TWI658789B - Automatic fishery and preys identification and recording system - Google Patents
Automatic fishery and preys identification and recording system Download PDFInfo
- Publication number
- TWI658789B TWI658789B TW106120636A TW106120636A TWI658789B TW I658789 B TWI658789 B TW I658789B TW 106120636 A TW106120636 A TW 106120636A TW 106120636 A TW106120636 A TW 106120636A TW I658789 B TWI658789 B TW I658789B
- Authority
- TW
- Taiwan
- Prior art keywords
- image information
- prey
- programmable video
- fish
- video device
- Prior art date
Links
- 244000062804 prey Species 0.000 title 1
- 241000251468 Actinopterygii Species 0.000 claims abstract description 39
- 238000012549 training Methods 0.000 claims abstract description 26
- 238000013135 deep learning Methods 0.000 claims abstract description 17
- 230000005055 memory storage Effects 0.000 claims abstract description 11
- 238000004891 communication Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims 1
- 235000019688 fish Nutrition 0.000 description 26
- 230000003287 optical effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 241000894007 species Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 241000251730 Chondrichthyes Species 0.000 description 3
- 241000269959 Xiphias gladius Species 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000021335 sword fish Nutrition 0.000 description 3
- 241000238366 Cephalopoda Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000283007 Cervus nippon Species 0.000 description 1
- 235000009917 Crataegus X brevipes Nutrition 0.000 description 1
- 235000013204 Crataegus X haemacarpa Nutrition 0.000 description 1
- 235000009685 Crataegus X maligna Nutrition 0.000 description 1
- 235000009444 Crataegus X rubrocarnea Nutrition 0.000 description 1
- 235000009486 Crataegus bullatus Nutrition 0.000 description 1
- 235000017181 Crataegus chrysocarpa Nutrition 0.000 description 1
- 235000009682 Crataegus limnophila Nutrition 0.000 description 1
- 235000004423 Crataegus monogyna Nutrition 0.000 description 1
- 240000000171 Crataegus monogyna Species 0.000 description 1
- 235000002313 Crataegus paludosa Nutrition 0.000 description 1
- 235000009840 Crataegus x incaedua Nutrition 0.000 description 1
- 241000554740 Rusa unicolor Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 241001233037 catfish Species 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本發明係提供一種用於辨識與記錄一漁獲的裝置,包含:一照相裝置、一可程式錄影裝置、一辨識偵測單元和一記憶儲存單元。該可程式錄影裝置係配置以擷取一動態影像透過一第一深度學習之訓練來辨識該動態影像是否呈現該漁獲之出現,並因應該漁獲之出現而啟動該照相裝置以獲得該漁獲之一第一魚體影像資訊;該辨識偵測單元電連接於該可程式錄影裝置,從該可程式錄影裝置取得該第一魚體影像資訊,並透過一第二深度學習之訓練來獲得一漁體之一第一辨識結果;該記憶儲存單元電連接於該可程式錄影裝置和該照相裝置,並配置以儲存該動態影像的動態影像資訊和該第一魚體影像資訊。 The present invention provides a device for recognizing and recording a catch, comprising: a camera device, a programmable video device, a recognition detecting unit and a memory storage unit. The programmable video recording device is configured to capture a dynamic image through a first depth learning training to identify whether the dynamic image presents the occurrence of the catch, and activate the camera device to obtain the one of the catches due to the occurrence of the catch. The first fish image information; the identification detecting unit is electrically connected to the programmable video device, and the first fish image information is obtained from the programmable video device, and the fish body is obtained through a second deep learning training. a first identification result; the memory storage unit is electrically connected to the programmable video device and the camera device, and configured to store the motion image information of the motion image and the first fish image information.
Description
本發明係關於一種辨識系統;特別關於漁獲與獵物自動辨識登錄系統。 The present invention relates to an identification system; in particular, to a catch and prey automatic identification login system.
由於人們近半世紀以來積極的捕撈,海洋資源日益衰竭,世界各國開始重視每年各地區漁獲的統計,尤其是位於海洋生物鏈頂端,具有指標意義的大型魚類如鮪魚、鯊魚或旗魚的捕獲記錄的收集與分析。台灣地區遠洋漁業十分發達,台灣漁船遍佈各大洋的魚場,然而目前對於這些大型漁獲的捕獲記錄方式仍然停留在傳統的人工記錄階段,難以提供國際間對於這些漁獲統計的要求。 Due to the active fishing in the past half century and the depletion of marine resources, countries around the world have begun to pay attention to the statistics of catches in various regions each year, especially the capture of large-scale fish such as squid, shark or swordfish at the top of the marine bio-chain. Collection and analysis of records. The offshore fishing industry in Taiwan is very developed. Taiwanese fishing boats are spread all over the fish farms in the oceans. However, the current record collection methods for these large catches are still in the traditional manual recording stage, and it is difficult to provide international requirements for these catch statistics.
為了能夠提供國際漁業單位數據以進行精確且詳實的全球漁業資源統計,漁船每次捕獲的鮪魚、鯊魚或旗魚等大型漁獲的登錄必須即時反應捕獲的時間地點以及漁獲的類別與體型數量。按照目前傳統的人工記錄方式,台灣的漁業單位難以提供具有說服力的即時漁獲數據給國際社會,容易構成彼此的誤解。目前有些國家採用在 遠洋漁船上裝設機器觀察員系統,透過動態攝影或是拍照來記錄漁獲資料。然而對於漁獲種類的辨識,仍需仰賴人工作業。 In order to be able to provide international fishery unit data for accurate and detailed global fishery resource statistics, the entry of large catches such as catfish, sharks or swordfish caught by fishing vessels must be immediately reflected in the time and place of capture and the type and size of catch. According to the current traditional manual recording method, it is difficult for Taiwan's fishery units to provide persuasive real-time catch data to the international community, which easily constitutes a misunderstanding between each other. Currently used in some countries A machine observer system is installed on the ocean fishing vessels to record the catch data through dynamic photography or photographing. However, for the identification of catch species, it still depends on manual work.
因此,如何同時記錄漁獲影像資料與漁船航行資料的漁獲自動辨識記錄系統。其記錄資料包含漁獲種類、體長、重量和捕獲漁船之相關資訊。這些漁獲和漁船資訊能同步至岸上,達到即時資料更新,達到漁業資料統計之目的,是需要解決的技術問題。類似的生物統計需求也存在於路上的野生動物獵捕記錄上的應用。 Therefore, how to simultaneously record the catch automatically and record the catch information and the navigation data of the fishing vessel. The records include information on the type of catch, body length, weight and information on fishing vessels. These catch and fishing vessel information can be synchronized to the shore, to achieve real-time data updates, to achieve the purpose of fishery data statistics, is a technical problem that needs to be resolved. Similar biometric needs are also present in the application of wildlife hunting records on the road.
因此,需要發展一種能即時辨識與記錄漁獲的裝置或系統,不受人工作業的干預,可以透過自動化電子裝置的協助,及時且正確無誤的提供所需的辨識與其他基本資料。 Therefore, there is a need to develop a device or system that can instantly identify and record catches without the intervention of manual operations, and can provide the required identification and other basic information in a timely and correct manner through the assistance of the automated electronic device.
依據本發明一觀點,提出一種用於辨識與記錄一漁獲的系統,包含:一照相裝置、一可程式錄影裝置、一辨識偵測單元和一記憶儲存單元。該可程式錄影裝置係配置以擷取一動態影像,透過一第一深度學習之訓練來辨識該動態影像是否呈現該漁獲之出現,並因應該漁獲之出現而啟動該照相裝置以獲得該漁獲之一第一魚體影像資訊;該辨識偵測單元電連接於該可程式錄影裝置,從該照相裝置取得該第一魚體影像資訊,並透過一第二深度學習 之訓練來獲得一漁體之一第一辨識結果;該記憶儲存單元電連接於該可程式錄影裝置和該照相裝置,並配置以儲存該動態影像的動態影像資訊和該第一魚體影像資訊。 According to one aspect of the present invention, a system for recognizing and recording a catch is provided, comprising: a camera device, a programmable video device, a recognition detection unit, and a memory storage unit. The programmable video recording device is configured to capture a dynamic image, and use a first depth learning training to identify whether the dynamic image presents the occurrence of the catch, and activate the camera device to obtain the catch due to the occurrence of the catch. a first fish image information; the identification detecting unit is electrically connected to the programmable video device, and the first fish image information is obtained from the camera device and is learned by a second depth Training to obtain a first identification result of the fish body; the memory storage unit is electrically connected to the programmable video device and the camera device, and configured to store the motion image information of the motion image and the first fish image information .
依據本發明之另一觀點,提出一種用於即時辨識一獵物的裝置,包含一照相裝置、一可程式錄影裝置以及一辨識偵測單元。該可程式錄影裝置係配置以持續擷取一動態影像,透過一第一深度學習之訓練來辨識該動態影像是否呈現該獵物之出現,並因應該獵物之出現而啟動該照相裝置以獲得該獵物之一第一生物影像資訊;該辨識偵測單元電連接於該可程式錄影裝置,從該照相裝置取得該第一生物影像資訊,並透過一第二深度學習之訓練來獲得該獵物之一第一辨識結果。 According to another aspect of the present invention, an apparatus for instantly identifying a prey includes a camera device, a programmable video device, and a recognition detecting unit. The programmable video device is configured to continuously capture a motion image, and use a first depth learning training to identify whether the motion image presents the presence of the prey, and activate the camera device to obtain the prey due to the presence of the prey. a first biometric image information; the identification detecting unit is electrically connected to the programmable video recording device, obtains the first biometric image information from the camera device, and obtains one of the prey through a second deep learning training A recognition result.
該裝置係利用具有自動辨識能力的裝置來辨識魚獲或獵物,可以用以記錄所獵捕的野生動物的數目與位置,具有產業利用性。 The device utilizes a device with automatic identification capability to identify fish catches or prey, and can be used to record the number and location of wild animals that are hunt, and has industrial applicability.
10‧‧‧照相裝置 10‧‧‧Photographing device
20‧‧‧可程式錄影裝置 20‧‧‧Programmable video device
30‧‧‧辨識偵測單元 30‧‧‧ID detection unit
40‧‧‧記憶儲存單元 40‧‧‧Memory storage unit
50‧‧‧全球定位單元 50‧‧‧Global Positioning Unit
60‧‧‧衛星通訊單元 60‧‧‧Satellite communication unit
70‧‧‧感測單元 70‧‧‧Sensor unit
100‧‧‧自動辨識登錄系統 100‧‧‧Automatic identification login system
200‧‧‧漁船 200‧‧‧ fishing boats
220‧‧‧吊運裝置 220‧‧‧ lifting device
230‧‧‧貨倉入口 230‧‧ ‧ warehouse entrance
A‧‧‧漁獲 A‧‧‧catch
B‧‧‧獵物 B‧‧ ‧ prey
本案得藉由下列圖式之詳細說明,俾得更深入之瞭解:第1圖係本發明漁獲與獵物自動辨識登錄系統的一實施例示意圖;第2圖係本發明漁獲自動辨識登錄系統一實施例示意圖; 第3圖是顯示本發明獵物自動辨識登錄系統一實施例的示意圖。 This case can be further understood by the following detailed description of the drawings: Figure 1 is a schematic diagram of an embodiment of the automatic identification and registration system for catch and prey of the present invention; and Figure 2 is an implementation of the automatic identification and registration system for the catch of the present invention. Schematic diagram Fig. 3 is a schematic view showing an embodiment of the prey automatic identification registration system of the present invention.
本發明將可由下列實施例說明而得到充分瞭解,使熟習本技藝之人士可以據以完成之,然本發明之實施並非可由下列實施例而被限制其實施型態。 The present invention will be fully understood from the following description of the embodiments of the present invention, which can be practiced by those skilled in the art.
深度學習是資訊科學領域中,使用機器學習的一種基於對資料進行表徵學習的方法,近年來常用於生物辨識的技藝。電腦程式從數以百計乃至於數以千計的存在有已知特定生物影像的畫面中,可經由深度學習而具備對該種特定生物的辨識能力。本發明利用不同的深度學習來獲得最有效的即時自動生物辨識。 Deep learning is a method based on the use of machine learning to characterize learning in the field of information science. It has been used in biometrics in recent years. Computer programs have the ability to recognize specific organisms through deep learning from hundreds or even thousands of images with known specific biological images. The present invention utilizes different depth learning to obtain the most efficient instant automatic biometric identification.
請參閱第1圖,其顯示本發明漁獲與獵物自動辨識登錄系統的一實施例。圖中所示的自動辨識登錄系統100包含照相裝置10、可程式錄影裝置20、辨識偵測單元30和記憶儲存單元40。為了即時提供地表位置資訊(例如經緯度)和相應的時間資訊,自動辨識登錄系統100還包含全球定位單元50和衛星通訊單元60,電連接於可程式錄影裝置20。 Please refer to Fig. 1, which shows an embodiment of the automatic catch and prey automatic registration system of the present invention. The automatic identification registration system 100 shown in the drawing comprises a camera device 10, a programmable video recording device 20, a recognition detecting unit 30 and a memory storage unit 40. In order to provide surface location information (such as latitude and longitude) and corresponding time information in real time, the automatic identification login system 100 further includes a global positioning unit 50 and a satellite communication unit 60 electrically connected to the programmable video device 20.
可程式錄影裝置20係配置以擷取一動態影像(未顯示),例如持續觀測特定區域的錄影記錄,通常是全天候24小時的監控記錄,這樣可以避免人為的操控而漏失 任何獵捕或捕撈記錄。可程式錄影裝置20中所搭載的程式(未顯示)具有處理與分析影像的能力,透過第一深度學習之訓練來辨識該動態影像是否呈現任何漁獲或是獵物之出現。本領域專業人士可以了解,可程式的錄影裝置所搭載的程式可以事先經由已知影像的訓練,也就是第一深度學習之訓練,進而具有處理與分析影像的能力,從所錄製的動態影像中判讀所追蹤的漁獲或獵物影像是否可能出現於其中,所追蹤的漁獲或獵物類別可能不只一種。可程式錄影裝置20和照相裝置10電連接,一旦確定所追蹤的漁獲或獵物影像可能出現於該動態影像中,則可程式錄影裝置20因應該漁獲或獵物影像之出現而啟動照相裝置10,透過照相裝置10而獲得高解析度的生物影像資訊,例如魚體影像或是獵物影像。依據本發明一實施方式,該生物影像資訊可以是透過連續拍攝的一組相片,可以避免錯失任何較佳拍攝時機及角度的機會。 The programmable video device 20 is configured to capture a motion picture (not shown), for example, to continuously observe video recordings of a specific area, usually 24 hours a day, so that manual manipulation can be avoided. Any hunting or fishing record. The program (not shown) carried in the programmable video device 20 has the ability to process and analyze images, and the first depth learning training is used to identify whether the motion image exhibits any catch or prey. Those skilled in the art can understand that the program of the programmable video device can be trained in the known image, that is, the first deep learning training, and has the ability to process and analyze the image from the recorded motion image. It is possible to interpret the images of the catches or prey that are being tracked, and there may be more than one type of catch or prey that can be tracked. The programmable video device 20 is electrically coupled to the camera device 10. Once it is determined that the captured catch or prey image may be present in the motion image, the programmable video device 20 activates the camera device 10 due to the occurrence of a catch or prey image. The camera 10 obtains high-resolution biological image information, such as fish images or prey images. According to an embodiment of the invention, the biometric information may be a group of photos taken continuously, which avoids the chance of missing any better shooting opportunities and angles.
辨識偵測單元30電連接於可程式錄影裝置20,可以從可程式錄影裝置20取得照相裝置10所攝得的高解析度的生物影像資訊(例如魚體影像或是獵物影像),依據這些高解析度的生物影像資訊,通常是一組單張的相片,辨識偵測單元30透過第二深度學習之訓練來獲得漁體或獵物之辨識結果。依據本發明一實施例,照相裝置10具有高解析度的連續攝影能力,較佳者具有自動多焦點的 能力,上述的一組單張的相片通常是連續拍攝的多張高解析度的相片。不同於第一深度學習,第二深度學習的作用是訓練辨識偵測單元30以能夠分辨魚體影像或是獵物影像所屬的物種,例如鮪魚、鯊魚或旗魚等大型魚類或是水鹿、梅花鹿或山羌等野生動物。對於一組多張相片的判讀,可能存在不同的物種判讀結果,依據本發明一實施例,可以選擇最多數的判讀結果作為辨識結果。此外,經由第二深度學習的訓練後的辨識偵測單元30也可以用以辨識魚體或是獵物的尺寸大小。 The identification detecting unit 30 is electrically connected to the programmable video device 20, and the high-resolution biological image information (such as fish image or prey image) captured by the camera device 10 can be obtained from the programmable video device 20, according to these high The biometric information of the resolution is usually a set of single photos, and the identification detecting unit 30 obtains the identification result of the fish body or the prey through the training of the second deep learning. According to an embodiment of the invention, the camera device 10 has a high resolution continuous photography capability, preferably with automatic multifocal Capabilities, the above-mentioned set of single photos are usually multiple high-resolution photos taken continuously. Different from the first deep learning, the second deep learning function is to train the identification detecting unit 30 to be able to distinguish the fish image or the species to which the prey image belongs, such as large fish such as squid, shark or swordfish or sambar, Wild animals such as sika deer or hawthorn. For the interpretation of a group of multiple photos, there may be different species interpretation results. According to an embodiment of the invention, the maximum number of interpretation results may be selected as the identification result. In addition, the trained identification detection unit 30 via the second depth learning can also be used to identify the size of the fish or prey.
記憶儲存單元40電連接於可程式錄影裝置20和10照相裝置,並配置以儲存該動態影像的動態影像資訊和高解析度的生物影像資訊。這些影像資訊除了用於即時的辨識之外,也將提供日後的驗證與分析之用,以確定捕獵期間所有的影像記錄皆完備,沒有任何遺漏。 The memory storage unit 40 is electrically connected to the programmable video devices 20 and 10, and is configured to store dynamic image information of the dynamic image and high-resolution biological image information. In addition to being used for instant identification, these image information will also provide future verification and analysis to ensure that all image records are complete during the hunting period without any omissions.
全球定位單元50可即時提供漁獲或獵物影像出現時的時間與地表位置資訊,最常使用的是經緯度資訊;衛星通訊單元60配置以即時發送漁體或獵物之辨識結果、該地表位置資訊和相應的該時間資訊。 The global positioning unit 50 can instantly provide time and surface location information when the catch or prey image appears, most commonly using latitude and longitude information; the satellite communication unit 60 is configured to instantly transmit the identification result of the fish or prey, the location information of the surface and corresponding The time information.
可程式錄影裝置20可以持續的進行監視錄影,避免任何漏失的畫面。然而為了節省錄影資源,也可以在自動辨識登錄系統100中另外配置感測單元70,電連接於可程式錄影裝置20,當感測單元70受到漁獲或是獵物 的存在,比如說利用重量或是光線干擾等方式的感測而發送信號給可程式錄影裝置20,以觸發可程式錄影裝置20的啟動。這樣的配置可以讓可程式錄影裝置20不需要持續的保持在開機的狀態。依據一實施例,感測單元70也可以配置以觸發照相裝置10。 The programmable video device 20 can continuously perform video recording to avoid any missing pictures. However, in order to save video resources, the sensing unit 70 may be additionally configured in the automatic identification login system 100 to be electrically connected to the programmable video device 20, when the sensing unit 70 is subjected to catch or prey. The presence, for example, by means of sensing by means of weight or light interference, sends a signal to the programmable video device 20 to trigger activation of the programmable video device 20. Such a configuration allows the programmable video device 20 to not remain in a powered-on state. According to an embodiment, the sensing unit 70 can also be configured to trigger the camera device 10.
錄影裝置所拍攝到的其實也是一連串的個別畫面。依據本發明另一實施例,可程式錄影裝置20還配置以從該動態影像資訊中取得個別的魚體或生物影像資訊,這個任務可以由一支動態影像擷取程式來執行。當該程式受到深度學習之訓練而具備辨識特定物種的能力,這些個別的魚體或生物影像資訊就可以用來獲得對該漁體或生物影像之辨識結果,包括物種、體長乃至於對於重量的估算。為了和先前的深度學習方式作區隔,這種透過從動態影像資訊中所擷取的畫面來訓練可程式錄影裝置20的深度學習方式,我們在此稱之為第三深度學習。 What is captured by the video device is actually a series of individual images. In accordance with another embodiment of the present invention, the programmable video device 20 is further configured to retrieve individual fish or biometric information from the motion image information. This task can be performed by a motion image capture program. When the program is trained in deep learning and has the ability to identify specific species, these individual fish or biometric information can be used to obtain identification of the fish or biological image, including species, body length and even weight. Estimate. In order to distinguish from the previous deep learning mode, this method of training the deep learning mode of the programmable video device 20 through the images captured from the dynamic image information is referred to herein as third depth learning.
請參閱第2圖,其顯示本發明漁獲自動辨識登錄系統一實施方式的示意圖。遠洋的漁船200上可以裝載本發明所提供的自動辨識登錄系統100,如圖,當一漁獲A被捕上船,由吊運裝置220將漁獲A運送到甲板上的貨倉入口230時,配置於漁船200甲板上的可程式錄影裝置20和照相裝置10可以即時的攝影或拍照,或是因應來自吊運裝置220上的感測單元70感測到漁獲的重量而送出信號 (未顯示)啟動攝影或拍照功能。自動辨識登錄系統100中其餘的裝置可以裝載於漁船200的其他部位,在圖中不需要顯示。從圖中所示意可程式錄影裝置20和照相裝置10的位置可知,由於可程式錄影裝置20可以全天候24小時地監視貨倉入口230處任何漁獲的進出,可以避免遺漏任何入倉的魚貨數量。照相裝置10的位置可以與可程式錄影裝置20的不相同,兩者可以同時從不同拍攝角度來拍攝漁獲A,所攝得的影像資料可用於相互比對。 Please refer to FIG. 2, which shows a schematic diagram of an embodiment of the automatic catch identification registration system of the present invention. The ocean-going fishing vessel 200 can be loaded with the automatic identification registration system 100 provided by the present invention. As shown in the figure, when a catch A is caught on the ship and the catch A is transported by the lifting device 220 to the warehouse entrance 230 on the deck, the configuration is configured. The programmable video device 20 and the camera device 10 on the deck of the fishing boat 200 can take pictures or take pictures in real time, or send signals according to the weight sensed by the sensing unit 70 on the lifting device 220. (Not shown) Activate photography or photo taking. The remaining devices in the automatic identification login system 100 can be loaded on other locations of the fishing boat 200 and need not be displayed in the figure. From the position of the programmable video device 20 and the camera device 10 shown in the figure, since the programmable video device 20 can monitor the entry and exit of any catch at the warehouse entrance 230 24 hours a day, it is possible to avoid missing any amount of fish in the warehouse. The position of the camera device 10 can be different from that of the programmable video device 20. Both can capture the catch A from different shooting angles at the same time, and the captured image data can be used for mutual comparison.
請參閱第3圖,其顯示本發明獵物自動辨識登錄系統一實施方式的示意圖。除了海上的漁船可以裝載本發明所提供的自動辨識登錄系統100以即時取得與傳送魚體辨識結果供作漁獲統計,本發明所提供的自動辨識登錄系統100也可以應用於陸地上的生物辨識與記錄。圖中配置於樹林的感測單元70可以是一種利用光學感測來判斷獵物B是否出現的設備,例如在對應的位置配置有一個光學反射裝置71,讓感測單元70可以對光學反射裝置71持續的發射光學信號(未顯示)並且接收來自光學反射裝置71的光學信號(未顯示)。當獵物B經過由虛線箭頭所示的光學信號經過的位置時,光學信號受到阻擋,所以感測單元70可以送出觸發信號以啟動可程式錄影裝置20或照相裝置10。 Please refer to FIG. 3, which shows a schematic diagram of an embodiment of the prey automatic identification registration system of the present invention. In addition to the fishing vessel at sea, the automatic identification registration system 100 provided by the present invention can be loaded to obtain and transmit fish identification results for catch statistics. The automatic identification registration system 100 provided by the present invention can also be applied to biometric identification on land. recording. The sensing unit 70 disposed in the woods in the figure may be a device that uses optical sensing to determine whether the prey B is present, for example, an optical reflecting device 71 is disposed at a corresponding position, so that the sensing unit 70 can be opposite to the optical reflecting device 71. The optical signal (not shown) is continuously emitted and receives an optical signal (not shown) from the optical reflecting device 71. When the prey B passes the position where the optical signal indicated by the dotted arrow passes, the optical signal is blocked, so the sensing unit 70 can send a trigger signal to activate the programmable video device 20 or the camera 10.
在本發明一實施例中,可程式錄影裝置20所 搭載的程式可以事先經由已知影像的訓練,也就是上述的第一深度學習之訓練,進而具有處理與分析影像的能力,從所錄製的動態影像中判讀所追蹤的獵物影像是否可能出現於其中。可程式錄影裝置20和照相裝置10可以透過有線或無線連接,一旦確定所追蹤的獵物影像可能出現於該動態影像中,則可程式錄影裝置20因應該獵物影像之出現而啟動照相裝置10,透過照相裝置10而獲得高解析度的生物影像資訊。如果經由分析後認為該動態影像中所出現的獵物並不符合任何所追蹤對象的特徵,則可程式錄影裝置20不會啟動照相裝置10,這樣可以避免照相裝置10因為盲目的觸發而浪費記憶體空間。 In an embodiment of the invention, the programmable video device 20 The program can be pre-processed by known images, that is, the first deep learning training described above, and thus has the ability to process and analyze images, and whether the tracked prey images may appear in the recorded motion images. . The programmable video device 20 and the camera device 10 can be connected via a wired or wireless connection. Once it is determined that the tracked prey image may appear in the motion image, the programmable video device 20 activates the camera device 10 due to the presence of the prey image. The photographic apparatus 10 obtains high-resolution bio-image information. If, by analysis, it is considered that the prey appearing in the motion image does not conform to the characteristics of any tracked object, the programmable video device 20 does not activate the camera device 10, which can prevent the camera device 10 from wasting memory due to blind triggering. space.
在另一實施例中,第一深度學習之訓練可以讓可程式錄影裝置20能夠辨識該動態影像是否包含一疑似獵物,並因應出現該疑似獵物之一確認而獲得該疑似獵物之第一生物影像資訊,例如從該動態影像取得一組單張的相片。再參閱第1圖,辨識偵測單元30透過一第二深度學習之訓練來獲得該疑似獵物是否為該特定獵物。辨識偵測單元30可以依據來自可程式錄影裝置20的第一生物影像資訊,或是來自照相裝置10所取得的第二生物影像資訊來進行辨識。通常照相裝置10所取得的影像資訊的解析度較佳,容易得到較為正確的辨識結果。然而當為於野外的照相裝置10故障時,仍可以使用來自可程式錄影裝置20 的第一生物影像資訊來執行辨識,維持系統的基本功能。 In another embodiment, the first depth learning training can enable the programmable video device 20 to recognize whether the motion image contains a suspected prey, and obtain the first biological image of the suspected prey in response to the confirmation of one of the suspected prey. Information, such as taking a set of single photos from the motion picture. Referring again to FIG. 1, the identification detecting unit 30 obtains the suspected prey as the specific prey through a second deep learning training. The identification detecting unit 30 can perform identification based on the first biometric image information from the programmable video device 20 or the second biometric image information obtained from the camera device 10. Generally, the resolution of the image information obtained by the camera device 10 is better, and it is easy to obtain a relatively accurate recognition result. However, when the camera device 10 in the field fails, the programmable video device 20 can still be used. The first biometric information is used to perform the identification and maintain the basic functions of the system.
實施例 Example
1.一種用於辨識與記錄一漁獲的系統,包含:一照相裝置;一可程式錄影裝置,配置以擷取一動態影像,透過一第一深度學習之訓練來辨識該動態影像是否呈現該漁獲之出現,並因應該漁獲之出現而啟動該照相裝置以獲得該漁獲之一第一魚體影像資訊;一辨識偵測單元,電連接於該可程式錄影裝置,從該照相裝置取得該第一魚體影像資訊,並透過一第二深度學習之訓練來獲得一漁體之一第一辨識結果;以及一記憶儲存單元,電連接於該可程式錄影裝置和該照相裝置,並配置以儲存該動態影像的動態影像資訊和該第一魚體影像資訊。 A system for recognizing and recording a catch, comprising: a camera device; a programmable video device configured to capture a motion image, and a first depth learning training to identify whether the motion image presents the capture Appearing and launching the camera device to obtain the first fish image information of the catch due to the occurrence of the catch; a recognition detecting unit electrically connected to the programmable video device, obtaining the first from the camera device Fish body image information, and obtaining a first identification result of a fish body through a second deep learning training; and a memory storage unit electrically connected to the programmable video device and the camera device, and configured to store the Dynamic image information of the moving image and the first fish image information.
2.如實施例1所述的裝置,其中該第一辨識結果是關於該漁體之一魚種和一體長至少其中之一。 2. The device of embodiment 1, wherein the first identification result is at least one of a fish species and an integral length of the fish body.
3.如實施例1所述的裝置,還包含:一全球定位單元,提供一地表位置資訊和相應的一時間資訊;以及一衛星通訊單元,配置以即時發送該第一辨識結果、該地表位置資訊和相應的該時間資訊。 3. The apparatus of embodiment 1, further comprising: a global positioning unit that provides a surface location information and a corresponding time information; and a satellite communication unit configured to immediately transmit the first identification result, the surface location Information and corresponding time information.
4.如實施例1所述的裝置,其中該可程式錄影裝置還配置以從該動態影像資訊中取得一第二魚體影像資訊,並透過一第三深度學習之訓練來獲得該漁體之一第二辨識結果。 4. The device of embodiment 1, wherein the programmable video device is further configured to obtain a second fish image information from the motion image information and obtain the fish body through a third depth learning training. A second identification result.
5.如實施例1所述的裝置,還包含:一感測單元,配置以即時觸發該可程式錄影裝置。 5. The device of embodiment 1, further comprising: a sensing unit configured to instantly trigger the programmable video device.
6.一種用於即時辨識一獵物的裝置,包含:一照相裝置;一可程式錄影裝置,配置以持續擷取一動態影像,透過一第一深度學習之訓練來辨識該動態影像是否呈現該獵物之出現,並因應該獵物之出現而啟動該照相裝置以獲得該獵物之一第一生物影像資訊;以及一辨識偵測單元,電連接於該可程式錄影裝置,從該照相裝置取得該第一生物影像資訊,並透過一第二深度學習之訓練來獲得該獵物之一第一辨識結果。 6. A device for instantly recognizing a prey, comprising: a camera device; a programmable video device configured to continuously capture a motion image, and a first depth learning training to identify whether the motion image presents the prey Appearing, and starting the camera device to obtain the first biometric image information of the prey due to the presence of the prey; and an identification detecting unit electrically connected to the programmable video device, obtaining the first from the camera device The biometric information is obtained through a second deep learning training to obtain the first identification result of the prey.
7.如實施例6所述的裝置,其中該第一辨識是關於該獵物之一品種和一體型至少其中之一。 7. The device of embodiment 6, wherein the first identification is at least one of a variety and an integral type of the prey.
8.如實施例6所述的裝置,還包含:一記憶儲存單元,電連接於該可程式錄影裝置和該照相裝置,並配置以儲存該動態影像的動態影像資訊和該第一生物影像資訊;一全球定位單元,提供一地表位置資訊和相應的一時間資訊;以及一衛星通訊單元,配置以即時發送該第一辨識結果、該地表位置資訊和相應的該時間資訊。 8. The device of embodiment 6, further comprising: a memory storage unit electrically coupled to the programmable video device and the camera device, and configured to store motion image information of the motion image and the first biological image information a global positioning unit providing a surface location information and corresponding time information; and a satellite communication unit configured to immediately transmit the first identification result, the surface location information, and the corresponding time information.
9.如實施例6所述的裝置,其中該可程式錄影裝置還配置以從該動態影像資訊中取得一第二生物影像資訊,並透過一第三深度學習之訓練來獲得該獵物之一第二辨識結果。 9. The device of embodiment 6, wherein the programmable video device is further configured to obtain a second biometric image information from the motion image information, and obtain a prey of the prey through a third depth learning training. Two identification results.
10.如實施例6所述的裝置,還包含:一感測單元,配置以即時觸發該可程式錄影裝置。 10. The device of embodiment 6, further comprising: a sensing unit configured to instantly trigger the programmable video device.
11.一種用於即時辨識一特定獵物的裝置,包含: 一可程式錄影裝置,配置以持續擷取一動態影像,並透過一第一深度學習之訓練來辨識該動態影像是否包含一疑似獵物,並因應出現該疑似獵物之一確認而獲得該疑似獵物之一第一生物影像資訊;以及一辨識偵測單元,電連接於該可程式錄影裝置、取得該第一生物影像資訊、並透過一第二深度學習之訓練來獲得該疑似獵物是否為該特定獵物之一第一辨識結果。 11. A device for instantly identifying a particular prey comprising: A programmable video device configured to continuously capture a motion picture and identify whether the motion picture contains a suspected prey through a first depth learning training, and obtain the suspected prey in response to the confirmation of one of the suspected prey a first biometric information; and an identification detecting unit electrically connected to the programmable video device, obtaining the first biometric information, and training through a second deep learning to obtain whether the suspected prey is the specific prey One of the first identification results.
12.如實施例11所述的裝置,還包含:一照相裝置,因應該可程式錄影裝置之該確認,而提供一第二生物影像資訊,該辨識偵測單元利用該第二生物影像資訊來獲得該疑似獵物是否為該特定獵物之一第二辨識結果。 12. The apparatus of embodiment 11, further comprising: a camera device for providing a second biometric image information for the confirmation of the programmable video recording device, the identification detecting unit utilizing the second biometric image information Obtaining whether the suspected prey is the second identification result of one of the specific prey.
13.如實施例12所述的裝置,其中該第一生物影像資訊係由該可程式錄影裝置提供。 13. The device of embodiment 12 wherein the first biometric information is provided by the programmable video device.
本發明以上述的較佳實施例與範例作為參考而揭露,讀者須了解這些例子是用於描述而非限定之意。凡習知此技藝者,在不脫離本發明的精神與範圍之下,當可做各種組合與修飾,其仍應屬在本發明專利的涵蓋範圍之內。 The present invention has been described with reference to the preferred embodiments and examples thereof, which are intended to be illustrative and not restrictive. It will be understood by those skilled in the art that various combinations and modifications may be made without departing from the spirit and scope of the invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106120636A TWI658789B (en) | 2017-06-20 | 2017-06-20 | Automatic fishery and preys identification and recording system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106120636A TWI658789B (en) | 2017-06-20 | 2017-06-20 | Automatic fishery and preys identification and recording system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201904424A TW201904424A (en) | 2019-02-01 |
| TWI658789B true TWI658789B (en) | 2019-05-11 |
Family
ID=66213207
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW106120636A TWI658789B (en) | 2017-06-20 | 2017-06-20 | Automatic fishery and preys identification and recording system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI658789B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7337002B2 (en) * | 2020-02-07 | 2023-09-01 | 株式会社電通 | Fish quality judgment system |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104133234A (en) * | 2014-08-12 | 2014-11-05 | 吴李海 | Fish stock remote detecting method and system and marketing method for information obtained through fish stock remote detection |
| TWI508656B (en) * | 2012-12-11 | 2015-11-21 | Univ Nat Kaohsiung Applied Sci | Aquatic animal measuring device |
-
2017
- 2017-06-20 TW TW106120636A patent/TWI658789B/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI508656B (en) * | 2012-12-11 | 2015-11-21 | Univ Nat Kaohsiung Applied Sci | Aquatic animal measuring device |
| CN104133234A (en) * | 2014-08-12 | 2014-11-05 | 吴李海 | Fish stock remote detecting method and system and marketing method for information obtained through fish stock remote detection |
Non-Patent Citations (4)
| Title |
|---|
| D. Lee and R. B. Schoenberger and D. Shiozawa and X. Xu and P. Zhan, "Contour matching for a fish recognition and migration-monitoring system," Optics East, 2004, pp. 37-48. |
| D. Lee et al, "Contour matching for a fish recognition and migration-monitoring system," Optics East, 2004, pp. 37-48. * |
| 魏子量,吳政翰,林忠宏,林泓宏,"基於深度學習之魚種辨識",第十五屆離島資訊技術與應用研討會,2016 * |
| 魏子量,吳政翰,林忠宏,林泓宏,"基於深度學習之魚種辨識",第十五屆離島資訊技術與應用研討會,2016。 |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201904424A (en) | 2019-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Monkman et al. | Using machine vision to estimate fish length from images using regional convolutional neural networks | |
| Gilman et al. | Increasing the functionalities and accuracy of fisheries electronic monitoring systems | |
| Jokiel et al. | Comparison of methods used to estimate coral cover in the Hawaiian Islands | |
| EP3570071B1 (en) | Fish species estimating system, and method of estimating fish species | |
| Harvey et al. | The use of BRUVs as a tool for assessing marine fisheries and ecosystems: a review of the hurdles and potential | |
| Williams et al. | An underwater stereo-camera trap | |
| Green et al. | Gray whale detection in satellite imagery using deep learning | |
| Lynch et al. | A high‐resolution panorama camera system for monitoring colony‐wide seabird nesting behaviour | |
| Bravata et al. | Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish | |
| CN111753594B (en) | Hazard identification methods, devices and systems | |
| Pierce et al. | Photographic identification of sharks | |
| JP7074185B2 (en) | Feature estimation device, feature estimation method, and program | |
| KR20210041207A (en) | Fish disease detecting apparatus and method thereof | |
| Paspalakis et al. | Automated fish cage net inspection using image processing techniques | |
| Rasmussen et al. | Deep census: AUV-based scallop population monitoring | |
| EP3374926A1 (en) | Method and system for processing image data | |
| JPWO2018158823A1 (en) | Anomaly detection system, anomaly detection method and program | |
| JPWO2019198701A1 (en) | Analyzers, analytical methods, programs and aquatic organism monitoring systems | |
| CN113591592B (en) | Overwater target identification method and device, terminal equipment and storage medium | |
| CN113920462A (en) | Ship intelligent detection method and system based on artificial intelligence | |
| Signaroli et al. | Novel computer vision tools applied to marine recreational fisheries spatial planning | |
| TWI658789B (en) | Automatic fishery and preys identification and recording system | |
| Mann et al. | Observing and quantifying cetacean behavior in the wild: current problems, limitations, and future directions | |
| US20260023898A1 (en) | Smart species identification | |
| WO2018232447A1 (en) | SYSTEM AND METHOD FOR MONITORING A PREDETERMINED REGION IN A MASS OF WATER |