiment of the present invention includes the step S2: then, the heart sound signal segment is subjected to continuous wavelet transformation (CWT) processing. To obtain a CWT data that shows a first time and frequency of cardiac pathology waveforms.

第5(A)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第一病患之心音資料連續小波轉換後,顯示輕微大動脈回流〔AR,aortic regurgitation〕及輕微大動脈狹窄〔AS,aortic stenosis)〕狀況之波形示意圖。請參照第5(A)圖之所示,在第一病患之心音資料連續小波轉換後,獲得一第一連續小波轉換波形〔如第5(A)圖之上半部所示〕及一第二連續小波轉換波形〔如第5(A)圖之下半部所示〕。該第一連續小波轉換波形及第二連續小波轉換波形具有一第一最大振幅及一第二最大振幅,如兩個箭頭所示。 FIG. 5(A) illustrates a heart sound processing system using feature value detection according to a preferred embodiment of the present invention for detecting heart sound data of a first patient, showing a small aortic regurgitation and a slight aorta after continuous wavelet conversion. Schematic diagram of the state of the stenosis (AS, aortic stenosis). Referring to Figure 5(A), after the continuous wavelet conversion of the heart sound data of the first patient, a first continuous wavelet transform waveform (as shown in the upper half of Fig. 5(A)) and one The second continuous wavelet transform waveform is as shown in the lower half of Fig. 5(A). The first continuous wavelet converted waveform and the second continuous wavelet converted waveform have a first maximum amplitude and a second maximum amplitude, as indicated by the two arrows.

相對於第5(A)圖,第5(B)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第二病患之心 音資料連續小波轉換後,顯示連續性心雜音〔continuous murmur〕及開放性動脈導管〔PDA,patent ductus arteriosum〕狀況之波形示意圖。請參照第5(B)圖之所示,在第二病患之心音資料連續小波轉換後,獲得一第一連續小波轉換波形〔如第5(B)圖之上半部所示〕及一第二連續小波轉換波形〔如第5(B)圖之下半部所示〕,且出現心音雜音〔位於一主波之外〕,如較小波形所示。同樣的,該第一連續小波轉換波形及第二連續小波轉換波形具有一第一最大振幅及一第二最大振幅,如兩個箭頭所示,其位於該主波內。 Referring to FIG. 5(A), FIG. 5(B) discloses a heart sound processing system using feature value detection according to a preferred embodiment of the present invention to detect the heart of a second patient. After the continuous wavelet transform of the sound data, the waveforms of the continuous murmur and the open ductal artery (PDA, patent ductus arteriosum) are shown. Referring to Figure 5(B), after the continuous wavelet conversion of the heart sound data of the second patient, a first continuous wavelet transform waveform is obtained (as shown in the upper half of Fig. 5(B)) and one The second continuous wavelet transform waveform (as shown in the lower half of Fig. 5(B)), and the heart sound murmur (outside a main wave) appears, as shown by the smaller waveform. Similarly, the first continuous wavelet transform waveform and the second continuous wavelet transform waveform have a first maximum amplitude and a second maximum amplitude, as indicated by two arrows, which are located in the main wave.

請再參照第1及2圖所示,本發明較佳實施例之採用特徵值偵測之心音處理方法包含步驟S3:接著,將該心音訊號片段進行短時距傅立葉轉換〔short-time Fourier transformation,STFT〕處理,以獲得一STFT資料,其顯示一第二種時間與頻率的心臟病理波形。 Referring to FIG. 1 and FIG. 2 again, the heart sound processing method using the feature value detection according to the preferred embodiment of the present invention includes the step S3: then, the heart sound signal segment is subjected to short-time Fourier transform (short-time Fourier transformation). , STFT] processing to obtain an STFT data showing a second time and frequency of cardiac pathology waveforms.

第6(A)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第一病患之心音資料短時距傅立葉轉換後,顯示輕微大動脈回流及大動脈狹窄輕微狀況之波形示意圖。請參照第6(A)圖之所示,在第一病患之心音資料短時距傅立葉轉換後,獲得一第一短時距傅立葉轉換波形〔如第6(A)圖之上半部所示〕及一第二短時距傅立葉轉換波形〔如第6(A)圖之下半部所示〕。該第一短時距 傅立葉轉換波形及第二短時距傅立葉轉換波形具有一第一最大振幅及一第二最大振幅,如兩個箭頭所示。 FIG. 6(A) is a diagram showing a waveform of a heart rate processing system for detecting a first patient's heart sound data after a short time interval Fourier transform according to a preferred embodiment of the present invention, showing a slight aortic regurgitation and a slight state of aortic stenosis. schematic diagram. Referring to Figure 6(A), after the short-distance Fourier transform of the first patient's heart sound data, a first short-time Fourier transform waveform is obtained (as in the upper half of Figure 6(A)). And a second short-time Fourier transform waveform (as shown in the lower half of Figure 6(A)). The first short time interval The Fourier transform waveform and the second short time Fourier transform waveform have a first maximum amplitude and a second maximum amplitude, as indicated by the two arrows.

相對於第6(A)圖,第6(B)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統偵測第二病患之心音資料短時距傅立葉轉換後,顯示連續性心雜音及開放性動脈導管狀況之波形示意圖。請參照第6(B)圖之所示,在第二病患之心音資料短時距傅立葉轉換後,獲得一第一短時距傅立葉轉換波形〔如第6(B)圖之上半部所示〕及一第二短時距傅立葉轉換波形〔如第6(B)圖之下半部所示〕,且出現心音雜音,如較小波形所示。同樣的,該第一短時距傅立葉轉換波形及第二短時距傅立葉轉換波形具有一第一最大振幅及一第二最大振幅,如兩個箭頭所示。 Referring to FIG. 6(A), FIG. 6(B) discloses a heart sound processing system using feature value detection according to a preferred embodiment of the present invention to detect a heart sound data of a second patient after a short time interval Fourier transform, and display continuous Schematic diagram of the waveform of murmur and open arterial catheter status. Referring to Figure 6(B), after the short-distance Fourier transform of the heart sound data of the second patient, a first short-time Fourier transform waveform is obtained (as in the upper half of Figure 6(B)). And a second short-time Fourier transform waveform (as shown in the lower half of Figure 6(B)), and a heart sound murmur occurs, as shown by the smaller waveform. Similarly, the first short-time Fourier transform waveform and the second short-time Fourier transform waveform have a first maximum amplitude and a second maximum amplitude, as indicated by the two arrows.

請參照第1及2圖所示,本發明較佳實施例之採用特徵值偵測之心音處理方法包含步驟S4A:接著,利用該CWT資料、STFT資料與一超音波資料進行比對,以尋找一時間與頻率的相關聯性數值狀態,以產生一相關判斷數值。利用該相關判斷數值進行判斷另一量測心音訊號之至少一CWT資料及至少一STFT資料,以產生一判斷結果。本發明較佳實施例之該判斷結果包含心室分隔缺損〔ventricular septal defect,VSD〕或心房分隔缺損〔atrial septal defect,ASD〕。當該心音訊號片段包含一心音雜音訊號時,利用偵測該心音雜音訊號方式進行心臟病理偵測。 Referring to FIGS. 1 and 2, the method for processing heart sounds using feature value detection according to a preferred embodiment of the present invention includes the step S4A: then, using the CWT data, the STFT data, and an ultrasonic data to compare A time-dependent numerical state of the frequency to produce a correlation value. The at least one CWT data and the at least one STFT data of the other measured heart sound signal are determined by using the correlation judgment value to generate a determination result. The judgment result of the preferred embodiment of the present invention includes a ventricular septal defect (VSD) or atrial septal defect (ASD). When the heart sound signal segment includes a heart sound noise signal, the heart path detection is performed by detecting the heart sound noise signal.

