TWI579719B - Solution searching system and method for operating a solution searching system - Google Patents
Solution searching system and method for operating a solution searching system Download PDFInfo
- Publication number
- TWI579719B TWI579719B TW105136543A TW105136543A TWI579719B TW I579719 B TWI579719 B TW I579719B TW 105136543 A TW105136543 A TW 105136543A TW 105136543 A TW105136543 A TW 105136543A TW I579719 B TWI579719 B TW I579719B
- Authority
- TW
- Taiwan
- Prior art keywords
- server
- model
- solution
- file
- user
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000011017 operating method Methods 0.000 claims 1
- 238000013475 authorization Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000007418 data mining Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Description
本發明係有關於一種解決方案搜尋系統,尤指一種利用巨量資料及資料探勘技術之解決方案搜尋系統。The present invention relates to a solution search system, and more particularly to a solution search system that utilizes massive data and data exploration techniques.
一個產品的成功與否除了與研發技術息息相關之外,亦須要大量的測試以確保產品的穩定性,尤其是要求高穩定性、高信賴度的科技產品,如工業儀器、行動裝置、工作站、個人電腦或伺服器…等產品,對於品管測試的標準即更加嚴格。而當產品被檢測出問題時,必須經由複製問題、蒐集及分析相關資料、找出問題可能之成因、提出可能的解決方案並驗證所提出的解決方案…等步驟以確保檢測出的問題得以被適當地解決,這些過程不僅可能十分耗時,甚至可能導致產品錯過進入市場的時機,且實行上又必需仰賴工程師的個人經驗及專業程度;亦即工程師的經驗及專業程度是否足夠將會大大地影響提出解決方案所需要的時間,同時也可能影響了所提出之解決方案是否能夠徹底解決問題,導致解決方案的品質不易掌握。另外,由於個人經驗不易傳承,因此即便欲解決的問題相同或類似,不同的工程師仍可能必須重複上述的過程才能得出解決方案,這樣的做法不僅沒有效率,也無法確保工程師能找出最適切的解決方案。In addition to being closely related to R&D technology, the success of a product requires a large number of tests to ensure product stability, especially for high-stability, high-reliability technology products such as industrial instruments, mobile devices, workstations, and individuals. For products such as computers or servers, the standards for quality control testing are more stringent. When a product is detected, it must be done by copying the problem, collecting and analyzing the relevant information, identifying the cause of the problem, suggesting possible solutions, and verifying the proposed solution... to ensure that the detected problem is Properly resolved, these processes may not only be very time consuming, but may even lead to missed opportunities for the product to enter the market, and implementation must rely on the personal experience and professionalism of the engineer; that is, whether the engineer's experience and professionalism are sufficient will be greatly It affects the time required to propose a solution, and it may also affect whether the proposed solution can completely solve the problem, resulting in the quality of the solution is difficult to grasp. In addition, because personal experience is not easy to pass on, even if the problem to be solved is the same or similar, different engineers may have to repeat the above process to get a solution. This practice is not only inefficient, but also ensures that the engineer can find the most appropriate. s solution.
此外,對於同類型的產品,其出現相同或相似問題的比例甚高,過去雖亦有將解決方案以記錄或存檔的作法,但由於問題種類繁多,所牽涉到的資訊量相當龐大,加上各工程師對於問題描述的方式可能不一致,因此難以系統化地儲存,導致在實行上,工程師仍不易搜尋到相關的解決方案,而難以達成使工程師共享經驗的目的。In addition, for the same type of products, the proportion of the same or similar problems is very high. In the past, although the solution was recorded or archived, due to the wide variety of problems, the amount of information involved is quite large. The way engineers describe problems may be inconsistent, so it is difficult to systematically store them. As a result, engineers are still not easy to find relevant solutions, and it is difficult to achieve the purpose of sharing experiences with engineers.
本發明之一實施例提供一種解決方案搜尋系統,解決方案搜尋系統包含運算伺服器、複數個模型伺服器、巨量資料庫、資料庫伺服器、中樞伺服器及關聯式資料庫。An embodiment of the present invention provides a solution search system including a computing server, a plurality of model servers, a huge database, a database server, a hub server, and an associated database.
運算伺服器接收並根據問題描述檔案及問題描述檔案所對應之預測模型的編號,產生問題描述檔案對應於預測模型之模型輸入檔案。每一模型伺服器對應至一預測模型,每一模型伺服器用以當接收到模型輸入檔案時,利用模型伺服器所對應之預測模型及模型輸入檔案產生解決方案代碼。資料庫伺服器根據模型伺服器所產生之解決方案代碼由巨量資料庫讀取至少一解決方案。關聯式資料庫儲存使用者之身分、使用者所對應之可使用之預測模型及中樞伺服器在運算時所需的小量及/或暫時性的資料。The computing server receives and generates a problem description file corresponding to the model input file of the prediction model according to the number of the prediction model corresponding to the problem description file and the problem description file. Each model server corresponds to a prediction model, and each model server is configured to generate a solution code by using a prediction model corresponding to the model server and a model input file when receiving the model input file. The database server reads at least one solution from the huge database based on the solution code generated by the model server. The associated database stores the identity of the user, the predictive models available to the user, and the small and/or temporary data required for the hub server to operate.
中樞伺服器根據使用者之身分提供複數個可使用之預測模型給使用者選擇,複數個可使用之預測模型所對應的資料探勘演算法相異。當使用者自可使用之預測模型中選擇第一預測模型並傳送第一問題描述檔案時,中樞伺服器將第一問題描述檔案及第一預測模型的編號傳送至運算伺服器。中樞伺服器將運算伺服器所產生之第一問題描述檔案對應於第一預測模型的第一模型輸入檔案傳送至對應於第一預測模型之第一模型伺服器。中樞伺服器將第一模型伺服器所產生之第一解決方案代碼傳送至資料庫伺服器,並輸出資料庫伺服器由巨量資料庫讀取之第一解決方案。The hub server provides a plurality of usable prediction models to the user according to the user's identity, and the data exploration algorithms corresponding to the plurality of usable prediction models are different. When the user selects the first prediction model from the predictive models that can be used and transmits the first problem description file, the hub server transmits the numbers of the first problem description file and the first prediction model to the computing server. The hub server transmits the first model input file corresponding to the first prediction model generated by the first problem description file generated by the computing server to the first model server corresponding to the first prediction model. The hub server transmits the first solution code generated by the first model server to the database server, and outputs the first solution that the database server reads from the huge database.
本發明之另一實施例提供一種解決方案搜尋系統之操作方法,解決方案搜尋系統包含運算伺服器、複數個模型伺服器、巨量資料庫、資料庫伺服器、中樞伺服器及關聯式資料庫。解決方案搜尋系統之操作方法包含中樞伺服器根據關聯式資料庫中所紀錄之使用者的身分提供複數個可使用之預測模型給使用者選擇,當使用者自可使用之預測模型中選擇第一預測模型並傳送第一問題描述檔案至中樞伺服器時,中樞伺服器將第一問題描述檔案及第一預測模型的編號傳送至運算伺服器,運算伺服器根據第一問題描述檔案及第一預測模型的編號,產生第一問題描述檔案對應於第一預測模型之第一模型輸入檔案,中樞伺服器將運算伺服器所產生之第一模型輸入檔案傳送至對應於第一預測模型之第一模型伺服器,第一模型伺服器利用第一預測模型及第一模型輸入檔案產生第一解決方案代碼,中樞伺服器將第一模型伺服器所產生之第一解決方案代碼傳送至資料庫伺服器,資料庫伺服器根據第一解決方案代碼由巨量資料庫讀取至少一第一解決方案,及中樞伺服器輸出資料庫伺服器由巨量資料庫讀取之至少一第一解決方案。本發明關聯於一種高效率的解決方案搜尋系統,可有效解決現行物聯網架構中無法精確命中問題核心的缺陷。Another embodiment of the present invention provides an operation method of a solution search system including a computing server, a plurality of model servers, a huge database, a database server, a hub server, and an associated database. . The operation method of the solution search system includes the hub server providing a plurality of usable prediction models to the user according to the identity of the user recorded in the associated database, and selecting the first one among the predictive models that the user can use. When predicting the model and transmitting the first problem description file to the hub server, the hub server transmits the number of the first problem description file and the first prediction model to the computing server, and the computing server describes the file and the first prediction according to the first problem. The number of the model generates a first problem description file corresponding to the first model input file of the first prediction model, and the hub server transmits the first model input file generated by the computing server to the first model corresponding to the first prediction model a server, the first model server generates a first solution code by using the first prediction model and the first model input file, and the hub server transmits the first solution code generated by the first model server to the database server, The database server reads at least one first solution from the huge database according to the first solution code. Case, the central server and database server reads the output from the massive database of at least a first solution. The invention is related to a high-efficiency solution search system, which can effectively solve the defects of the core of the current Internet of Things architecture that cannot accurately hit the problem.
第1圖為本發明一實施例之解決方案搜尋系統100的示意圖。解決方案搜尋系統100包含運算伺服器110、N個模型伺服器120 1至120 N、巨量資料庫130、資料庫伺服器140、中樞伺服器150及關聯式資料庫160,N為大於1之正整數。 1 is a schematic diagram of a solution search system 100 in accordance with an embodiment of the present invention. The solution search system 100 includes a computing server 110, N model servers 120 1 to 120 N , a huge database 130 , a database server 140 , a hub server 150 , and an associated database 160 , where N is greater than 1. A positive integer.
在本發明的部分實施例中,使用者可以將其操作某產品系統時所遭遇到的問題整理成問題描述檔案,問題描述檔案可利用文字的形式來記載與產品系統問題相關的資訊,其內容可包含系統的問題描述、觀察到的現象及結果、與產品系統問題相關的之子系統為何以及發生問題的經過(亦即,可說明如何能夠複製問題),但不限於上述資訊。In some embodiments of the present invention, the user may organize the problem encountered when operating a product system into a problem description file, and the problem description file may use text form to record information related to the product system problem, and the content thereof. It can include a description of the system's problem, observed phenomena and results, the subsystems associated with the product system problem, and the process in which the problem occurred (ie, how the problem can be replicated), but is not limited to the above information.
當有使用者嘗試利用解決方案搜尋系統100來搜尋解決方案時,中樞伺服器150可根據關聯式資料庫160中所記錄的使用者身分提供對應的複數個可使用之預測模型給使用者選擇。第5圖為本發明一實施例之關聯式資料庫160所儲存的使用者的身分紀錄表。When a user attempts to use the solution search system 100 to search for a solution, the hub server 150 can provide a corresponding plurality of usable prediction models to the user according to the user identity recorded in the associated database 160. FIG. 5 is a table of the identity of the user stored in the associated database 160 according to an embodiment of the present invention.
第5圖中的身分紀錄表紀錄了解決方案搜尋系統100的使用者帳號及其對應的密碼。在第5圖中,每個使用者的密碼都預設為「0000」,然而在本發明的其他實施例中,也可使用其他的預設密碼,且使用者也可能自行更改密碼。此外,第5圖的身分紀錄表還記錄了每個使用者的身分別,例如使用者User1、User2、User3的身分為一般使用者,而使用者Admin1及Admin2則具有管理者的身分。在本發明的部分實施例中,具有一般使用者身分的使用者可以利用其所屬之授權群組的可使用之預測模型,而具有管理者身分的使用者則是授權群組的建立者,同時也可建立授權群組中可使用之預測模型。第6圖為本發明一實施例之關聯式資料庫160中所儲存之授權群組及其相關資料。 在第6圖中,授權群組G1及G2為使用者Admin1所建立,其分別對應到公司A的產品1及產品2,授權群組G3則為使用者Admin2所建立,會對應到公司B的產品3。舉例來說,使用者Admin1可能是負責管理客戶公司A,而公司A所使用的產品有產品1,例如為伺服器,及產品2,例如為個人電腦,由於產品1及2的功能屬性可能有所差異,其所遭遇到的問題及解決的方法也可能都不相同,因此使用者Admin1可為產品1及2分別建立授權群組G1及G2,而授權群組G1及G2則會分別使用相異的預測模型。如此一來,在解決方案搜尋系統100建立預測模型的過程中,就能夠避免因為將不同屬性之產品的問題混合,而造成預測模型的預測準確率偏低的問題。The identity record in Figure 5 records the user account of the solution search system 100 and its corresponding password. In Fig. 5, each user's password is preset to "0000". However, in other embodiments of the present invention, other preset passwords may be used, and the user may change the password by himself. In addition, the identity record table of FIG. 5 also records the physical identity of each user. For example, the users User1, User2, and User3 are classified as general users, and the users Admin1 and Admin2 have the identity of the administrator. In some embodiments of the present invention, a user having a general user identity can utilize a predictable model of an authorized group to which the user belongs, and a user having an administrator identity is an authorizer of the authorized group. A predictive model that can be used in an authorized group can also be established. FIG. 6 is an authorized group and related materials stored in the associated database 160 according to an embodiment of the present invention. In Figure 6, the authorization groups G1 and G2 are established for the user Admin1, which respectively correspond to the product 1 and product 2 of the company A, and the authorization group G3 is established for the user Admin2, which corresponds to the company B. Product 3. For example, user Admin1 may be responsible for managing customer company A, while company A uses products such as server 1, such as server, and product 2, such as a personal computer, due to the functional attributes of products 1 and 2 may have The difference, the problems encountered and the solutions may be different, so the user Admin1 can establish the authorization groups G1 and G2 for products 1 and 2 respectively, and the authorization groups G1 and G2 will use the phases respectively. Different prediction models. In this way, in the process of the solution search system 100 establishing the prediction model, it is possible to avoid the problem that the prediction accuracy of the prediction model is low because the problems of the products of different attributes are mixed.
再者,使用者Admin2可能是負責管理客戶公司B,由於公司A及公司B所使用的產品也不相同,因此使用者Admin2也另外建立了授權群組G3,並自行建立授權群組G3所可使用的預測模型,如此一來,同樣能夠避免因為將不同屬性之產品的問題混合,而造成預測模型的預測準確率偏低的問題。Furthermore, the user Admin2 may be responsible for managing the customer company B. Since the products used by the company A and the company B are also different, the user Admin2 also establishes the authorization group G3 and establishes the authorization group G3. The prediction model used, in this way, can also avoid the problem that the prediction accuracy of the prediction model is low due to the mixing of the problems of the products with different attributes.
此外,在第5圖中,使用者Super的身分為超級管理者,具有超級管理者身分的使用者可建立賦予使用者對應的管理者身分,同時也可以自由運用或建立各個授權群組中的預測模型。在本發明的部分實施例中,解決方案搜尋系統100可預設只有一個超級管理者,但不以此為限制In addition, in FIG. 5, the user Super is classified as a super administrator, and the user having the super administrator identity can establish a manager identity corresponding to the user, and can also freely use or establish each authorized group. Forecast model. In some embodiments of the present invention, the solution search system 100 can preset only one super administrator, but is not limited thereto.
在上述的實施例中,若中樞伺服器150根據關聯式資料庫160中所記錄資料比對出第一使用者User1為一般使用者,其所屬的授權群組為G1,而授權群組G1可使用的預測模型有預測模型M1、M 2及M3。因此當第一使用者User1利用解決方案搜尋系統100來搜尋解決方案時,中樞伺服器150即可將可使用之預測模型M1、M 2及M3提供給第一使用者User1選擇。In the above embodiment, if the hub server 150 compares the recorded data in the associated database 160 to the first user User1 as a general user, the authorized group to which the primary server 150 belongs is G1, and the authorized group G1 can The prediction models used are prediction models M1, M 2 and M3. Therefore, when the first user User1 uses the solution search system 100 to search for a solution, the hub server 150 can provide the available prediction models M1, M2, and M3 to the first user User1 for selection.
在本發明的部分實施例中,預測模型M1、M 2及M3可分別對應至相異的資料探勘演算法,例如Bayes、CBayes或SGD等演算法。也就是說,使用者可以根據需求選擇偏好的預測模型。In some embodiments of the present invention, the prediction models M1, M2, and M3 may correspond to different data exploration algorithms, such as Bayes, CBayes, or SGD, respectively. That is to say, the user can select a preferred prediction model according to the needs.
當使用者User1自可使用之預測模型M1、M 2及M3中選擇第一預測模型M1並傳送第一問題描述檔案A1時,中樞伺服器150可將第一問題描述檔案A1及第一預測模型M1的編號傳送至運算伺服器110。When the user User1 selects the first prediction model M1 from the predictable models M1, M2, and M3 that can be used and transmits the first problem description file A1, the hub server 150 may describe the first problem file A1 and the first prediction model. The number of M1 is transmitted to the arithmetic server 110.
運算伺服器110接收到根據第一問題描述檔案A1及第一預測模型M1的編號後,即可根據第一問題描述檔案A1及第一預測模型M1的編號,產生第一問題描述檔案A1對應於第一預測模型M1之第一模型輸入檔案B1。After the operation server 110 receives the number of the file A1 and the first prediction model M1 according to the first problem, the number of the file A1 and the first prediction model M1 can be described according to the first problem, and the first problem description file A1 is generated corresponding to The first model of the first prediction model M1 is entered into the file B1.
在本發明的部分實施例中,第一問題描述檔案A1可利用固定格式來條列與系統問題相關的資訊,例如但不限於csv、 json、xml等文字檔案格式,使得運算伺服器110能夠較為精確地判讀第一問題描述檔案A1的內容以產生第一模型輸入檔案B1。在本發明的其他實施例中,第一問題描述檔案A1亦可使用非固定格式之文字條列與系統問題相關的資訊。In some embodiments of the present invention, the first problem description file A1 may use a fixed format to list information related to system problems, such as but not limited to text file formats such as csv, json, and xml, so that the computing server 110 can be compared. The content of the first problem description file A1 is accurately interpreted to generate the first model input file B1. In other embodiments of the present invention, the first problem description file A1 may also use information in a non-fixed format text column related to system problems.
在本發明之一實施例中,運算伺服器110可根據第一問題描述檔案A1之文字產生關鍵詞(attributes)描述檔案。關鍵詞(attributes)描述檔案可由多個關鍵詞(attributes)所組成,每一個關鍵詞是由一對關鍵詞名字(attribute name)與關鍵詞之值(attribute value)所組成,在本發明之一實施例中,可以json之文字格式來描述。當第一問題描述檔案A1使用非固定格式文字條列與系統問題相關的資訊時,運算伺服器110亦可使用正規表示法(regular expression)來識別關鍵詞名字與取得關鍵詞之值。再者,運算伺服器110可利用標準詞對照表與第一問題描述檔案A1之文字對照以產生關鍵詞描述檔案。第7圖為本發明一實施例之標準詞對照表的部分內容。透過標準詞對照表可以標準化同義之字彙與詞彙,如此即可較正確及有效率地表達關鍵詞描述檔案之語意。此外,為避免關鍵詞描述檔案之語意之混淆,所有關鍵詞之值皆可以小寫表示。In an embodiment of the present invention, the computing server 110 may describe a text description attribute file of the file A1 according to the first problem. The attribute description file may be composed of a plurality of keywords, each of which is composed of a pair of attribute name and attribute value, and is one of the present inventions. In the embodiment, it can be described in the text format of json. When the first problem description file A1 uses non-fixed format text bar information related to system problems, the computing server 110 may also use a regular expression to identify the keyword name and the value of the obtained keyword. Moreover, the computing server 110 can use the standard word comparison table to compare the text of the first problem description file A1 to generate a keyword description file. Figure 7 is a partial view of a standard word comparison table according to an embodiment of the present invention. Syntactic vocabulary and vocabulary can be standardized through the standard word comparison table, so that the meaning of the keyword description file can be expressed correctly and efficiently. In addition, in order to avoid the confusion of the semantics of the keyword description file, the values of all keywords can be represented in lowercase.
完成關鍵詞描述檔案後,運算伺服器110可自關鍵詞描述檔案中優先挑選出權重較高或使用者預設偏好的關鍵詞作為預測因子(predictors)以產生預測因子檔案,再根據預測因子檔案及預測模型產生第一模型輸入檔案B1,例如運算伺服器110可根據預測模型之特性調整預測因子檔案,例如在CBayes模型中,並不考慮數字的相依性,因此可將預測因子檔案中的數字部分刪除,以產生第一模型輸入檔案B1,然而不同的預測模型對於輸入檔案的格式有不同要求,本發明並不以上述實施例為限。After completing the keyword description file, the computing server 110 may preferentially select keywords with higher weights or user preset preferences from the keyword description file as predictors to generate predictor files, and then according to the predictive factor file. And the predictive model generates a first model input file B1. For example, the computing server 110 can adjust the predictor file according to the characteristics of the predictive model. For example, in the CBayes model, regardless of the dependency of the numbers, the numbers in the predictor file can be Partially deleted to generate the first model input file B1. However, different prediction models have different requirements for the format of the input file, and the present invention is not limited to the above embodiment.
由於標準詞對照表的內容,亦即其所包含的標準詞數量及種類會直接影響到關鍵詞描述檔案及預測因子檔案的內容,也會影響到預測模型的預測準確度,因此在本發明的部分實施例中,預測模型M1、M2及M3也可能分別對應到不同的標準詞對照表。亦即具有管理者身分的使用者在建立預測模型時,除了可選擇不同的資料探勘演算法之外,也可以為每個預測模型建立不同的標準詞對照表以符合不同產品特性。Because the content of the standard word comparison table, that is, the number and type of standard words it contains, directly affects the content of the keyword description file and the predictive factor file, and also affects the prediction accuracy of the prediction model, so in the present invention In some embodiments, the prediction models M1, M2, and M3 may also correspond to different standard word comparison tables, respectively. That is to say, when the user with the manager's identity establishes the prediction model, in addition to selecting different data exploration algorithms, different standard word comparison tables can be established for each prediction model to conform to different product characteristics.
由於每一個模型伺服器120 1至120 N會利用不同預測模型來進行分析預測,因此運算伺服器110產生第一模型輸入檔案B1後,中樞伺服器150可將第一模型輸入檔案B1傳送至模型伺服器120 1至120 N中對應於第一預測模型M1之模型伺服器,舉例來說,若第一模型伺服器120 1所對應的預測模型為M1,則中樞伺服器150就會將第一模型輸入檔案B1傳送到第一模型伺服器120 1。 Since each model server 120 1 to 120 N utilizes different prediction models for analysis and prediction, after the computing server 110 generates the first model input file B1, the hub server 150 can transmit the first model input file B1 to the model. The model server corresponding to the first prediction model M1 among the servers 120 1 to 120 N , for example, if the prediction model corresponding to the first model server 120 1 is M1, the hub server 150 will be the first The model input file B1 is transmitted to the first model server 120 1 .
在本發明的部分實施例中,關聯式資料庫160中還可存放每一預測模型所對應之模型伺服器的對照表,以供中樞伺服器150參考查找。In some embodiments of the present invention, the correlation database 160 may also store a comparison table of the model servers corresponding to each prediction model for the central server 150 to refer to.
當第一模型伺服器120 1接收到第一模型輸入檔案B1時,第一模型伺服器120 1可利用第一模型伺服器120 1所對應之預測模型M1從第一模型輸入檔案B1中分析出第一問題描述檔案A1可能會與哪些類型的問題描述檔案相近,進而產生解決方案代碼C1。接著中樞伺服器150會將第一模型伺服器120 1所產生之第一解決方案代碼C1傳送至資料庫伺服器140。資料庫伺服器140可根據第一模型伺服器120 1所產生之第一解決方案代碼C1由巨量資料庫130中讀取至少一解決方案D1,亦即,每一個解決方案代碼可能會對應到不只一個解決方案。最後中樞伺服器150則會輸出資料庫伺服器140由巨量資料庫130所讀取之第一解決方案D1。 When the first model server 120 1 receives the first model input file B1, the first model server 120 1 can analyze the first model input file B1 by using the prediction model M1 corresponding to the first model server 120 1 . The first problem describes which types of problem description files the file A1 may be similar to, resulting in a solution code C1. The hub server 150 then transmits the first solution code C1 generated by the first model server 120 1 to the database server 140. The database server 140 can read at least one solution D1 from the huge database 130 according to the first solution code C1 generated by the first model server 120 1 , that is, each solution code may correspond to More than one solution. Finally, the hub server 150 outputs the first solution D1 that the database server 140 reads from the huge database 130.
在本發明之一實施例中,資料庫伺服器140及巨量資料庫130可為支援Hadoop Distribute File System (HDFS)、Hadoop Map/Reduce及Hive…等系統之資料庫伺服器及巨量資料庫,或可支援其他適合處理巨量資料的資料庫系統,以符合解決方案搜尋系統100對於快速處理、儲存大量資料的需求。此外,關聯式資料庫160可為一般的檔案系統(file system),例如為MySql、PostgreSql…等關聯式資料庫,除了儲存上述有關使用者身份及其對應可使用的預測模型編號之外,還可儲存中樞伺服器150在運算時所需的小量及/或暫時性的資料。In an embodiment of the present invention, the database server 140 and the huge database 130 can be a database server and a huge database supporting systems such as Hadoop Distribute File System (HDFS), Hadoop Map/Reduce, and Hive. Or, it can support other database systems suitable for processing huge amounts of data to meet the needs of the solution search system 100 for quickly processing and storing large amounts of data. In addition, the associated database 160 can be a general file system, such as MySql, PostgreSql, etc., in addition to storing the above-mentioned user identity and its corresponding predictive model number. A small amount and/or temporary data required for the hub server 150 to operate can be stored.
透過上述本發明實施例之解決方案搜尋系統100,即可使工程師分享彼此過去解決系統問題的經驗,而能輕易地搜尋到可能的解決方案以縮短產品開發的時間,並提升解決方案的品質。此外,透過設定使用者的身分,還能夠進一步讓解決方案搜尋系統100以各自獨立的預測模型來搜尋不同類型產品所遭遇之問題的解決方案,因此能夠避免先前技術因為產品屬性不同,而造成解決方案搜尋系統準確率偏低的問題。Through the above-described solution search system 100 of the embodiment of the present invention, engineers can share their experiences in solving system problems in the past, and can easily find possible solutions to shorten product development time and improve the quality of the solution. In addition, by setting the user's identity, the solution search system 100 can further search for solutions to problems encountered by different types of products by using independent prediction models, thereby avoiding the prior art being solved due to different product attributes. The problem of low accuracy of the scheme search system.
第2圖為本發明一實施例之解決方案搜尋系統200的示意圖,解決方案搜尋系統200與解決方案搜尋系統100可根據相同原理運作,然而解決方案搜尋系統200還包含建模伺服器170。也就是說,解決方案搜尋系統200能夠讓使用者建立預測模型。當使用者欲透過解決方案搜尋系統200來建立預測模型時,中樞伺服器150會先辨識使用者的身分,例如透過第5圖的內容來確認,確認使用者Admin1具有管理者的身分之後,中樞伺服器150即可提供複數個可使用之模型參數組,給使用者Admin1選擇,例如模型參數組P1至P3。每一可使用之模型參數組P1至P3可分別對應至相異的資料探勘演算法及/或相異的標準詞對照表,因此使用者Admin1可以根據需求選擇所建立之預測模型的特性。此外,為了讓建模伺服器170能夠建立模型,使用者Admin1還須提供複數個已解決之第二問題描述檔案A2,已解決之第二問題描述檔案A2可與第一問題描述檔案A1具有相同的格式,且每一個已解決之第二問題描述檔案A2除了可包含紀錄與系統問題的相關欄位,如系統問題及現象之描述、系統問題所屬之子系統、發生問題的經過...等欄位之外,尚可包含系統問題的成因說明欄位、解決方案欄位及解決方案代碼。如此一來,建模伺服器170才能夠進一步利用對應的資料探勘演算法找尋出各個已解決之第二問題描述檔案A2與其解決方案之間的關聯,並建立預測模型。2 is a schematic diagram of a solution search system 200 according to an embodiment of the present invention. The solution search system 200 and the solution search system 100 can operate according to the same principle. However, the solution search system 200 further includes a modeling server 170. That is, the solution search system 200 enables the user to build a predictive model. When the user wants to establish a prediction model through the solution search system 200, the hub server 150 first identifies the user's identity, for example, by confirming the contents of FIG. 5, confirming that the user Admin1 has the identity of the manager, the hub The server 150 can provide a plurality of usable model parameter sets for the user Admin1, such as the model parameter sets P1 to P3. Each of the usable model parameter sets P1 to P3 can respectively correspond to different data exploration algorithms and/or different standard word comparison tables, so the user Admin1 can select the characteristics of the established prediction model according to the requirements. In addition, in order for the modeling server 170 to be able to build the model, the user Admin1 must also provide a plurality of solved second problem description files A2, and the second problem description file A2 that has been solved can be the same as the first problem description file A1. The format, and each of the resolved second problem description files A2 can contain fields related to records and system problems, such as descriptions of system problems and phenomena, subsystems to which system problems belong, processes that occur, etc. In addition to the bits, the cause description field, solution field, and solution code for the system problem can be included. In this way, the modeling server 170 can further use the corresponding data exploration algorithm to find the relationship between each of the solved second problem description files A2 and its solution, and establish a prediction model.
舉例來說,當使用者Admin1自可使用之模型參數組P1至P3中選擇第一可使用之模型參數組,例如為可使用之模型參數組P1,並傳送複數個已解決之第二問題描述檔案A2時,中樞伺服器150可將複數個已解決之第二問題描述檔案A2及第一可使用之模型參數組P1傳送至運算伺服器110。運算伺服器110在接收到複數個已解決之第二問題描述檔案A2及第一可使用之模型參數組P1之後,會根據複數個已解決之第二問題描述檔案A2及第一可使用之模型參數組P1所對應的資料探勘演算法及標準詞對照表產生每一已解決之第二問題描述檔案A2所對應之第二解決方案D2及每一已解決之第二問題描述檔案A2所對應之第二模型輸入檔案B2。For example, when the user Admin1 selects the first usable model parameter group from the available model parameter groups P1 to P3, for example, the model parameter group P1 that can be used, and transmits a plurality of solved second problem descriptions. In the case of the file A2, the hub server 150 can transmit the plurality of solved second problem description files A2 and the first usable model parameter group P1 to the computing server 110. After receiving the plurality of solved second problem description files A2 and the first usable model parameter group P1, the computing server 110 describes the file A2 and the first usable model according to the plurality of solved second problems. The data exploration algorithm and the standard word comparison table corresponding to the parameter group P1 generate a second solution D2 corresponding to each solved second problem description file A2 and a corresponding second problem description file A2 corresponding to the solution. The second model enters the file B2.
中樞伺服器150可將每一已解決之第二問題描述檔案A2所對應之第二解決方案D2傳送至資料庫伺服器140,以使資料庫伺服器140根據每一第二解決方案A2所包含之第二解決方案代碼C2將每一第二解決方案D2儲存至巨量資料庫130。同時,中樞伺服器150可將每一已解決之第二問題描述檔案A2所對應之第二解決方案代碼C2及每一已解決之第二問題描述檔案A2所對應之第二模型輸入檔案B2及第一可使用之模型參數組P1傳送至建模伺服器170,以使建模伺服器170根據每一已解決之第二問題描述檔A2之第二模型輸入檔案B2、每一已解決之第二問題描述檔案A2所對應之第二解決方案代碼C2及第一可使用之模型參數組P1所對應之資料探勘演算法及標準詞對照表來建立可使用之預測模型。The hub server 150 can transmit the second solution D2 corresponding to each of the solved second problem description files A2 to the database server 140, so that the database server 140 is included according to each second solution A2. The second solution code C2 stores each second solution D2 to the huge database 130. At the same time, the hub server 150 can describe the second solution code C2 corresponding to the second problem description file A2 and the second model input file B2 corresponding to each of the solved second problem description files A2. The first usable model parameter set P1 is transmitted to the modeling server 170, so that the modeling server 170 describes the second model input file B2 according to each of the solved second problem description files A2, and each solved first The second problem description file corresponds to the second solution code C2 corresponding to the file A2 and the data exploration algorithm and the standard word comparison table corresponding to the first usable model parameter group P1 to establish a usable prediction model.
在本發明的一實施例中,運算伺服器110可根據每一第二問題描述檔案A2中複數個關鍵欄位之文字,如紀錄問題所屬之子系統(例如為bios、bmc、 power、thermal、 mechanical、 hardware、 os、driver)的欄位、系統問題的成因說明欄位及解決方案欄位中的文字敘述,產生每一第二問題描述檔案A2所對應之第二解決方案D2,每一個第二解決方案D2包含第二解決方案代碼C2、解決方案欄位及成因說明欄位。在本發明一實施例中,解決方案欄位可用以記錄解決步驟文件所存放之位址,如網路位址,而非直接記錄解決方案的步驟,如此即可避免因為解決步驟太過繁複與相關資料太大,而不必要地增加運算伺服器110的負擔。In an embodiment of the present invention, the computing server 110 can describe the characters of the plurality of key fields in the file A2 according to each second question, such as the subsystem to which the recording problem belongs (for example, bios, bmc, power, thermal, mechanical). , hardware, os, driver) field, system problem description field and text description in the solution field, generating a second solution D2 corresponding to each second problem description file A2, each second Solution D2 includes a second solution code C2, a solution field, and a description field. In an embodiment of the present invention, the solution field can be used to record the address stored in the solution step file, such as a network address, instead of directly recording the solution steps, so that the solution step is too complicated. The related information is too large, and the burden on the computing server 110 is unnecessarily increased.
此外,雖然每一個第二問題描述檔案A2中原本即可能已包含其所對應的解決方案代碼,然而運算伺服器110可進一步根據第二問題描述檔案A2中其他欄位,如成因說明欄位、子系統欄位等資訊來調整最終每一個第二解決方案中所包含的第二解決方案代碼。例如可根據成因說明欄位之內容取得關鍵字的方式以產生解決方案代碼,使得凡是具有相同成因說明之解決方案皆可具有相同之解決方案代碼。In addition, although each second problem description file A2 may have originally included its corresponding solution code, the computing server 110 may further describe other fields in the file A2 according to the second problem, such as a description field, Information such as subsystem fields to adjust the second solution code included in each of the final second solutions. For example, the solution code can be generated according to the content of the cause description field to generate a solution code, so that all solutions with the same cause description can have the same solution code.
例如在本發明的一實施例中,若有一第二問題描述檔案的解決方案代碼包含複數個子代碼,如bios.mrc,其中bios表示第二問題描述檔案與基本輸入輸出系統(basic input/output system)相關,而mrc表示第二問題描述檔案係與基本輸入輸出系統中的記憶體參照碼(memory reference code)相關,則運算伺服器110可以根據其他欄位的資訊將第二問題描述檔案中的解決方案代碼bios.mrc擴充至bios.mrc.i2c,表示第二問題描述檔案係與基本輸入輸出系統中記憶體參照碼的內部整合電路(Inter-integrated circuit, I2C)相關。亦即當解決方案代碼所包含的子代碼數目越多時,表示將問題分類得越細。由於解決方案代碼所包含的子代碼數目可能影響到解決方案搜尋系統200的搜尋速度及準確度,因此可根據各系統的需求來調整。For example, in an embodiment of the present invention, if there is a second problem description, the solution code of the file includes a plurality of subcodes, such as bios.mrc, where bios represents the second problem description file and the basic input/output system (basic input/output system). Correlation, and mrc indicates that the second problem description file system is related to the memory reference code in the basic input/output system, and the operation server 110 can describe the second problem in the file according to the information of other fields. The solution code bios.mrc is extended to bios.mrc.i2c, indicating that the second problem description file is associated with an inter-integrated circuit (I2C) of the memory reference code in the basic input/output system. That is, when the number of subcodes included in the solution code is larger, it means that the problem is classified as finer. Since the number of subcodes included in the solution code may affect the search speed and accuracy of the solution search system 200, it can be adjusted according to the needs of each system.
在資料庫伺服器140根據每一個第二解決方案D2所包含之第二解決方案代碼C2將每一第二解決方案D2儲存在巨量資料庫130,且建模伺服器170完成建立預測模型後,解決方案搜尋系統200即可利用建模伺服器170所建立之預測模型來搜尋系統問題的可能解決方案。在本發明的部分實施例中,中樞伺服器150可將建立好的預測模型傳送至模型伺服器120 1至120 N中的一個指定的模型伺服器,並將預測模型與模型伺服器的對照關係儲存在關聯式資料庫160中。如此一來,當有使用者欲利用此預測模型來搜尋解決方案時,中樞伺服器150就能夠將使用者所輸入的問題描述檔案傳送至對應的模型伺服器。 Each of the second solutions D2 is stored in the huge database 130 by the database server 140 according to the second solution code C2 included in each of the second solutions D2, and the modeling server 170 completes the establishment of the prediction model. The solution search system 200 can utilize the predictive model established by the modeling server 170 to search for possible solutions to system problems. In some embodiments of the present invention, the hub server 150 may transmit the established prediction model to a specified model server of the model servers 120 1 to 120 N and compare the prediction model with the model server. It is stored in the associated database 160. In this way, when a user wants to use the prediction model to search for a solution, the hub server 150 can transmit the problem description file input by the user to the corresponding model server.
前述的實施例中,當資料庫伺服器140根據模型伺服器120所產生的第一解決方案代碼C1欲由巨量資料庫130讀取第一解決方案D1時,資料庫伺服器140所讀取的第一解決方案D1即可為複數個第二解決方案D2中具有與第一解決方案代碼C1相符之第二解決方案代碼C2的第二解決方案,且與第一解決方案代碼C1相符之第二解決方案代碼C2所包含之子代碼的數目不少於第一解決方案代碼C1所包含之子代碼的數目。In the foregoing embodiment, when the database server 140 reads the first solution D1 from the huge database 130 according to the first solution code C1 generated by the model server 120, the database server 140 reads The first solution D1 may be a second solution of the second solution code C2 in the plurality of second solutions D2 that is consistent with the first solution code C1, and corresponds to the first solution code C1. The number of subcodes included in the second solution code C2 is not less than the number of subcodes included in the first solution code C1.
此外,在本發明一實施例中,解決方案搜尋系統200中,中樞伺服器150與運算伺服器110、資料庫伺服器140、模型伺服器120及建模伺服器170之間可透過網路封包以及應用程式介面(application programming interface, API)傳送檔案與通訊。在本發明之一實施例中,可利用使用者資料協定(User Datagram Protocol, UDP)埠或傳輸控制協定(Transmission Control Protocol, TCP) 埠來達成應用程式介面間之遠端程式呼叫(Remote Procedure Call, RPC),如此一來,解決方案搜尋系統200即可以分散式的方式建構,而有利於系統擴充及維護。In addition, in an embodiment of the present invention, in the solution search system 200, the hub server 150 and the computing server 110, the database server 140, the model server 120, and the modeling server 170 are permeable to each other. And application programming interface (API) to transfer files and communications. In an embodiment of the present invention, a User Datagram Protocol (UDP) or a Transmission Control Protocol (TCP) can be used to achieve a remote procedure call between application interfaces (Remote Procedure Call). , RPC), in this way, the solution search system 200 can be constructed in a decentralized manner, which is beneficial to system expansion and maintenance.
由於本發明之解決方案搜尋系統200可透過巨量資料庫及資料探勘的演算法使工程師分享彼此過去解決系統問題的經驗,因此能夠輕易地搜尋到可能的解決方案以減少解決產品問題的時間,並提升解決方案品質。此外,透過設定使用者的身分,還能夠進一步讓解決方案搜尋系統200建立各自獨立的預測模型,並用來搜尋不同類型產品所遭遇之問題的解決方案,因此能夠避免先前技術因為產品屬性不同,而造成解決方案搜尋系統準確率偏低的問題。Since the solution search system 200 of the present invention enables engineers to share their experiences in solving system problems in the past through a huge database and data mining algorithms, it is easy to find possible solutions to reduce the time to solve product problems. And improve the quality of the solution. In addition, by setting the user's identity, the solution search system 200 can be further configured to establish independent prediction models and search for solutions to problems encountered by different types of products, thereby avoiding the prior art because of different product attributes. The problem of low accuracy of the solution search system.
第3圖為本發明一實施例中,解決方案搜尋系統100之操作方法300之流程圖。解決方案搜尋系統之操作方法300包含步驟S310至S380:FIG. 3 is a flow diagram of an operation method 300 of the solution search system 100 in accordance with an embodiment of the present invention. The operation method 300 of the solution search system includes steps S310 to S380:
S310: 中樞伺服器150根據關聯式資料庫160中所紀錄之使用者User1的身分提供複數個可使用之預測模型M1、M2及M3給第一使用者User1選擇;S310: The hub server 150 provides a plurality of usable prediction models M1, M2, and M3 to the first user User1 according to the identity of the user User1 recorded in the association database 160.
S320: 當第一使用者User1自可使用之預測模型M1、M2及M3中選擇第一預測模型M1並傳送第一問題描述檔案A1至中樞伺服器150時,中樞伺服器150將第一問題描述檔案A1及第一預測模型M1的編號傳送至運算伺服器110;S320: When the first user User1 selects the first prediction model M1 from the predictable models M1, M2, and M3 that can be used and transmits the first problem description file A1 to the hub server 150, the hub server 150 describes the first problem. The number of the file A1 and the first prediction model M1 is transmitted to the computing server 110;
S330: 運算伺服器110根據第一問題描述檔案A1及第一預測模型M1的編號,產生第一問題描述檔案A1對應於第一預測模型M1之第一模型輸入檔案B1;S330: The operation server 110 describes the number of the file A1 and the first prediction model M1 according to the first problem, and generates a first problem description file A1 corresponding to the first model input file B1 of the first prediction model M1;
S340: 中樞伺服器150將運算伺服器110所產生之第一模型輸入檔案B1傳送至模型伺服器120 1至120 N中對應於第一預測模型M1之第一模型伺服器120 1; S340: a first hub server model input 150 of the operational arising from the server 110 to transfer files B1 model server 1201 to 120 N corresponding to the first prediction model M1 of the first model server 1201;
S350︰ 第一模型伺服器120 1利用第一預測模型M1及第一模型輸入檔案B1產生第一解決方案代碼C1; S350. The first model server 120 1 generates a first solution code C1 using the first prediction model M1 and the first model input file B1;
S360: 中樞伺服器150將第一模型伺服器120 1所產生之第一解決方案代碼C1傳送至資料庫伺服器140; S360: The hub server 150 transmits the first solution code C1 generated by the first model server 120 1 to the database server 140;
S370: 資料庫伺服器140根據第一解決方案代碼C1由巨量資料庫130讀取至少一第一解決方案D1;S370: The database server 140 reads at least one first solution D1 from the huge database 130 according to the first solution code C1;
S380: 中樞伺服器150輸出資料庫伺服器140由巨量資料庫130讀取之至少一第一解決方案D1。S380: The hub server 150 outputs the at least one first solution D1 that the database server 140 reads from the huge database 130.
第4圖說明為本發明另一實施例中,解決方案搜尋系統200之操作方法400之流程圖。解決方案搜尋系統200之操作方法400包含步驟S410至S460:4 is a flow chart showing an operation method 400 of the solution search system 200 in another embodiment of the present invention. The method 400 of operation of the solution search system 200 includes steps S410 through S460:
S410: 中樞伺服器150根據關聯式資料庫160中所紀錄之第二使用者Admin1的身分提供複數個可使用之模型參數組P1、P2及P3給第二使用者Admin1選擇;S410: The hub server 150 provides a plurality of available model parameter groups P1, P2, and P3 to the second user Admin1 according to the identity of the second user Admin1 recorded in the associated database 160.
S420: 當第二使用者Admin1自可使用之模型參數組P1、P2及P3中選擇第一可使用之模型參數組P1並傳送複數個已解決之第二問題描述檔案A2時,中樞伺服器150將複數個已解決之第二問題描述檔案A2及第一可使用之模型參數組P1傳送至運算伺服器110;S420: When the second user Admin1 selects the first usable model parameter group P1 from the available model parameter groups P1, P2 and P3 and transmits the plurality of solved second problem description files A2, the hub server 150 Transmitting a plurality of solved second problem description files A2 and the first usable model parameter group P1 to the computing server 110;
S430: 運算伺服器110根據複數個已解決之第二問題描述檔案A2及第一可使用之模型參數組P1產生每一已解決之第二問題描述檔案A2所對應之第二解決方案D2及每一已解決之第二問題描述檔案A2所對應之第二模型輸入檔案B2;S430: The computing server 110 generates a second solution D2 corresponding to each of the solved second problem description files A2 according to the plurality of solved second problem description files A2 and the first usable model parameter group P1. A second problem that has been solved describes the second model input file B2 corresponding to the file A2;
S440: 資料庫伺服器140根據每一第二解決方案D2所包含之第二解決方案代碼C2儲存每一第二解決方案D2;S440: The database server 140 stores each second solution D2 according to the second solution code C2 included in each second solution D2;
S450: 中樞伺服器150將每一已解決之第二問題描述檔案A2所對應之第二解決方案代碼C2及每一已解決之第二問題描述檔案A2所對應之第二模型輸入檔案B2及第一可使用之模型參數組P1傳送至建模伺服器170;S450: The hub server 150 describes the second solution code C2 corresponding to the second problem description file A2 and the second model input file B2 corresponding to each of the solved second problem description files A2. a usable model parameter set P1 is transmitted to the modeling server 170;
S460: 建模伺服器170根據每一已解決之第二問題描述檔A2之第二模型輸入檔案B2、每一已解決之第二問題描述檔案A2所對應之第二解決方案代碼C2及第一可使用之模型參數組P1所對應之資料探勘演算法建立可使用之預測模型。S460: The modeling server 170 describes the second model input file B2 of the file A2 according to each of the solved second problem descriptions, and the second solution code C2 corresponding to the second problem description file A2 and the first solution. A data mining algorithm corresponding to the model parameter set P1 can be used to establish a predictive model that can be used.
透過本發明上述實施例之解決方案搜尋系統100、200的操作方法300及400,即可利用巨量資料庫及資料探勘的演算法使工程師分享彼此過去解決系統問題的經驗,而能輕易地搜尋到可能的解決方案以減少解決產品問題的時間,並提升解決方案品質。Through the operation methods 300 and 400 of the solution searching system 100, 200 of the above embodiment of the present invention, the algorithm of the huge database and the data exploration can be utilized to enable the engineers to share their experiences in solving system problems in the past, and can be easily searched. Probable solutions to reduce time to resolve product issues and improve solution quality.
綜上所述,本發明實施例之解決方案搜尋系統及解決方案搜尋系統之操作方法,可利用巨量資料庫及資料探勘的演算法,協助使用者分享彼此過去解決問題的經驗,而在使用者發現系統問題時,能輕易地搜尋到可能的解決方案以減少解決產品問題的時間。如此一來,就可以避免先前技術中,因為相關的解決方案搜尋不易,而導致解決系統問題的效率及品質難以控制的問題。此外,透過設定使用者的身分,還能夠進一步讓解決方案搜尋系統以獨立的預測模型來搜尋不同類型產品所遭遇之問題的解決方案,因此能夠避免先前技術因為產品屬性不同,而造成解決方案搜尋系統準確率偏低的問題。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the solution search system and the solution search system operation method of the embodiments of the present invention can utilize a huge database and a data exploration algorithm to assist users in sharing their past experience in solving problems, while using When discovering system problems, it is easy to find possible solutions to reduce the time to resolve product issues. In this way, it is possible to avoid the problems in the prior art because the related solutions are not easy to search, and the efficiency and quality of solving the system problems are difficult to control. In addition, by setting the user's identity, the solution search system can further enable the independent prediction model to search for solutions to problems encountered by different types of products, thus avoiding the prior art solution search due to different product attributes. The problem of low system accuracy. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100、200‧‧‧解決方案搜尋系統
110‧‧‧運算伺服器
1201至120N‧‧‧模型伺服器
130‧‧‧巨量資料庫
140‧‧‧資料庫伺服器
150‧‧‧中樞伺服器
160‧‧‧關聯式資料庫
170‧‧‧建模伺服器
User1、Admin1‧‧‧使用者
A1‧‧‧第一問題描述檔案
B1‧‧‧第一模型輸入檔案
C1‧‧‧第一解決方案代碼
D1‧‧‧第一解決方案
A2‧‧‧第二問題描述檔案
B2‧‧‧第二模型輸入檔案
C2‧‧‧第二解決方案代碼
D2‧‧‧第二解決方案
P1、P2、P3‧‧‧模型參數組
300、400‧‧‧方法
S310至S380、S410至S460‧‧‧步驟100, 200‧‧‧ Solution Search System
110‧‧‧ Computing Server
120 1 to 120 N ‧‧‧Model Server
130‧‧‧ huge database
140‧‧‧Database Server
150‧‧‧Central Server
160‧‧‧Related database
170‧‧‧Modeling Server
User1, Admin1‧‧‧ user
A1‧‧‧First problem description file
B1‧‧‧ first model input file
C1‧‧‧First Solution Code
D1‧‧‧ first solution
A2‧‧‧Second problem description file
B2‧‧‧Second model input file
C2‧‧‧Second solution code
D2‧‧‧Second solution
P1, P2, P3‧‧‧ model parameter set
300, 400‧‧‧ method
Steps S310 to S380, S410 to S460‧‧
第1圖為本發明一實施例之解決方案搜尋系統的示意圖。 第2圖為本發明另一實施例之解決方案搜尋系統的示意圖。 第3圖為本發明一實施例之解決方案搜尋系統的操作方法流程圖。 第4圖為本發明另一實施例之解決方案搜尋系統的操作方法流程圖。 第5圖為本發明一實施例之關聯式資料庫所儲存的使用者的身分紀錄表。 第6圖為本發明一實施例之關聯式資料庫中所儲存之授權群組及其相關資料。 第7圖為本發明一實施例之標準詞對照表的部分內容。FIG. 1 is a schematic diagram of a solution search system according to an embodiment of the present invention. 2 is a schematic diagram of a solution searching system according to another embodiment of the present invention. FIG. 3 is a flow chart of an operation method of the solution searching system according to an embodiment of the present invention. 4 is a flow chart of an operation method of a solution search system according to another embodiment of the present invention. Figure 5 is a table showing the identity of a user stored in an associated database according to an embodiment of the present invention. FIG. 6 is an authorized group and related materials stored in the associated database according to an embodiment of the present invention. Figure 7 is a partial view of a standard word comparison table according to an embodiment of the present invention.
300‧‧‧方法 300‧‧‧ method
S310至S380‧‧‧步驟 S310 to S380‧‧‧ steps
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105136543A TWI579719B (en) | 2016-11-10 | 2016-11-10 | Solution searching system and method for operating a solution searching system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105136543A TWI579719B (en) | 2016-11-10 | 2016-11-10 | Solution searching system and method for operating a solution searching system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI579719B true TWI579719B (en) | 2017-04-21 |
| TW201818272A TW201818272A (en) | 2018-05-16 |
Family
ID=59240977
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW105136543A TWI579719B (en) | 2016-11-10 | 2016-11-10 | Solution searching system and method for operating a solution searching system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI579719B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413100B1 (en) * | 2000-08-08 | 2002-07-02 | Netucation, Llc | System and methods for searching for and delivering solutions to specific problems and problem types |
| TW201621713A (en) * | 2014-12-08 | 2016-06-16 | 英業達股份有限公司 | Solution search system operation method and solution search system |
-
2016
- 2016-11-10 TW TW105136543A patent/TWI579719B/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413100B1 (en) * | 2000-08-08 | 2002-07-02 | Netucation, Llc | System and methods for searching for and delivering solutions to specific problems and problem types |
| TW201621713A (en) * | 2014-12-08 | 2016-06-16 | 英業達股份有限公司 | Solution search system operation method and solution search system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201818272A (en) | 2018-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11765176B2 (en) | Method, apparatus, and computer program product for managing access permissions for a searchable enterprise platform | |
| US10685071B2 (en) | Methods, systems, and computer program products for storing graph-oriented data on a column-oriented database | |
| US20200234162A1 (en) | Machine learning pipeline failure prediction | |
| NO334809B1 (en) | Method, system and device for exploring and connecting to data sources | |
| US10353874B2 (en) | Method and apparatus for associating information | |
| US12248455B1 (en) | Systems and methods for generic data parsing applications | |
| US11630647B2 (en) | Method and system for configuring processes of software applications using activity fragments | |
| CN112861182A (en) | Database query method and system, computer equipment and storage medium | |
| CN113806556B (en) | Method, device, equipment and medium for constructing knowledge graph based on power grid data | |
| CN102779161B (en) | Semantic labeling method based on resource description framework (RDF) knowledge base | |
| US20220180247A1 (en) | Detecting associated events | |
| CN105653355A (en) | Method and system for calculating Hadoop configuration parameters | |
| TWI579719B (en) | Solution searching system and method for operating a solution searching system | |
| CN115017185A (en) | Data processing method, device and storage medium | |
| US12437158B2 (en) | Method for filtering and semi-automatically labeling training data | |
| CN115657901B (en) | Service changing method and device based on unified parameters | |
| CN106503176B (en) | The solution search system and the operation method of the solution search system | |
| CN112445790A (en) | Report data storage method, device, equipment and medium | |
| JP7739340B2 (en) | Graph Data Structure Edge Profiling in the MapReduce Computational Framework | |
| WO2015030016A1 (en) | System for processing unstructured data, method for processing unstructured data, and recording medium | |
| TWI574169B (en) | Solution search system operation method and solution search system | |
| JP7328884B2 (en) | Data management computer and data management method | |
| CN111291026B (en) | Data access method, system, device and computer readable medium | |
| JP5358981B2 (en) | Information processing apparatus, information processing apparatus control method, and information processing apparatus control program | |
| TWI604322B (en) | Solution search system and solution search system operation method |