TWI664550B - Golf player swing posture detection system - Google Patents
Golf player swing posture detection system Download PDFInfo
- Publication number
- TWI664550B TWI664550B TW107125861A TW107125861A TWI664550B TW I664550 B TWI664550 B TW I664550B TW 107125861 A TW107125861 A TW 107125861A TW 107125861 A TW107125861 A TW 107125861A TW I664550 B TWI664550 B TW I664550B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- original
- triaxial
- motion data
- parameter
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 230000033001 locomotion Effects 0.000 claims abstract description 113
- 238000012545 processing Methods 0.000 claims abstract description 41
- 238000003062 neural network model Methods 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims 1
- 230000036544 posture Effects 0.000 description 41
- 210000002683 foot Anatomy 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 9
- 238000012549 training Methods 0.000 description 6
- 208000025978 Athletic injury Diseases 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 206010050031 Muscle strain Diseases 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 206010041738 Sports injury Diseases 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000012880 independent component analysis Methods 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Landscapes
- Studio Devices (AREA)
- Image Analysis (AREA)
Abstract
一種高爾夫球運動員揮桿姿勢檢測系統,包含一複數穿戴式裝置、一電子裝置、一影像擷取裝置、一顯示裝置、一獲得一錯誤姿勢參數的第一處理伺服器,及一第二處理伺服器。該第二處理伺服器接收該手部三軸運動資料、該腳部三軸運動資料、該腰部三軸運動資料、該人體骨架資料、該運動時間、該喜好參數、該球桿類型參數,及該錯誤姿勢參數為一待檢測本體論資料架構,連同一個人化本體論資料架構輸入至一霍夫曼樹模型中比對,以輸出一檢測結果。其中該第二處理伺服器執行一增權式不平衡學習演算法,以計算出該個人化本體論資料架構。 A golf player swing posture detection system includes a plurality of wearable devices, an electronic device, an image capture device, a display device, a first processing server that obtains an incorrect posture parameter, and a second processing server Device. The second processing server receives the hand triaxial movement data, the foot triaxial movement data, the waist triaxial movement data, the human skeleton data, the exercise time, the preference parameter, the club type parameter, and The wrong posture parameter is an ontology data structure to be detected, and a humanized ontology data structure is input to a Huffman tree model for comparison to output a detection result. The second processing server executes a weighted imbalanced learning algorithm to calculate the personalized ontology data structure.
Description
高爾夫球運動員揮桿姿勢檢測系統 Golf player swing posture detection system
高爾夫球是一種注重身體協調性與平衡性的高技巧運動,運動員的揮桿姿勢與身體律動為非常重要的議題,高爾夫球揮桿動作可分為預備期、上桿期、下桿期、加速期、送桿期與收桿期共六個階段,每階段均易有姿勢不正確的問題產生,而不標準的揮桿姿勢易對身體產生運動傷害。 Golf is a high-tech sport that emphasizes body coordination and balance. Athlete's swing posture and body rhythm are very important issues. Golf swing can be divided into preparatory period, upper period, lower period, and acceleration. There are six phases including the period, the sending period and the closing period. Each stage is prone to the problem of incorrect posture, and the non-standard swing posture is easy to cause sports injury to the body.
建置電腦系統實現運動員輔助訓練服務一直是容易規劃但較難進行的研究主題。因考量運動員的測量技術需穿戴大量感測器進行測量,或採用圖像分析法分析運動員的運動動作,造成操作上許多不便。運動員利用穿戴式感測器蒐集運動期間的感測數據,對數據進行分析與推論,提供運動員客製化服務。然而每位運動員習慣與標準不同,故進行數據分析與推論過程中,無法提供運動員較完善的訓練任務。於是開始採用大數據技術,蒐集不同運動員在運動期間的感測數據,藉此獲得完善數據進行分析與推論,提供適合運動員的訓練任務。運動員的訓練任務服務約略可分為:一、個人感測分析法:主要利用穿戴式感測器安裝於運動員身上或運動器材上,由裝置捕捉運動員在運動過程中的相關數值,或利用圖片或影像方法來記錄高爾夫球運動員於揮桿過程中的動作,再透過動作分 析比對運動模型的門檻值,藉此推論出運動員的訓練任務成果。二、大眾感測分析法:主要蒐集來自不同運動員在運動期間的感測數據,將蒐集的數據進行分析、分類以及推論,推論結果將幫助運動員矯正錯誤或協助初學者學習,藉此實現適合運動員的訓練任務。 Building a computer system to implement athlete-assisted training services has always been a research topic that is easy to plan but difficult to carry out. Considering the measurement technology of athletes, it is necessary to wear a large number of sensors for measurement, or use image analysis to analyze athletes' movements, which causes a lot of inconvenience in operation. Athletes use wearable sensors to collect sensing data during sports, analyze and infer the data, and provide customized services for athletes. However, each athlete has different habits and standards, so in the process of data analysis and inference, it cannot provide athletes with a more complete training task. So began to use big data technology to collect sensory data of different athletes during sports, so as to obtain perfect data for analysis and inference, and provide training tasks suitable for athletes. Athletes' training task services can be roughly divided into: 1. Personal sensing analysis method: mainly use wearable sensors to be installed on athletes or sports equipment, and devices to capture relevant values of athletes during sports, or use pictures or Video method to record the golfer ’s movements during the swing Analyze and compare the threshold value of the sports model to infer the training task results of the athletes. 2. Mass sensing analysis method: It mainly collects sensory data from different athletes during sports, analyzes, classifies and infers the collected data. The inference results will help athletes to correct errors or assist beginners to learn, thereby realizing suitable athletes. Training task.
不論是個人或大眾感測分析法,現有技術對於資料分析的計數手段主要可分為輕量化分析與巨量化分析兩種型態。其中,輕量化分析透過穿戴式感測設備針對運動員捕捉揮桿動作,藉此獲得相關運動因子,根據獲得的相關因子進行分析與推論,建構起個製化運動模型,為運動員提供無所不在的個性化服務。但是,輕量化分析雖有考慮到運動員動作之個製化、動作協調性與即時性等議題,但往往缺乏稀少性與合理性。 Regardless of individual or mass sensing analysis methods, the prior art counting methods for data analysis can be mainly divided into two types: lightweight analysis and giant quantitative analysis. Among them, lightweight analysis captures swing movements for athletes through wearable sensing devices, thereby obtaining relevant motion factors, analyzing and inferring based on the obtained relevant factors, and constructing a customized sports model to provide athletes with ubiquitous personalization service. However, although lightweight analysis takes into account issues such as the individualization of athletes' movements, coordination and immediacy of movements, they often lack scarcity and rationality.
再者,巨量化分析從各種渠道蒐集所需相關資訊,作為資料探勘、推論與分析的基礎,協助使用者獲得感興趣的相關資訊。雖然有考慮到使用者之動作協調性與完整性等議題,但往往缺乏客製化與稀少性。 In addition, the quantitative analysis collects relevant information from various channels as the basis for data exploration, inference and analysis, and helps users obtain relevant information of interest. Although issues such as user coordination and integrity are taken into account, they often lack customization and scarcity.
如上所述,無倫是個人或大眾感測分析法,由於錯誤揮桿動作的資料相對稀少,若要檢測出不正確姿勢以避免運動傷害,現有技術仍有所不足。 As mentioned above, Wulun is a personal or mass-sensing analysis method. Because the data of erroneous swing movements is relatively scarce, to detect incorrect postures to avoid sports injuries, the existing technology is still insufficient.
因此,本發明之目的,即在提供一種可檢測到高爾夫球運動員揮桿的錯誤姿勢,用以預防運動傷害的揮桿姿勢檢測系統。 Therefore, an object of the present invention is to provide a swing posture detection system that can detect a golf player's swing posture to prevent sports injuries.
於是,本發明之高爾夫球運動員揮桿姿勢檢測系統,適用於檢測高爾夫球運動員的揮桿姿勢,該檢測系統包含一複數穿戴式裝置1、一電子裝置2、一影像擷取裝置3、一顯示裝置4、一第一處理伺服器5,及一 第二處理伺服器6。 Therefore, the golf player swing posture detection system of the present invention is suitable for detecting a golf player's swing posture. The detection system includes a plurality of wearable devices 1, an electronic device 2, an image capture device 3, and a display. Device 4, a first processing server 5, and a 第二 处理 SERVER6。 The second processing server 6.
該複數穿戴式裝置擷取一手部三軸運動資料及一腳部三軸運動資料。 The plurality of wearable devices capture three-axis motion data of one hand and three-axis motion data of one foot.
該電子裝置連線該等穿戴式裝置,用以獲得該手部三軸運動資料及該腳部三軸運動資料,並接收一運動時間、一喜好參數,及一球桿類型參數,且擷取一腰部三軸運動資料。 The electronic device is connected to the wearable devices to obtain the three-axis movement data of the hand and the three-axis movement data of the foot, and receive a movement time, a preference parameter, and a club type parameter, and retrieve One waist three axis movement data.
該影像擷取裝置包括一複合鏡頭攝影機,用以擷取到一人體骨架資料。 The image capturing device includes a compound lens camera for capturing a human skeleton data.
該顯示裝置包括一螢幕單元。 The display device includes a screen unit.
該第一處理伺服器連線至該電子裝置、該影像擷取裝置及該顯示裝置,該第一處理伺服器執行一倒傳遞類神經網路模型,並接收該手部三軸運動資料、該腳部三軸運動資料、該腰部三軸運動資料、該人體骨架資料、該運動時間、該喜好參數,及該球桿類型參數,輸入至該倒傳遞類神經網路模型,以獲得一錯誤姿勢參數。 The first processing server is connected to the electronic device, the image capturing device, and the display device. The first processing server executes an inverted transfer neural network model, and receives the three-axis motion data of the hand, the The three-axis motion data of the foot, the three-axis motion data of the waist, the human skeleton data, the exercise time, the preference parameters, and the club type parameters are input to the inverted transfer neural network model to obtain a wrong posture parameter.
該第二處理伺服器連線至該第一處理伺服器,儲存一個人化本體論資料架構及一霍夫曼樹模型,並接收該手部三軸運動資料、該腳部三軸運動資料、該腰部三軸運動資料、該人體骨架資料、該運動時間、該喜好參數、該球桿類型參數,及該錯誤姿勢參數為一待檢測本體論資料架構,該第二處理伺服器依據該個人化本體論資料架構及該待檢測本體論資料架構,輸入至該霍夫曼樹模型中比對,以輸出一檢測結果,該檢測結果傳送至該顯示裝置,並於該螢幕單元顯示該檢測結果。 The second processing server is connected to the first processing server, stores a humanized ontology data structure and a Huffman tree model, and receives the three-axis motion data of the hand, the three-axis motion data of the foot, the The waist triaxial movement data, the human skeleton data, the movement time, the preference parameter, the club type parameter, and the wrong posture parameter are an ontology data structure to be detected, and the second processing server is based on the personalized ontology The data structure and the ontology data structure to be tested are input to the Huffman tree model for comparison to output a test result, the test result is transmitted to the display device, and the test result is displayed on the screen unit.
其中,該第二處理伺服器執行一增權式不平衡學習演算法, 輸入一原始手部三軸運動資料、一原始腳部三軸運動資料、一原始腰部三軸運動資料、一原始人體骨架資料、一原始運動時間、一原始喜好參數、一原始球桿類型參數,及一原始錯誤姿勢參數,以計算出該個人化本體論資料架構。 Wherein, the second processing server executes a weighted imbalance learning algorithm, Input an original hand triaxial motion data, an original foot triaxial motion data, an original waist triaxial motion data, an original human skeleton data, an original exercise time, an original preference parameter, an original club type parameter, And an original wrong posture parameter to calculate the personalized ontology data structure.
本發明的功效在於,利用該第二處理伺服器執行的增權式不平衡學習演算法計算出更合理化的檢測結果,即使收集到的錯誤揮桿姿勢稀少,仍能檢測出問題姿勢,並在顯示裝置上供高爾夫球運動員查看,達成預防運動傷害的功效。 The effect of the present invention is that a more reasonable detection result is calculated by using the weighted imbalance learning algorithm executed by the second processing server, and even if the collected wrong swing posture is rare, the problem posture can still be detected, and The display device can be viewed by a golfer to prevent sports injuries.
2‧‧‧複數穿戴式裝置 2‧‧‧ plural wearable devices
2‧‧‧電子裝置 2‧‧‧ electronic device
3‧‧‧影像擷取裝置 3‧‧‧Image capture device
31‧‧‧複合鏡頭攝影機 31‧‧‧ composite lens camera
32‧‧‧電腦主機 32‧‧‧Computer host
4‧‧‧顯示裝置 4‧‧‧ display device
41‧‧‧螢幕單元 41‧‧‧Screen unit
5‧‧‧第一處理伺服器 5‧‧‧First Processing Server
6‧‧‧第二處理伺服器 6‧‧‧Second Processing Server
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一系統方塊圖,說明本發明之高爾夫球運動員揮桿姿勢檢測系統;圖2是一本體論資料架構的示意圖,說明本發明之高爾夫球運動員揮桿姿勢檢測系統的實施例中,多個參數的集合;及圖3是一霍夫曼樹的示意圖,說明本發明之高爾夫球運動員揮桿姿勢檢測系統的實施例中,計算出該檢測結果。 Other features and effects of the present invention will be clearly presented in the embodiment with reference to the drawings, in which: FIG. 1 is a system block diagram illustrating a golf player's swing posture detection system of the present invention; FIG. 2 is a body A schematic diagram of the data structure, illustrating a set of multiple parameters in the embodiment of the golf player swing posture detection system of the present invention; and FIG. 3 is a schematic diagram of a Huffman tree illustrating the golf player swing of the present invention In an embodiment of the posture detection system, the detection result is calculated.
參閱圖1,本發明高爾夫球運動員揮桿姿勢檢測系統的實施例,適用於檢測一高爾夫球運動員的揮桿姿勢。該檢測系統包含一複數穿戴式裝置1、一電子裝置2、一影像擷取裝置3、一顯示裝置4、一第一處理伺服器5,及一第二處理伺服器6。 Referring to FIG. 1, an embodiment of a golf player swing posture detection system according to the present invention is suitable for detecting a golf player's swing posture. The detection system includes a plurality of wearable devices 1, an electronic device 2, an image capture device 3, a display device 4, a first processing server 5, and a second processing server 6.
該等穿戴式裝置1在本實施例中為二個,供高爾夫球運動員分別穿戴在手腕及腳踝上,當高爾夫球運動員做出揮桿姿勢時,擷取到一手部三軸運動資料及一腳部三軸運動資料。以該手部三軸運動資料為例,該穿戴式裝置1可取得三個方向(X軸、Y軸、Z軸)的重力加速度數值(G值),如X軸是3.5G、Y軸是3.1G、Z軸是2.9G。 In this embodiment, there are two wearable devices 1 for golf players to wear on their wrists and ankles respectively. When the golfer makes a swing posture, the three-axis movement data of one hand and one foot are captured. Tri-axial motion data. Taking the three-axis movement data of the hand as an example, the wearable device 1 can obtain the value of the gravity acceleration (G value) in three directions (X-axis, Y-axis, and Z-axis), for example, the X-axis is 3.5G and the Y-axis is The 3.1G and Z axes are 2.9G.
該電子裝置2在本實施例為一智慧型手機,可透過藍牙通訊介面連線該等穿戴式裝置1,用以獲得該手部三軸運動資料及該腳部三軸運動資料。同時,使用者可操作該電子裝置2執行的應用程式來輸入,使該電子裝置2接收一運動時間(如:較長、適當,或較短)、一喜好參數(如:左手桿或右手桿),及一球桿類型參數(如:代碼:「發球桿」或「木桿」)。由於高爾夫球運動員會將該電子裝置2配戴在腰部,而且現有的智慧型手機均配置有重力感測器,因此該電子裝置2還可以擷取到一腰部三軸運動資料。 The electronic device 2 is a smart phone in this embodiment, and the wearable devices 1 can be connected through a Bluetooth communication interface to obtain the triaxial motion data of the hand and the triaxial motion data of the foot. At the same time, the user can operate an application program executed by the electronic device 2 to input, so that the electronic device 2 receives a movement time (such as: longer, appropriate, or shorter), a preference parameter (such as: left-hand stick or right-hand stick). ), And a club type parameter (such as: Code: "Drive" or "Wood"). Because the golfer wears the electronic device 2 at the waist, and the existing smart phones are equipped with a gravity sensor, the electronic device 2 can also capture a waist triaxial motion data.
該影像擷取裝置3包括一複合鏡頭攝影機31及一執行Kinect應用程式的電腦主機32,其中,該複合鏡頭攝影機31是一現有的Kinect攝影機。該複合鏡頭攝影機31取得高爾夫球運動員動態的複數影像後,經由該電腦主機32執行的Kinect應用程式計算出一人體骨架資料。其中,該人體骨架資料是紀錄人體四肢關節(點)、身體軀幹(線)、四肢(線)座標的組合資料,已普遍用於人體動作姿勢的偵測。 The image capturing device 3 includes a compound lens camera 31 and a computer host 32 executing a Kinect application program. The compound lens camera 31 is an existing Kinect camera. After the composite lens camera 31 obtains a plurality of images of a golf player's dynamics, a human skeleton data is calculated by a Kinect application program executed by the computer host 32. Among them, the human skeleton data is a combined data recording the joints (points) of the human limbs, the trunk (line) of the body, and the coordinates of the limbs (line), and has been commonly used for the detection of human action posture.
該顯示裝置4在本實施例中為一顯示器,包括一螢幕單元41用於顯示畫面。 The display device 4 is a display in this embodiment, and includes a screen unit 41 for displaying pictures.
該第一處理伺服器5連線至該電子裝置2、該影像擷取裝置3 及該顯示裝置4。該第一處理伺服器5執行一倒傳遞類神經網路(Back Propagation Neural Network)模型,並接收該手部三軸運動資料、該腳部三軸運動資料、該腰部三軸運動資料、該人體骨架資料、該運動時間、該喜好參數,及該球桿類型參數,輸入至該倒傳遞類神經網路模型,以獲得一錯誤姿勢參數。 The first processing server 5 is connected to the electronic device 2 and the image capturing device 3 And this display device 4. The first processing server 5 executes a Back Propagation Neural Network model, and receives the triaxial motion data of the hand, the triaxial motion data of the foot, the triaxial motion data of the waist, and the human body. Skeleton data, the movement time, the preference parameter, and the club type parameter are input to the inverted transfer neural network model to obtain a wrong posture parameter.
其中,該錯誤姿勢參數是來自於下列表一的複數錯誤姿勢資料,由編號EP01至EP18共計十八種:
上述之倒傳遞類神經網路模型是現有的其中一種類神經網路模型,包括一輸入層(Input Layer)、一隱藏層(Hidden Layer)及一輸出層(Output Layer)。該第一處理伺服器5將該手部三軸運動資料、該腳部三軸運動資料、該腰部三軸運動資料、該人體骨架資料、該運動時間、該喜好參數,及該球桿類型參數輸入至該倒傳遞類神經網路模型的輸入層,經該隱藏層計算後,從該等錯誤姿勢資料中,於該輸入層輸出其中一種錯誤姿勢資料為該錯誤姿勢參數。 The aforementioned inverted transfer neural network model is one of the existing neural network-like models, including an input layer, a hidden layer, and an output layer. The first processing server 5 includes the hand triaxial motion data, the foot triaxial motion data, the waist triaxial motion data, the human skeleton data, the exercise time, the preference parameter, and the club type parameter. Input to the input layer of the backward transitive neural network model, after calculation by the hidden layer, output one of the wrong posture data from the wrong posture data to the input layer as the wrong posture parameter.
該第二處理伺服器6透過網際網路連線至該第一處理伺服器5,並儲存一對應至該高爾夫球運動員的個人化本體論(Ontology)資料架構及一霍夫曼樹(Huffman Tree)模型。特別說明的是,所謂的「本體論資料架構」如圖2所示即是多個參數以樹狀分類的集合,在本實施例中,本體論資料架構包括動態事件和固定事件,其中,動態事件則具有手部三軸運動資料、腳部三軸運動資料、腰部三軸運動資料、錯誤姿勢參數,及人體骨架資料;固定事件則具有運動時間、喜好參數,及球桿類型參數。而霍夫曼樹是一種如圖3所示現有的特殊二元樹,在本實施例中,一待檢測本體論資料架構及該個人化本體論資料架構在霍夫曼樹中比對,可比一般的二元樹更快速地尋找到對應該待檢測本體論資料架構的使用者運動狀態,例如在霍夫曼樹的末端葉節點所紀錄的「腰過於用力」、「雙手未打直」等,及其上一層葉節點記錄的「肌肉拉傷」、「韌帶拉傷」等。 The second processing server 6 is connected to the first processing server 5 through the Internet, and stores a personal ontology data structure corresponding to the golfer and a Huffman Tree. )model. In particular, the so-called "ontological data architecture" is a tree-like collection of multiple parameters as shown in Figure 2. In this embodiment, the ontological data architecture includes dynamic events and fixed events. The event has three-axis hand data, three-axis foot data, three-axis waist data, wrong posture parameters, and human skeleton data; fixed events have exercise time, preference parameters, and club type parameters. The Huffman tree is a kind of existing special binary tree as shown in FIG. 3. In this embodiment, an ontology data structure to be tested and the personalized ontology data structure are compared in the Huffman tree. Ordinary binary trees can more quickly find the user's motion state corresponding to the ontology data structure to be detected, such as "the waist is too hard" and "the hands are not straightened" recorded at the end leaf nodes of the Huffman tree Etc., and "muscle strain" and "ligament strain" recorded by the leaf nodes above it.
在本實施例中,該第二處理伺服器6執行一增權式不平衡學習(Weight-added Class-imbalance Learning)演算法,該增權式不平衡學習演算法包括一處理階段、一取特徵階段、一建立候選階段,及一整合階段。 從該高爾夫球運動員先前的揮桿姿勢所獲得的一原始手部三軸運動資料、一原始腳部三軸運動資料、一原始腰部三軸運動資料、一原始人體骨架資料、一原始運動時間、一原始喜好參數、一原始球桿類型參數,及一原始錯誤姿勢參數輸入該增權式不平衡學習演算法中,依序地經過該處理階段、該取特徵階段、該建立候選階段,及該整合階段,計算出該個人化本體論資料架構。 In this embodiment, the second processing server 6 executes a weight-added class-imbalance learning algorithm. The weight-added class-imbalance learning algorithm includes a processing stage and a feature acquisition. Phase, a build candidate phase, and an integration phase. An original hand triaxial motion data, an original foot triaxial motion data, an original waist triaxial motion data, an original human skeleton data, an original exercise time obtained from the golfer's previous swing posture, An original preference parameter, an original club type parameter, and an original wrong posture parameter are input into the weighted imbalance learning algorithm, and sequentially pass through the processing stage, the feature taking stage, the establishment candidate stage, and the During the integration phase, the personal ontology data structure is calculated.
在該增權式不平衡學習演算法的該處理階段中,是輸入該原始手部三軸運動資料、該原始腳部三軸運動資料、該原始腰部三軸運動資料、該原始人體骨架資料、該原始運動時間、該原始喜好參數、該原始球桿類型參數,及該原始錯誤姿勢參數,先利用一現有的AND(Automatic Neighborhood size Determination)演算法,再依據一現有的SMOTE(Synthetic Minority Over-sampling Technique)演算法計算出一候選推論手部三軸運動資料、一候選推論腳部三軸運動資料、一候選推論腰部三軸運動資料、一候選推論人體骨架資料、一候選推論運動時間、一候選推論喜好參數、一候選推論球桿類型參數,及一候選推論錯誤姿勢參數。 In this processing stage of the augmented imbalanced learning algorithm, the original hand triaxial motion data, the original foot triaxial motion data, the original waist triaxial motion data, the original human skeleton data, The original motion time, the original preference parameter, the original club type parameter, and the original wrong posture parameter are firstly based on an existing AND (Automatic Neighborhood size Determination) algorithm, and then based on an existing SMOTE (Synthetic Minority Over- (sampling Technique) algorithm to calculate a candidate inferred hand triaxial motion data, a candidate inferred foot triaxial motion data, a candidate inferred waist triaxial motion data, a candidate inferred human skeleton data, a candidate inferred exercise time, a Candidate inference preference parameters, a candidate inference club type parameter, and a candidate inference error posture parameter.
在該增權式不平衡學習演算法的該取特徵階段中,是依據一現有的快速元件分析(Fast Independent Component Analysis,FastICA)演算法,自該原始手部三軸運動資料及該候選推論手部三軸運動資料中取其中一者為一特徵手部三軸運動資料,自該原始腳部三軸運動資料及該候選推論腳部三軸運動資料中取其中一者為一特徵腳部三軸運動資料,自該原始腰部三軸運動資料及該候選推論腰部三軸運動資料中取其中一者為一特徵腰部三軸運動資料,自該原始人體骨架資料及該候選推論人體骨架資料中 取其中一者為一特徵人體骨架資料,自該原始運動時間及該候選推論運動時間中取其中一者為一特徵運動時間,自該原始喜好參數及該候選推論喜好參數中取其中一者為一特徵喜好參數,自該原始球桿類型參數及該候選推論球桿類型參數中取其中一者為一特徵球桿類型參數,自該原始錯誤姿勢參數及該候選推論錯誤姿勢參數中取其中一者為一特徵錯誤姿勢參數。 In the feature extraction phase of the weighted imbalanced learning algorithm, based on an existing Fast Independent Component Analysis (FastICA) algorithm, the original hand triaxial motion data and the candidate inferred hand Take one of the three-axis motion data as a characteristic hand three-axis motion data, and take one of the original foot three-axis motion data and the candidate inferred foot three-axis motion data as a characteristic foot three Axis motion data, one of the original waist triaxial motion data and the candidate inferred waist triaxial motion data is taken as a characteristic waist triaxial motion data, from the original human skeleton data and the candidate inferred human skeleton data Take one of them as a characteristic human skeleton data, take one of the original exercise time and the candidate inference exercise time as a characteristic exercise time, and take one of the original preference parameter and the candidate inference preference parameter as A feature preference parameter, one of which is a characteristic club type parameter from the original club type parameter and the candidate inferred club type parameter, and one of the original wrong posture parameter and the candidate inferred error posture parameter This is a characteristic error posture parameter.
在該增權式不平衡學習演算法的該建立候選階段中,是將該特徵手部三軸運動資料、該特徵腳部三軸運動資料、該特徵腰部三軸運動資料、該特徵人體骨架資料、該特徵運動時間、該特徵喜好參數、該特徵球桿類型參數,及該特徵錯誤姿勢參數輸入至複數假說演算法中,分別計算出複數假說本體論資料架構。在本實施例中,該等假說演算法有三種,分別是一現有的並改良自Gaussian-binary RBMs(Restricted Boltzmann Machines)的Sparse RBMs演算法、一基於密度的OPTICS(Ordering Points to Identify the Clustering Structure)群聚演算法,及一將各資料的特徵點群聚的聚類(Affinity Propagation)演算法。三種假說演算法可分別計算出各自的假說本體論資料架構。 In the establishment candidate stage of the weighted imbalanced learning algorithm, the characteristic hand triaxial motion data, the characteristic foot triaxial motion data, the characteristic waist triaxial motion data, and the characteristic human skeleton data , The characteristic movement time, the characteristic preference parameter, the characteristic club type parameter, and the characteristic error posture parameter are input into the complex hypothesis algorithm, and the complex hypothesis ontology data structure is calculated respectively. In this embodiment, there are three kinds of hypothetical algorithms, namely an existing Sparse RBMs algorithm modified from Gaussian-binary RBMs (Restricted Boltzmann Machines), and a density-based OPTICS (Ordering Points to Identify the Clustering Structure) ) Clustering algorithm, and a clustering algorithm (Affinity Propagation) algorithm that clusters the feature points of each data. The three hypothesis algorithms can calculate their own hypothetical ontology data structures.
在該增權式不平衡學習演算法的該整合階段中,是包括一具有一整合輸入層(Input Layer)、一整合隱藏層(Hidden Layer)及一整合輸出層(Output Layer)的排序學習(Learn to Rank,LTR)類神經網路模型,而該排序學習類神經網路模型是現有的其中一種類神經網路模型。該等假說本體論資料架構輸入至該排序學習類神經網路模型的輸入層,經該隱藏層計算後,輸出該個人化本體論資料架構。 In the integration phase of the weighted imbalanced learning algorithm, it includes a learning sequence with an integrated input layer, an integrated hidden layer, and an integrated output layer ( (Learn to Rank, LTR) neural network model, and the ranking learning neural network model is one of the existing neural network model. The hypothetical ontology data framework is input to the input layer of the sorting learning neural network model, and after calculation by the hidden layer, the personalized ontology data framework is output.
當高爾夫球運動員做出揮桿動作時,該第二處理伺服器6透 過該第一處理伺服器5接收即時的該手部三軸運動資料、該腳部三軸運動資料、該腰部三軸運動資料、該人體骨架資料、該運動時間、該喜好參數、該球桿類型參數,及該錯誤姿勢參數為一待檢測本體論資料架構,而該第二處理伺服器6依據該個人化本體論資料架構及該待檢測本體論資料架構,輸入至該霍夫曼樹模型中比對,以輸出一檢測結果,例如,該檢測結果為末端葉節點所記錄的「腰過於用力」及其上一層葉節點所紀錄之「肌肉拉傷」。而該檢測結果會透過該第一處理伺服器5傳送至該顯示裝置4,並於該螢幕單元41顯示該檢測結果,在本實施例中,該螢幕單元41顯示的是「揮桿姿勢檢測:腰過於用力。請注意!可能造成肌肉拉傷。」,供高爾夫球運動員查看檢測結果。 When the golf player makes a swing, the second processing server 6 passes The first processing server 5 receives the real-time tri-axis motion data, the foot tri-axis motion data, the waist tri-axis motion data, the human skeleton data, the exercise time, the preference parameter, and the cue. The type parameter and the wrong posture parameter are an ontology data structure to be detected, and the second processing server 6 is input to the Huffman tree model according to the personalized ontology data structure and the ontology data structure to be detected. The middle comparison is to output a detection result, for example, the detection result is "the waist is too hard" recorded by the terminal leaf node and the "muscle strain" recorded by the leaf node above it. The detection result will be transmitted to the display device 4 through the first processing server 5 and displayed on the screen unit 41. In this embodiment, the screen unit 41 displays "Swing posture detection: The waist is too hard. Please note! It may cause muscle strain. "For golf players to check the test results.
綜上所述,本發明高爾夫球運動員揮桿姿勢檢測系統,即使收集到的錯誤揮桿姿勢稀少,但是仍能夠過第二處理伺服器6的增權式不平衡學習演算法,檢測出高爾夫球運動員的揮桿動作,進而發現問題姿勢,避免可能發生的運動傷害。 In summary, the golf player's swing posture detection system of the present invention can detect a golf ball through the weighted imbalance learning algorithm of the second processing server 6 even if the collected incorrect swing posture is rare. Athlete's swing action, and then find problematic postures to avoid possible sports injuries.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107125861A TWI664550B (en) | 2018-07-26 | 2018-07-26 | Golf player swing posture detection system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107125861A TWI664550B (en) | 2018-07-26 | 2018-07-26 | Golf player swing posture detection system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI664550B true TWI664550B (en) | 2019-07-01 |
| TW202008380A TW202008380A (en) | 2020-02-16 |
Family
ID=68049740
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107125861A TWI664550B (en) | 2018-07-26 | 2018-07-26 | Golf player swing posture detection system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI664550B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI704499B (en) * | 2019-07-25 | 2020-09-11 | 和碩聯合科技股份有限公司 | Method and device for joint point detection |
| TWI731635B (en) * | 2020-03-25 | 2021-06-21 | 技鼎股份有限公司 | Golf-movement-training method by computer-automatic-comparing-swing-movement process |
| TWI784243B (en) * | 2020-03-03 | 2022-11-21 | 國立臺灣師範大學 | Method of taekwondo poomsae movement detection and comparison |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102807854B1 (en) * | 2022-04-27 | 2025-05-16 | 주식회사 크리에이츠 | Method, system and non-transitory computer-readable recording medium for providing shot information of golf balls |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201436836A (en) * | 2013-03-28 | 2014-10-01 | Chien-Sheng Chen | Golf posture analysis device and method |
| TW201726216A (en) * | 2016-01-19 | 2017-08-01 | 國立交通大學 | Combination of gesture recognition of human body and skeleton tracking of virtual character control system |
| TW201738827A (en) * | 2016-04-20 | 2017-11-01 | Next Animation Studio Ltd | Recognition method of human body posture in real time which is implemented by an identification system comprising an image capturing unit and a processing unit |
| TW201738057A (en) * | 2016-04-27 | 2017-11-01 | Softbank Corp | Orientation control system and program |
| TW201820080A (en) * | 2016-11-21 | 2018-06-01 | 宏達國際電子股份有限公司 | Body posture detection system, suit and method |
| TW201824020A (en) * | 2016-12-29 | 2018-07-01 | 大仁科技大學 | Analysis system of humanity action |
-
2018
- 2018-07-26 TW TW107125861A patent/TWI664550B/en not_active IP Right Cessation
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201436836A (en) * | 2013-03-28 | 2014-10-01 | Chien-Sheng Chen | Golf posture analysis device and method |
| TW201726216A (en) * | 2016-01-19 | 2017-08-01 | 國立交通大學 | Combination of gesture recognition of human body and skeleton tracking of virtual character control system |
| TW201738827A (en) * | 2016-04-20 | 2017-11-01 | Next Animation Studio Ltd | Recognition method of human body posture in real time which is implemented by an identification system comprising an image capturing unit and a processing unit |
| TW201738057A (en) * | 2016-04-27 | 2017-11-01 | Softbank Corp | Orientation control system and program |
| TW201820080A (en) * | 2016-11-21 | 2018-06-01 | 宏達國際電子股份有限公司 | Body posture detection system, suit and method |
| TW201824020A (en) * | 2016-12-29 | 2018-07-01 | 大仁科技大學 | Analysis system of humanity action |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI704499B (en) * | 2019-07-25 | 2020-09-11 | 和碩聯合科技股份有限公司 | Method and device for joint point detection |
| TWI784243B (en) * | 2020-03-03 | 2022-11-21 | 國立臺灣師範大學 | Method of taekwondo poomsae movement detection and comparison |
| TWI731635B (en) * | 2020-03-25 | 2021-06-21 | 技鼎股份有限公司 | Golf-movement-training method by computer-automatic-comparing-swing-movement process |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202008380A (en) | 2020-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111437583B (en) | An auxiliary training system for basic badminton movements based on Kinect | |
| Ghasemzadeh et al. | Coordination analysis of human movements with body sensor networks: A signal processing model to evaluate baseball swings | |
| Velloso et al. | Qualitative activity recognition of weight lifting exercises | |
| CN111274998B (en) | Parkinson's disease finger knocking action recognition method and system, storage medium and terminal | |
| TWI664550B (en) | Golf player swing posture detection system | |
| CN110705390A (en) | Body posture recognition method and device based on LSTM and storage medium | |
| CN105797319B (en) | A kind of badminton data processing method and device | |
| JP7620969B2 (en) | Exercise Support System | |
| JP2018512980A (en) | Frameworks, devices and methods configured to enable delivery of interactive skill training content, including content with multiple expert knowledge variations | |
| CN106073793B (en) | Attitude tracking and recognition method based on micro-inertial sensor | |
| CN108091380A (en) | Teenager's basic exercise ability training system and method based on multi-sensor fusion | |
| CN107930048B (en) | Space somatosensory recognition motion analysis system and motion analysis method | |
| Sarwar et al. | Skeleton based keyframe detection framework for sports action analysis: Badminton smash case | |
| CN110477924B (en) | Adaptive motion attitude sensing system and method | |
| Kinger et al. | Deep learning based yoga pose classification | |
| Samhitha et al. | Vyayam: Artificial intelligence based bicep curl workout tacking system | |
| CN115439879A (en) | Test method, device, equipment and storage medium for sports events | |
| CN117953588B (en) | An intelligent recognition method for badminton player's movements integrating scene information | |
| Beily et al. | A sensor based on recognition activities using smartphone | |
| Croteau et al. | Automatic detection of passing and shooting in water polo using machine learning: a feasibility study | |
| Sharshar et al. | Camera coach: activity recognition and assessment using thermal and RGB videos | |
| CN107851457A (en) | It is configured as realizing the framework and method of the analysis of the technical ability to physical performance for the transmission for including being applied to interaction skill training content | |
| CN114998803A (en) | Body-building movement classification and counting method based on video | |
| CN114358043A (en) | Motion recognition evaluation method, motion recognition evaluation device, and storage medium | |
| Malik et al. | Badminton action analysis using LSTM |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |