TWI502371B - Cloud Evaluation System and Its Method - Google Patents
Cloud Evaluation System and Its Method Download PDFInfo
- Publication number
- TWI502371B TWI502371B TW102133787A TW102133787A TWI502371B TW I502371 B TWI502371 B TW I502371B TW 102133787 A TW102133787 A TW 102133787A TW 102133787 A TW102133787 A TW 102133787A TW I502371 B TWI502371 B TW I502371B
- Authority
- TW
- Taiwan
- Prior art keywords
- resource
- server
- cloud
- resource usage
- data
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims description 81
- 238000000034 method Methods 0.000 title description 10
- 230000006399 behavior Effects 0.000 claims description 119
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000003542 behavioural effect Effects 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Landscapes
- Debugging And Monitoring (AREA)
Description
本發明是有關於一種雲端化評估系統及其方法,特別是有關於一種能對於規劃進駐雲端資料中心的系統進行評估,建議整體需配置的雲端資源數量值之以角色自我調適之雲端化評估系統及其方法。The invention relates to a cloud computing evaluation system and a method thereof, in particular to a cloud computing evaluation system capable of evaluating a system for planning to enter a cloud data center and suggesting a total value of cloud resources to be self-adapted. And its method.
面對全球化競爭的時代,無論是產品製造商或服務提供者必須有效利用自身資源,保持其競爭優勢。資源泛指企業在營運過程中所能利用之人力、設備、資金、資財等,如何有效協調各資源間之運作,使公司營運更具競爭力,是現階段資訊化社會競爭的一大課題。In the era of global competition, both product manufacturers and service providers must effectively use their resources to maintain their competitive advantage. Resources generally refer to the manpower, equipment, capital, and capital that enterprises can use in their operations. How to effectively coordinate the operation of resources and make the company's operations more competitive is a major issue in the information society competition at this stage.
一般而言,企業之營運系統包括直接設備以及間接支援設備。直接設備系統泛指與生產或服務目標物有直接接觸之設備資源,間接支援系統則是不與生產或服務目標物直接接觸者。在設備運轉過程中,無論直接或間接設備皆有可能因疏於保養維護、人為疏忽之因素導致零件損毀或是軟體資源運用不當而造成生產或服務活動意外停擺,使企業受到莫大的損失。In general, the company's operating system includes direct equipment and indirect support equipment. Direct equipment systems generally refer to equipment resources that have direct contact with production or service targets, while indirect support systems are those that do not directly contact production or service targets. During the operation of the equipment, whether the direct or indirect equipment may cause damage to the parts due to neglect of maintenance, human negligence or improper use of software resources, the production or service activities may be unexpectedly shut down, causing great losses to the enterprise.
根據iTHome 2013 CIO大調查顯示,企業導入伺服器虛擬化的比例位居軟體投資項目第一,顯示企業開始轉向投資虛擬化技術來取代部份實體伺服器,然而企業在投資虛擬化建設時,最重要的一個課題是企業必須有效地評估系統實際所需的資源需求,才能決定建置的雲端平台容量,已確保企業未來營運與發展的需求,而本發明就是要提出一種雲端化評估系統及方法,以提供伺服器更準確的雲端資源需求建議。According to the iTHome 2013 CIO survey, the proportion of enterprise-based server virtualization is ranked first in software investment projects, indicating that companies are turning to investment virtualization technology to replace some physical servers. However, enterprises are investing in virtualization. An important issue is that enterprises must effectively evaluate the actual resource requirements of the system in order to determine the capacity of the cloud platform to be built, and ensure the future operation and development of the enterprise. The present invention is to propose a cloud-based evaluation system and method. To provide more accurate cloud resource requirements for servers.
有鑑於上述習知技藝之問題,本發明之目的就是在提供一種可依據系統的資源使用數據與進駐雲端資料中心後回饋的資源使用數據, 以有效地改善雲端資源預估的誤差,提供未來進駐雲端資料中心的系統更準確的雲端資源需求建議之雲端化評估系統及其方法。In view of the above-mentioned problems of the prior art, the object of the present invention is to provide a resource usage data that can be fed back according to the resource usage data of the system and the cloud data center. In order to effectively improve the error of cloud resource estimation, it provides a cloud-based evaluation system and method for cloud resource demand recommendations for future systems that are stationed in the cloud data center.
根據本發明之目的,提出一種雲端化評估系統,其包含:一數據接收與分析模組,用以接收包含至少一伺服器之一系統之至少一硬體使用數據,與已進駐雲端資料中心之伺服器之硬體使用數據,並分析各硬體使用數據以分別產生對應之一資源使用數據;一數據資料庫,用以存放各資源使用數據;一行為模型建立模組,用以自數據資料庫中取得各資源使用數據,以分別建立對應之一資源使用行為模型;一評估學習模組,用以針對伺服器在進駐雲端資料中心前的資源使用行為模型與進駐雲端資料中心後的資源使用行為模型進行分析,並重新計算伺服器之各項雲端資源之一評估誤差參數值;一伺服器雲端資源需求預測模組,用以從數據資料庫取得伺服器之各資源使用行為模型,並評估伺服器進駐雲端資料中心所需的雲端資源需求;以及一系統雲端化資源評估模組,用以彙整各伺服器分別之雲端資源需求數量,並依據各伺服器在不同時間區間的各資源使用行為模型,建議該系統之雲端資源需求。According to the purpose of the present invention, a cloud computing evaluation system includes: a data receiving and analyzing module, configured to receive at least one hardware usage data of a system including at least one server, and the cloud data center The hardware of the server uses the data, and analyzes each hardware usage data to generate corresponding resource usage data respectively; a data database for storing each resource usage data; and a behavior model building module for self-data data The resource usage data is obtained in the library to respectively establish a corresponding resource usage behavior model; an evaluation learning module is used for the resource usage behavior model of the server before entering the cloud data center and the resource usage after entering the cloud data center The behavior model is analyzed, and one of the various cloud resources of the server is used to evaluate the error parameter value; a server cloud resource demand prediction module is used to obtain the resource usage behavior model of the server from the data database, and evaluate The cloud resource requirements required by the server to enter the cloud data center; and a system cloud resource Assessment module for aggregate amount of cloud resource requirements of each server separately, and each resource based on the use of behavioral models of the server at a different time interval, the proposed resource requirements of the cloud systems.