第7(A)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統將第一病患之原始心音資料、CWT資料及STFT資料進行比對之波形示意圖。相對的,第7(B)圖揭示本發明較佳實施例之採用特徵值偵測之心音處理系統將第二病患之原始心音資料、CWT資料及STFT資料進行比對之波形示意圖。請參照第7(A)及7(B)圖之所示,將第一病患及及第二病患之原始心音資料、CWT資料及STFT資料進行適當比對調整〔如第7(A)及7(B)圖之左側及右側所示〕,並選擇分別在該CWT資料之間及STFT資料之間進行波形樣式比對及計算相關性〔如表3所示〕,或選擇在該CWT資料及STFT資料之間進行波形樣式比對及計算相關性。 FIG. 7(A) is a schematic diagram showing the waveforms of the original heart sound data, CWT data and STFT data of the first patient by using the heart rate processing system with feature value detection according to a preferred embodiment of the present invention. In contrast, FIG. 7(B) is a schematic diagram showing waveforms of the original heart sound data, CWT data and STFT data of the second patient using the heart rate processing system using the feature value detection according to the preferred embodiment of the present invention. Please refer to paragraphs 7(A) and 7(B) to properly adjust the original heart sound data, CWT data and STFT data of the first patient and the second patient (eg, 7(A) And the left and right sides of the 7(B) diagram, and select the waveform pattern comparison and calculation correlation between the CWT data and the STFT data respectively (as shown in Table 3), or select in the CWT Waveform pattern comparison and computational correlation between data and STFT data.

本發明較佳實施例採用皮爾遜〔Pearson〕積差相關係數〔product-moment coefficient〕計算該CWT資料及STFT資料。本發明較佳實施例採用皮爾遜積差相關係數之計算式如下: In the preferred embodiment of the present invention, the CWT data and the STFT data are calculated using a Pearson product-moment coefficient. The preferred embodiment of the present invention uses the calculation formula of the Pearson product difference correlation coefficient as follows:

其中z x z y 分別為xy之標準化〔standardized〕z值,r為相關係數。 Where z x and z y are the normalized z values of x and y , respectively, and r is the correlation coefficient.

請再參照第1及2圖所示,本發明較佳實施例之採用特徵值偵測之心音處理方法包含步驟S4B:接著,利用該CWT資料或STFT資料計算產生至少一特徵值〔eigenvalue〕及至少一特徵向量〔eigenvector〕,且由該特徵值產生一相關數值,或該特徵值與一樣本〔sample〕 特徵值〔例如:步驟S4A所示〕進行比對判別,以產生一比對結果,且該樣本特徵值、相關數值或比對結果可選擇儲存於該資料儲存單元30。 Referring to FIG. 1 and FIG. 2 again, the heart sound processing method using the feature value detection according to the preferred embodiment of the present invention includes the step S4B: then, using the CWT data or the STFT data to calculate and generate at least one eigenvalue and At least one feature vector [eigenvector], and a correlation value is generated from the feature value, or the feature value is the same as the sample The feature value (for example, as shown in step S4A) is subjected to comparison discrimination to generate a comparison result, and the sample feature value, the correlation value or the comparison result may be optionally stored in the data storage unit 30.

舉例而言,本發明另一較佳實施例之該特徵值之相關數值包含一正相關性〔auto-correlation〕數值或一互相關性〔cross-correlation〕數值,且該特徵值由該第二心音S2訊號產生。 For example, the correlation value of the eigenvalue according to another preferred embodiment of the present invention includes an auto-correlation value or a cross-correlation value, and the eigenvalue is determined by the second The heart sound S2 signal is generated.

本發明另一較佳實施例採用〝正相關性數值〞亦稱為〝序列相關〞,其為一個訊號於其自身在不同時間點的互相關。正相關性數值為兩次觀察之間的相似度對其本身之間的時間差的函數,其用以尋找重複模式〔例如:噪音或雜訊〔noise〕掩蓋的周期訊號〕,或辨識隱藏在訊號諧波頻率中消失的基頻的工具。 Another preferred embodiment of the present invention employs a unitary correlation value, also referred to as a sequence correlation, which is a cross-correlation of a signal at its own point in time. The positive correlation value is a function of the similarity between two observations as a function of the time difference between itself, which is used to find a repeating pattern (eg, a periodic signal masked by noise or noise), or to identify hidden signals in the signal. A tool for the fundamental frequency that disappears in harmonic frequencies.

本發明另一較佳實施例採用〝互相關性數值〞亦稱為〝互協方差〞。在信號處理領域中互相關用以表示兩個信號之間相似性的度量工具,其通常利用與已知信號比較方式應用於尋找未知信號中的特性,其為兩個信號之間相對於時間的一個函數,有時亦稱為滑動點積。 Another preferred embodiment of the present invention employs a 〝 cross-correlation value 〞, also known as a 〝 mutual covariance 〞. A cross-correlation tool used in the field of signal processing to represent the similarity between two signals, which is typically applied to find characteristics in unknown signals using a comparison with known signals, which is time-to-time between two signals. A function, sometimes called a sliding dot product.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例在計算該CWT資料或STFT資料之特徵值之正相關性時,可選擇採用公式如下:,但其並非用以限定本發明。 Referring to FIGS. 1 and 2 again, for example, in the preferred embodiment of the present invention, when calculating the positive correlation of the characteristic values of the CWT data or the STFT data, the formula may be selected as follows: However, it is not intended to limit the invention.

請再參照第1及2圖所示,舉例而言,本發明較佳實施例在計算該CWT資料或STFT資料之特徵值之互相關性時,可選擇採用公式如下:,但其並非用以限定本發 明。 Referring to FIGS. 1 and 2, for example, in the preferred embodiment of the present invention, when calculating the cross-correlation of the characteristic values of the CWT data or the STFT data, the formula may be selected as follows: However, it is not intended to limit the invention.

舉例而言,本發明另一較佳實施例之該正相關性數值及互相關性數值選擇用以建立一先天心室分隔模型〔congenital septal defect,CSD〕,且該先天心室分隔模型為一相關數值模型〔model〕或其它數學模型。 For example, the positive correlation value and the cross-correlation value of another preferred embodiment of the present invention are selected to establish a congenital septal defect (CSD), and the congenital ventricular separity model is a related value. Model or other mathematical model.

舉例而言,本發明較佳實施例之該心音訊號片段A與其特徵值之相關數值之正相關性數值及互相關性數值表示如下: For example, the positive correlation value and the cross-correlation value of the correlation value of the heart sound signal segment A and its characteristic value in the preferred embodiment of the present invention are as follows:

其中,對角線奇異值為正相關性數值,而其餘為互相關性數值; 且 Where the diagonal singular value is a positive correlation value, and the rest are cross-correlation values;

由於多項式為因此該心音訊號片段A可表示為,並進一步可表示為|A-λI|=0,如此,本發明較佳實施例之先天心室分隔模型表示如下:,但其並非用以限定本發明。 Because the polynomial is Therefore, the heart sound signal segment A can be expressed as And further can be expressed as |A-λI|=0, thus, the congenital ventricular separation model of the preferred embodiment of the present invention is expressed as follows: However, it is not intended to limit the invention.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。 The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail.

Claims (10)

一種採用特徵值偵測之心音處理方法,其包含:將一心音訊號進行切割,以獲得數個心音訊號片段;將該心音訊號片段進行連續小波轉換,以獲得一CWT資料;或將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料;及利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本特徵值進行比對判別,以產生一比對結果。 A heart sound processing method using feature value detection, comprising: cutting a heart sound signal to obtain a plurality of heart sound signal segments; performing continuous wavelet transform on the heart sound signal segment to obtain a CWT data; or the heart sound signal Performing a short-time Fourier transform to obtain an STFT data; and calculating at least one eigenvalue and at least one eigenvector by using the CWT data or the STFT data, and generating a correlation value from the eigenvalue, or the eigenvalue is the same The eigenvalues are compared and compared to produce a comparison result. 依申請專利範圍第1項所述之採用特徵值偵測之心音處理方法,其中該特徵值之相關數值包含一正相關性數值或一互相關性數值。 The heart sound processing method using feature value detection according to claim 1 of the patent application scope, wherein the correlation value of the feature value comprises a positive correlation value or a cross correlation value. 依申請專利範圍第1項所述之採用特徵值偵測之心音處理方法,其中該心音訊號包含一第一心音S1訊號及一第二心音S2訊號,且該特徵值由該第二心音S2訊號產生。 The heart sound processing method using the feature value detection according to the first aspect of the patent application, wherein the heart sound signal comprises a first heart sound S1 signal and a second heart sound S2 signal, and the feature value is determined by the second heart sound S2 The signal is generated. 依申請專利範圍第1項所述之採用特徵值偵測之心音處理系統,其中該正相關性數值及互相關性數值用以建立一先天心室分隔模型。 The heart sound processing system using feature value detection according to claim 1 of the patent application scope, wherein the positive correlation value and the cross correlation value are used to establish a congenital ventricular separation model. 依申請專利範圍第4項所述之採用特徵值偵測之心音處理系統,其中該先天心室分隔模型為一相關數值模型。 The heart sound processing system using feature value detection according to item 4 of the patent application scope, wherein the congenital ventricular separation model is a related numerical model. 一種採用特徵值偵測之心音處理系統,其包含:一心音接收單元,其用以接收至少一心音訊號;一心音處理單元,其將該心音訊號進行切割,以獲得數個心音訊號片段,且將該心音訊號片段進行連續小波轉換,以獲得一CWT資料,或將該心音訊號片段進行短時距傅立葉轉換,以獲得一STFT資料;一資料儲存單元,其用以儲存至少一有關心臟病理超音波資料樣本;及一輸出單元,其用以輸出一相關判斷數值; 其中利用該CWT資料或STFT資料計算產生至少一特徵值及至少一特徵向量,且由該特徵值產生一相關數值,或該特徵值與一樣本特徵值進行比對判別,以產生一比對結果。 A heart sound processing system using feature value detection, comprising: a heart sound receiving unit for receiving at least one heart sound signal; and a heart sound processing unit for cutting the heart sound signal to obtain a plurality of heart sound signal segments, and Performing continuous wavelet transform on the heart sound signal segment to obtain a CWT data, or performing short-time Fourier transform on the heart sound signal segment to obtain an STFT data; and a data storage unit for storing at least one related cardiac pathological super a sample of the sound wave data; and an output unit for outputting a correlation judgment value; The at least one eigenvalue and the at least one eigenvector are generated by using the CWT data or the STFT data, and a correlation value is generated by the eigenvalue, or the eigenvalue is compared with the same eigenvalue to generate an alignment result. . 依申請專利範圍第6項所述之採用特徵值偵測之心音處理系統,其中該特徵值之相關數值包含一正相關性數值或一互相關性數值。 A heart sound processing system using feature value detection according to item 6 of the patent application scope, wherein the correlation value of the feature value comprises a positive correlation value or a cross correlation value. 依申請專利範圍第6項所述之採用特徵值偵測之心音處理系統,其中該心音訊號包含一第一心音S1訊號及一第二心音S2訊號,且該特徵值由該第二心音S2訊號產生。 The heart sound processing system using the feature value detection according to the sixth aspect of the patent application, wherein the heart sound signal comprises a first heart sound S1 signal and a second heart sound S2 signal, and the feature value is determined by the second heart sound S2 The signal is generated. 依申請專利範圍第6項所述之採用特徵值偵測之心音處理系統,其中該正相關性數值及互相關性數值用以建立一先天心室分隔模型。 The heart sound processing system using feature value detection according to item 6 of the patent application scope, wherein the positive correlation value and the cross correlation value are used to establish a congenital ventricular separation model. 依申請專利範圍第9項所述之採用特徵值偵測之心音處理系統,其中該先天心室分隔模型為一相關數值模型。 The heart sound processing system using feature value detection according to claim 9 of the patent application scope, wherein the congenital ventricular separation model is a related numerical model.
TW106142991A 2017-12-07 2017-12-07 Heart sound processing method and system with eigenvalue detection TWI669101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106142991A TWI669101B (en) 2017-12-07 2017-12-07 Heart sound processing method and system with eigenvalue detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106142991A TWI669101B (en) 2017-12-07 2017-12-07 Heart sound processing method and system with eigenvalue detection

Publications (2)

Publication Number Publication Date
TW201924602A TW201924602A (en) 2019-07-01
TWI669101B true TWI669101B (en) 2019-08-21

Family

ID=68048734

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142991A TWI669101B (en) 2017-12-07 2017-12-07 Heart sound processing method and system with eigenvalue detection

Country Status (1)

Country Link
TW (1) TWI669101B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150282755A1 (en) * 2014-04-02 2015-10-08 King Fahd University Of Petroleum And Minerals System and method for detecting seizure activity
TWI503686B (en) * 2010-02-10 2015-10-11 Univ Yuan Ze A de-noise system for 12-lead ecg
US20170180153A1 (en) * 2015-12-21 2017-06-22 Ciena Corporation Systems and methods to detect and recover from a loop in an ethernet ring protected network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503686B (en) * 2010-02-10 2015-10-11 Univ Yuan Ze A de-noise system for 12-lead ecg
US20150282755A1 (en) * 2014-04-02 2015-10-08 King Fahd University Of Petroleum And Minerals System and method for detecting seizure activity
US20170180153A1 (en) * 2015-12-21 2017-06-22 Ciena Corporation Systems and methods to detect and recover from a loop in an ethernet ring protected network

Also Published As

Publication number Publication date
TW201924602A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
US10980429B2 (en) Method and system for cuffless blood pressure estimation using photoplethysmogram features and pulse transit time
JP6073799B2 (en) System for detecting frequency power for diagnosing coronary artery disease
US9636081B2 (en) Method and apparatus for recognizing moving anatomical structures using ultrasound
US20160045183A1 (en) Electronic stethoscope apparatus, automatic diagnostic apparatus and method
US20170332927A1 (en) Non-invasive method and system for characterizing cardiovascular systems
Nigam et al. Accessing heart dynamics to estimate durations of heart sounds
JP6148620B2 (en) Measurement of pulmonary blood pressure using transthoracic Doppler ultrasound
JP2013500757A (en) Method and apparatus for analysis of cardioballistic signal
JP2012513858A (en) Method and system for processing heart sound signals
CN102551726A (en) Respiratory signal processing apparatus, respiratory signal processing method, and program
TW201244691A (en) Heart sound signal/heart disease or cardiopathy distinguishing system and method
WO2022211972A1 (en) Multisensor pulmonary artery and capillary pressure monitoring system
Saeidi et al. 3D heart sound source localization via combinational subspace methods for long-term heart monitoring
TWI669101B (en) Heart sound processing method and system with eigenvalue detection
TWI667997B (en) Heart sound processing method and system for building 3d detection models
Lin et al. Non-invasive blood pressure measurement algorithm using neural networks.
Lee et al. Multivariate classification of systemic vascular resistance using photoplethysmography
Al-Zaben et al. Detection of premature ventricular beats from arterial blood pressure signal
Balogh et al. Application of phonocardiography on preterm infants with patent ductus arteriosus
TWI667992B (en) Simplified heart sound processing method and system
TWI637724B (en) Heart sound processing method and system for detecting cardiopathy
JP2021500182A (en) Risk assessment of coronary artery disease
Imani et al. Curve fitting, filter bank and wavelet feature fusion for classification of PCG signals
CN117222359A (en) Determine blood pressure
Dwivedi et al. An approach for automatic identification of fundamental and additional sounds from cardiac sounds recordings

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees