[go: up one dir, main page]

TWI571640B - Method for measuring electric double layer potential, stern layer thickness, and ion concentration - Google Patents

Method for measuring electric double layer potential, stern layer thickness, and ion concentration Download PDF

Info

Publication number
TWI571640B
TWI571640B TW104143510A TW104143510A TWI571640B TW I571640 B TWI571640 B TW I571640B TW 104143510 A TW104143510 A TW 104143510A TW 104143510 A TW104143510 A TW 104143510A TW I571640 B TWI571640 B TW I571640B
Authority
TW
Taiwan
Prior art keywords
ion
potential
force
sample
concentration
Prior art date
Application number
TW104143510A
Other languages
Chinese (zh)
Other versions
TW201723498A (en
Inventor
黃崧任
吳政晏
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW104143510A priority Critical patent/TWI571640B/en
Application granted granted Critical
Publication of TWI571640B publication Critical patent/TWI571640B/en
Publication of TW201723498A publication Critical patent/TW201723498A/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

測量電雙層電位、緊密層厚度及離子濃度之方法Method for measuring electric double layer potential, tight layer thickness and ion concentration

本發明係有關於一種測量電雙層電位、緊密層厚度及離子濃度之方法,特別是指一種使用原子力顯微鏡之測量電雙層電位、緊密層厚度及離子濃度的方法。The present invention relates to a method for measuring electric double layer potential, compact layer thickness and ion concentration, and more particularly to a method for measuring electric double layer potential, compact layer thickness and ion concentration using an atomic force microscope.

科技發展隨時代演進,資訊科技、半導體/微電子、微機電系統、奈米科技、生物科技、能源科技等依序豋場,此演進明顯有趨向輕、薄、短、小之勢,與先進微製造技術相關的微奈米 (Micro nano systems) 理論發展甚為迅速,也因而如此相關基礎科學值得更深入探討,例如跟電動現象相關的電滲 (Electroosmosis) 、電泳 (Electrophoresis) 、與電濕潤(Electrowetting) 等。The development of science and technology has evolved from generation to generation. Information technology, semiconductor/microelectronics, micro-electro-mechanical systems, nanotechnology, biotechnology, energy technology, etc. have followed suit. This evolution has obviously trended toward light, thin, short, small, and advanced. The theory of micro-nanotechnology related to micro-manufacturing technology is developing very rapidly, and thus the related basic sciences deserve to be further explored, such as electroosmosis (Electroosmosis), electrophoresis (Electrophoresis), and electrowetting related to electrokinetic phenomena. (Electrowetting) and so on.

其中,界面電動現象的理論與電雙層(Electric double layer,EDL) 息息相關。時至今日,雖然有電化學掃描顯微鏡 (Scanning Electrochemical Potential Microscopy,SECPM)或界面電位分析儀 (Zeta Potential Analyzer)等分析儀器。但在不同界面情形下,仍然無法完整的解釋電雙層模型特性,例如:不同材質的表面、不同濃度與價位的電解液等。故發明人志在提供一種簡易且準確測量電雙層電位分布、緊密層厚度及離子濃度之方法。Among them, the theory of interface electric phenomenon is closely related to the electric double layer (EDL). Today, there are analytical instruments such as Scanning Electrochemical Potential Microscopy (SECPM) or Zeta Potential Analyzer. However, under different interface conditions, it is still impossible to fully explain the characteristics of the electric double layer model, such as the surface of different materials, electrolytes with different concentrations and price points. Therefore, the inventors aim to provide a simple and accurate method for measuring the electric double layer potential distribution, the tight layer thickness and the ion concentration.

本發明所要解決的技術問題,在於提供一種測量方法,在不經過複雜的樣品前處理情況下,可簡易測量不同固液樣品間的電雙層電位分布、緊密層厚度及離子濃度。The technical problem to be solved by the present invention is to provide a measuring method for easily measuring the electrical double layer potential distribution, the tight layer thickness and the ion concentration between different solid-liquid samples without complicated sample pretreatment.

根據本發明之一些實施例,提供一種測量電雙層電位之方法。此方法包含:利用原子力顯微鏡,測量位於溶液中之樣品的表面作用力;解析表面作用力靜電力;將靜電力轉換為電荷密度;以及將電荷密度轉換為電雙層之電位。In accordance with some embodiments of the present invention, a method of measuring the electric double layer potential is provided. The method comprises: using an atomic force microscope to measure the surface force of a sample located in a solution; resolving the surface force electrostatic force; converting the electrostatic force into a charge density; and converting the charge density into an electric double layer potential.

根據本發明之一些實施例,提供一種測量緊密層厚度之方法。此方法包含:利用原子力顯微鏡,測量位於溶液中之樣品的表面作用力;解析表面作用力得退出曲線;以及解析退出曲線得緊密層之厚度。In accordance with some embodiments of the present invention, a method of measuring the thickness of a compact layer is provided. The method comprises: using an atomic force microscope to measure the surface force of the sample located in the solution; analyzing the surface force to exit the curve; and analyzing the exit curve to obtain the thickness of the tight layer.

根據本發明之一些實施例,提供一種測量離子濃度之方法。此方法包含:提供包含第一離子之電解液及樣品,其中第一離子具有第一濃度;添加第二離子於電解液中,其中第二離子具有第二濃度,且第二離子的價位不同於第一離子的價位;藉由上述之方法,測量位於該電解液中之該樣品的一表面作用力,並將該表面作用力轉換為一電雙層之一電位;將電位轉換為第一濃度與第二濃度的比值;以及藉由此比值,計算出第一離子的第一濃度。In accordance with some embodiments of the present invention, a method of measuring ion concentration is provided. The method includes: providing an electrolyte and a sample comprising a first ion, wherein the first ion has a first concentration; adding a second ion to the electrolyte, wherein the second ion has a second concentration, and the second ion has a different price point a valence of the first ion; measuring a surface force of the sample in the electrolyte by the method described above, and converting the surface force into a potential of an electric double layer; converting the potential to the first concentration a ratio to the second concentration; and by the ratio, the first concentration of the first ion is calculated.

以下的揭露內容提供許多不同的實施例或實例,以實現本發明的不同特徵。特定實例的組成及佈局敘述如下,以簡化本發明。當然這些僅是實例,並非用以限制。The following disclosure provides many different embodiments or examples to implement various features of the invention. The composition and layout of the specific examples are described below to simplify the present invention. Of course, these are only examples and are not intended to be limiting.

第1圖係根據一些實施例,一種使用原子力顯微鏡測量緊密層厚度、電雙層之電位分布及離子濃度之方法100的示意流程圖。可於此方法100進行前、進行期間與進行後提供額外的步驟,且其中所描述的一些步驟可被刪除或取代為此方法中的其它實施例。而測量緊密層厚度、電雙層之電位分布及離子濃度所使用之原子力顯微鏡與樣品之配置示意圖則如第2圖所示。1 is a schematic flow diagram of a method 100 of measuring the thickness of a compact layer, the potential distribution of an electrical double layer, and the ion concentration using an atomic force microscope, in accordance with some embodiments. Additional steps may be provided before, during, and after the method 100, and some of the steps described therein may be deleted or substituted for other embodiments of the method. The schematic diagram of the configuration of the atomic force microscope and the sample used to measure the thickness of the compact layer, the potential distribution of the electric double layer, and the ion concentration is shown in Fig. 2.

方法100包含樣品前處理(步驟102)、樣品表面作用力之量測(步驟104)、緊密層厚度之量測(步驟106)、電位分布之量測(步驟108)及離子濃度之量測 (步驟110)。其中,樣品前處理包含下列步驟:對基材進行化學機械研磨(CMP);選擇性沉積鈍化層於樣品表面上而形成樣品之一部分;以及對樣品進行表面清洗。Method 100 includes sample preparation (step 102), measurement of sample surface force (step 104), measurement of tight layer thickness (step 106), measurement of potential distribution (step 108), and measurement of ion concentration (step 108) Step 110). Wherein, the sample preparation comprises the following steps: chemical mechanical polishing (CMP) of the substrate; selective deposition of a passivation layer on the surface of the sample to form a portion of the sample; and surface cleaning of the sample.

本揭露內容之方法100所使用之原子力顯微鏡與樣品之配置示意圖如第2圖所示,其主要包含樣品10、電解液20、探針30、雷射光源40及光檢測器50。於接近樣品10表面之部分的電解液20會形成電雙層26。探針30包含微懸臂32及針尖34。A schematic diagram of the arrangement of the atomic force microscope and the sample used in the method 100 of the present disclosure is as shown in FIG. 2, and mainly includes the sample 10, the electrolyte 20, the probe 30, the laser light source 40, and the photodetector 50. The electrolyte 20 near the surface of the sample 10 forms an electrical double layer 26. The probe 30 includes a microcantilever 32 and a needle tip 34.

請參照第1圖及第2圖,方法100起始於步驟102,其係進行樣品之前處理。樣品10可包含任何固體,以產生電雙層於樣品10與電解液20之間。在本實施例中,樣品10係鍍金矽晶圓及玻璃晶圓。樣品之前處理包含平坦化樣品表面、形成鈍化層及清洗樣品表面,其中形成鈍化層的步驟僅選擇性應於於特定樣品(如:矽晶圓),其將於後詳述。此外,樣品之前處理所包含的步驟可任意調整其順序。舉例來說,形成鈍化層步驟可於平坦化樣品之前或之後進行。Referring to Figures 1 and 2, method 100 begins at step 102, which is performed prior to sample processing. Sample 10 can comprise any solid to create an electrical double layer between sample 10 and electrolyte 20. In this embodiment, the sample 10 is a gold plated wafer and a glass wafer. The pre-treatment of the sample comprises planarizing the surface of the sample, forming a passivation layer, and cleaning the surface of the sample, wherein the step of forming the passivation layer is only selectively applied to a specific sample (eg, germanium wafer), which will be described in detail later. In addition, the steps involved in the pre-treatment of the sample can be arbitrarily adjusted in order. For example, the step of forming a passivation layer can be performed before or after planarizing the sample.

樣品之前處理(步驟102)中的平坦化樣品表面之步驟,係提供一具有平整表面之樣品,以提升後續表面作用力量測之準確性。平坦化樣品表面的方式包含,但不局限於化學機械研磨(CMP)法。在本實施例中,化學機械研磨法使用包含酸、鹼以及磨粒的拋光液附著於拋光墊上,再經由拋光墊與樣品10表面相對磨耗達到平坦化之效果。藉由適當調整CMP的製程參數,例如:下壓力、載具轉速、盤面轉速、拋光液pH 值、磨粒之粒徑、拋光墊種類等,以達到最佳的研磨條件。The step of planarizing the surface of the sample prior to processing (step 102) of the sample provides a sample having a flat surface to enhance the accuracy of subsequent surface force measurements. The manner in which the surface of the sample is planarized includes, but is not limited to, a chemical mechanical polishing (CMP) method. In the present embodiment, the chemical mechanical polishing method is attached to the polishing pad using a polishing liquid containing an acid, a base, and abrasive grains, and the effect of flattening is achieved by the relative abrasion of the surface of the sample 10 via the polishing pad. The optimum grinding conditions can be achieved by appropriately adjusting the process parameters of the CMP, such as the downforce, the rotational speed of the carrier, the rotational speed of the disk surface, the pH of the polishing solution, the particle size of the abrasive particles, and the type of polishing pad.

樣品之前處理(步驟102)中的形成鈍化層之步驟,係形成一鈍化層於樣品10之表面,以避免因樣品10與電解液20發生化學反應所產生之物質(例如:氣泡),而導致表面作用力量測之準確度下降。在本實施例中,由於矽晶圓可能與電解質溶液20發生化學反應,故需形成鈍化層於矽晶圓之表面上。鈍化層之材料可為任何貴金屬或化學活性低之非金屬。在本實施例中,鈍化層的材料係金。鍍金矽晶圓係藉由電子束蒸鍍製程(EB-PVD)蒸鍍金於矽晶圓之表面以形成金鍍層(未標示)。在一些實施例中,形成鉻鍍層(未標示)於金鍍層與樣品10之間以增加金鍍層的附著力。值得注意的是,形成鈍化層的電子束蒸鍍製程(EB-PVD)可進行於矽晶圓之平坦化處理之前或之後。在本實施例中,電子束蒸鍍製程(EB-PVD)係進行於矽晶圓之平坦化處理後。The step of forming a passivation layer in the sample prior treatment (step 102) forms a passivation layer on the surface of the sample 10 to avoid substances (eg, bubbles) generated by the chemical reaction of the sample 10 with the electrolyte 20, resulting in The accuracy of the surface force measurement is reduced. In this embodiment, since the germanium wafer may chemically react with the electrolyte solution 20, a passivation layer is formed on the surface of the germanium wafer. The material of the passivation layer can be any precious metal or a non-metal that is chemically less active. In this embodiment, the material of the passivation layer is gold. The gold-plated germanium wafer is deposited on the surface of the germanium wafer by an electron beam evaporation process (EB-PVD) to form a gold plating layer (not shown). In some embodiments, a chrome plating (not labeled) is formed between the gold plating and the sample 10 to increase the adhesion of the gold plating. It is worth noting that the electron beam evaporation process (EB-PVD) for forming the passivation layer can be performed before or after the planarization process of the germanium wafer. In the present embodiment, the electron beam evaporation process (EB-PVD) is performed after the planarization of the germanium wafer.

樣品之前處理(步驟102)中的清洗樣品表面之步驟,係進行於平坦化玻璃晶片及蒸鍍金層於矽晶圓之後,以提升後續表面作用力量測之準確性。清洗製程可為任何適合之製程。在本實施例中,清洗製程係藉由紫外線臭氧洗淨機(UV Ozone Cleaner)來去除樣品10之表面上的有機污染物。紫外線臭氧洗淨機產生之臭氧以及氧氣離子,能激發有機汙染物質並使其跟氧氣離子反應結合成氣體,最後使用抽氣裝置排除氣體而達到清洗表面之效果。The step of cleaning the surface of the sample in the pre-treatment (step 102) of the sample is performed after planarizing the glass wafer and vapor-depositing the gold layer on the germanium wafer to improve the accuracy of the subsequent surface force measurement. The cleaning process can be any suitable process. In the present embodiment, the cleaning process removes organic contaminants on the surface of the sample 10 by means of a UV Ozone Cleaner. The ozone and oxygen ions generated by the ultraviolet ozone scrubber can excite organic pollutants and combine them with oxygen ions to form a gas. Finally, the gas is used to remove the gas to achieve the effect of cleaning the surface.

於樣品前處理(步驟102)之後,藉由原子力顯微鏡(Atomic Force Microscopy,AFM)與光學影像檢測儀(JSM-2500)來檢測清洗過之樣品10的表面粗糙度。清洗後之鍍金矽晶圓,其中心線平均粗糙度(Ra)為1.009奈米而最大粗糙度(Ry)則為8.26奈米。清洗後之玻璃晶片,其中心線平均粗糙度(Ra)為0.92奈米,而最大粗糙度(Ry)則為6.05奈米。整體而言,樣品10之表面粗糙度位於表面作用力可測量的範圍之內。After the sample preparation (step 102), the surface roughness of the cleaned sample 10 was examined by an Atomic Force Microscopy (AFM) and an optical image detector (JSM-2500). The gold-plated tantalum wafer after cleaning has a center line average roughness (Ra) of 1.009 nm and a maximum roughness (Ry) of 8.26 nm. The cleaned glass wafer had a center line average roughness (Ra) of 0.92 nm and a maximum roughness (Ry) of 6.05 nm. Overall, the surface roughness of sample 10 is within the range of surface forces measurable.

請參照第1圖及第2圖,方法100進行至步驟104,其係測量樣品10之表面作用力。在測量表面作用力之前,先將經前處理之樣品10置於電解質20之中,使得樣品10之表面具有電雙層26。電解質20可為任何適合之電解質溶液。在本實施例中,電解質20係氯化鈉溶液、氯化鎂溶液及其組合。此外,電解質20的濃度係介於0.001mM至10M之間。在一些實施例中,電解質20的濃度係介於0.01mM至1M之間。在本實施例中,電解質20的濃度係1mM。於後續之表面作用力測量、電位分布及離子濃度的測量中,將比較不同樣品10與電解質20之組合所得到之結果。值得注意的是,電解質20係包含任何一價離子、二價離子、三價離子、四價離子、五價離子或其任意之組合的電解質溶液,而不局限於本實施例中的氯化鈉及氯化鎂溶液。 Referring to Figures 1 and 2, the method 100 proceeds to step 104, which measures the surface force of the sample 10. Prior to measuring the surface force, the pretreated sample 10 is placed in the electrolyte 20 such that the surface of the sample 10 has an electrical double layer 26. Electrolyte 20 can be any suitable electrolyte solution. In the present embodiment, the electrolyte 20 is a sodium chloride solution, a magnesium chloride solution, and combinations thereof. Further, the concentration of the electrolyte 20 is between 0.001 mM and 10 M. In some embodiments, the concentration of electrolyte 20 is between 0.01 mM and 1 M. In the present embodiment, the concentration of the electrolyte 20 is 1 mM. The results obtained by combining the different samples 10 and the electrolyte 20 will be compared in the subsequent measurement of the surface force measurement, the potential distribution, and the ion concentration. It is to be noted that the electrolyte 20 is an electrolyte solution containing any monovalent ion, divalent ion, trivalent ion, tetravalent ion, pentavalent ion or any combination thereof, and is not limited to the sodium chloride in the embodiment. And magnesium chloride solution.

測量樣品10與電解質20間之表面作用力(步驟104),係藉由原子力顯微鏡(AFM)來進行。如第2圖所示,原子力顯微鏡的主要結構包含探針30、微懸臂32、針尖34、雷射光源40及光檢測器50。在本實施例中,探針30係由氮化矽所製成,以避免與樣品10產生磁力,其將於後詳述。表面作用力之測量係藉由光束偏折技術,其係藉由針尖與試片間的原子作用力,使懸臂樑產生微細位移。接著,藉由光檢測器50偵測打在針尖34上的雷射光束偏折量來偵測探針30與樣品10表面間之交互作用,例如穿隧電流、原子力、磁力、電磁波。 The surface force between the sample 10 and the electrolyte 20 (step 104) is measured by atomic force microscopy (AFM). As shown in Fig. 2, the main structure of the atomic force microscope includes a probe 30, a microcantilever 32, a needle tip 34, a laser light source 40, and a photodetector 50. In the present embodiment, the probe 30 is made of tantalum nitride to avoid generation of a magnetic force with the sample 10, which will be described in detail later. The surface force is measured by the beam deflection technique, which causes the cantilever beam to be slightly displaced by the atomic force between the tip and the test piece. Next, the photodetector 50 detects the amount of deflection of the laser beam hitting the tip 34 to detect the interaction between the probe 30 and the surface of the sample 10, such as tunneling current, atomic force, magnetic force, and electromagnetic waves.

然而,原子力顯微鏡所得到之數據係雷射偏移量-距離關係,必須藉由樣品表面與探針之關係與探針彈性係數,以力譜模式(force spectroscopy)將其轉換成表面作用力-距離關係,同時藉由設定實驗參數來簡化分析表面作用力。探針30於樣品10之表面所測得之表面作用力係由靜電力(Electrostatic force)、凡德瓦力(Van der Waals force)、磁力(Magnetic force)、溶劑力(Solvation force)所組成。如前所述,由於探針30非由磁性物質所組成,故可排除磁力之影響。此外,藉由設定探針速度為0.25微米/秒,可去除溶劑力的影響。故探針30所測得之表面作用力係靜電力(F el)與凡德瓦力(F van)之合。其中,凡德瓦力將於後述之內容中經由適當之公式計算而減去,僅剩之靜電力將進行後續數學方程式轉換成電位,其將於後詳述之。 However, the data obtained by atomic force microscopy is the laser offset-distance relationship, which must be converted to surface force by force spectroscopy by the relationship between the sample surface and the probe and the probe elastic coefficient. Distance relationship, while simplifying the analysis of surface forces by setting experimental parameters. The surface force of the probe 30 measured on the surface of the sample 10 is composed of an electrostatic force, a Van der Waals force, a magnetic force, and a Solvation force. As described above, since the probe 30 is not composed of a magnetic substance, the influence of the magnetic force can be excluded. In addition, by setting the probe speed to 0.25 μm/sec, the influence of the solvent force can be removed. Therefore, the surface force measured by the probe 30 is the combination of the electrostatic force (F el ) and the van der Waals force (F van ). Among them, Van der Waals will be subtracted from the content described later by the appropriate formula, and only the remaining electrostatic force will be converted into potential by the subsequent mathematical equation, which will be detailed later.

於測量樣品10的表面作用力後,接著將進行緊密層厚度之測量(步驟106)、電位分布之測量(步驟108)及離子濃度之測量(步驟110),其將於後詳述。After measuring the surface force of the sample 10, a measurement of the tight layer thickness (step 106), a measurement of the potential distribution (step 108), and a measurement of the ion concentration (step 110) will be performed, which will be described in detail later.

於測量緊密層厚度之步驟106中,分別測量不同樣品10與電解質20組合的逼進曲線(Approach)與退出曲線(Retraction)。如第3圖所示,其繪示玻璃晶片於1毫莫耳濃度(1mM)之氯化鈉溶液中,所測量到的力值-距離圖。此力值-距離圖包含逼進曲線302及退出曲線304。其中,由退出曲線304變化梯度極大的地方(如第3圖中的虛線310)所對應之水平軸距離,可計算緊密層之厚度。同時,也可測得表面作用力之力值變化。In step 106 of measuring the thickness of the compact layer, the Approach and Retraction of the combination of the different samples 10 and the electrolyte 20 are measured, respectively. As shown in Fig. 3, it shows the measured force-distance map of the glass wafer in a 1 millimolar (1 mM) sodium chloride solution. This force-distance map includes a forcing curve 302 and an exit curve 304. Wherein, the thickness of the tight layer can be calculated from the horizontal axis distance corresponding to the exit curve 304 where the gradient is extremely large (such as the dashed line 310 in FIG. 3). At the same time, the force value of the surface force can also be measured.

造成退出曲線304如此大的變化梯度的原因,係步階式的不能一次分離。於探針30與樣品10之表面分離的過程中,隨著探針30與樣品10之表面間隙的加大,反離子將填充至樣品10或探針30之表面的緊密層中,並緊密吸附樣品10或探針30之表面,使得探針30不能一次與樣品10之表面分離。當原子力顯微鏡的微懸臂32恢復力大於靜電吸引力時,探針30才與樣品10之表面分離,同時使得退出曲線產生極大的變化梯度。The reason for causing such a large gradient of the exit curve 304 is that the step can not be separated once. During the separation of the probe 30 from the surface of the sample 10, as the surface gap between the probe 30 and the sample 10 increases, the counter ion will be filled into the dense layer of the surface of the sample 10 or the probe 30, and will be closely adsorbed. The surface of sample 10 or probe 30 is such that probe 30 cannot be separated from the surface of sample 10 at one time. When the restoring force of the microcantilever 32 of the atomic force microscope is greater than the electrostatic attractive force, the probe 30 is separated from the surface of the sample 10 while causing a large gradient of the exit curve.

不同樣品10(鍍金矽晶圓及玻璃晶片)與電解液20(氯化鈉及氯化鎂)組合所測得之緊密層(stern layer)厚度與力值變化如下列表一所示。 表一:不同樣品-電解質組合之緊密層厚度及力值變化 <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> 樣品-電解質 </td><td> 緊密層厚度 (nm) </td><td> 力值變化 (nN) </td></tr><tr><td> 鍍金矽晶圓-氯化鈉 </td><td> 0.779 </td><td> 0.074 </td></tr><tr><td> 鍍金矽晶圓-氯化鎂 </td><td> 0.784 </td><td> 0.045 </td></tr><tr><td> 玻璃晶片-氯化鈉 </td><td> 0.751 </td><td> 0.134 </td></tr><tr><td> 玻璃晶片-氯化鎂 </td><td> 0.684 </td><td> 0.210 </td></tr></TBODY></TABLE>其中玻璃晶片於氯化鈉溶液中的緊密層厚度為0.751奈米,與理論值的0.662奈米相近。另一方面,玻璃晶片於氯化鎂溶液中的緊密層厚度為0.684奈米,與理論值的0.632奈米極為相近。故藉由表面作用力之退出曲線,可計算出緊密層的厚度。 The stern layer thickness and force values measured for the combination of different samples 10 (gold plated wafers and glass wafers) with electrolyte 20 (sodium chloride and magnesium chloride) are shown in Table 1 below. Table 1: Variation of tight layer thickness and force value of different sample-electrolyte combinations         <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> Sample-electrolyte</td><td> Tight layer thickness (nm) </td><td > Force value change (nN) </td></tr><tr><td> Gold-plated silicon wafer-sodium chloride</td><td> 0.779 </td><td> 0.074 </td>< /tr><tr><td> Gold-plated germanium wafer-magnesium chloride</td><td> 0.784 </td><td> 0.045 </td></tr><tr><td> Glass wafer-chlorination Sodium</td><td> 0.751 </td><td> 0.134 </td></tr><tr><td> Glass wafer-magnesium chloride</td><td> 0.684 </td><td> 0.210 </td></tr></TBODY></TABLE> The tight layer thickness of the glass wafer in the sodium chloride solution is 0.751 nm, which is close to the theoretical value of 0.662 nm. On the other hand, the tight layer thickness of the glass wafer in the magnesium chloride solution is 0.684 nm, which is very close to the theoretical value of 0.632 nm. Therefore, the thickness of the tight layer can be calculated by the exit curve of the surface force.       

此外,由表一可見,鍍金矽晶圓的力值變化小於玻璃晶片。此現象係由於探針30、樣品10及電解質20的等電位點(Isoelectric Points,IEP)的不同所致。用於探針30的氮化矽,其IEP為6;鍍金矽晶圓的表面係金,其IEP為7;玻璃晶片的IEP約為2。於電解質20(1mM氯化鈉與1mM氯化鎂)之酸鹼值約為6.5的環境中,鍍金矽晶圓與探針帶相異電性,故產生相吸之靜電力。而玻璃晶片與探針帶相同電性,故產生相斥之電力。由於鍍金矽晶圓與探針間具有相吸之靜電力,故其顯示出的力值變化較玻璃晶片與探針間的力值變化來得小。In addition, as can be seen from Table 1, the force value of the gold-plated germanium wafer is less than that of the glass wafer. This phenomenon is caused by the difference in Isoelectric Points (IEP) of the probe 30, the sample 10, and the electrolyte 20. The tantalum nitride used for the probe 30 has an IEP of 6; the surface of the gold-plated tantalum wafer is gold with an IEP of 7; and the IEP of the glass wafer is about 2. In an environment where the pH of the electrolyte 20 (1 mM sodium chloride and 1 mM magnesium chloride) is about 6.5, the gold-plated tantalum wafer is electrically different from the probe strip, so that an electrostatic force is absorbed. The glass wafer is electrically identical to the probe strip, so that it generates repulsive power. Since the gold-plated germanium wafer and the probe have an electrostatic force that attracts each other, the force value displayed is smaller than the force value between the glass wafer and the probe.

於測量電位分布之步驟108中,其係將測得之表面作用力,轉換為電位分布。在此步驟中,先將表面作用力解析出靜電力,再藉由靜電力之數學模型,將靜電力轉換為電荷密度。最後,藉由1D波松茲曼(1D Poisson Boltzmann)方程式,將電荷密度轉換為電位。In step 108 of measuring the potential distribution, it converts the measured surface force into a potential distribution. In this step, the surface force is first analyzed to the electrostatic force, and the electrostatic force is converted into the charge density by a mathematical model of the electrostatic force. Finally, the charge density is converted to a potential by the 1D Poisson Boltzmann equation.

<TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td width="267" height="0"></td></tr><tr><td></td><td><img wi="110" he="42" file="02_image001.jpg" img-format="jpg"></img></td></tr></TBODY></TABLE>如前所述,藉由適當選擇探針30的材料與控制探針30的移動速度,探針30所測得之表面作用力係靜電力(F el)與凡德瓦力(F van)之合。其中,凡德瓦力與電荷密度無關,因此將探針30測得之表面作用力扣除下列式(1)中的凡德瓦力(F van)即可得靜電力(F el),以便於後續藉由靜電力之數學模型與1D波松茲曼方程式來得到表面電位分布曲線。 式(1) 其中D表示探針30與樣品10之表面的距離,R為探針之半徑,A H為漢馬克常數(Hamaker Constant)。 <TABLE border="1"borderColor="#000000"width="_0005"><TBODY><tr><tdwidth="267"height="0"></td></tr><tr><Td></td><td><imgwi="110"he="42"file="02_image001.jpg"img-format="jpg"></img></td></tr></TBODY></TABLE> As described above, by appropriately selecting the material of the probe 30 and the moving speed of the control probe 30, the surface force measured by the probe 30 is electrostatic force (F el ) and Van der Waals. The combination of force (F van ). Among them, the van der Waals force is independent of the charge density, so the surface force measured by the probe 30 is deducted from the van der force (F van ) in the following formula (1) to obtain the electrostatic force (F el ), so as to facilitate The surface potential distribution curve is obtained by a mathematical model of electrostatic force and a 1D Pozmann equation. Formula (1) wherein D represents the distance between the probe 30 and the surface of the sample 10, R is the radius of the probe, and A H is the Hammaker Constant.

<TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td width="132" height="0"></td></tr><tr><td></td><td><img wi="379" he="46" file="02_image003.jpg" img-format="jpg"></img></td></tr></TBODY></TABLE>接著,將扣除凡德瓦力(Fvan)後,所得之靜電力(Fel)帶入靜電力之數學模型,如下列式(2)所示。 式(2) 其中ε為介電常數、ε 0為真空介電常數、R為探針之半徑、λ D為德拜長度(Debye length)、σ T為探針30之電荷密度、σ S為樣品10之表面的電荷密度。藉由適當設定探針30之電荷密度(σ T)的值,便可在已知靜電力(Fel)大小的情況下,經過Matlab軟體計算,而得出樣品10表面之電荷密度(σ S)之大小。接著將探針30之電荷密度(σ T)與樣品10表面之電荷密度(σ S)的差值帶入描述空間中電位與電荷密度關係的1D波松茲曼(1D Poisson Boltzmann)方程式並結合Gouy-Chapman模型,即可得不同探針30與樣品10之表面的距離下之電位分布情形。1D波松茲曼方程式如下列式(3) <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td width="251" height="0"></td></tr><tr><td></td><td><img wi="129" he="43" file="02_image005.jpg" img-format="jpg"></img></td></tr></TBODY></TABLE>所示。 式(3) 其中,σ St代表探針30之電荷密度(σ T)與樣品10表面之電荷密度(σ S)的差值,而Ψ St代表該處之電位。 <TABLE border="1"borderColor="#000000"width="_0006"><TBODY><tr><tdwidth="132"height="0"></td></tr><tr><Td></td><td><imgwi="379"he="46"file="02_image003.jpg"img-format="jpg"></img></td></tr></TBODY></TABLE> Next, after subtracting the van der Waals (Fvan), the resulting electrostatic force (Fel) is brought into the mathematical model of the electrostatic force, as shown in the following formula (2). Equation (2) where ε is the dielectric constant, ε 0 is the vacuum dielectric constant, R is the radius of the probe, λ D is the Debye length, σ T is the charge density of the probe 30, and σ S is The charge density of the surface of sample 10. By appropriately setting the value of the charge density (σ T ) of the probe 30, the charge density (σ S ) of the surface of the sample 10 can be obtained by Matlab software calculation under the condition of the known electrostatic force (Fel). The size. Then, the difference between the charge density (σ T ) of the probe 30 and the charge density (σ S ) on the surface of the sample 10 is brought into the 1D Poisson Boltzmann equation describing the relationship between potential and charge density in the space and combined with Gouy. The -Chapman model gives the potential distribution at different distances between the probe 30 and the surface of the sample 10. The 1D Possonzmann equation is as follows (3) <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><tdwidth="251"height="0"></td></tr><tr><td></td><td><imgwi="129"he="43"file="02_image005.jpg"img-format="jpg"></Img></td></tr></TBODY></TABLE>. Wherein σ St represents the difference between the charge density (σ T ) of the probe 30 and the charge density (σ S ) of the surface of the sample 10, and Ψ St represents the potential at that point.