較佳地,評估學習模組更包含一資源使用行為讀取單元及一資源評估誤差計算單元;資源使用行為讀取單元用以讀取伺服器在進駐雲端資料中心前以及進駐後之資源使用行為模型;資源評估誤差計算單元用以分析伺服器之資源使用行為模型,以進行資源評估誤差運算,經比較進駐雲端資料中心前與進駐後的資源使用數據後計算出評估誤差參數值。Preferably, the evaluation learning module further includes a resource usage behavior reading unit and a resource evaluation error calculation unit; the resource usage behavior reading unit is configured to read the resource usage behavior of the server before and after entering the cloud data center. The resource evaluation error calculation unit is configured to analyze the resource usage behavior model of the server to perform resource estimation error calculation, and calculate the evaluation error parameter value after comparing the resource usage data before and after the cloud data center.
較佳地,伺服器雲端資源需求預測模組更包含一伺服器資源使用行為比對單元及一伺服器雲端資源需求計算單元;伺服器資源使用行為比對單元用以依據伺服器之角色去搜尋相同角色之伺服器並進行資源使用行為模型之比對;伺服器雲端資源需求計算單元152用以依據伺服器本身之資源使用數據,並結合具相似之資源使用行為模組之伺服器之評估誤差參數值,計算出伺服器之雲端資源需求。Preferably, the server cloud resource demand prediction module further comprises a server resource usage behavior comparison unit and a server cloud resource requirement calculation unit; the server resource usage behavior comparison unit is configured to search according to the role of the server. The server of the same role performs the comparison of the resource usage behavior models; the server cloud resource requirement calculation unit 152 is configured to use the resource usage data of the server itself, and combine the evaluation error of the server with the similar resource usage behavior module. The parameter value is used to calculate the cloud resource requirements of the server.
根據本發明之目的,又提出一種雲端化評估方法,其包含下列步驟:接收包含至少一伺服器之一系統之至少一硬體使用數據,並擷取與正規化所有伺服器之硬體使用數據為一資源使用數據後記錄至一數據資 料庫;分別建立對應所有伺服器之各項資源使用數據之一資源使用行為模型;依據角色與資源型態進行各資源使用行為模型之比對,以決定相似之資源使用行為模型;依據伺服器之資源使用數據的最大值與相似之資源行為模型之一評估誤差參數值,計算出伺服器之雲端資源需求;以及分析系統中所有伺服器之資源使用行為模型,依據時間區間找出所有伺服器在時間區間最大的特徵值並進行特徵值加總,並從所有時間區間的特徵值加總值中找出最大值作為系統之整體雲端資源需求建議值。According to the purpose of the present invention, a cloud computing evaluation method is further provided, which comprises the steps of: receiving at least one hardware usage data of a system including at least one server, and extracting and normalizing hardware usage data of all servers; Record data to a resource after using it for a resource Repository; respectively establish a resource usage behavior model corresponding to each resource usage data of all servers; perform a comparison of resource usage behavior models according to roles and resource types to determine a similar resource usage behavior model; The maximum value of the resource usage data and one of the similar resource behavior models are used to evaluate the error parameter value, calculate the cloud resource requirement of the server; and analyze the resource usage behavior model of all the servers in the system, and find all the servers according to the time interval. The eigenvalues with the largest time interval are summed up, and the maximum value is found from the eigenvalues of all time intervals as the recommended value of the overall cloud resource requirement of the system.
較佳地,本發明之雲端化評估方法,更包含下列步驟:依據設定的學習頻率至雲端資料中心取得特定期間進駐至雲端資料中心之伺服器之資源使用數據,並建立伺服器在進駐雲端資料中心後之資源使用行為模型;依據伺服器的雲端化評估編號,至數據資料庫取得伺服器在進駐雲端資料中心前的資源使用行為模型;以及依據伺服器在進駐雲端資料中心前與進駐後的資源使用行為模型進行分析,計算出伺服器的資源使用行為模型的評估誤差參數值。Preferably, the cloud computing evaluation method of the present invention further comprises the following steps: obtaining resource usage data of a server stationed in the cloud data center in a specific period according to the set learning frequency, and establishing a server in the cloud data. The resource usage behavior model after the center; according to the cloud evaluation number of the server, to the data database to obtain the resource usage behavior model of the server before entering the cloud data center; and according to the server before entering the cloud data center and after entering the cloud data center The resource usage behavior model is analyzed to calculate the evaluation error parameter value of the server resource usage behavior model.
較佳地,資源使用行為模型包含CPU資源使用模型、記憶體資源使用模型或其他定義的資源使用行為模型。Preferably, the resource usage behavior model includes a CPU resource usage model, a memory resource usage model, or other defined resource usage behavior models.
較佳地,角色包含Web角色、DB角色或或其他定義的角色;資源型態包含CPU資源型態、記憶體資源型態或其他定義的資源型態。Preferably, the role includes a web role, a DB role, or other defined roles; the resource type includes a CPU resource type, a memory resource type, or other defined resource type.
較佳地,雲端資源需求至少包含CPU配置需求值、記憶體配置需求值或其他定義的資源需求值。Preferably, the cloud resource requirement includes at least a CPU configuration requirement value, a memory configuration requirement value, or other defined resource requirement values.
較佳地,整體雲端資源需求建議值包含系統整體CPU資源需求值、整體記憶體資源需求值、該系統中所有伺服器個別CPU資源需求值與記憶體資源需求值或其他定義的資源的整體需求值。Preferably, the overall cloud resource requirement recommendation value includes the overall CPU resource requirement value of the system, the overall memory resource requirement value, the individual CPU resource requirement value of the server, the memory resource requirement value, or the overall requirement of other defined resources. value.
承上所述,依本發明之雲端化評估系統及其方法,其具有下列一或多個優點:According to the above, the cloud computing evaluation system and method thereof have the following one or more advantages:
1、本發明提供系統整體雲端資源需求評估機制,可依據系統中每部伺服器的各項資源使用數據建立資源使用行為模型,並分析該系統所有伺服器的使用行為,提供系統整體雲端資源需求建議。1. The present invention provides an overall cloud resource demand assessment mechanism for a system, which can establish a resource usage behavior model according to each resource usage data of each server in the system, and analyze usage behavior of all servers in the system, and provide overall cloud resource requirements of the system. Suggest.
2、本發明提供自我調適的學習機制,利用雲端資料中心回 饋的虛擬機資源使用數據,結合以角色為基礎的資源使用行為模型自我調整各項資源的評估誤差參數值。2. The present invention provides a self-adapting learning mechanism that utilizes the cloud data center to return The federated virtual machine resource usage data is combined with the role-based resource usage behavior model to self-adjust the evaluation error parameter values of each resource.
3、本發明提供資源使用行為模型建立機制,針對伺服器(實體機或虛擬機數)的資源使用數據與伺服器資訊,建立基於角色的各項資源使用行為模型。3. The present invention provides a resource usage behavior model establishment mechanism, and establishes a role-based resource usage behavior model for resource usage data and server information of a server (physical machine or virtual machine number).
1‧‧‧雲端化評估系統1‧‧‧Cloud Assessment System
11‧‧‧數據接收與分析模組11‧‧‧Data Receiving and Analysis Module
12‧‧‧數據資料庫12‧‧‧Data Database
13‧‧‧行為模型建立模組13‧‧‧ Behavioral Model Building Module
14‧‧‧評估學習模組14‧‧‧Evaluation Learning Module
141‧‧‧資源使用行為讀取單元141‧‧‧Resource usage behavior reading unit
142‧‧‧資源評估誤差計算單元142‧‧‧Resource assessment error calculation unit
15‧‧‧伺服器雲端資源需求預測模組15‧‧‧Server Cloud Resource Demand Forecasting Module
151‧‧‧伺服器資源使用行為比對單元151‧‧‧Server resource usage behavior comparison unit
152‧‧‧伺服器雲端資源需求計算單元152‧‧‧Server Cloud Resource Requirements Calculation Unit
16‧‧‧系統雲端化資源評估模組16‧‧‧System Cloud Resource Evaluation Module
21~28‧‧‧步驟21~28‧‧‧Steps
3‧‧‧系統硬體使用數據3‧‧‧System hardware usage data
4‧‧‧雲端資料中心伺服器硬體使用數據4‧‧‧Cloud data center server hardware usage data
6‧‧‧伺服器各項集合資源6‧‧‧Server collection resources
61‧‧‧CPU資源61‧‧‧CPU resources
612‧‧‧Web角色612‧‧‧Web role
614‧‧‧DB角色614‧‧‧DB role
62‧‧‧記憶體資源62‧‧‧ Memory resources
7‧‧‧伺服器資源使用數據7‧‧‧Server resource usage data
71‧‧‧伺服器CPU資源使用數據71‧‧‧Server CPU resource usage data
8‧‧‧資源使用行為模型8‧‧‧Resource usage behavior model
81‧‧‧伺服器進行雲端化評估前的資源使用行為模型81‧‧‧Resource usage behavior model before server for cloud assessment
82‧‧‧伺服器進駐雲端資料中心後的資源使用行為模型82‧‧‧Resource usage behavior model after the server is stationed in the cloud data center
83‧‧‧CPU資源使用行為模型83‧‧‧CPU resource usage behavior model
831‧‧‧CPU-Web資源使用模型-1831‧‧‧CPU-Web Resource Usage Model-1
832‧‧‧CPU-Web資源使用行為模型-N832‧‧‧CPU-Web Resource Usage Behavior Model-N
833‧‧‧CPU-DB資源使用模型-1833‧‧‧CPU-DB Resource Usage Model-1
834‧‧‧CPU-DB資源使用行為模型-M834‧‧‧CPU-DB Resource Usage Behavior Model-M
9‧‧‧系統雲端化評估報告9‧‧‧System Cloud Assessment Report
第1圖 係為本發明之雲端化評估系統之方塊圖。Figure 1 is a block diagram of the cloud computing evaluation system of the present invention.
第2圖 係為本發明之評估學習模組之方塊圖。Figure 2 is a block diagram of the evaluation learning module of the present invention.
第3圖 係為本發明之伺服器雲端資源需求預測模組之方塊圖。Figure 3 is a block diagram of the server cloud resource demand prediction module of the present invention.
第4圖 係為本發明之雲端化評估方法之流程圖。Figure 4 is a flow chart of the cloud computing evaluation method of the present invention.
第5圖 係為本發明之雲端化評估申請與資源使用數據輸入之示意圖。Figure 5 is a schematic diagram of the cloud computing evaluation application and resource usage data input of the present invention.
第6圖 係為本發明之資源使用行為模型建立之示意圖。Figure 6 is a schematic diagram of the establishment of the resource usage behavior model of the present invention.
第7圖 係為本發明之評估學習機制之簡化示意圖。Figure 7 is a simplified schematic diagram of the evaluation learning mechanism of the present invention.
第8圖 係為本發明之伺服器雲端資源需求預測作業之簡化示意圖。Figure 8 is a simplified schematic diagram of the server cloud resource demand forecasting operation of the present invention.
第9圖 係為本發明之系統雲端化資源評估作業之簡化示意圖。Figure 9 is a simplified schematic diagram of the cloud computing resource evaluation operation of the system of the present invention.
為利 貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。The technical features, contents, and advantages of the present invention, as well as the advantages thereof, can be understood by the present inventors, and the present invention will be described in detail with reference to the accompanying drawings. The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope and configuration relationship of the attached drawings should not be interpreted or limited. First described.
本發明提供一種以角色自我調適的雲端化評估系統及其方法,能對於規劃進駐雲端資料中心的系統進行評估,建議整體需配置的雲端資源數量值。The invention provides a cloud-based evaluation system and a method for self-adaptation of a role, which can evaluate the system that is planned to be stationed in the cloud data center, and propose the total value of the cloud resource to be configured.
本發明提出一種以角色自我調適的雲端化評估系統1如第1圖所示,其包括數據接收與分析模組11、數據資料庫12、行為模型建立模組13、評估學習模組14、伺服器雲端資源需求預測模組15以及系統雲端化資源評估模組16。數據接收與分析模組11能接收既有系統(包含一部或多 部伺服器)的硬體使用數據與已進駐雲端資料中心之伺服器之硬體使用數據,經過分析後產生對應之資源使用數據,並存放於數據資料庫12中。行為模型建立模組13能取得數據資料庫12中的伺服器之資源使用數據並建立對應的資源使用行為模型。評估學習模組14能針對一伺服器在進駐雲端資料中心前的資源使用行為模型與進駐雲端資料中心後的資源使用行為模型進行分析,並重新計算該伺服器各項雲端資源的評估誤差參數值。伺服器雲端資源需求預測模組15能從數據資料庫12取得一伺服器的各項資源使用行為模型並評估該伺服器進駐雲端資料中心所需的各項雲端資源需求;其中,雲端資源可包括運算資源(CPU)、記憶體(Memory)或其他雲端資料中心定義的資源。系統雲端化資源評估模組16能彙整一系統中所有伺服器個別的雲端資源需求數量,並依據各伺服器在不同時間區間的各項資源使用行為,建議該系統各項雲端資源需求。The present invention provides a cloud-based evaluation system 1 that adapts itself to a role, as shown in FIG. 1 , which includes a data receiving and analyzing module 11 , a data database 12 , a behavior model building module 13 , an evaluation learning module 14 , and a servo . The cloud resource demand prediction module 15 and the system cloud resource evaluation module 16. The data receiving and analyzing module 11 can receive the existing system (including one or more The hardware usage data of the server and the hardware usage data of the server that has been stationed in the cloud data center are analyzed to generate corresponding resource usage data, and are stored in the data database 12. The behavior model building module 13 can obtain the resource usage data of the server in the data repository 12 and establish a corresponding resource usage behavior model. The evaluation learning module 14 can analyze the resource usage behavior model of the server before entering the cloud data center and the resource usage behavior model after entering the cloud data center, and recalculate the evaluation error parameter values of the cloud resources of the server. . The server cloud resource requirement prediction module 15 can obtain a resource usage behavior model of the server from the data repository 12 and evaluate various cloud resource requirements required for the server to enter the cloud data center; wherein the cloud resource may include A resource defined by a computing resource (CPU), memory, or other cloud data center. The system cloud resource evaluation module 16 can aggregate the amount of cloud resource requirements of all servers in a system, and propose various cloud resource requirements of the system according to various resource usage behaviors of different servers in different time intervals.
本發明提出的評估學習模組14,更包含一資源使用行為讀取單元141以及一資源評估誤差計算單元142,如第2圖所示。資源使用行為讀取單元141能讀取一伺服器在進駐雲端資料中心前以及進駐後的資源使用行為模型。資源評估誤差計算單元142能分析該伺服器的資源使用行為模型進行資源評估誤差運算(比較進駐雲端資料中心前與進駐後的資源使用數據),計算出評估誤差參數值。The evaluation learning module 14 provided by the present invention further includes a resource usage behavior reading unit 141 and a resource evaluation error calculation unit 142, as shown in FIG. The resource usage behavior reading unit 141 can read a resource usage behavior model of the server before and after entering the cloud data center. The resource evaluation error calculation unit 142 can analyze the resource usage behavior model of the server to perform resource estimation error calculation (comparing the resource usage data before and after entering the cloud data center), and calculate the evaluation error parameter value.
本發明之伺服器雲端資源需求預測模組15,更包含一伺服器資源使用行為比對單元151以及一伺服器雲端資源需求計算單元152,如第3圖所示。伺服器資源使用行為比對單元151能依據一伺服器的角色搜尋相同角色的伺服器並進行資源使用行為模型比對。伺服器雲端資源需求計算單元152能依據該伺服器本身的資源使用數據,並結合具相似資源使用行為伺服器的評估誤差參數值,計算出該伺服器的雲端資源需求。The server cloud resource requirement prediction module 15 of the present invention further includes a server resource usage behavior comparison unit 151 and a server cloud resource requirement calculation unit 152, as shown in FIG. The server resource usage behavior comparison unit 151 can search for servers of the same role according to the role of a server and perform resource usage behavior model comparison. The server cloud resource requirement calculation unit 152 can calculate the cloud resource requirement of the server according to the resource usage data of the server itself and the evaluation error parameter value of the server using the similar resource usage behavior.
本發明提出一種以角色自我調適的雲端化評估方法,如第4圖所示,包含從輸入系統資源使用數據檔到完成整體雲端資源需求評估一系列的步驟。首先,步驟21,接收一系統(包含一部或多部伺服器)的硬體使用數據,系統中每部伺服器的資源使用數據將被擷取並記錄至數據資料庫12;其中資源使用數據至少包含CPU與記憶體使用數據,或其他定義的資 源使用數據。之後,步驟22,針對該系統中每部伺服器的各項資源使用數據,分別建立各項資源使用行為模型(例如,若資源數據包含CPU與記憶體的使用數據,則每部伺服器將分別建立CPU資源使用行為模型與記憶體資源使用行為模型)。在步驟23中,針對伺服器的角色(例如Web角色或DB角色)與欲比對的資源型態(例如,CPU資源型態或記憶體資源型態)進行比對,決定與該伺服器資源使用行為模型相似的資源使用行為模型集合。之後,步驟24,將依據該伺服器資源使用數據的最大值與相似的資源使用行為模型集合所提供的評估誤差參數值計算出該伺服器各項雲端資源需求。步驟25,執行整體雲端資源需求評估作業,該作業能分析該系統中所有伺服器的資源使用行為模型,依據時間區間找出每部伺服器在該時間區間最大的特徵值並進行特徵值加總,之後從所有時間區間的特徵值加總值中找出最大值作為系統整體雲端資源需求建議值。在步驟26中,依據設定的學習頻率至雲端資料中心取得特定期間進駐至雲端資料中心的伺服器的資源使用數據,並建立該伺服器在進駐雲端資料中心後的資源使用行為模型。之後,步驟27針對步驟26中取得的伺服器,至數據資料庫取得該伺服器在進駐雲端資料中心前的資源使用行為模型。在步驟28中,針對伺服器在進駐雲端資料中心前與進駐後的資源使用行為模型進行分析,計算出該資源分群的評估誤差參數值,該評估誤差參數值可回饋至步驟24。The present invention proposes a cloud-based assessment method for self-adaptation of roles, as shown in FIG. 4, which includes a series of steps from inputting system resource usage data files to completing overall cloud resource resource requirement evaluation. First, in step 21, receiving hardware usage data of a system (including one or more servers), resource usage data of each server in the system will be captured and recorded to the data database 12; wherein the resource usage data At least CPU and memory usage data, or other defined resources Source usage data. Then, in step 22, for each resource usage data of each server in the system, each resource usage behavior model is established (for example, if the resource data includes CPU and memory usage data, each server will be separately Establish a CPU resource usage behavior model and a memory resource usage behavior model). In step 23, the role of the server (such as a web role or a DB role) is compared with the resource type to be compared (for example, a CPU resource type or a memory resource type), and the server resource is determined. Use a collection of behavioral models that use behavioral models that are similar. Then, in step 24, the cloud resource requirements of the server are calculated according to the maximum value of the server resource usage data and the evaluation error parameter value provided by the similar resource usage behavior model set. Step 25: Perform an overall cloud resource demand assessment operation, which can analyze resource usage behavior models of all servers in the system, find out the maximum eigenvalue of each server in the time interval according to the time interval, and perform eigenvalue summation. Then, find the maximum value from the eigenvalue plus total value of all time intervals as the recommended value of the overall cloud resource requirement of the system. In step 26, according to the set learning frequency, the cloud data center obtains resource usage data of the server stationed in the cloud data center in a specific period, and establishes a resource usage behavior model of the server after entering the cloud data center. Then, in step 27, for the server obtained in step 26, the resource usage behavior model of the server before entering the cloud data center is obtained from the data database. In step 28, the server uses the resource usage behavior model before the cloud data center to perform the analysis, and calculates the evaluation error parameter value of the resource group, and the evaluation error parameter value can be fed back to step 24.
請參閱第5圖,所示為雲端化評估申請與資源使用數據輸入之示意圖,數據接收與分析模組11可接收使用者上傳的系統硬體使用數據3或雲端資料中心伺服器硬體使用數據4。系統硬體使用數據應包含一部或多部伺服器資訊,每部伺服器資訊至少應包含伺服器採用的作業系統型態與版本、伺服器資源使用數據;其中,伺服器資源至少應包含CPU與記憶體兩種資源使用數據資料。雲端資料中心伺服器硬體使用數據4應包含一部或多部伺服器資訊,每部伺服器資訊至少應包含伺服器採用的作業系統型態與版本、伺服器資源使用數據以及該伺服器雲端化評估編號;其中,伺服器資源至少應包含CPU與記憶體兩種資源使用數據資料。使用者上傳的系統硬體使用數據3,將由數據接收與分析模組11進行剖析並產生每部伺服器的資源使用數據,同時每部伺服器將配發一伺服器雲端化評估編 號,之後伺服器的資源使用數據與配發的伺服器雲端化評估編號會一同存入至數據資料庫12。此外,數據接收與分析模組11能取得雲端資料中心伺服器硬體數據檔4,此數據檔應包含過去特定時間區間內完成雲端化評估後進駐至雲端資料中心的伺服器的資源使用數據,每部伺服器的資源使用數據將被存入至數據資料庫12。Please refer to FIG. 5, which is a schematic diagram of cloud computing evaluation application and resource usage data input. The data receiving and analyzing module 11 can receive the system hardware usage data 3 uploaded by the user or the cloud data center server hardware usage data. 4. The system hardware usage data should contain one or more server information. Each server information should contain at least the operating system type and version used by the server and server resource usage data. The server resources should at least contain the CPU. Use data with both resources of memory. The cloud data center server hardware usage data 4 should contain one or more server information, and each server information should at least include the operating system type and version used by the server, server resource usage data, and the server cloud. The evaluation number; wherein the server resource should contain at least two data usage data of the CPU and the memory. The user-used system hardware usage data 3 will be parsed by the data receiving and analyzing module 11 and the resource usage data of each server will be generated, and each server will be assigned a server cloud computing evaluation. No. After that, the resource usage data of the server and the distributed server cloudization evaluation number are stored in the data repository 12. In addition, the data receiving and analyzing module 11 can obtain the cloud data center server hardware data file 4, and the data file should include the resource usage data of the server stationed in the cloud data center after completing the cloud computing evaluation in the past specific time interval. The resource usage data of each server will be stored in the data repository 12.
請參閱第6圖,所示為資源使用行為模型建立之示意圖,如第6圖之(a)所描述,行為模型建立模組13依據執行頻率(例如,每30分鐘或60分鐘執行一次)至數據資料庫12取得需要建立資源使用行為模型的伺服器其伺服器資源使用數據7(需要建立資源使用行為模型的伺服器包含使用者上傳的系統硬體使用數據中的每筆伺服器,以及雲端資料中心虛擬機硬體使用數據中所包含的每筆伺服器),之後行為模型建立模組13產生對應的資源使用行為模型並寫入數據資料庫12。第6圖之(b)說明建立資源使用行為概念,每筆伺服器的資源使用數據將依據設定的時間區間進行切割,例如該伺服器CPU資源使用數據71被切割成10個時間區間(t1,t2,t3,t4,t5,t6,t7,t8,t9,t10),並從每個時間區間中取出最大的資源使用數據值當作該時間區間的特徵值,資源使用行為模型建立流程描述如下:Referring to FIG. 6, a schematic diagram of the resource usage behavior model is shown. As described in (a) of FIG. 6, the behavior model building module 13 is executed according to the execution frequency (for example, every 30 minutes or 60 minutes). The data database 12 obtains the server resource usage data 7 of the server that needs to establish the resource usage behavior model (the server that needs to establish the resource usage behavior model includes each server in the system hardware usage data uploaded by the user, and the cloud The data center virtual machine hardware uses each server included in the data), and then the behavior model building module 13 generates a corresponding resource usage behavior model and writes it to the data repository 12. Figure 6 (b) illustrates the concept of establishing resource usage behavior. The resource usage data of each server will be cut according to the set time interval. For example, the server CPU resource usage data 71 is cut into 10 time intervals (t1, T2, t3, t4, t5, t6, t7, t8, t9, t10), and take the maximum resource usage data value from each time interval as the eigenvalue of the time interval. The resource usage behavior model establishment process is described as follows :
Step1:取得資源使用數據:取得一伺服器的資源使用數據D(resource),其中resource可以是CPU、記憶體或其他已定義的資源,所有資源使用數據收集時間需大於一特定時間(例如1周)。Step 1: Obtain resource usage data: obtain resource usage data D (resource) of a server, where resource can be CPU, memory or other defined resources, and all resource usage data collection time needs to be greater than a specific time (for example, 1 week) ).
Step2:切割資源使用數據:資源使用數據D(resource)將依據時間區間設定值進行切割,例如時間區間設定值為30分鐘,則資源使用數據D(resource)將依據30分鐘區間進行數據分割。若資源使用數據是5分鐘收集一次,那麼每個時間區間將包含6(30分鐘/5分鐘=6)份數據值。Step 2: Cutting resource usage data: The resource usage data D (resource) will be cut according to the time interval setting value. For example, if the time interval setting value is 30 minutes, the resource usage data D (resource) will perform data division according to the 30-minute interval. If the resource usage data is collected once every 5 minutes, then each time interval will contain 6 (30 minutes / 5 minutes = 6) data values.
Step3:建立資源使用行為模型:每個時間區間內的數據值可表示成一系列的數據值集合{dx,dx+1,……,dx+k},數據值集合中最大值將被挑選出來做為該時間區間的特徵值d(ti),所有時間區間的特徵值組合則被視為該伺服器資源使用行為模型B(resource),例如,資源使用行為模型可表示為:B (resource )={d (t 0 ),d (t 1 ),......,d (t m )},其表示該資源使用行為模型包含m+1個特徵值。Step3: Establish a resource usage behavior model: the data values in each time interval can be represented as a series of data value sets {dx, dx+1, ..., dx+k}, and the maximum value in the data value set will be selected. For the eigenvalue d(ti) of the time interval, the eigenvalue combination of all time intervals is regarded as the server resource usage behavior model B (resource). For example, the resource usage behavior model can be expressed as: B ( resource )= { d ( t 0 ), d ( t 1 ), ..., d ( t m )}, which indicates that the resource usage behavior model contains m+1 feature values.
請參閱第7圖,所示評估學習機制之簡化示意圖。資源使用行為讀取單元141依據設定頻率(例如每8小時或每24小時)至數據資料庫12取得每筆伺服器進駐雲端資料中心後的資源使用行為模型82,並依據該筆伺服器的伺服器雲端化評估編號取得該筆伺服器進行雲端化評估前的資源使用行為模型81,之後將上述資料交付給資源評估誤差計算單元。資源評估誤差計算單元142依據該筆伺服器的資源使用行為模型資料與公式一計算出評估誤差參數值,其資料行為模型資料與評估誤差參數值計算定義如下:伺服器尚未進駐至雲端資料中心前的資源使用行為模型定義為:B (resource ) original ={d (t 0 ) original ,d (t 1 ) original ,......,d (t m ) original };伺服器進駐至雲端資料中心後的資源使用行為模型定義為:B (resource ) cloud ={d (t 0 ) cloud ,d (t 1 ) cloud ,......,d (t m ) cloud };資源評估誤差計算單元可依據下列公式一得出每筆伺服器的評估誤差參數值。See Figure 7 for a simplified diagram of the evaluation learning mechanism. The resource usage behavior reading unit 141 obtains the resource usage behavior model 82 after each server enters the cloud data center according to the set frequency (for example, every 8 hours or every 24 hours), and according to the servo of the server. The cloud computing evaluation number obtains the resource usage behavior model 81 before the cloud server performs the cloudization evaluation, and then delivers the above data to the resource evaluation error calculation unit. The resource evaluation error calculation unit 142 calculates the evaluation error parameter value according to the resource usage behavior model data of the pen server and the formula 1. The data behavior model data and the evaluation error parameter value are calculated as follows: the server has not been stationed in the cloud data center. The resource usage behavior model is defined as: B ( resource ) original ={ d ( t 0 ) original , d ( t 1 ) original ,......, d ( t m ) original }; server stationed in the cloud data The resource usage behavior model after the center is defined as: B ( resource ) cloud ={ d ( t 0 ) cloud , d ( t 1 ) cloud ,......, d ( t m ) cloud }; resource estimation error calculation The unit can derive the evaluation error parameter value of each server according to the following formula 1.
請參閱第8圖,所示為伺服器雲端資源需求預測作業之簡化示意圖。伺服器資源使用行為比對單元151接收一筆需進行比對的伺服器資源使用行為模型資料,並依據比對參數找出相似的資源使用行為模型,該比對參數包含相似值參數與相似個數參數;其中相似值參數用來決定兩個資源使用行為模型間的相似程度限制(例如,相似值參數若設定為90%,表示兩資源使用行為模型進行比對後,相似值要大於或等於90%才認定為相似,反之表示不相似),而相似個數參數則用來決定要找尋幾個相似的資源使用行為模型(例如,相似個數參數若設定為5,則表示從所有相似的資源使用行為模型中,選擇前5個最相似的資源使用行為模型,若相似的資源使用行為模型數量小於相似個數,則僅取現有相似的數量)。找尋相似的資源使用行為模型策略是依據該伺服器的資源型態(伺服器各項集合資源6,包含CPU資源61、記憶體資源62或其他定義的資源型態,與角色(例如 Web角色612、DB角色614或其他定義的角色))來進行搜尋。例如一伺服器屬於Web角色,同時要比對的是CPU資源使用行為模型83,則將僅對CPU-Web資源使用模型-1 831到CPU-Web資源使用行為模型-N 832進行搜尋(若屬於DB角色,同時要比對的是CPU資源使用行為模型83,則對CPU-DB資源使用模型-1 833到CPU-DB資源使用行為模型-M 834進行搜尋)。相似值si,j的計算方式如公式二所定義,i表示需進行比對的伺服器,j則表示為被用來比對的伺服器,而m表示時間區段的數量。當完成比對作業後,雲端資源需求計算單元152將依據比對後取得的相似資源使用行為模型集合中所有誤差參數值並依據公式三進行計算得出伺服器c的平均評估誤差值ΔB c ,其中x表示具有相似資源使用行為的伺服器。接著,依據公式四計算出該筆伺服器c建議配置的雲端資源數量值。See Figure 8 for a simplified diagram of the server cloud resource demand forecasting operation. The server resource usage behavior comparison unit 151 receives a server resource usage behavior model data to be compared, and finds a similar resource usage behavior model according to the comparison parameter, and the comparison parameter includes similar value parameters and similar numbers. Parameters; wherein the similarity parameter is used to determine the similarity limit between the two resource usage behavior models (for example, if the similarity parameter is set to 90%, indicating that the two resources are compared using the behavioral model, the similarity value is greater than or equal to 90. % is considered to be similar, otherwise it is not similar, and the similar number parameter is used to determine to find several similar resource usage behavior models (for example, if the similar number parameter is set to 5, it means from all similar resources. In the behavioral model, select the top 5 most similar resource usage behavior models. If the number of similar resource usage behavior models is less than the similar number, only the existing similar numbers are taken. Finding a similar resource usage behavior model strategy is based on the resource type of the server (server collection resource 6, including CPU resource 61, memory resource 62 or other defined resource type, and role (eg, web role 612). , DB role 614 or other defined role)) to search. For example, if a server belongs to the Web role and the CPU resource usage behavior model 83 is to be compared, only the CPU-Web resource usage model-1 831 to the CPU-Web resource usage behavior model-N 832 will be searched (if it belongs to The DB role, at the same time, is to compare the CPU resource usage behavior model 83, and then search for the CPU-DB resource usage model-1 833 to the CPU-DB resource usage behavior model -M 834). The similarity value si,j is calculated as defined in Equation 2, i represents the server to be compared, j is represented as the server used for comparison, and m represents the number of time segments. After the comparison operation is completed, the cloud resource requirement calculation unit 152 calculates the average evaluation error value Δ B c of the server c based on all the error parameter values in the similar resource usage behavior model set obtained after the comparison and according to the formula 3. , where x represents a server with similar resource usage behavior. Then, according to formula 4, the cloud resource quantity value recommended by the server c is calculated. .
(公式二)。(Formula 2).
請參閱第9圖,所示為系統雲端化資源評估作業之簡化示意圖。系統雲端化資源評估模組16依據設定頻率(例如每60分鐘)至數據資料庫12中取得尚未完成雲端化評估的系統編號,並依據該系統編號至數據資料庫取得該系統所有伺服器的資源使用行為模型資料。之後,系統雲端化資源評估模組16將進行伺服器的資源使用模型中每個時間區間的特徵值進行加總,如公式五定義,假設系統共有x+1部伺服器,每筆伺服器的資源使用行為模型共有m+1個時間區間,則對此x+1部伺服器的第1個時間區間(t0)、第2個時間區間(t1)至第m+1個時間區間(tm)分別進行特徵值加總,計算出每個時間區間(ti)的特徵值總和d (t i ) total 。完成各個時間區間的加總後,依據公式六從m+1個時間區間中找出最大的特徵值總和做為系統sname 的雲端資源需求建議值。而後,系統雲端化資源評估模組16將產生一系統雲端化評估報告9。See Figure 9 for a simplified diagram of the System Cloud Resource Assessment job. The system cloud resource evaluation module 16 obtains the system number of the cloud computing evaluation that has not been completed according to the set frequency (for example, every 60 minutes), and obtains resources of all the servers of the system according to the system number to the data database. Use behavioral model data. After that, the system cloud resource evaluation module 16 aggregates the feature values of each time interval in the resource usage model of the server, as defined in Equation 5, assuming that the system has a total of x+1 servers, each server The resource usage behavior model has a total of m+1 time intervals, and the first time interval (t0), the second time interval (t1), and the m+1th time interval (tm) of the x+1 server are used. The feature values are summed separately to calculate the sum of the feature values d ( t i ) total for each time interval (ti). After the summation of each time interval is completed, the sum of the largest eigenvalues is found from the m+1 time intervals according to formula 6 as the recommended value of the cloud resource requirement of the system sname. . The system cloud resource assessment module 16 will then generate a system cloud assessment report 9 .
綜合上述,本發明之雲端化評估系統及其方法,可依據系統的資源使用數據與進駐雲端資料中心後回饋的資源使用數據,以有效地改善雲端資源預估的誤差,提供未來進駐雲端資料中心的系統更準確的雲端資源需求建議;此外,透過分析系統中每部伺服器在不同時間區間的資源使用行為,可以更精準地評估出系統整體的雲端資源需求,可有效降低雲端資源過度配置的議題。In summary, the cloud computing evaluation system and the method thereof according to the present invention can effectively improve the error of the cloud resource estimation according to the resource usage data of the system and the resource usage data fed back to the cloud data center, and provide the future cloud data center. The system is more accurate in terms of cloud resource requirements. In addition, by analyzing the resource usage behavior of each server in different time intervals in the system, the cloud resource requirements of the system as a whole can be more accurately evaluated, which can effectively reduce the excessive allocation of cloud resources. issue.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.
1‧‧‧雲端化評估系統1‧‧‧Cloud Assessment System
11‧‧‧數據接收與分析模組11‧‧‧Data Receiving and Analysis Module
12‧‧‧數據資料庫12‧‧‧Data Database
13‧‧‧行為模型建立模組13‧‧‧ Behavioral Model Building Module
14‧‧‧評估學習模組14‧‧‧Evaluation Learning Module
15‧‧‧伺服器雲端資源需求預測模組15‧‧‧Server Cloud Resource Demand Forecasting Module
16‧‧‧系統雲端化資源評估模組16‧‧‧System Cloud Resource Evaluation Module
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102133787A TWI502371B (en) | 2013-09-18 | 2013-09-18 | Cloud Evaluation System and Its Method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW102133787A TWI502371B (en) | 2013-09-18 | 2013-09-18 | Cloud Evaluation System and Its Method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201512852A TW201512852A (en) | 2015-04-01 |
| TWI502371B true TWI502371B (en) | 2015-10-01 |
Family
ID=53437140
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW102133787A TWI502371B (en) | 2013-09-18 | 2013-09-18 | Cloud Evaluation System and Its Method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI502371B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201128407A (en) * | 2010-02-12 | 2011-08-16 | Elitegroup Computer Systems Co Ltd | Cloud-computating resource scheduling method and system applying the same |
| US20120117142A1 (en) * | 2010-11-05 | 2012-05-10 | Inventec Corporation | Cloud computing system and data accessing method thereof |
| US20120198065A1 (en) * | 2011-02-01 | 2012-08-02 | Chih-Hsing Sung | Method of Accessing a Cloud Service and Related Device |
| TW201301153A (en) * | 2011-06-28 | 2013-01-01 | Chunghwa Telecom Co Ltd | Optimized classification system and method for user demand service |
-
2013
- 2013-09-18 TW TW102133787A patent/TWI502371B/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201128407A (en) * | 2010-02-12 | 2011-08-16 | Elitegroup Computer Systems Co Ltd | Cloud-computating resource scheduling method and system applying the same |
| US20120117142A1 (en) * | 2010-11-05 | 2012-05-10 | Inventec Corporation | Cloud computing system and data accessing method thereof |
| US20120198065A1 (en) * | 2011-02-01 | 2012-08-02 | Chih-Hsing Sung | Method of Accessing a Cloud Service and Related Device |
| TW201301153A (en) * | 2011-06-28 | 2013-01-01 | Chunghwa Telecom Co Ltd | Optimized classification system and method for user demand service |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201512852A (en) | 2015-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11755319B2 (en) | Code development management system | |
| CN105556515A (en) | Database modeling and analysis | |
| US8904338B2 (en) | Predicting performance of a software project | |
| CN109726764A (en) | A kind of model selection method, device, equipment and medium | |
| CN104133857A (en) | New method for digging business process model on the basis of configuration constraint | |
| Rosa et al. | Early phase cost models for agile software processes in the US DoD | |
| CN110888625A (en) | Method for controlling code quality based on demand change and project risk | |
| CN105023119A (en) | Method for evaluating reliability of data assets | |
| CN118733475A (en) | An online interactive real-time software development communication feedback system | |
| Gupta | Nirikshan: process mining software repositories to identify inefficiencies, imperfections, and enhance existing process capabilities | |
| CN106570643A (en) | Loss reduction scheme optimizing method of power distribution network based on set pair analysis | |
| CN117371720A (en) | A carbon emission quota allocation method based on the coordinated development of the "electricity-carbon" market | |
| CN117314347A (en) | Project management method, system, terminal equipment and storage medium | |
| TWI502371B (en) | Cloud Evaluation System and Its Method | |
| CN120258619A (en) | A performance score management method and system for enterprise employees | |
| JP5200678B2 (en) | Service system, service system management method, and program | |
| CN113822693A (en) | Method, device, device and storage medium for generating evaluation value of user purchasing power | |
| KR101547030B1 (en) | Method and apparatus for assessing constructability of international construction projects | |
| Elzamly et al. | Identifying and managing software project risks with proposed fuzzy regression analysis techniques: Maintenance phase | |
| CN118115005A (en) | Establish a distributed cloud computing energy and carbon data analysis and evaluation method and system | |
| WO2017009888A1 (en) | Project risk management system and project risk management method | |
| Zhang et al. | Software reliability model related to total number of faults under imperfect debugging | |
| Sureka et al. | Ahaan: Software process intelligence: Mining software process data for extracting actionable information | |
| CN120407198B (en) | Method, device, computer equipment and medium for predicting cross-border service compliance | |
| CN105677566A (en) | Method and system for determining reliability guaranteed process perfect degree of software |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |