TWI572179B - Mobile network base station communication prediction and resource scheduling automation analysis system and method - Google Patents
Mobile network base station communication prediction and resource scheduling automation analysis system and method Download PDFInfo
- Publication number
- TWI572179B TWI572179B TW104102784A TW104102784A TWI572179B TW I572179 B TWI572179 B TW I572179B TW 104102784 A TW104102784 A TW 104102784A TW 104102784 A TW104102784 A TW 104102784A TW I572179 B TWI572179 B TW I572179B
- Authority
- TW
- Taiwan
- Prior art keywords
- base station
- traffic
- prediction
- capacity
- data
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
本發明係關於行動網路基地台訊務預測與資源調度自動分析系統設計,以二階段方式預測基地台訊務的成長走勢,第一階段以整體行動網路訊務預測結果來粗估基地台訊務成長走勢,第二階段以個別基地台與所屬空間的訊務特性微調基地台訊務預測走勢,透過區域訊務成長速度權重門檻調整產生的基地台訊務預測結果可得較合理與準確的預測;個別基地台的訊務預測走勢透過智慧型資源調度機制,除了可預測未來因訊務成長而導致容量不足的基地台,也可篩選出未來有多餘資源可提供調度的基地台,最後透過基地台資源調節自動化分析產生新增站台組合與單體調度匹配組合,達到基地台容量資源規劃與調配最佳化,有效提升設備利用率。 The invention relates to the design of an automatic analysis system for the mobile network base station traffic prediction and resource scheduling, and predicts the growth trend of the base station communication in a two-stage manner. In the first stage, the base mobile communication forecast result is used to estimate the base station news. In the second stage, we will fine-tune the forecasting trend of the base station's traffic by the characteristics of individual base stations and the space of the space. The base station traffic forecast results generated by the regional traffic growth speed weight threshold can be more reasonable and accurate. Forecasting; the traffic forecasting trend of individual base stations through the intelligent resource scheduling mechanism, in addition to predicting the base station that lacks capacity due to the growth of the traffic in the future, it can also screen out the base stations with redundant resources to provide scheduling in the future. The automatic analysis of the resource adjustment of the base station generates a new combination of platform combination and single-schedule scheduling, which achieves the optimization of the capacity planning and deployment of the base station and effectively improves the equipment utilization.
隨著行動通信技術之推陳出新、行動網路架構及功能之日趨複雜、和行動網路訊務量之爆炸性成長,現今行動網路容量已更快速達到瓶頸,過去僅針對特定行動網路設備進行負載監測,若到達監測門檻,再進行採購擴充。但受限於行動網路設備的無線傳輸資源有限,並非如同有線網路只要擴充負載到達特定門檻的網路設備即可,以行動網路基地台為例,大量建置站台來 增加空間密度不僅成本過高,而且會造成站台間相互的干擾,盲目地擴增行動網路設備並不能有效的解決網路容量瓶頸的問題。 With the development of mobile communication technologies, the increasing complexity of mobile network architectures and functions, and the explosive growth of mobile network traffic, today's mobile network capacity has reached bottlenecks faster, and in the past it was only loaded for specific mobile network devices. Monitoring, if the monitoring threshold is reached, then purchase expansion. However, the limited wireless transmission resources of mobile network devices are not the same as the wired network, as long as the load reaches the specific threshold of the network device. Take the mobile network base station as an example, and build a large number of stations. Increasing the spatial density is not only costly, but also causes mutual interference between stations. Blindly amplifying mobile network equipment cannot effectively solve the problem of network capacity bottleneck.
另目前預測技術中,最近似專利為中國專利號碼:201010300133,主要針對行動網路話務以SAS商業軟體系統進行成長趨勢數學模型擬合以進行預測,其SAS系統為一商用軟體系統,其建置成本較高,不易自行使用建置與擴充。另其話務量預測僅利用個別基地台歷史話務量,忽略整體區域的用戶數與單人用量成長趨勢影響,亦未考量區域性話務成長趨勢與個別基地台關聯性,其預測之結果,會經常性遭遇基地台歷史話務量頻繁波動而發生預測結果發散不合理,無法提供電信營運商作為未來容量規劃或資源配置的參考。 In addition, the most similar patent in the current forecasting technology is the Chinese patent number: 201010300133, which is mainly used for the mobile network traffic to predict the growth trend of the SAS commercial software system for the prediction. The SAS system is a commercial software system. The cost is high and it is not easy to use and build. In addition, its traffic forecasting only uses the historical traffic volume of individual base stations, ignoring the influence of the number of users in the overall area and the growth trend of single-person usage, and does not consider the relationship between regional traffic growth trend and individual base stations. It will often encounter frequent fluctuations in the historical traffic of the base station, and the prediction results will be unreasonable. It is impossible to provide telecom operators as a reference for future capacity planning or resource allocation.
由此可見,上述專利仍有諸多待改進空間,對於行動網路建設與維運需求實非一良善之設計,亟待多加考量預測目的與實用性,迅速修正其缺點。 It can be seen that there is still much room for improvement in the above patents. For the construction of mobile networks and the need for maintenance, it is not a good design. It is urgent to consider the purpose and practicality of forecasting and quickly correct its shortcomings.
本案發明人鑑於上述習用方式所衍生的各項缺點,乃亟思加以改良創新,並經多年研究後,終於成功研發完成本件行動網路基地台訊務預測與資源調度自動分析系統與方法。 In view of the shortcomings derived from the above-mentioned conventional methods, the inventors of the present invention have improved and innovated, and after years of research, they have successfully developed and completed the automated analysis system and method for the mobile station base station traffic prediction and resource scheduling.
本發明之目的在於提供電信營運商一種行動網路基地台訊務成長預測與資源調度自動分析系統,其具備自動蒐集行動網路歷史訊務及設備容量組態資訊,依據不同資料維度轉譯成不同的輸入參數與參考因子,再結合數學線性迴歸模型預測訊務走勢並分析資源的使用狀況,透過人機介面呈現基地台訊務預測走勢、預測週期容量告警與容量資源調節基地台的新增站台與單體 調度匹配組合;預測週期容量告警與容量資源調節基地台匹配組合可透過智慧型資源調度機制取得,取得的成果是行動網路基地台容量規劃的重要參考依據,可以協助電信營運商提早進行佈建規劃,調節紓解網路負載,提升網路資源使用率且優化網路之效能。 The purpose of the present invention is to provide a telecom operator a mobile network base station traffic growth prediction and resource scheduling automatic analysis system, which has automatic collection of mobile network historical traffic and device capacity configuration information, and translates into different according to different data dimensions. Input parameters and reference factors, combined with mathematical linear regression model to predict traffic trends and analyze the use of resources, through the human-machine interface to present the base station traffic forecast trend, forecast cycle capacity alarm and capacity resource adjustment base station new platform With monomer Scheduling matching combination; predictive periodic capacity alarm and capacity resource adjustment base station matching combination can be obtained through intelligent resource scheduling mechanism, and the obtained result is an important reference basis for mobile network base station capacity planning, which can assist telecom operators to deploy early. Plan, adjust and understand network load, improve network resource usage and optimize network performance.
本發明係一種行動網路基地台訊務預測與資源調度自動化系統,先利用基地台元件與介面資料介接與外部系統資料介接,蒐集基地台訊務預測的輸入參數資料來源,包含基地台訊務、組態與全區訊務預測等資料,再透過不同維度的資料組合,組合成訊務預測使用的輸入參數;時間維度資料,如觀察區間的基地台每日訊務量、每日忙時訊務量、每日平均訊務量、全區訊務預測數據成長率;空間維度資料,如基地台容量組態的所屬區域與所屬區域分類的每日訊務量;管理維度資料,如基地台傳輸容量、頻譜資源配置狀態與全區終端數據量比例,輸入參數透過多維度轉譯方式將資料來源組合成輸入參數。 The invention relates to a mobile network base station traffic prediction and resource scheduling automation system, which firstly uses the base station component and the interface data to interface with the external system data, and collects the input parameter data source of the base station traffic prediction, including the base station. Information such as traffic, configuration and regional traffic prediction, and then combined into data input parameters used by traffic prediction through different combinations of data; time dimension data, such as base station daily traffic volume of observation interval, daily Busy time traffic volume, daily average traffic volume, global traffic forecasting data growth rate; spatial dimension data, such as the daily traffic volume of the region and the regional classification of the base station capacity configuration; management dimension data, For example, the transmission capacity of the base station, the configuration status of the spectrum resources, and the proportion of the terminal data in the whole area, the input parameters are combined into input parameters through multi-dimensional translation.
從輸入參數到取得預測結果,透過階段性預測流程產生,第一階段為訊務粗估階段,將基地台觀察期間的歷史訊務代入線性迴歸模型,取得訊務預測基準值與基地台訊務斜率;若訊務斜率為正,則未來每個預測週期的訊務皆要考慮全區訊務成長趨勢與基地台的忙時影響,每個預測週期皆可計算出訊務忙時粗估結果;若訊務斜率為負,預測結果僅考慮忙時預測基準值。 From the input parameters to the prediction results, the phase prediction process is generated. The first phase is the traffic rough estimation phase. The historical traffic during the base station observation period is substituted into the linear regression model to obtain the traffic prediction reference value and the base station traffic slope. If the traffic slope is positive, the future traffic of each forecast cycle should consider the traffic growth trend of the whole region and the busy time impact of the base station. Each prediction cycle can calculate the rough estimate result of the busy time of the traffic; The traffic slope is negative, and the prediction result only considers the busy time prediction reference value.
第二階段是訊務微調階段,將訊務預測粗估結果依基地台訊務特性進行微調,基地台的成長速度因子是依照基地台訊務特性取得的微調因子,表達出基地台訊務成長速度相較於所屬區域訊務成長速度的影響,基地台成長 速度因子越大,表示基地台訊務成長速度遠大於所屬區域的訊務成長速度;以訊務預測粗估結果乘上基地台成長速度因子可得到訊務微調結果。 The second stage is the fine-tuning phase of the traffic, which will fine-tune the traffic prediction rough estimate according to the base station's traffic characteristics. The growth rate factor of the base station is the fine-tuning factor obtained according to the base station's traffic characteristics, and express the base station's growth speed. Compared with the growth rate of the region's traffic, the base station grows. The higher the speed factor, the faster the growth rate of the base station's traffic is greater than the speed of the traffic in the region; the traffic fine-tuning result can be obtained by multiplying the traffic prediction rough estimate by the base station growth rate factor.
由微調結果可以發現,若基地台的歷史訊務波動過大,會導致基地台成長速度過快,此屬不合理的預測結果,故需針對基地台的成長速度因子進行調整;透過區域轄下所有基地台成長速度因子為基準,以大小排序後設定出基地台成長速度因子上下限門檻,此門檻再針對基地台成長速度因子進行調整;調整後的成長因子會降低基地台訊務因頻繁波動引起的成長速度過大影響,乘上調整後的基地台成長速度因子,將粗估結果微調會取得較合理且準確的預測走勢。 It can be found from the result of fine-tuning that if the historical information fluctuation of the base station is too large, the base station will grow too fast. This is an unreasonable prediction result, so it needs to be adjusted for the growth rate factor of the base station; The base station growth rate factor is the benchmark. After sorting by size, the base station growth rate factor upper and lower thresholds are set. This threshold is adjusted for the base station growth rate factor; the adjusted growth factor will reduce the base station traffic due to frequent fluctuations. The growth rate is too large. By multiplying the adjusted base station growth rate factor, fine-tuning the rough estimate results in a more reasonable and accurate forecast.
第三階段是資源調度階段,透過智慧型基地台資源調度機制,自動化取得容量告警與容量資源可調節的基地台清單;再透過容量組態資訊(基地台型號、載波開啟數等等)篩選,可快速地取得基地台新增站台與單體調度匹配的組合,此篩選結果可依據系統使用者需求進行容量資源的調節分配。 The third stage is the resource scheduling stage. Through the intelligent base station resource scheduling mechanism, the list of base stations with adjustable capacity alarm and capacity resources can be automatically obtained. Then, through the capacity configuration information (base station model, carrier open number, etc.), The combination of the newly added platform of the base station and the single scheduling can be quickly obtained, and the screening result can be adjusted and allocated according to the needs of the system user.
訊務預測與容量告警的結果會以圖示化方式在人機介面查詢時呈現;智慧型基地台資源調度機制也會定期自動更新預測期間全區基地台容量利用率與可調節容量,此資訊提供電信營運商精準建設與成本管控的重要參考依據。 The results of traffic prediction and capacity alarms will be presented graphically in the human-machine interface query; the smart base station resource scheduling mechanism will also automatically update the base station capacity utilization and adjustable capacity during the forecast period. Provide an important reference for telecom operators to accurately build and cost control.
系統自動化執行以中央控制方式監控,管理階段性流程的自動化啟動執行,執行狀態監測與執行錯誤訊息的記錄。 System automation is performed in a centrally controlled manner, managing automated start-up of phased processes, performing status monitoring and recording of error messages.
10‧‧‧系統使用者 10‧‧‧System users
11‧‧‧外部功能 11‧‧‧External functions
12‧‧‧行動網路 12‧‧‧Mobile Network
20‧‧‧外部資料介接模組 20‧‧‧External data interface module
21‧‧‧基地台元件與介面資料擷取模組 21‧‧‧Base station component and interface data acquisition module
22‧‧‧多維度資料轉譯模組 22‧‧‧Multidimensional data translation module
23‧‧‧資料儲存模組 23‧‧‧ Data Storage Module
24‧‧‧預測運算模組 24‧‧‧Predictive Computing Module
25‧‧‧訊務分析模組 25‧‧‧ Traffic Analysis Module
26‧‧‧智慧型資源調度模組 26‧‧‧Smart Resource Dispatching Module
27‧‧‧中央控制模組 27‧‧‧Central Control Module
28‧‧‧人機介面 28‧‧‧Human Machine Interface
100‧‧‧輸入參數來源介接與組合 100‧‧‧ Input parameter source interface and combination
101‧‧‧基地台訊務粗測 101‧‧‧Base station traffic coarse measurement
102‧‧‧基地台訊務預測微調準備 102‧‧‧Base station traffic forecasting fine-tuning preparation
103‧‧‧基地台訊務預測微調 103‧‧‧Base station traffic forecasting fine-tuning
104‧‧‧基地台容量預警 104‧‧‧Base station capacity warning
105‧‧‧基地台資源調度 105‧‧‧Base station resource scheduling
10501~10514‧‧‧步驟流程 10501~10514‧‧‧Step process
圖1係為本發明之系統架構圖;圖2係為本發明之流程步驟說明圖;圖3係為本發明之智慧型容量資源調節流程圖。 1 is a system architecture diagram of the present invention; FIG. 2 is a flow chart of the present invention; FIG. 3 is a flow chart of smart capacity resource adjustment according to the present invention.
請參閱圖1所示,本發明行動網路基地台訊務預測與資源調度自動分析系統共有3個參與者與9個功能模組,參與者分別是系統使用者10、外部系統11與行動網路12,而功能模組部分分別是外部資料介接模組20、資料介面與元件資料擷取模組21、多維度資料轉譯模組22、資料儲存模組23、預測運算模組24、訊務分析模組25、智慧型區域資源調度模組27、中央控制模組28與人機介面模組29;接著以圖2流程步驟說明本發明在各個功能模組自動化運作方式: Referring to FIG. 1 , the mobile network base station traffic prediction and resource scheduling automatic analysis system of the present invention has three participants and nine functional modules, and the participants are system users 10, external systems 11 and mobile networks. The function module part is an external data interface module 20, a data interface and component data acquisition module 21, a multi-dimensional data translation module 22, a data storage module 23, a prediction operation module 24, and a message module. The analysis module 25, the intelligent area resource scheduling module 27, the central control module 28 and the human machine interface module 29; then the flow chart of Fig. 2 illustrates the automatic operation mode of the present invention in each functional module:
步驟一、輸入參數的來源介接與組合100,基地台訊務預測之輸入參數來源來自於外部系統11與行動網路12,外部系統11是全區終端分類數據量與預測數據量的提供者,行動網路12是基地台訊務與組態資訊的提供者;系統功能使用外部資料介接模組20擷取外部系統11所提供之資料,外部系統11提供資料方式以標準檔案格式提供,外部資料介接模組20會依照提供資料者的資料格式與介面,將外部系統11資料介接進來,介接方式是以標準網路服務資料介面介接;行動網路12透過網路服務介面與元件蒐集基地台訊務與組態參數資料,提供資料方式以標準檔案格式提供,用基地台介面與元件資料擷取模組21會依照提供資料者的資料格式與介面,將行動網路12資料介接進來,介接方式可以是標準檔案傳輸方式介接。 Step 1. The source of the input parameter is interfaced with the combination 100. The input parameter of the base station traffic prediction is derived from the external system 11 and the mobile network 12, and the external system 11 is the provider of the total regional terminal classification data volume and the predicted data volume. The mobile network 12 is a provider of base station traffic and configuration information; the system function uses the external data interface module 20 to retrieve the data provided by the external system 11, and the external system 11 provides the data mode in a standard file format. The external data interface module 20 interfaces the external system 11 according to the data format and interface of the provider, and the interface is interfaced with a standard network service data interface; the mobile network 12 communicates through the network service interface. And the component collects the base station communication and configuration parameter data, and provides the data mode in the standard file format. The base station interface and component data acquisition module 21 will operate the network according to the data format and interface of the provider. The data is introduced, and the interface can be interfaced by a standard file transfer method.
基地台訊務預測的輸入參數,需要透過不同維度分類轉換來源資料組成,多維度資料轉譯模組22將設計負責不同維度的資料轉譯,多維度資料 轉譯模組22負責轉譯時間維度、空間維度與維運維度三種維度的資料,時間維度轉譯會將輸入來源資料以時間區間加以統計整合,如觀察期間的訊務量資料,透過時間區間每日與分時做時間維度資料轉譯,可轉譯出基地台的日訊務量、忙時訊務量與平均訊務量等輸入參數資料,外部介接的全區訊務預測數據量資料,透過時間區間預測年季做時間維度資料轉譯,可轉譯出全區訊務預測每一年季的全區訊務預測數據成長率;空間維度轉譯會將輸入來源資料以空間區域類別加以統計整合,如觀察期間之基地台的訊務量資料與組態特性資料,透過空間區域類別基地台所屬縣市區域做空間維度資料轉譯,可轉譯縣市區域的每日訊務量,組態特性資料也可轉譯含有所屬縣市區域的基地台組態特性資料;維運維度轉譯會將輸入來源資料以使用者定義的維運類別加以統計整合,如外部介接的全區終端分類數據量,透過維運維度類別終端分類做維運維度資料轉譯,可轉譯出全區終端分類數據比例,基地台的組態特性資料,也可以透過維運類別容量組態分類做維運維度資料轉譯,轉譯出含有基地台傳輸容量、頻譜資源配置狀態的基地台組態特性資料;透過多維度資料轉譯模組22轉譯出的資料就是基地台訊務預測的輸入參數,輸入參數組合完成後會儲存於資料儲存模組23,資料儲存的方式可以儲存於記憶體或是資料庫中。 The input parameters of the base station traffic prediction need to be composed of different dimensional classification conversion source data, and the multi-dimensional data translation module 22 will design and be responsible for data translation of different dimensions, multi-dimensional data. The translation module 22 is responsible for translating data of three dimensions: time dimension, space dimension and dimension dimension. Time dimension translation integrates the input source data by time interval, such as the traffic volume during the observation period, and the daily interval through the time interval. Time-divisional time-differentiated data translation, which can translate the input parameter data of the base station's daily traffic volume, busy hour traffic volume and average traffic volume, externally communicated regional traffic prediction data volume data, and time interval Predicting the time-division data translation of the season, can translate the regional traffic forecasting rate of the regional traffic forecast data growth rate for each season; spatial dimension translation will integrate the input source data into the spatial region categories, such as the base during the observation period. The traffic information and configuration characteristics of the station can be translated into the spatial dimension data through the county area of the space area category base station, and the daily traffic volume of the county area can be translated. The configuration characteristics data can also be translated into the county. Base station configuration characteristics data of the city area; the dimension transfer will load the input source data into the user-defined dimension category. Statistical integration, such as the externally-connected terminal classification data volume, through the dimension classification of the dimension class to do the dimensional data translation of the dimension, the translation ratio of the terminal classification data can be translated, and the configuration characteristics of the base station can also be The dimension classification configuration of the maintenance category is used to translate the dimensional data of the dimension, and the configuration data of the base station with the transmission capacity of the base station and the configuration status of the spectrum resource is translated. The data translated by the multi-dimensional data translation module 22 is the base station information. The predicted input parameters are stored in the data storage module 23 after the input parameter combination is completed, and the data storage method can be stored in the memory or the database.
步驟二、完成基地台訊務粗測101,開始進行基地台訊務粗測會先自資料儲存模組23取出觀察期間基地台的每日訊務量與所屬區域基地台的每日訊務量總和,輸入預測運算模組24,預測運算模組24會以線性預測元件進行數學運算,輸出結果為基地台訊務預測基準值及訊務斜率;訊務分析模組25會根據預測運算模組24及資料儲存模組23之資料,粗估基地台訊務走勢並儲存於資料儲存模組23,資料儲存的方式可以儲存於記憶體或是資料庫中。 Step 2: Complete the base station traffic coarse test 101, start the base station traffic rough test, and first take out the daily traffic volume of the base station and the daily traffic volume of the base station in the area during the observation period from the data storage module 23. Sum, the input prediction computing module 24, the prediction computing module 24 performs mathematical operations on the linear prediction component, and the output result is the base station traffic prediction reference value and the traffic slope; the traffic analysis module 25 according to the prediction computing module 24 and the data storage module 23 data, rough estimate the base station traffic trend and store it in the data storage module 23, the data storage method can be stored in the memory or the database.
步驟三、基地台訊務預測微調前的準備102,完成基地台訊務粗測後,為了使訊務預測趨勢更接近實際訊務走勢,特別考量個別基地台訊務成長特性來進行微調,但在微調之前,先將基地台所屬區域訊務特性對於基地台訊務特性的影響因子關聯出來,作為微調前的準備;開始微調前的準備,會先自資料儲存模組23取出基地台訊務斜率與所屬區域訊務斜率,輸入訊務分析模組25計算個別基地台成長速度因子;依區域分類的所有基地台的成長速度因子,會在訊務分析模組25依照基地台成長速度因子的大小進行排序,然後設定篩選門檻,篩選出基地台成長速度因子的高低門檻值,篩選門檻設定方式可由系統參數設定或由系統使用者透過人機介面模組29輸入設定,篩選門檻以Threshold toprank%表示,則篩選出來的基地台成長速度因子就是區域轄下所有基地台的前Threshold toprank%與後Threshold toprank%的基地台成長速度因子,挑選的兩個基地台成長速度因子就是區域轄下基地台成長速度因子的上下限,若區域轄下基地台之基地台成長速度因子大於前Threshold toprank%的基地台成長速度因子,就會自動調整為上限值,相對地,若區域轄下基地台之成長速度因子小於後Threshold toprank%的基地台成長速度因子的下限值,也會自動調整成下限值,調整後的基地台成長速度因子會儲存於資料儲存模組23,資料儲存的方式可以儲存於記憶體或是資料庫中。 Step 3: Base station traffic forecasting preparations before fine-tuning 102. After completing the base station traffic coarse measurement, in order to make the traffic prediction trend closer to the actual traffic trend, special consideration is given to the individual base station traffic growth characteristics to fine-tune, but Before the fine-tuning, the regional traffic characteristics of the base station are first correlated with the influence factors of the base station's traffic characteristics, as a preparation before the fine-tuning; before the fine-tuning preparation, the base station traffic is first taken out from the data storage module 23. The slope and the traffic slope of the region, the input traffic analysis module 25 calculates the growth rate factor of the individual base stations; the growth rate factor of all the base stations classified by the region will be in the traffic analysis module 25 according to the growth rate factor of the base station. Sort the size, then set the screening threshold, and filter out the high and low thresholds of the growth rate factor of the base station. The setting method of the screening threshold can be set by the system parameter or input by the system user through the human interface module 29, and the threshold is filtered to Threshold toprank % Said, the selected base station growth rate factor is the former Thre of all base stations under the jurisdiction of the region. The base station growth rate factor of shold toprank % and post-Threshold toprank % , the selected two base station growth rate factors are the upper and lower limits of the growth rate factor of the base station under the regional jurisdiction, if the growth rate factor of the base station of the regional base station is greater than The base station growth rate factor of the former Threshold toprank % is automatically adjusted to the upper limit value. Similarly, if the growth rate factor of the base station under the regional base is less than the lower limit value of the base station growth rate factor of the subsequent Threshold toprank % , It will be automatically adjusted to the lower limit value. The adjusted base station growth rate factor will be stored in the data storage module 23, and the data storage method can be stored in the memory or the database.
步驟四、完成基地台訊務預測微調103,開始進行基地台訊務預測微調會先自資料儲存模組23取得基地台訊務斜率、基地台預測粗估結果與成長速度因子,輸入訊務分析模組25;訊務分析模組25利用基地台訊務斜率進行判斷,若基地台訊務為正成長,則取出基地台訊務忙時粗估為基地台訊務預測粗估結果,每一個預測週期的忙時粗估結果乘上調整後的基地台成長速度因子, 就可以完成基地台訊務正成長的訊務粗估微調;若基地台訊務為負成長,則取出基地台忙時預測基準值與調整後的基地台成長速度因子,輸入預測運算模組24,基地台忙時預測基準值為預測基準,調整後基地台成長速度因子為訊務斜率,以線性迴歸方式計算出每一個預測週期的訊務預測微調結果,若負成長訊務預測微調結果為負值,則會以零值取代;基地台訊務預測微調結果會儲存於資料儲存模組23,資料儲存的方式會儲存於資料庫中,儲存內容可以提供系統使用者透過人機介面模組29查詢。 Step 4: Complete the base station traffic forecasting fine-tuning 103, start the base station traffic forecasting fine-tuning, and first obtain the base station traffic slope, the base station prediction rough estimation result and the growth speed factor from the data storage module 23, and input the traffic analysis module. Group 25; the traffic analysis module 25 uses the base station traffic slope to determine, if the base station traffic is growing, the base station traffic busy time is roughly estimated as the base station traffic prediction rough estimation result, and each prediction period is The busy time rough estimate result is multiplied by the adjusted base station growth rate factor. It can complete the fine-tuning of the traffic information of the base station's traffic growth; if the base station's traffic is negative, the base station's busy time prediction reference value and the adjusted base station growth rate factor are taken out, and the prediction computing module 24 is input. The busy baseline prediction value is the prediction reference. The adjusted base station growth rate factor is the traffic slope. The traffic prediction fine-tuning result for each prediction period is calculated by linear regression. If the negative growth traffic prediction fine-tuning result is negative. The base station will be stored in the data storage module 23. The data storage method will be stored in the database. The storage content can be provided by the system user through the human interface module 29. .
步驟五、完成基地台容量預警104,開始進行基地台容量預警會先自資料儲存模組23取出基地台訊務預測微調結果與輸入參數中的基地台容量組態資料,基地台容量組態資料有基地台所屬區域、傳輸容量與頻譜資源配置狀態資訊,取出的資訊會輸入智慧型資源調度模組27,智慧型資源調度模組27會先基地台容量組態資料的基地台傳輸容量取出來,依照容量告警門檻比例設定容量告警線,容量告警門檻比例設定可以由系統參數設定或由系統使用者透過人機介面模組29設定,容量告警門檻比例以Proportion capacityalarm 表示,則容量告警線就是Proportion capacityalarm 倍數的傳輸容量;取得基地台容量告警線後,會將基地台訊務預測的微調結果依照其預測週期,逐期比對,若超過基地台容量告警線則表示該預測週期基地台訊務成長發生容量告警,智慧型區域資源調度模組27會將基地台訊務預測微調結果每一個預測週期比對容量告警線的結果儲存於資料儲存模組23中,資料儲存的方式會儲存於資料庫中,儲存內容可以提供系統使用者透過人機介面模組29查詢。 Step 5: Complete the base station capacity warning 104, start the base station capacity warning, and first take out the base station traffic prediction fine-tuning result and the base station capacity configuration data in the input parameter from the data storage module 23, and the base station capacity configuration data. There is information about the area, transmission capacity and spectrum resource configuration status of the base station. The extracted information will be input into the intelligent resource scheduling module 27. The intelligent resource scheduling module 27 will take the base station transmission capacity of the base station capacity configuration data. The capacity alarm line is set according to the capacity alarm threshold. The capacity alarm threshold setting can be set by the system parameter or by the system user through the human interface module 29. The capacity alarm threshold is expressed by the Proportion capacityalarm , and the capacity alarm line is Proportion. The transmission capacity of the capacityalarm multiple; after obtaining the base station capacity alarm line, the fine-tuning result of the base station traffic prediction is compared according to its prediction period, and if the base station capacity alarm line is exceeded, the prediction period base station communication is indicated. Growth capacity alarm, intelligent regional resource scheduling module 27 stores the result of the base station traffic prediction fine-tuning result in each prediction period and the capacity alarm line in the data storage module 23. The data storage method is stored in the database, and the stored content can be provided to the system user. The machine interface module 29 queries.
步驟六、完成基地台資源調度105,基地台容量資源受限於行動網路全區基地台容量的規劃配置,以基地台新建方式擴充容量資源,會因為建置 站台的鄰避效應較不易達成;目前基地台話務容量擴充是以話務通道組件(CE,Channel Element),以軟體認證(License)方式設定完成容量擴充,此擴充方式僅需要軟體認證設定擴充,不需要新增設備,未來基地台容量資源擴充方式趨勢演進避免鄰避效應會朝向以軟體認證方式擴充。 Step 6. Complete the base station resource dispatching 105. The capacity of the base station is limited by the planning and configuration of the base station capacity of the mobile network. The capacity of the base station is newly built to expand the capacity resources. The neighboring avoidance effect of the station is not easy to achieve; at present, the base station's traffic capacity expansion is based on the traffic channel component (CE, Channel Element), and the software expansion (License) mode is used to complete the capacity expansion. This expansion mode only requires software authentication setting expansion. There is no need to add new equipment. In the future, the evolution of the capacity expansion mode of the base station will avoid the neighboring avoidance effect and will be expanded towards software authentication.
智慧型資源調度模組26會先自資料儲存模組23取出基地台訊務預測每個預測週期結果與基地台傳輸容量資訊,並且輸入智慧型資源調度模組27,智慧型資源調度模組27透過智慧型資源調度機制產生的結果,會儲存於資料儲存模組23中,資料儲存的方式會儲存於資料庫中,儲存內容可以提供系統使用者透過人機介面模組29查詢。 The intelligent resource scheduling module 26 first extracts the prediction result of the base station traffic prediction and the transmission capacity information of the base station from the data storage module 23, and inputs the smart resource scheduling module 27, and the smart resource scheduling module 27 The results of the smart resource scheduling mechanism are stored in the data storage module 23. The data storage method is stored in the database, and the stored content can be provided by the system user through the human interface module 29.
智慧型資源調度機制如圖3所示,智慧型資源調度作業流程可定期依據訊務預測結果與容量組態參數篩選出可調節容量之基地台,也可篩選出可執行資源調度匹配之基地台組合;首先,當智慧型資源調度10501程序開始後,智慧型資源調度模組27會計算基地台容量資源使用率10502。 The intelligent resource scheduling mechanism is shown in Figure 3. The intelligent resource scheduling operation process can periodically filter the base station with adjustable capacity according to the traffic prediction result and the capacity configuration parameter, and also filter the base station for the executable resource scheduling matching. First, after the smart resource scheduling 10501 program starts, the smart resource scheduling module 27 calculates the base station capacity resource usage rate 10502.
基地台容量資源利用率計算完後,會進入最少可調節容量比例篩選10503,作為容量資源利用率的篩選門檻;容量資源利用率若大於等於門檻,可篩選出容量足夠且可提供調節資源之基地台組合10504,反之,若小於門檻,可篩選出容量不足且無法提供調節資源之基地台組合10506;取得容量足夠且可提供調節基地台10504的結果,可以快速計算出基地台可調節容量10505。 After the base station capacity resource utilization is calculated, it will enter the minimum adjustable capacity ratio screening 10503 as the screening threshold for capacity resource utilization; if the capacity resource utilization ratio is greater than or equal to the threshold, it can screen out the base with sufficient capacity and adjustable resources. The combination 10504, on the other hand, if it is smaller than the threshold, the base station combination 10506 with insufficient capacity and unable to provide the adjustment resource can be selected; the obtained capacity is sufficient and the result of the adjustment base station 10504 can be provided, and the base station adjustable capacity 10505 can be quickly calculated.
容量不足且無法提供調節資源的基地台10506,會進行容量告警基地台篩選10507(同步驟五),若基地台同時發生容量告警,表示該基地台在預測週期急需要執行資源調度,反之若無發生容量告警,表示該基地台僅為容量無法提供調節狀態,持有的容量資源仍可持續使用,此時直接進入調節結束10508; 預測週期有發生容量告警的基地台會被篩選出來,所篩選之站台會進行無法調節基地台篩選10509,無法調節之基地台篩選即篩選容量告警之基地台其預測週期的訊務已達滿載且其可用頻譜資源均已用盡,若兩者皆是則將篩選結果列為新增站台組合10510,表示其組合中之基地台皆需透過新增站台方式,才能提升其基地台容量,反之,則篩選結果為容量不足需調節之基地台10511 The base station 10506 with insufficient capacity and unable to provide the adjustment resource will perform the capacity alarm base station screening 10507 (same step 5). If the base station simultaneously generates the capacity alarm, it indicates that the base station urgently needs to perform resource scheduling in the prediction period, and vice versa. A capacity alarm occurs, indicating that the base station cannot provide the adjustment status only for the capacity, and the capacity resources held can still be used continuously. At this time, the adjustment terminal 10508 is directly entered; The base station with the capacity alarm in the forecast period will be filtered out, and the selected station will perform the unadjusted base station screening 10509. The unadjustable base station screening, that is, the base station that screens the capacity alarm, the traffic of the prediction period is fully loaded and The available spectrum resources have been exhausted. If both are used, the screening result will be listed as the new station combination 10510, indicating that the base stations in the combination need to increase the base station capacity by adding the new station mode. The screening result is a base station 10511 with insufficient capacity to be adjusted.
容量足夠且可提供調節容量的基地台組合與發生容量告警且急需容量資源的基地台清單在篩選出來後,透過關聯基地台的容量組態資訊產生單體調度的匹配資訊10512,透過容量組態關聯篩選,產生的容量告警基地台與可調節容量基地台的單體調度匹配組合10513,新增站台組合10510與單體調度匹配組合10531可以提供給系統使用者參考,系統使用者可依據容量資源規劃需求,自行選定條件符合的基地台組合10514進行資源調度。 The base station combination with sufficient capacity and adjustable capacity and the list of base stations that generate capacity alarms and urgently need capacity resources are filtered out, and the matching information of the single scheduling is generated through the capacity configuration information of the associated base station, and the capacity configuration is performed. Correlation screening, the generated capacity alarm base station and the adjustable capacity base station single scheduling matching combination 10513, the new station combination 10510 and the single scheduling matching combination 10531 can be provided to the system user reference, the system user can be based on the capacity resource Plan the requirements, and select the base station combination 10514 that meets the conditions to perform resource scheduling.
如圖一功能模組架構所示,中央控制模組28具備圖二流程步驟說明的各步驟自動化啟動機制,當步驟啟動後,中央控制模組28會監控各個步驟自動化執行狀態,若步驟執行成功會自動切換步驟執行下一個步驟,並將步驟狀態與執行時間儲存於資料儲存模組23;若步驟執行中發生錯誤,會將錯誤發生的告警訊息儲存至資料儲存模組23;中央控制模組23的資料儲存方式會儲存於執行日誌檔案中,儲存內容可以提供系統開發者與系統使用者遭遇資料錯誤與執行失敗進行原因追蹤。 As shown in the functional module architecture of FIG. 1, the central control module 28 has the automatic start-up mechanism of each step described in the process steps of FIG. 2. After the step is started, the central control module 28 monitors the automatic execution status of each step, and if the step is successfully executed. The automatic switching step is performed to execute the next step, and the step status and execution time are stored in the data storage module 23; if an error occurs during the step execution, the error occurrence alarm message is stored in the data storage module 23; the central control module The data storage method of 23 will be stored in the execution log file, and the storage content can provide a reason for the system developer and the system user to encounter data errors and execution failures.
本發明所提供之行動網路基地台訊務預測與資源調度自動分析系統,與其他習用技術相互比較時可以明顯發現,套用既有的語音話務預測方法,採用個別基地台的歷史訊務做訊務量的預測,預測結果呈現經常性遭遇發散或不合理的成長趨勢,且預測結果僅侷限在個別基地台的訊務分析;透過本 專利的功能模組、流程步驟與智慧型資源調度機制,不但可以避免基地台訊務預測走勢出現發散或不合理的結果,而且訊務預測結果結合容量組態,可估算出行動網路基地台容量資源可調節與容量不足的新增基地台組合與基地台單體調度匹配組合,提供系統使用者未來容量規劃與調節配置重要的參考依據。 The mobile network base station traffic prediction and resource scheduling automatic analysis system provided by the invention can be clearly found when compared with other conventional technologies, and the existing voice traffic prediction method is applied, and the historical information of the individual base stations is used. The forecast of traffic volume, the forecast results show frequent divergence or unreasonable growth trend, and the prediction results are limited to the traffic analysis of individual base stations; The patented function module, process steps and intelligent resource scheduling mechanism can not only avoid the divergence or unreasonable results of the base station traffic prediction trend, but also the traffic prediction result combined with the capacity configuration to estimate the mobile network base station. The capacity resource can be adjusted and the combination of the newly added base station with insufficient capacity and the base station single unit scheduling match, which provides an important reference basis for system users to plan and adjust the capacity in the future.
上列詳細說明乃針對本發明之一可行實施例進行具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The detailed description of the present invention is intended to be illustrative of a preferred embodiment of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.
綜上所述,本案不僅於技術思想上確屬創新,並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請貴局核准本件發明專利申請案,以勵發明,至感德便。 To sum up, this case is not only innovative in terms of technical thinking, but also has many of the above-mentioned functions that are not in the traditional methods of the past. It has fully complied with the statutory invention patent requirements of novelty and progressiveness, and applied for it according to law. Approved this invention patent application, in order to invent invention, to the sense of virtue.
10‧‧‧系統使用者 10‧‧‧System users
11‧‧‧外部功能 11‧‧‧External functions
12‧‧‧行動網路 12‧‧‧Mobile Network
20‧‧‧外部資料介接模組 20‧‧‧External data interface module
21‧‧‧基地台元件與介面資料擷取模組 21‧‧‧Base station component and interface data acquisition module
22‧‧‧多維度資料轉譯模組 22‧‧‧Multidimensional data translation module
23‧‧‧資料儲存模組 23‧‧‧ Data Storage Module
24‧‧‧預測運算模組 24‧‧‧Predictive Computing Module
25‧‧‧訊務分析模組 25‧‧‧ Traffic Analysis Module
26‧‧‧智慧型資源調度模組 26‧‧‧Smart Resource Dispatching Module
27‧‧‧中央控制模組 27‧‧‧Central Control Module
28‧‧‧人機介面 28‧‧‧Human Machine Interface
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW104102784A TWI572179B (en) | 2015-01-28 | 2015-01-28 | Mobile network base station communication prediction and resource scheduling automation analysis system and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW104102784A TWI572179B (en) | 2015-01-28 | 2015-01-28 | Mobile network base station communication prediction and resource scheduling automation analysis system and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201628384A TW201628384A (en) | 2016-08-01 |
| TWI572179B true TWI572179B (en) | 2017-02-21 |
Family
ID=57181916
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW104102784A TWI572179B (en) | 2015-01-28 | 2015-01-28 | Mobile network base station communication prediction and resource scheduling automation analysis system and method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI572179B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI707240B (en) * | 2019-05-30 | 2020-10-11 | 遠傳電信股份有限公司 | System for automatic repair of sleeping platform based on learning and communication features and its judgment flow |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107809737B (en) * | 2016-08-29 | 2020-08-07 | 华为技术服务有限公司 | Method and device for determining network flow of base station |
| CN108271184B (en) * | 2016-12-31 | 2021-04-09 | 中国移动通信集团湖北有限公司 | VoLTE service processing method and device |
| TWI697863B (en) * | 2018-12-14 | 2020-07-01 | 中華電信股份有限公司 | System and method for platforms construction order |
| CN110175711A (en) * | 2019-05-17 | 2019-08-27 | 北京市天元网络技术股份有限公司 | One kind being based on joint LSTM base station cell method for predicting and device |
| TWI900115B (en) * | 2024-07-09 | 2025-10-01 | 中華電信股份有限公司 | System and method for generating maintenance sop for telecommunications equipment |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998023115A1 (en) * | 1996-11-18 | 1998-05-28 | Nokia Telecommunications Oy | Monitoring traffic in a mobile communication network |
| US20090280849A1 (en) * | 2008-05-12 | 2009-11-12 | Qualcomm Incorporated | Method and apparatus for adaptive dynamic call setup based on real-time network resource availability |
| CN101159968B (en) * | 2007-11-19 | 2010-06-09 | 河北全通通信有限公司 | GSM mobile network extension calculating method |
| US20110292798A1 (en) * | 2010-05-28 | 2011-12-01 | Qualcomm Incorporated | SELECTIVELY PROVISIONING CALL SETUP QUALITY OF SERVICE (QoS) RESOURCE RESERVATIONS DURING A COMMUNICATION SESSION WITHIN A WIRELESS COMMUNICATIONS SYSTEM |
| CN103188715A (en) * | 2011-12-28 | 2013-07-03 | 中国移动通信集团广东有限公司 | Automatic monitoring and scheduling method and device for radio resources |
-
2015
- 2015-01-28 TW TW104102784A patent/TWI572179B/en not_active IP Right Cessation
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998023115A1 (en) * | 1996-11-18 | 1998-05-28 | Nokia Telecommunications Oy | Monitoring traffic in a mobile communication network |
| CN101159968B (en) * | 2007-11-19 | 2010-06-09 | 河北全通通信有限公司 | GSM mobile network extension calculating method |
| US20090280849A1 (en) * | 2008-05-12 | 2009-11-12 | Qualcomm Incorporated | Method and apparatus for adaptive dynamic call setup based on real-time network resource availability |
| US20110292798A1 (en) * | 2010-05-28 | 2011-12-01 | Qualcomm Incorporated | SELECTIVELY PROVISIONING CALL SETUP QUALITY OF SERVICE (QoS) RESOURCE RESERVATIONS DURING A COMMUNICATION SESSION WITHIN A WIRELESS COMMUNICATIONS SYSTEM |
| CN103188715A (en) * | 2011-12-28 | 2013-07-03 | 中国移动通信集团广东有限公司 | Automatic monitoring and scheduling method and device for radio resources |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI707240B (en) * | 2019-05-30 | 2020-10-11 | 遠傳電信股份有限公司 | System for automatic repair of sleeping platform based on learning and communication features and its judgment flow |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201628384A (en) | 2016-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI572179B (en) | Mobile network base station communication prediction and resource scheduling automation analysis system and method | |
| CN115495231B (en) | A dynamic resource scheduling method and system in complex scenarios with high concurrent tasks | |
| CN112954707B (en) | Energy saving method and device for base station, base station and computer readable storage medium | |
| EP2894813A1 (en) | Technique for creating a knowledge base for alarm management in a communications network | |
| CN111198808B (en) | Methods, devices, storage media and electronic equipment for predicting performance indicators | |
| CN119094581A (en) | Internet of Things data processing method, system, device and medium based on edge computing | |
| EP2750432A1 (en) | Method and system for predicting the channel usage | |
| US20160254944A1 (en) | Classification of detected network anomalies using additional data | |
| US12309623B2 (en) | Method for managing proper operation of base station and system applying the method | |
| CN114079617A (en) | Network data analysis method, network data analysis function network element and communication system | |
| CN120017608B (en) | Disaster recovery data recovery method and system for disaster recovery system | |
| CN113032157A (en) | Automatic intelligent server capacity expansion and reduction method and system | |
| CN108809760A (en) | The control method and device in sampling period in sampled-data system | |
| CN118741567A (en) | A 5G communication base station network terminal control system | |
| CN118917972A (en) | Personalized energy-saving control method, device and medium based on GRU model | |
| CN118349346A (en) | System resource adjusting method and device, storage medium and electronic equipment | |
| CN104254083A (en) | Method and device for predicting business hot spots | |
| CN114116186A (en) | Resource dynamic scheduling method and device | |
| WO2024165893A1 (en) | Recursive anomaly detection in communication networks | |
| CN119402873B (en) | Wireless data transmission system and method based on 5G communication | |
| CN120075973A (en) | Multi-agent 5G base station intelligent energy saving method and device based on size model fusion | |
| CN118827480B (en) | Network systems, service processing methods, devices, equipment and storage media | |
| CN116112963A (en) | A faulty network element identification method and device | |
| CN105634850A (en) | Traffic modeling method and apparatus for PTN network | |
| CN119383634B (en) | A data transmission method and system suitable for 5G communication |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| MM4A | Annulment or lapse of patent due to non-payment of fees |