請參照第4圖,其係不同樣品10(鍍金矽晶圓及玻璃晶片)與不同電解質20(氯化鈉及氯化鎂)之組合的電位分布圖。其中,鍍金矽晶圓-氯化鎂414的電位值較鍍金矽晶圓-氯化鈉412更接近0。同樣地,玻璃晶片-氯化鎂404的電位值較玻璃晶片-氯化鈉402更接近0。造成這現象的原因係離子強度,高離子強度溶液中其擴散層電荷密度增加,為了中和整體系統之電荷則擴散層體積減少,故造成擴散層電位推向樣品表面促使整體電位減小。由於氯化鎂的離子強度高於氯化鈉的離子強度,故氯化鎂電解質所形成的電雙層電位較氯化鈉更為壓縮。Please refer to FIG. 4, which is a potential distribution diagram of a combination of different samples 10 (gold plated wafers and glass wafers) and different electrolytes 20 (sodium chloride and magnesium chloride). Among them, the potential value of the gold-plated germanium wafer-magnesium chloride 414 is closer to zero than the gold-plated germanium wafer-sodium chloride 412. Similarly, the potential value of the glass wafer-magnesium chloride 404 is closer to zero than the glass wafer-sodium chloride 402. The cause of this phenomenon is the ionic strength. The density of the diffusion layer in the high ionic strength solution increases. In order to neutralize the charge of the overall system, the volume of the diffusion layer decreases, so that the potential of the diffusion layer is pushed toward the surface of the sample to cause the overall potential to decrease. Since the ionic strength of magnesium chloride is higher than the ionic strength of sodium chloride, the electric double layer potential formed by the magnesium chloride electrolyte is more compressed than sodium chloride.

同時,本發明更藉由泊松-波茲曼(Poisson Boltzman,PB)方程式及修正的泊松-波茲曼(Modified Poisson Boltzman,MPB)方程式,來證明利用表面作用力所得到之電位分布的合理性。其中,PB方程式適用於低濃度一價電解液之電位分布預測,而MPB則適用於多價電解液之電位分布預測。結果顯示,於德拜長度(約10奈米)範圍內,表面作用力轉換之1mM氯化鈉的電位分布趨勢與PB方程式所得之電位分布一致。另一方面,表面作用力轉換之1mM氯化鎂則與MPB方程式所得之電位分布一致。因此,由AFM所得之表面作用力,轉換成的電位分布接近理論值並可用作實際之測量。At the same time, the present invention proves the potential distribution obtained by the surface force by the Poisson Boltzman (PB) equation and the modified Poisson Boltzman (MPB) equation. rationality. Among them, the PB equation is suitable for the potential distribution prediction of low-concentration monovalent electrolyte, while MPB is suitable for the potential distribution prediction of multivalent electrolyte. The results show that the potential distribution of surface force-converted 1 mM sodium chloride is consistent with the potential distribution obtained by the PB equation in the length of the Debye (about 10 nm). On the other hand, the surface force conversion of 1 mM magnesium chloride is consistent with the potential distribution obtained by the MPB equation. Therefore, the surface force obtained by the AFM is converted into a potential distribution close to the theoretical value and can be used as an actual measurement.

此外,結合前述步驟得到緊密層之厚度(步驟106)與前述之電位分布值,可得界達電位(Zeta-Potential),本實施例所測得之不同樣品10與電解質20之組合如下列表二所示。 表二:不同基板與液體組合之界達電位 <TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td> 基板 </td><td> 氯化鈉 </td><td> 氯化鎂 </td></tr><tr><td> 鍍金矽晶圓 </td><td> -33 mV </td><td> -10 mV </td></tr><tr><td> 玻璃晶片 </td><td> 23 mV </td><td> 8 mV </td></tr></TBODY></TABLE>In addition, in combination with the foregoing steps, the thickness of the compact layer (step 106) and the potential distribution value described above are obtained, and the Zeta-Potential is obtained. The combination of the different sample 10 and the electrolyte 20 measured in this embodiment is as follows. Shown. Table 2: The boundary potential of different substrates and liquids         <TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td> Substrate</td><td> Sodium Chloride</td><td> Magnesium Chloride</td ></tr><tr><td> gold-plated germanium wafers</td><td> -33 mV </td><td> -10 mV </td></tr><tr><td> glass Wafer</td><td> 23 mV </td><td> 8 mV </td></tr></TBODY></TABLE>

<TABLE border="1" borderColor="#000000" width="_0008"><TBODY><tr><td width="213" height="0"></td></tr><tr><td></td><td><img wi="217" he="45" file="02_image007.jpg" img-format="jpg"></img></td></tr></TBODY></TABLE>於測量離子濃度之步驟110中,其係將前述中所測得之電位,經過數學方程式,計算出離子濃度比值。接著,藉由此離子濃度比值,計算出離子濃度。此數學方程式係新波茲曼(New Poisson Boltzman,NPB)方程式,可表示電位與第一離子及第二離子濃度間的關係,此方程式如下列式(4)所示。 式(4) 其中t代表邊界電位,c代表內部電位,而β1及β2則分別代表第一離子及第二離子的濃度。 <TABLE border="1" borderColor="#000000" width="_0008"><TBODY><tr><td width="213" height="0"></td></tr><tr>< Td></td><td><img wi="217" he="45" file="02_image007.jpg" img-format="jpg"></img></td></tr></ TBODY></TABLE> is in the step 110 of measuring the ion concentration, which calculates the ion concentration ratio by mathematically calculating the potential measured in the foregoing. Next, the ion concentration is calculated from the ion concentration ratio. This mathematical equation is a New Poisson Boltzman (NPB) equation and can represent the relationship between the potential and the concentration of the first ion and the second ion. The equation is as shown in the following formula (4). Equation (4) where t represents the boundary potential, c represents the internal potential, and β1 and β2 represent the concentrations of the first ion and the second ion, respectively.       

本發明於前述之電位分布測量後,藉由添加第二離子於前述電位測量中含有第一離子之電解液之中,經由NPB方程式推導出第一離子與第二離子的比值,再藉由已知的添加第二離子濃度,計算出未知的第一離子濃度。值得注意的是,第一離子與第二離子分別為不同價位(例如:一、二、三、四、五、六、七價)之離子或完全不同價位之離子組合,而不侷限於本發明所測量之一價的鈉離子和二價的鎂離子。舉例來說,第一離子為鈣離子時,第二離子可為鈉離子、鋁離子等非二價之離子。亦或是第一離子為鈉離子與鈣離子的離子組合時,則第二離子可為的鋁離子等非一價或二價之離子。也就是說,當電解液中某一價位之離子濃度係已知時,其他價位之離子濃度即可藉由上述之NPB方程式求出。在一些施例中,於前述之作用力測量與電位分布計算中,所使用之電解質20係氯化鈉及氯化鎂。故於步驟110中,各別添加已知濃度之氯化鎂及氯化鈉至氯化鎂電解液及氯化鈉電解液之中。According to the present invention, after the measurement of the potential distribution, the ratio of the first ion to the second ion is derived by adding the second ion to the electrolyte containing the first ion in the potential measurement, and the ratio of the first ion to the second ion is derived by the NPB equation. Knowing the addition of the second ion concentration, an unknown first ion concentration is calculated. It is to be noted that the first ion and the second ion are ions of different valences (for example, one, two, three, four, five, six, seven valences) or ions of different valences, respectively, and are not limited to the present invention. One of the sodium ions and the divalent magnesium ions are measured. For example, when the first ion is calcium ion, the second ion may be a non-divalent ion such as sodium ion or aluminum ion. Or when the first ion is a combination of sodium ions and calcium ions, the second ion may be a non-monovalent or divalent ion such as an aluminum ion. That is to say, when the ion concentration of a certain valence in the electrolyte is known, the ion concentration of other valences can be obtained by the above NPB equation. In some embodiments, the electrolyte 20 used is sodium chloride and magnesium chloride in the aforementioned force measurement and potential distribution calculations. Therefore, in step 110, a known concentration of magnesium chloride and sodium chloride is added to the magnesium chloride electrolyte and the sodium chloride electrolyte.

在本實施例中,選擇樣品10為鍍金矽晶圓,並藉由預先設定電解液之鈉、鎂離子比,以比較藉由NPB方程式計算所得之鈉、鎂離子比的準確性。請參照第5圖,其繪示鍍金矽晶圓於不同鈉鎂離子濃度比值之電解液中的電位分布。其中,電解液502、504、506、508、510及512分別具有鈉鎂離子比值為1、3、2、1.33、4、0.6。各種電解液下之電位分布,隨著其離子強度增加,其電位值將越接近0。造成的原因如前所述,係高離子強度之溶液(即多價位或高濃度之溶液)會壓縮其電雙層之電位分布。然而,電解液510(及鈉鎂離子比值為4)不符合此現象。其原因係鈉鎂離子此值達4時,將產生明顯的體積效應(Steric effect),使得離子間有額外的作用力,而導致由表面作用力所得之電位分布曲線有不符合上述現象之情形。In the present embodiment, the sample 10 is selected as a gold-plated germanium wafer, and the sodium and magnesium ion ratios of the electrolyte are preset to compare the accuracy of the sodium and magnesium ion ratios calculated by the NPB equation. Please refer to FIG. 5, which shows the potential distribution of the gold-plated germanium wafer in the electrolyte with different ratios of sodium to magnesium ions. Among them, the electrolytes 502, 504, 506, 508, 510, and 512 have sodium to magnesium ion ratios of 1, 3, 2, 1.33, 4, and 0.6, respectively. The potential distribution under various electrolytes will increase as the ionic strength increases, and the potential value will be closer to zero. Causes As mentioned above, a high ionic strength solution (i.e., a multi-valent or high concentration solution) compresses the potential distribution of its electric double layer. However, the electrolyte 510 (and the sodium to magnesium ion ratio of 4) does not conform to this phenomenon. The reason is that when the value of sodium and magnesium ions reaches 4, a significant volume effect (Steric effect) is generated, which causes an extra force between the ions, and the potential distribution curve obtained by the surface force does not conform to the above phenomenon. .

請參照下列表三,其係將鍍金矽晶圓於不同鈉鎂離子比之電解液中的電位分布,藉由NPB方程式轉換成鈉鎂離子濃度比之結果。 表三:配置之鈉/鎂離子比值與計算之鈉/鎂離子比值 <TABLE border="1" borderColor="#000000" width="_0009"><TBODY><tr><td> 氯化鈉 (mM) </td><td> 氯化鎂 (mM) </td><td> 配置之 鈉/鎂離子比值 </td><td> 計算之 鈉/鎂離子比值 </td></tr><tr><td> 0.8 </td><td> 0.8 </td><td> 1 </td><td> 0.973 </td></tr><tr><td> 1.5 </td><td> 0.75 </td><td> 2 </td><td> 1.997 </td></tr><tr><td> 2.7 </td><td> 0.9 </td><td> 3 </td><td> 3.004 </td></tr><tr><td> 2 </td><td> 0.5 </td><td> 4 </td><td> 3.68 </td></tr><tr><td> 4 </td><td> 3 </td><td> 1.33 </td><td> 1.312 </td></tr><tr><td> 3 </td><td> 5 </td><td> 0.6 </td><td> 0.626 </td></tr></TBODY></TABLE>由表三可見,除了鈉鎂離子比值為4的電解質,不同鈉鎂離子濃度比值(1、2、3、1.33、0.6)下所計算出的鈉鎂離子比值皆能代表混合溶液中鈉鎂離子比值,其相對誤差值大部分係小於5%。 Please refer to Table 3 below, which is the result of converting the potential distribution of gold-plated germanium wafers in different sodium-magnesium ions to the concentration of sodium-magnesium ions by the NPB equation. Table 3: Configured sodium/magnesium ion ratio and calculated sodium/magnesium ion ratio         <TABLE border="1" borderColor="#000000" width="_0009"><TBODY><tr><td> Sodium Chloride (mM) </td><td> Magnesium Chloride (mM) </td>< Td> Configured sodium/magnesium ion ratio</td><td> Calculated sodium/magnesium ion ratio</td></tr><tr><td> 0.8 </td><td> 0.8 </td> <td> 1 </td><td> 0.973 </td></tr><tr><td> 1.5 </td><td> 0.75 </td><td> 2 </td><td> 1.997 </td></tr><tr><td> 2.7 </td><td> 0.9 </td><td> 3 </td><td> 3.004 </td></tr><tr ><td> 2 </td><td> 0.5 </td><td> 4 </td><td> 3.68 </td></tr><tr><td> 4 </td><td > 3 </td><td> 1.33 </td><td> 1.312 </td></tr><tr><td> 3 </td><td> 5 </td><td> 0.6 < /td><td> 0.626 </td></tr></TBODY></TABLE> can be seen from Table 3, except for electrolytes with a sodium to magnesium ion ratio of 4, different ratios of sodium to magnesium ions (1, 2, 3) The ratio of sodium to magnesium ions calculated under 1.33 and 0.6) can represent the ratio of sodium to magnesium ions in the mixed solution, and the relative error value is mostly less than 5%.       

此外,在使用式(4)計算離子濃度比值時,經由適當的參數置換,可得到更為精準的離子濃度比值。由電位分布曲線(如第5圖)可得知距離樣品10表面任何距離之電位。設定位於緊密層厚度上之邊界電位為t',設定電位曲線中最低接近0的電位為內部電位c'。此外,設定係數a,以修正邊界電位及內部電位,其修正如下列式(5)。 t=t'-a c=c'-a 式(5) 藉由適當的選擇係數a,使得修正過後的內部電位c接近於0。接著,將修正過後的邊界電位t及內部電位c帶入上述之NPB方程式以得出離子濃度比值,其結果如表三所示。Further, when the ion concentration ratio is calculated using the formula (4), a more precise ion concentration ratio can be obtained by appropriate parameter replacement. The potential from any distance from the surface of the sample 10 can be known from the potential distribution curve (as shown in Fig. 5). The boundary potential at the thickness of the compact layer is set to t', and the potential at the lowest potential of the set potential curve is the internal potential c'. Further, the coefficient a is set to correct the boundary potential and the internal potential, and the correction is as shown in the following formula (5). t=t'-a c=c'-a Equation (5) By the appropriate selection coefficient a, the corrected internal potential c is close to zero. Next, the corrected boundary potential t and the internal potential c are brought into the above NPB equation to obtain an ion concentration ratio, and the results are shown in Table 3.

綜上所述,本揭露內容提供一種測量緊密層厚度、電雙層電位及離子濃度之方法。透過本發明之方法,僅需經過簡易之樣品前處理,接著藉由原子力顯微鏡量測樣品之表面作用力,經過數學方程式轉換後,即可測得量緊密層厚度、電雙層電位及離子濃度。其中,緊密層厚度係藉由原子力顯微鏡中的力譜模式下的退出曲線經計算而得。電雙層電位係藉由靜電力之數學模型、1D波松茲曼(1D Poisson Boltzmann)方程式與Gouy-Chapman模型,分析測得之表面作用力而得。離子濃度係藉由新波茲曼方程式計算出離子濃度比值而得。值得注意的是,離子濃度之測量可應用在各種具不同價位之離子的電解液中。舉例來說,於包含未知濃度之一價離子的電解液中,藉由添加已知濃度的二價離子,便可由本揭露內容之方法測出一價離子的濃度,反之亦然。In summary, the present disclosure provides a method of measuring compact layer thickness, electric double layer potential, and ion concentration. Through the method of the invention, only a simple sample preparation is required, and then the surface force of the sample is measured by an atomic force microscope, and after the mathematical equation is converted, the compact layer thickness, the electric double layer potential and the ion concentration can be measured. . Among them, the compact layer thickness is calculated by the exit curve in the force spectrum mode in the atomic force microscope. The electric double layer potential is obtained by analyzing the measured surface force by a mathematical model of electrostatic force, 1D Poisson Boltzmann equation and Gouy-Chapman model. The ion concentration is obtained by calculating the ion concentration ratio by the new Boltzmann equation. It is worth noting that the measurement of ion concentration can be applied to various electrolytes with ions at different valences. For example, in an electrolyte containing a valence ion of unknown concentration, the concentration of monovalent ions can be determined by the method of the present disclosure by adding a known concentration of divalent ions, and vice versa.

值得注意的是,本發明可視為原子力顯微鏡(AFM)之附加功能,而無須進行機體之改造或新增裝置。僅需經過簡易之樣品前處理,便可將原子力顯微鏡所測得之表面作用力,依照本揭露內容之轉換方式,轉換成緊密層厚度、電雙層電位及離子濃度。It is worth noting that the present invention can be considered as an additional function of an atomic force microscope (AFM) without the need to modify or add new devices. The surface force measured by the atomic force microscope can be converted into a compact layer thickness, an electric double layer potential and an ion concentration according to the conversion method of the present disclosure only after a simple sample preparation.

雖然本發明已以實施方式及實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。體現本發明特徵與優點的典型實施方式已在以上的說明中詳細□述。應理解的是本發明能夠在不同的實施例上具有各種的變化,其皆不脫離本發明的範圍,且其中的說明及附圖在本質上是當作說明之用,而非用以限制本發明。The present invention has been described in the above embodiments and embodiments, and is not intended to limit the present invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. Exemplary embodiments embodying the features and advantages of the present invention are described in detail in the above description. It is to be understood that the invention is capable of various modifications in the various embodiments of the invention invention.

10‧‧‧樣品
20‧‧‧電解質
26‧‧‧電雙層
30‧‧‧探針
32‧‧‧微懸臂
34‧‧‧針尖
40‧‧‧雷射光源
50‧‧‧光檢測器
100‧‧‧方法
102、104、106、108、110‧‧‧步驟
302‧‧‧逼近曲線
304‧‧‧退出曲線
402‧‧‧玻璃晶片-氯化鈉
404‧‧‧玻璃晶片-氯化鎂
412‧‧‧鍍金矽晶圓-氯化鈉
414‧‧‧鍍金矽晶圓-氯化鎂
502、504、506、508、510、512‧‧‧電解液
10‧‧‧ samples
20‧‧‧ Electrolytes
26‧‧‧Electric double layer
30‧‧‧ probe
32‧‧‧Micro cantilever
34‧‧‧ needle tip
40‧‧‧Laser light source
50‧‧‧Photodetector
100‧‧‧ method
102, 104, 106, 108, 110‧ ‧ steps
302‧‧‧ Approximation curve
304‧‧‧ exit curve
402‧‧‧Glass wafer - sodium chloride
404‧‧‧Glass wafer - magnesium chloride
412‧‧‧ Gold Plated Wafer - Sodium Chloride
414‧‧‧ Gold Plated Wafer - Magnesium Chloride
502, 504, 506, 508, 510, 512‧‧‧ electrolyte

當讀到隨附的圖式時,從以下詳細的敘述可充分瞭解本發明的各方面。值得注意的是,根據工業上的標準實務,各種特徵不是按比例繪製。事實上,為了清楚的討論,各種特徵的尺寸可任意增加或減少。 第1圖係根據一些實施例,一種使用原子力顯微鏡測量緊密層厚度、電雙層之電位分布及離子濃度之方法的示意流程圖。 第2圖係根據一些實施例,一種用於測量緊密層厚度、電雙層之電位分布及離子濃度之原子力顯微鏡和樣品配置的示意圖。 第3圖係根據一些實施例,繪示原子力顯微鏡測得之作用力的逼近曲線與退出曲線。 第4圖係根據一些實施例,繪示各種樣品與電解質組合之電位分布圖。 第5圖係根據一些實施例,繪示各種鈉鎂離子比值之電解質的電位分布圖。Aspects of the present invention are fully understood from the following detailed description. It is worth noting that, according to industry standard practices, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. 1 is a schematic flow diagram of a method of measuring the thickness of a compact layer, the potential distribution of an electric double layer, and the ion concentration using an atomic force microscope, in accordance with some embodiments. 2 is a schematic diagram of an atomic force microscope and sample configuration for measuring the thickness of a compact layer, the potential distribution of an electric double layer, and the ion concentration, in accordance with some embodiments. Figure 3 illustrates an approximation curve and an exit curve for the force measured by an atomic force microscope, in accordance with some embodiments. Figure 4 is a graph showing the potential distribution of various samples in combination with an electrolyte, in accordance with some embodiments. Figure 5 is a plot of the potential profile of an electrolyte having various sodium to magnesium ion ratios, in accordance with some embodiments.

10‧‧‧樣品 10‧‧‧ samples

20‧‧‧電解質 20‧‧‧ Electrolytes

26‧‧‧電雙層 26‧‧‧Electric double layer

30‧‧‧探針 30‧‧‧ probe

32‧‧‧微懸臂 32‧‧‧Micro cantilever

34‧‧‧針尖 34‧‧‧ needle tip

40‧‧‧雷射光源 40‧‧‧Laser light source

50‧‧‧光檢測器 50‧‧‧Photodetector

Claims (10)

一種測量電雙層電位之方法,包含:利用一原子力顯微鏡,測量位於一溶液中之一樣品的一表面作用力;解析該表面作用力得一靜電力;將該靜電力轉換為一電荷密度;以及將該電荷密度轉換為一電雙層之一電位。 A method for measuring electric double layer potential comprises: using an atomic force microscope to measure a surface force of a sample located in a solution; analyzing the surface force to obtain an electrostatic force; converting the electrostatic force into a charge density; And converting the charge density to a potential of an electric double layer. 如請求項1所述之方法,其中將該靜電力轉換為該電荷密度係藉由一靜電力之數學模型,轉換該靜電力為該電荷密度,其中該靜電力之數學模型為: 其中ε為介電常數、ε0為真空介電常數、R為該原子力顯微鏡之探針之半徑、λD為德拜長度(Debye length)、σT為該原子力顯微鏡之探針之電荷密度、σS為該樣品之表面的電荷密度。 The method of claim 1, wherein the electrostatic force is converted into the charge density by a mathematical model of an electrostatic force, and the electrostatic force is converted to the charge density, wherein the mathematical model of the electrostatic force is: Where ε is the dielectric constant, ε 0 is the vacuum dielectric constant, R is the radius of the probe of the atomic force microscope, λ D is the Debye length, σ T is the charge density of the probe of the atomic force microscope, σ S is the charge density of the surface of the sample. 如請求項1所述之方法,其中將該電荷密度轉換為該電雙層之該電位係藉由一1D波松茲曼(1D Poisson Boltzmann)方程式並結合一Gouy-Chapman模型,將該電荷密度轉換為該電位。 The method of claim 1, wherein converting the charge density to the electric double layer is performed by a 1D Poisson Boltzmann equation combined with a Gouy-Chapman model to convert the charge density For this potential. 一種測量緊密層厚度之方法,包含:利用一原子力顯微鏡,測量位於一溶液中之一樣品的一表面作用力;解析該表面作用力得一退出曲線;以及解析該退出曲線得一緊密層之一厚度。 A method for measuring the thickness of a compact layer, comprising: measuring a surface force of a sample in a solution by using an atomic force microscope; analyzing an exit curve of the surface force; and analyzing the exit curve to obtain a tight layer thickness. 如請求項4所述之方法,其中解析該退出曲線得一緊密層之一厚度係計算該退出曲線之一變化梯度極大的部分所對應之一水平距離。 The method of claim 4, wherein parsing the exit curve to obtain a thickness of one of the compact layers is to calculate a horizontal distance corresponding to a portion of the exit curve whose gradient of variation is extremely large. 如請求項4所述之方法,更包含結合該緊密層之該厚度及由請求項1至請求項3任一項所述之方法而得之該電雙層之該電位,計算出該電雙層之一界達電位(zeta potential)。 The method of claim 4, further comprising calculating the electrical double by combining the thickness of the compact layer with the potential of the electrical double layer obtained by the method of any one of claim 1 to claim 3. One of the layers is the zeta potential. 一種測量離子濃度之方法,包含:提供一包含一第一離子之電解液及一樣品,其中該第一離子具有一第一濃度;添加一第二離子於該電解液中,其中該第二離子具有一第二濃度,且該第二離子的價位不同於該第一離子的價位;藉由請求項1至請求項3任一項所述之方法,測量位於該電解液中之該樣品的一表面作用力,並將該表面作用力轉換為一電雙層之一電位;將該電位轉換為一該第一濃度與該第二濃度的比值;以及藉由該比值,計算出該第一離子的該第一濃度。 A method for measuring an ion concentration, comprising: providing an electrolyte comprising a first ion and a sample, wherein the first ion has a first concentration; and adding a second ion to the electrolyte, wherein the second ion Having a second concentration, and the price of the second ion is different from the price of the first ion; measuring one of the samples in the electrolyte by the method of any one of claim 1 to claim 3 Surface force, and converting the surface force into a potential of an electric double layer; converting the potential into a ratio of the first concentration to the second concentration; and calculating the first ion by the ratio The first concentration. 如請求項7所述之方法,其中該第一離子包含一價離子、二價離子或其組合。 The method of claim 7, wherein the first ion comprises a monovalent ion, a divalent ion, or a combination thereof. 如請求項7所述之方法,其中該第二離子包含一價離子、二價離子或其組合。 The method of claim 7, wherein the second ion comprises a monovalent ion, a divalent ion, or a combination thereof. 如請求項7所述之方法,其中將該電位轉換為一該第一濃度與該第二濃度的比值係藉由一新波茲曼 (New Poisson Boltzman,NPB)方程式,轉換該電位為該比值。 The method of claim 7, wherein the potential is converted to a ratio of the first concentration to the second concentration by a new Bozeman (New Poisson Boltzman, NPB) equation, which is converted to this ratio.
TW104143510A 2015-12-24 2015-12-24 Method for measuring electric double layer potential, stern layer thickness, and ion concentration TWI571640B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104143510A TWI571640B (en) 2015-12-24 2015-12-24 Method for measuring electric double layer potential, stern layer thickness, and ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104143510A TWI571640B (en) 2015-12-24 2015-12-24 Method for measuring electric double layer potential, stern layer thickness, and ion concentration

Publications (2)

Publication Number Publication Date
TWI571640B true TWI571640B (en) 2017-02-21
TW201723498A TW201723498A (en) 2017-07-01

Family

ID=58608195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104143510A TWI571640B (en) 2015-12-24 2015-12-24 Method for measuring electric double layer potential, stern layer thickness, and ion concentration

Country Status (1)

Country Link
TW (1) TWI571640B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116787A (en) * 1999-10-20 2001-04-27 Nec Corp Charge measuring apparatus
US20050052191A1 (en) * 2003-08-27 2005-03-10 Prussin Simon A. In situ determination of resistivity, mobility and dopant concentration profiles
TW201100813A (en) * 2009-06-17 2011-01-01 Univ Chung Yuan Christian Determining the zeta potential at inside surface of tube via the streaming potential in annular flow
TW201231980A (en) * 2011-01-28 2012-08-01 Univ Chung Yuan Christian Method for measuring net charge density of membrane and device thereof
CN202453272U (en) * 2012-01-18 2012-09-26 浙江大学 Device for measuring flowing characteristics and electrokinetic parameters of ionic liquid-containing solution in microtube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116787A (en) * 1999-10-20 2001-04-27 Nec Corp Charge measuring apparatus
US20050052191A1 (en) * 2003-08-27 2005-03-10 Prussin Simon A. In situ determination of resistivity, mobility and dopant concentration profiles
TW201100813A (en) * 2009-06-17 2011-01-01 Univ Chung Yuan Christian Determining the zeta potential at inside surface of tube via the streaming potential in annular flow
TW201231980A (en) * 2011-01-28 2012-08-01 Univ Chung Yuan Christian Method for measuring net charge density of membrane and device thereof
CN202453272U (en) * 2012-01-18 2012-09-26 浙江大学 Device for measuring flowing characteristics and electrokinetic parameters of ionic liquid-containing solution in microtube

Also Published As

Publication number Publication date
TW201723498A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
Karslıoğlu et al. Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy
Batchelor-McAuley et al. In situ nanoparticle sizing with zeptomole sensitivity
Wu et al. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks
Shan et al. Mapping local quantum capacitance and charged impurities in graphene via plasmonic impedance imaging
Zhang et al. Hybrid graphene/gold plasmonic fiber-optic biosensor
Laitinen et al. Validity of the Rumpf and the Rabinovich adhesion force models for alumina substrates with nanoscale roughness
Sodhi et al. Surface and buried interface layer studies on challenging structures as studied by ARXPS
Wang et al. Oxide-on-graphene field effect bio-ready sensors
Santinacci et al. Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces
Lehr et al. Mapping the ionic fingerprints of molecular monolayers
Ullien et al. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si (111) surfaces
TWI472774B (en) Method for modifying probe tip
Moritz et al. Photocurrent measurements for laterally resolved interface characterization
TWI571640B (en) Method for measuring electric double layer potential, stern layer thickness, and ion concentration
Sheffer et al. Why is copper locally etched by scanning electrochemical microscopy?
Üstündağ et al. A novel surface plasmon resonance enhanced total internal reflection ellipsometric application: electrochemically grafted isophthalic acid nanofilm on gold surface
Awadein et al. Nanoscale electrochemical charge transfer kinetics investigated by electrochemical scanning microwave microscopy
Tang et al. Transition of interfacial capacitors in electrowetting on a graphite surface by ion intercalation
Sultana et al. High-Volume Production of Repeatable High Enhancement SERS Substrates Using Solid-State Superionic Stamping
Lopatynskyi et al. Surface plasmon resonance biomolecular recognition nanosystem: influence of the interfacial electrical potential
Srnanek et al. Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy
Cook et al. Determination of the wavelength-dependent refractive index of a gold-oxide thin film
Gun et al. Tracing Gold Nanoparticle Charge by Electrolyte− Insulator− Semiconductor Devices
Hu et al. Nanopipette-Based Probe Deciphering Nanoscale Charge Distribution of Graphene Layers Affecting Peptide Binding and Assembling
Laha et al. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers