[go: up one dir, main page]

TWI469669B - Method for estimating the position of cell tower - Google Patents

Method for estimating the position of cell tower Download PDF

Info

Publication number
TWI469669B
TWI469669B TW99140703A TW99140703A TWI469669B TW I469669 B TWI469669 B TW I469669B TW 99140703 A TW99140703 A TW 99140703A TW 99140703 A TW99140703 A TW 99140703A TW I469669 B TWI469669 B TW I469669B
Authority
TW
Taiwan
Prior art keywords
signal strength
reference signal
strength value
value
location
Prior art date
Application number
TW99140703A
Other languages
Chinese (zh)
Other versions
TW201223307A (en
Inventor
Bo Chih Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW99140703A priority Critical patent/TWI469669B/en
Priority to CN201110394452.9A priority patent/CN102573054B/en
Publication of TW201223307A publication Critical patent/TW201223307A/en
Application granted granted Critical
Publication of TWI469669B publication Critical patent/TWI469669B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

估算細胞基地台位置之方法 Method for estimating the position of a cell base station

本發明係關於位置估算之方法,尤指一種可依據全球定位衛星信號和蜂巢式網路信號來估算細胞基地台之位置以提供相關定位服務資訊之方法。 The present invention relates to a method for position estimation, and more particularly to a method for estimating the location of a cell base station based on global positioning satellite signals and cellular network signals to provide relevant positioning service information.

近年來,隨著多樣化類型的以位置為基礎的服務(Location-based services,LBS)呈現高度性發展,無線定位技術受到相關領域的注意與重視。定位技術所需測量之訊號,可以是全球衛星定位(Global Positioning System,GPS)訊號、無線網路系統之參考訊號、或是其它系統之輔助定位訊號。因訊號測量的內容不同,而有不同的定位方式,目前相關領域中多樣化的定位技術被廣泛的提出。 In recent years, with the development of diverse types of location-based services (LBS), wireless location technology has received attention and attention in related fields. The signal required for the positioning technology can be a Global Positioning System (GPS) signal, a reference signal of a wireless network system, or an auxiliary positioning signal of other systems. Due to the different content of signal measurement and different positioning methods, various positioning technologies in related fields are widely proposed.

在以衛星為基礎(satellite-based)的定位系統上,GPS是最為大眾所熟知並廣泛應用於各種領域的定位系統。GPS是透過佈設於太空中之24顆衛星全天候向地面傳送定位訊號,行動裝置僅需配置適當的接收設備即可在全球任一地點任何時間接收定位訊號並進行三維空間位置解算。GPS主要是針對室外環境提供經緯度座標定位服務,定位精確度高,其位置資訊只有約十公尺的誤差。然而,由於GPS衛星所發射的定位訊號會受建築物的遮蔽,因此,在室內並無法使用這項技術。此外,在都市區之狹窄都市街道或天候條件差的情況下,GPS定位精確度會有相當程度的降低。 In satellite-based positioning systems, GPS is the most well-known and widely used positioning system in a variety of fields. GPS transmits the positioning signal to the ground 24 hours a day through the 24 satellites deployed in space. The mobile device can receive the positioning signal and perform the three-dimensional spatial position calculation at any time in any place in the world by simply configuring the appropriate receiving device. GPS is mainly used to provide latitude and longitude coordinate positioning services for outdoor environments. The positioning accuracy is high, and the position information is only about 10 meters. However, since the positioning signals transmitted by GPS satellites are obscured by buildings, this technology cannot be used indoors. In addition, GPS positioning accuracy will be considerably reduced in the case of narrow urban streets or poor weather conditions in metropolitan areas.

在以蜂巢式網路為基礎(cellular network-based)的定位系統上,最基本的定位技術,是利用細胞基地台(cell tower),即基地台之細胞全域識別(Cell Global Identity,CGI)碼,實現二維空間位置解算。優點為不需複雜位置解算量,在室內亦能使用該項技術,由於定位精確度直接取決於細胞基地台涵蓋的範圍,因此,都會區到郊區,其位置資訊約從幾百公尺到幾十公里的 誤差。另外,當第三方使用該定位技術以提供相關定位服務資訊時,其細胞基地台之真實位置資訊不易從蜂巢通訊網路系統營運商取得,故有其應用之瓶頸所在。 On a cellular network-based positioning system, the most basic positioning technique is to use a cell tower, which is the Cell Global Identity (CGI) code of the base station. , to achieve two-dimensional spatial position solution. The advantage is that the complex position calculation is not required, and the technology can be used indoors. Since the positioning accuracy is directly dependent on the range covered by the cell base station, the metropolitan area is suburban, and the location information is from several hundred meters to Dozens of kilometers error. In addition, when the third party uses the positioning technology to provide relevant positioning service information, the real location information of the cell base station is not easily obtained from the cellular communication network system operator, so there is a bottleneck of its application.

為能滿足行動裝置在不同環境中無縫(seamless)擷取以位置為基礎的服務,且解決細胞基地台定位技術之應用瓶頸,本發明提出一種細胞基地台位置估算之方法。 In order to satisfy the seamless location-based service of the mobile device in different environments and solve the application bottleneck of the cell base station positioning technology, the present invention proposes a method for estimating the position of the cell base station.

本發明實例之位置估算方法係用於以衛星與蜂巢式網路為基礎之混合性無線網路。至少一行動訓練裝置用於獲取複數個訓練資料,一訓練資料包括一GPS位置座標與複數個細胞基地台之CGI碼參數和信號強度值,該複數個細胞基地台包括一服務細胞基地台與至少一鄰居細胞基地台。一資料運算伺服器用於執行該等訓練資料的搜尋、融和(fusion)以及位置的估算,該位置係指細胞基地台之位置。一信號特徵資料庫依據該資料運算伺服器的融和資料,進行資料的更新或儲存,且記錄位置資訊狀態。 The location estimation method of the present invention is for a hybrid wireless network based on satellite and cellular networks. At least one mobile training device is configured to obtain a plurality of training materials, wherein the training data includes a GPS location coordinate and a CGI code parameter and a signal strength value of the plurality of cell base stations, the plurality of cell base stations including a serving cell base station and at least A neighbor cell base station. A data computing server is used to perform the search, fusion, and location estimation of the training data, which is the location of the cell base station. A signal feature database calculates the fusion data of the server according to the data, updates or stores the data, and records the location information status.

本發明實例之位置估算方法係根據該信號特徵資料庫之同一CGI碼參數之該複數個服務類別訓練資料之該複數個GPS位置座標定義一第一參考座標,基於該第一參考座標將該複數個服務類別訓練資料劃分複數個群集(cluster)。根據該信號特徵資料庫之同一CGI碼參數之該複數個服務類別訓練資料之該複數個信號強度值定義一第一參考信號強度值、一第二參考信號強度值以及一第三參考信號強度值,基於該第一參考信號強度值對每一群集計算一相近(proximity)值,自該複數個群集選擇一具有高相近值之群集,並基於第二參考信號強度值使用該群集之該複數個服務類別訓練資料之該複數個GPS位置座標與該複數個信號強度值來計算一第一位置資訊,基於該第三參考信號強度值來判斷細胞基地台位置之一第一方位資訊。 The position estimation method of the example of the present invention defines a first reference coordinate according to the plurality of GPS position coordinates of the plurality of service category training data of the same CGI code parameter of the signal feature database, and the plurality of reference coordinates are based on the first reference coordinate The service category training data is divided into a plurality of clusters. Determining, according to the same CGI code parameter of the signal characteristic database, the plurality of signal strength values of the plurality of service class training data, a first reference signal strength value, a second reference signal strength value, and a third reference signal strength value Calculating a proximity value for each cluster based on the first reference signal strength value, selecting a cluster having a high close value from the plurality of clusters, and using the plurality of clusters based on the second reference signal strength value The plurality of GPS position coordinates of the service category training data and the plurality of signal strength values are used to calculate a first position information, and the first position information of the cell base station position is determined based on the third reference signal intensity value.

本發明實例之位置估算方法係根據該信號特徵資料庫之 同一CGI碼參數之該複數個鄰居類別訓練資料之該複數個GPS位置座標定義一第二參考座標,基於該第二參考座標將該複數個鄰居類別訓練資料劃分複數個群集。根據該信號特徵資料庫之同一CGI碼參數之該複數個鄰居類別訓練資料之該複數個信號強度值定義一第四參考信號強度值、一第五參考信號強度值以及一第六參考信號強度值,基於該第四參考信號強度值對每一群集計算一相近值,自該複數個群集選擇一具有高相近值之群集,並基於第五參考信號強度值使用該群集之該複數個鄰居類別訓練資料之該複數個GPS位置座標與該複數個信號強度值來計算一第二位置資訊,基於該第六參考信號強度值來判斷細胞基地台位置之一第二方位資訊。 The position estimation method of the example of the present invention is based on the signal characteristic database The plurality of GPS location coordinates of the plurality of neighbor class training data of the same CGI code parameter defines a second reference coordinate, and the plurality of neighbor class training data is divided into a plurality of clusters based on the second reference coordinate. Determining, according to the same CGI code parameter of the signal characteristic database, the plurality of signal strength values of the plurality of neighbor class training data, a fourth reference signal strength value, a fifth reference signal strength value, and a sixth reference signal strength value Calculating a similar value for each cluster based on the fourth reference signal strength value, selecting a cluster having a high close value from the plurality of clusters, and training the plurality of neighbor categories of the cluster based on the fifth reference signal strength value The plurality of GPS position coordinates of the data and the plurality of signal intensity values are used to calculate a second position information, and the second position information of the cell base station position is determined based on the sixth reference signal intensity value.

本發明實例之位置估算方法係結合該第一方位資訊、該第二方位資訊、該第一位置資訊以及該第二位置資訊,使用一方法來確定該細胞基地台的位置。 The position estimating method of the example of the present invention combines the first orientation information, the second orientation information, the first location information, and the second location information, and uses a method to determine the location of the cell base station.

本發明上述的方法是純軟體架構,可以透過程式碼佈設於實體機器中。當機器載入程式碼且執行時,機器成為用以實行本發明之裝置。 The above method of the present invention is a pure software architecture, which can be arranged in a physical machine through a program code. When the machine loads the code and executes it, the machine becomes the means for practicing the invention.

下文特舉具體實施例,並配合所附圖示說明本發明之目的、特徵,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之優點,詳細說明如下。 The advantages and disadvantages of the present invention will be readily understood by those of ordinary skill in the art in light of the appended claims.

圖1所示為本發明實施例以衛星和蜂巢式網路為基礎之一簡化架構示意圖,包括複數個GPS衛星(101,102,103)、複數個細胞基地台(104,105,106)、一行動訓練裝置107如智慧型手機或個人數位助理(PDA)、一資料運算伺服器108以及一信號特徵資料庫109。該資料運算伺服器108與該信號特徵資料庫109係架設於雲端。該等GPS衛星全天候向地面傳送定位信號。每一細胞基地台具有一公共控制頻道(common control channel,CCH),其可以持續在蜂巢網路中廣播其信號來提供一唯一CGI碼參數。需注意的是,該GPS衛星及該細胞 基地台之數目並不限於圖1所示之數目,在不悖離本發明精神的前提下,於不同實施例中,該數目可以有所變化。 1 is a schematic diagram showing a simplified architecture based on a satellite and a cellular network according to an embodiment of the present invention, including a plurality of GPS satellites (101, 102, 103), a plurality of cell base stations (104, 105, 106), A mobile training device 107 is, for example, a smart phone or a personal digital assistant (PDA), a data computing server 108, and a signal feature database 109. The data calculation server 108 and the signal feature database 109 are installed in the cloud. These GPS satellites transmit positioning signals to the ground around the clock. Each cell base station has a common control channel (CCH) that can continuously broadcast its signals in the cellular network to provide a unique CGI code parameter. It should be noted that the GPS satellite and the cell The number of base stations is not limited to the number shown in Fig. 1, and the number may vary in different embodiments without departing from the spirit of the invention.

圖2所示為本發明實施例之位置估算的資料訓練架構示意圖,一行動訓練裝置107配備一接收單元201、一資料暫存單元202、一資料分類單元203、一資料加密單元204和一備分資料庫205。該資料運算伺服器108為由一資料解密單元207、一資料融和單元208和一位置解算單元209所組成。該行動訓練裝置107透過一蜂巢無線網路206與該資料運算伺服器108進行連結。 2 is a schematic diagram of a data training architecture for location estimation according to an embodiment of the present invention. A mobile training device 107 is provided with a receiving unit 201, a data temporary storage unit 202, a data classification unit 203, a data encryption unit 204, and a standby device. Sub-database 205. The data computing server 108 is composed of a data decryption unit 207, a data fusion unit 208, and a position solving unit 209. The mobile training device 107 is coupled to the data computing server 108 via a cellular wireless network 206.

當該行動訓練裝置107進入該混合性網路之戶外目標區域時,透過該行動訓練裝置107之接收單元201可獲取複數個訓練資料。一訓練資料包括如下: When the mobile training device 107 enters the outdoor target area of the hybrid network, the receiving unit 201 of the mobile training device 107 can acquire a plurality of training materials. A training material includes the following:

1.一GPS位置座標。其工作原理大致如下:該行動訓練裝置107之接收單元201內之GPS接收器(未顯示),檢測到至少四個GPS衛星信號的一存在狀態,一GPS衛星的信號測量一到達時間(Time of Arrival,ToA)值,依據至少四個ToA值來計算出該行動訓練裝置107之GPS位置座標。 1. A GPS position coordinate. The working principle is as follows: a GPS receiver (not shown) in the receiving unit 201 of the mobile training device 107 detects a presence state of at least four GPS satellite signals, and a GPS satellite signal measures an arrival time (Time of The Arrival, ToA) value calculates the GPS position coordinates of the mobile training device 107 based on at least four ToA values.

2.複數個細胞基地台之CGI碼參數及信號強度值。該行動訓練裝置107之接收單元201檢測到複數個細胞基地台(如圖1中所示的104、105及106)信號的一存在狀態,一細胞基地台訊號可析取一CGI碼參數以及測量一信號強度值。該複數個細胞基地台包括一服務細胞基地台(如圖1中所示的104)與至少一鄰居細胞基地台(如圖1中所示的105、106)。 2. CGI code parameters and signal strength values of a plurality of cell base stations. The receiving unit 201 of the mobile training device 107 detects a state of existence of signals of a plurality of cell base stations (104, 105, and 106 as shown in FIG. 1), and a cell base station signal can extract a CGI code parameter and measure A signal strength value. The plurality of cell base stations includes a serving cell base station (104 as shown in FIG. 1) and at least one neighbor cell base station (105, 106 as shown in FIG. 1).

如熟悉GPS技術之人所知,通常該GPS位置座標以每一秒更新一次,因此,信號檢測的時間標籤(time stamp)設為一秒。於該時間標籤,透過行動訓練裝置107之接收單元201可獲取該GPS位置座標一次以及可析取該等CGI碼參數和測量該等信號強度值二次。該行動訓練裝置107之該資料暫存單元202儲存該接收單元201所獲取到、所析取到和所測量到的複數個訓練資料,且以批次方式將儲存的該等訓練資料傳送至該 資料分類單元203。傳送一批次資料的間隔時間標籤設為三十秒。需注意的是,於本發明實施例中,設定的該時間標籤和該次數並不限於上述之數目,在不悖離本發明精神的前提下,於不同實施例中,該數目可以有所變化。 As is known to those skilled in the art of GPS, the GPS position coordinates are typically updated every second, so the time stamp for signal detection is set to one second. At the time label, the receiving unit 201 of the mobile training device 107 can acquire the GPS position coordinates once and extract the CGI code parameters and measure the signal strength values twice. The data temporary storage unit 202 of the mobile training device 107 stores the plurality of training materials acquired, extracted and measured by the receiving unit 201, and transmits the stored training materials to the Data classification unit 203. The interval label for transmitting a batch of data is set to thirty seconds. It should be noted that, in the embodiment of the present invention, the set time stamp and the number of times are not limited to the foregoing number, and the number may be changed in different embodiments without departing from the spirit of the present invention. .

在該行動訓練裝置107之該資料分類單元203接收到該等訓練資料之後,執行資料的類別區分。在資料的類別,對同一CGI碼參數的該等訓練資料可區分為一服務類別和一鄰居類別。在連結該蜂巢無線網路206(如圖1中所示的104)將該等訓練資料透過一應用程式介面(application programming interface,API)傳送至該資料運算伺服器108之前,一資料加密單元204用於對該等訓練資料執行壓縮和加密,以形成該等加密訓練資料,並傳送該等加密訓練資料至該備份資料庫205儲存。基於無線網路的傳輸特性,一旦該等加密訓練資料傳送失敗,可自該備份資料庫205取得該等加密訓練資料來執行重傳。於該資料運算伺服器108接收到該等加密訓練資料之後,該資料運算伺服器108之解密單元207用於對該等加密訓練資料執行解壓縮和解密,以形成該等解密訓練資料。接著,該資料融合單元208透過搜尋一信號特徵資料庫109來獲取相應之資料庫的訓練資料,以執行資料融合。於下述之圖3,主要用以於描述資料庫搜尋、資料融合以及位置估算之步驟。 After the data classification unit 203 of the action training device 107 receives the training materials, class classification of the data is performed. In the category of the data, the training materials for the same CGI code parameter can be divided into a service category and a neighbor category. Before the training data is transmitted to the data computing server 108 via an application programming interface (API), the data encryption unit 204 is connected to the cellular wireless network 206 (shown as 104 in FIG. 1). And compressing and encrypting the training materials to form the encrypted training materials, and transmitting the encrypted training materials to the backup database 205 for storage. Based on the transmission characteristics of the wireless network, once the encrypted training data fails to be transmitted, the encrypted training data may be obtained from the backup database 205 to perform retransmission. After the data computing server 108 receives the encrypted training materials, the decrypting unit 207 of the data computing server 108 performs decompression and decryption on the encrypted training materials to form the decrypted training materials. Then, the data fusion unit 208 searches for a training data of the corresponding database by searching a signal feature database 109 to perform data fusion. Figure 3 below is mainly used to describe the steps of database search, data fusion and location estimation.

圖3所示為本發明實施例之位置估算的資料訓練架構流程示意圖。首先執行步驟301,使用析取到之該細胞基地台之CGI碼參數為一鍵值(key),以執行一信號特徵資料庫109的搜尋。於步驟302中,確認該CGI碼參數是否為一存在狀態。 FIG. 3 is a schematic flowchart diagram of a data training architecture for location estimation according to an embodiment of the present invention. First, step 301 is executed to perform a search of a signal feature database 109 by using a CGI code parameter of the cell base station extracted as a key. In step 302, it is confirmed whether the CGI code parameter is a presence state.

1.如果CGI碼參數為一存在狀態,該資料融和單元208自該信號特徵資料庫109獲取訓練資料(步驟303)、執行該信號特徵資料庫訓練資料和該等訓練資料的融和、回傳該融和資料至該信號特徵資料庫109(步驟304)。該信號特徵資料庫109於接收到該融和資料之後,執行更新儲存,且記錄該細胞基地台的位置資訊為一更新狀態(步驟305)。 1. If the CGI code parameter is in a presence state, the data fusion unit 208 acquires training data from the signal feature database 109 (step 303), performs the signal feature database training data, and integrates the training data. The data is merged into the signal signature database 109 (step 304). After receiving the merged data, the signal signature database 109 performs update storage, and records the location information of the cell base station as an update status (step 305).

2.如果CGI碼參數為一未存在狀態,該資料融和單元208直接將該等訓練資料傳送至該信號特徵資料庫109(步驟306)。於該信號特徵資料庫109接收到該等訓練資料之後,執行儲存,且記錄該細胞基地台的位置資訊為一未知狀態(步驟307)。 2. If the CGI code parameter is in an unexisting state, the data fusion unit 208 directly transmits the training data to the signal feature database 109 (step 306). After the signal feature database 109 receives the training materials, the storage is performed, and the location information of the cell base station is recorded as an unknown state (step 307).

3.該信號特徵資料庫109檢視該細胞基地台的位置資訊狀態。如果該位置資訊的紀錄為一未知狀態,則該信號特徵資料庫109立即傳送該細胞基地台的訓練資料至該位置解算單元209(步驟308)。如果該位置資訊的紀錄為一更新狀態,則該信號特徵資料庫109定期定時傳送該細胞基地台的訓練資料至該位置解算單元209(步驟309)。該位置解算單元209可依據接收到的該等訓練資料來建立群集,且使用RF信號群集演算法(clustering algorithm)執行位置估算(步驟310)。該RF信號係指接收信號強度值。該位置解算單元209回傳估算到的該細胞基地台位置至該信號特徵資料庫109,該信號特徵資料庫109於接收到該位置資訊之後,執行儲存,且記錄該位置資訊狀態為一已知狀態(步驟311)。 3. The signal signature database 109 examines the location information status of the cell base station. If the record of the location information is an unknown state, the signal profile database 109 immediately transmits the training data of the cell site to the location resolution unit 209 (step 308). If the record of the location information is in an update state, the signal profile database 109 periodically transmits the training data of the cell base station to the location resolution unit 209 (step 309). The location resolution unit 209 can establish a cluster based on the received training data and perform location estimation using an RF signal clustering algorithm (step 310). The RF signal is the received signal strength value. The location solving unit 209 returns the estimated location of the cell base station to the signal feature database 109. After receiving the location information, the signal feature database 109 performs storage, and records the location information status as one. Know the state (step 311).

圖4所示為依據本發明實施例之位置估算的一經度緯度標繪圖。該資料運算伺服器108之該位置解算單元209接收到來自該信號特徵資料庫109之同一CGI碼參數之該複數個訓練資料之後,根據同一CGI碼參數之該複數個訓練資料之該複數個GPS位置座標進行一經度緯度空間分佈,基於訓練資料的類別定義,該複數個訓練資料可區分為該複數個服務類別訓練資料與該複數個鄰居類別訓練資料。於下述之圖5至圖6,主要用以於藉由該複數個服務類別訓練資料與該複數個鄰居類別訓練資料說明本發明之位置估算方法之實施方式。 4 is a latitude and longitude plot of position estimation in accordance with an embodiment of the present invention. After the position solving unit 209 of the data computing server 108 receives the plurality of training materials from the same CGI code parameter of the signal feature database 109, the plurality of training materials according to the same CGI code parameter The GPS position coordinates perform a latitude and longitude spatial distribution. Based on the category definition of the training data, the plurality of training materials can be divided into the plurality of service category training materials and the plurality of neighbor category training materials. FIG. 5 to FIG. 6 are mainly used to illustrate an implementation manner of the position estimating method of the present invention by using the plurality of service category training materials and the plurality of neighbor category training materials.

圖5所示為一藉由該複數個服務類別訓練資料進行位置估算之架構流程示意圖。首先執行步驟501,對同一CGI碼參數之該複數個服務類別訓練資料之該複數個GPS位置座標(Xi,Yi),其中i=1,2,...,N,使用一算法定義一第一參考座 標,如圖4中所示的40I,在此實施例中,可以使用一重心算法(Centroid Algorithm),其方程式可以寫為(Xref1,Yref1)=(Σi=1,...,N Xi/N,Σi=1,...,N Yi/N)但本發明並不限定於此,熟知此領域者應可了解其他的算法,譬如加權重心算法(Weight Centroid Algorithm)與門檻值重心算法(Threshold Centroid Algorithm)都可以用來進行該第一參考座標的定義。 FIG. 5 is a schematic diagram showing the architecture of a location estimation by using a plurality of service category training data. First, step 501 is executed to determine the plurality of GPS position coordinates (X i , Y i ) of the plurality of service category training materials of the same CGI code parameter, where i=1, 2, . . . , N, using an algorithm definition A first reference coordinate, such as 40I shown in FIG. 4, in this embodiment, a centroid algorithm can be used, and the equation can be written as (X ref1 , Y ref1 )=(Σ i=1, ..., N X i /N, Σ i = 1,..., N Y i /N) However, the present invention is not limited thereto, and those skilled in the art should be able to understand other algorithms, such as a weighted center of gravity algorithm ( Both the Weight Centroid Algorithm and the Threshold Centroid Algorithm can be used to define the first reference coordinate.

接續執行步驟502,依據該第一參考座標將同一CGI碼參數之該複數個服務類別訓練資料劃分複數個群集(cluster),在此實施例中,基於該第一參考座標(Xref1,Yref1)之X座標(即Xref1)將該複數個服務類別訓練資料劃分二個群集,其中第k(k=1,2)個群集之該複數個服務類別訓練資料可以用集合Gk來表示,但本發明並不限定於此,該第一參考座標(Xref1,Yref1)之Y座標(即Yref1)也可以用來進行該複數個服務類別訓練資料之群集劃分。需注意的是,該群集之數目並不限定於此,在不悖離本發明精神的前提下,於不同實施例中,該數目可以有所變化。 Step 502 is performed to divide the plurality of service category training data of the same CGI code parameter into a plurality of clusters according to the first reference coordinate. In this embodiment, based on the first reference coordinate (X ref1 , Y ref1 ) The X coordinate (ie, X ref1 ) divides the plurality of service category training materials into two clusters, wherein the plurality of service category training materials of the kth (k=1, 2) clusters can be represented by the set G k . However, the present invention is not limited thereto, and the Y coordinate (ie, Y ref1 ) of the first reference coordinate (X ref1 , Y ref1 ) may also be used to perform cluster division of the plurality of service category training materials. It should be noted that the number of clusters is not limited thereto, and the number may vary in different embodiments without departing from the spirit of the invention.

於步驟503,對同一CGI碼參數之該複數個服務類別訓練資料之該複數個信號強度值RSSi,其中i=1,2,...,N,定義一第一參考信號強度值、一第二參考信號強度值以及一第三參考信號強度值。在此實施例中,可以使用一重心算法來定義一第一參考信號強度值,其方程式可以寫為RSSref1i=1,...,N RSSi/N,但本發明並不限定於此,熟知此領域者應可了解其他的算法,譬如加權重心算法與門檻值重心算法都可以用來進行該第一參考信號強度值的定義。在此實施例中,可以使用最低信號強度值來定義一第二參考信號強度值,其方程式可以寫為RSSref2=min{RSSi}。在此實施例中,可以使用最高信號強度值來定義一第三參考信號強度值,其方程式可以寫為RSSref3=max{RSSi}。 In step 503, the plurality of signal strength values RSS i of the plurality of service class training data of the same CGI code parameter, wherein i=1, 2, . . . , N, define a first reference signal strength value, and The second reference signal strength value and a third reference signal strength value. In this embodiment, a centroid algorithm can be used to define a first reference signal strength value, and the equation can be written as RSS ref1 = Σ i = 1, ..., N RSS i /N, but the invention is not limited Here, those skilled in the art should be able to understand other algorithms, such as a weighted center of gravity algorithm and a threshold value center of gravity algorithm can be used to define the first reference signal strength value. In this embodiment, a second reference signal strength value can be defined using the lowest signal strength value, the equation of which can be written as RSS ref2 = min{RSS i }. In this embodiment, a third signal strength value can be defined using the highest signal strength value, and the equation can be written as RSS ref3 = max{RSS i }.

接續執行步驟504,依據該第一參考信號強度值對每一群 集計算一相近(proximity)值,其實施方式為:假設一Gk,k=1或2,包含nk個服務類別訓練資料,每一服務類別訓練資料有一信號強度測量值,若該信號強度測量值小於RSSref1,則無相似值,若該信號強度測量值大於或等於RSSref1,則計算一相似值,接著,對nk個相似值進行相加計算以得到一總和相似值,自k個群集選擇一具有高總和相近值之群集。 Step 504 is performed to calculate a proximity value for each cluster according to the first reference signal strength value, which is implemented by: assuming that G k , k=1 or 2, including n k service category training materials, Each service category training data has a signal strength measurement value. If the signal strength measurement value is less than RSS ref1 , there is no similar value. If the signal strength measurement value is greater than or equal to RSS ref1 , a similarity value is calculated, and then, n k The similar values are summed to obtain a sum similarity value, and a cluster having a high sum close value is selected from the k clusters.

於步驟505,依據該具有高總和相近值之群集之該複數個服務類別訓練資料計算一第一位置資訊,其實施方式為:假設一Gk,k=1或2,包含nk個服務類別訓練資料,每一服務類別訓練資料有一GPS位置座標與一信號強度測量值,若該信號強度測量值等於RSSref2,則權重值為Wf=1,若該信號強度測量值不等於RSSref2,則計算一權重值Wf,接著,使用權重平均算法計算一第一位置資訊,如圖4中所示的402,其方程式可以寫為Xserf=1,...,nk(Wf×Xf)/Σf=1,...,nk Wf In step 505, a first location information is calculated according to the plurality of service class training data of the cluster with high total similar values, and the implementation manner is: a G k , k=1 or 2, including n k service categories Training data, each service category training data has a GPS position coordinate and a signal strength measurement value. If the signal strength measurement value is equal to RSS ref2 , the weight value is W f =1, and if the signal strength measurement value is not equal to RSS ref2 , Then calculate a weight value W f , and then use a weight averaging algorithm to calculate a first position information, as shown in FIG. 4 402 , the equation can be written as X ser = Σ f = 1, ..., nk (W f ×X f )/Σ f=1,...,nk W f

Yserf=1,...,nk(Wf×Yf)/Σf=1,...,nk Wf最後,依據該第三參考信號強度值來判斷細胞基地台位置之一第一方位資訊(步驟506)。 Y serf=1,...,nk (W f ×Y f )/Σ f=1,...,nk W f Finally, the position of the cell base station is determined according to the third reference signal intensity value. A first orientation information (step 506).

圖6所示為一藉由該複數個鄰居類別訓練資料進行位置估算之架構流程示意圖。首先執行步驟601,對同一CGI碼參數之該複數個鄰居類別訓練資料之該複數個GPS位置座標(Xj,Yj),其中j=1,2,...,M,使用一算法定義一第二參考座標,如圖4中所示的403,在此實施例中,可以使用一重心算法,其方程式可以寫為(Xref2,Yref2)=(Σj=1,...,M Xj/M,Σj=1,...,N Yj/M)但本發明並不限定於此,熟知此領域者應可了解其他的算法,譬如加權重心算法與門檻值重心算法都可以用來進行該第二參考座標的定義。 FIG. 6 is a schematic diagram showing the architecture of a location estimation by using the plurality of neighbor category training data. First, step 601 is executed to determine the plurality of GPS position coordinates (X j , Y j ) of the plurality of neighbor class training data of the same CGI code parameter, where j=1, 2, . . . , M, using an algorithm definition A second reference coordinate, such as 403 shown in FIG. 4, in this embodiment, a center of gravity algorithm can be used, the equation of which can be written as (X ref2 , Y ref2 )=(Σ j=1,..., M X j /M, Σ j=1,...,N Y j /M) However, the present invention is not limited thereto, and those skilled in the art should be able to understand other algorithms, such as weighted center of gravity algorithm and threshold value center of gravity algorithm. Both can be used to define the second reference coordinate.

接續執行步驟602,依據該第二參考座標將同一CGI碼參 數之該複數個鄰居類別訓練資料劃分複數個群集,在此實施例中,基於該第二參考座標(Xref2,Yref2)之X座標(即Xref2)將該複數個鄰居類別訓練資料劃分二個群集,其中第k(k=1,2)個群集之該複數個鄰居類別訓練資料可以用集合Hk來表示,但本發明並不限定於此,該第二參考座標(Xref2,Yref2)之Y座標(即Yref2)也可以用來進行該複數個鄰居類別訓練資料之群集劃分。需注意的是,該群集之數目並不限定於此,在不悖離本發明精神的前提下,於不同實施例中,該數目可以有所變化。 Step 602 is performed to divide the plurality of neighbor class training data of the same CGI code parameter into a plurality of clusters according to the second reference coordinate. In this embodiment, the X based on the second reference coordinate (X ref2 , Y ref2 ) The coordinates (ie, X ref2 ) divide the plurality of neighbor category training data into two clusters, wherein the plurality of neighbor category training materials of the kth (k=1, 2) clusters may be represented by the set H k , but the present invention Without limitation, the Y coordinate (ie, Y ref2 ) of the second reference coordinate (X ref2 , Y ref2 ) may also be used to perform cluster division of the plurality of neighbor category training materials. It should be noted that the number of clusters is not limited thereto, and the number may vary in different embodiments without departing from the spirit of the invention.

於步驟603,對同一CGI碼參數之該複數個鄰居類別訓練資料之該複數個信號強度值RSSj,其中j=1,2,...,M,使用一方法定義一第四參考信號強度值、一第五參考信號強度值以及一第六參考信號強度值。在此實施例中,可以使用一重心算法來定義一第四參考信號強度值,其方程式可以寫為RSSref4j=1,...,M RSSj/M,但本發明並不限定於此,熟知此領域者應可了解其他的算法,譬如加權重心算法與門檻值重心算法都可以用來進行該第四參考信號強度值的定義。在此實施例中,可以使用最低信號強度值來定義一第五參考信號強度值,其方程式可以寫為RSSref5=min{RSSj}。在此實施例中,可以使用最高信號強度值來定義一第六參考信號強度值,其方程式可以寫為RSSref6=max{RSSj}。 In step 603, the complex signal strength values RSS j of the plurality of neighbor class training data of the same CGI code parameter, where j=1, 2, . . . , M, use a method to define a fourth reference signal strength. a value, a fifth reference signal strength value, and a sixth reference signal strength value. In this embodiment, a center of gravity algorithm can be used to define a fourth reference signal strength value, and the equation can be written as RSS ref4 = Σ j = 1, ..., M RSS j / M, but the invention is not limited Here, those skilled in the art should be able to understand other algorithms, such as a weighted center of gravity algorithm and a threshold value center of gravity algorithm can be used to define the fourth reference signal strength value. In this embodiment, a fifth reference signal strength value can be defined using the lowest signal strength value, the equation of which can be written as RSS ref5 = min{RSS j }. In this embodiment, a sixth signal strength value can be defined using the highest signal strength value, and the equation can be written as RSS ref6 = max {RSS j }.

接續執行步驟604,依據該第四參考信號強度值對每一群集計算一相近(proximity)值,其實施方式為:假設一Hk,k=1或2,包含mk個鄰居類別訓練資料,每一鄰居類別訓練資料有一信號強度測量值,若該信號強度測量值小於RSSref4,則無相似值,若該信號強度測量值大於或等於RSSref4,則計算一相似值,接著,對mk個相似值進行相加計算以得到一總和相似值,自k個群集選擇一具有高總和相近值之群集。 Step 604 is performed to calculate a proximity value for each cluster according to the fourth reference signal strength value, which is implemented by: assuming that H k , k=1 or 2, including m k neighbor class training materials, Each neighbor class training data has a signal strength measurement value. If the signal strength measurement value is less than RSS ref4 , there is no similar value. If the signal strength measurement value is greater than or equal to RSS ref4 , a similarity value is calculated, and then, m k The similar values are summed to obtain a sum similarity value, and a cluster having a high sum close value is selected from the k clusters.

於步驟605,依據該具有高總和相近值之群集之該複數個鄰居類別訓練資料計算一第二位置資訊,其實施方式為:假設一Hk,k=1或2,包含mk個鄰居類別訓練資料,每一鄰居類 別訓練資料有一GPS位置座標與一信號強度測量值,若該信號強度測量值等於RSSref5,則權重值為Wf=1,若該信號強度測量值不等於RSSref5,則計算一權重值Wf,接著,使用權重平均算法計算一第二位置資訊,如圖4中所示的404,其方程式可以寫為Xneif=1,...,mk(Wf×Xf)/Σf=1,...,mk Wf In step 605, a second location information is calculated according to the plurality of neighbor class training data of the cluster with high total similar values, and the implementation manner is: assuming that H k , k=1 or 2, including m k neighbor categories Training data, each neighbor category training data has a GPS position coordinate and a signal strength measurement value. If the signal strength measurement value is equal to RSS ref5 , the weight value is W f =1, and if the signal strength measurement value is not equal to RSS ref5 , Then calculate a weight value W f , and then use a weighted average algorithm to calculate a second position information, as shown in FIG. 4 , 404, the equation can be written as X nei = Σ f = 1, ..., mk (W f ×X f )/Σ f=1,...,mk W f

Yneif=1,...,mk(Wf×Yf)/Σf=1,...,mk Wf最後,依據該第六參考信號強度值來判斷細胞基地台位置之一第二方位資訊(步驟606)。 Y neif=1,...,mk (W f ×Y f )/Σ f=1,...,mk W f Finally, the position of the cell base station is determined according to the sixth reference signal intensity value A second orientation information (step 606).

圖7所示為本發明實施例之位置估算方法之位置決定的架構流程示意圖。依據該資料運算伺服器108之該位置解算單元209可得到之該第一方位資訊和該第二方位資訊以及計算到之該第一位置資訊和該第二位置資訊,使用一條件方法以確定該細胞基地台的位置,其會執行下列步驟:首先執行步驟701,判斷該RSSref4值是否為取得狀態,若判斷該RSSref4值為未取得狀態,則使用該第一位置資訊來確定該細胞基地台之位置(步驟702);若判斷該RSSref4值為取得狀態,則進至步驟703。 FIG. 7 is a schematic structural flow diagram of determining a location of a location estimation method according to an embodiment of the present invention. The first position information and the second position information obtained by the position calculating unit 209 of the data computing server 108 and the first position information and the second position information are calculated, and a conditional method is used to determine The location of the cell base station, which performs the following steps: First, step 701 is executed to determine whether the RSS ref4 value is an acquired state. If the RSS ref4 value is determined to be an unobtained state, the first location information is used to determine the cell. The location of the base station (step 702); if it is determined that the RSS ref4 value is the acquired state, the process proceeds to step 703.

於步驟703中,判斷該RSSref1值是否小於該RSSref4值,若判斷該RSSref1值小於該RSSref4值,則使用該第二位置資訊來確定該細胞基地台之位置(步驟704);若判斷該RSSref1值不小於該RSSref4值,則進至步驟705。 In step 703, it is determined whether the RSS ref1 value is smaller than the RSS ref4 value, and if the RSS ref1 value is determined to be smaller than the RSS ref4 value, the second location information is used to determine the location of the cell base station (step 704); If it is determined that the RSS ref1 value is not less than the RSS ref4 value, the process proceeds to step 705.

於步驟705中,判斷該第一方位資訊和該第二方位資訊是否為相同一方位,若判斷為相同一方位,則使用該第一位置資訊來確定該細胞基地台之位置(步驟706);若判斷為相異方位,則進至步驟707。 In step 705, it is determined whether the first orientation information and the second orientation information are the same orientation. If the determination is the same orientation, the first location information is used to determine the location of the cell base station (step 706); If it is determined that the orientation is different, the process proceeds to step 707.

於步驟707中,使用該第一參考座標(Xref1,Yref1)之X座標(即Xref1)以及該第二參考座標(Xref2,Yref2)之X座標(即Xref2)定義一區間,接續執行步驟708,判斷該第一方位資訊和該第二方位資訊是否位於該區間,若判斷為位於該區間,則使用該第一 位置資訊來確定該細胞基地台之位置(步驟709),如圖4中所示的405;若判斷為不位於該區間,基於該第一位置資訊和該第二位置資訊計算一平均值來確定該細胞基地台之位置(步驟710)。 In step 707, an interval is defined using the X coordinate (ie, X ref1 ) of the first reference coordinate (X ref1 , Y ref1 ) and the X coordinate (ie, X ref2 ) of the second reference coordinate (X ref2 , Y ref2 ). Step 708 is continued to determine whether the first orientation information and the second orientation information are located in the interval. If it is determined to be located in the interval, the first location information is used to determine the location of the cell base station (step 709). As shown in FIG. 4, if it is determined that the interval is not located, an average value is calculated based on the first location information and the second location information to determine the location of the cell base station (step 710).

上述本發明之方法,或特定系統單元、或其部份單元,為純軟體架構,可以透過程式碼佈設於實體媒體,如硬碟、光碟片、或是任何電子裝置(如智慧型手機、電腦可讀取之儲存媒體),當機器載入程式碼且執行(如智慧型手機載入且執行),機器成為用以實行本發明之裝置。上述本發明之方法與裝置亦可以程式碼型態透過一些傳送媒體,如電纜、光纖、或是任何傳輸型態進行傳送,當程式碼被機器(如智慧型手機)接收、載入且執行,機器成為用以實行本發明之裝置。 The method of the present invention, or a specific system unit, or a part thereof, is a pure software architecture, and can be disposed on a physical medium such as a hard disk, a CD, or any electronic device (such as a smart phone or a computer) through a program code. The readable storage medium), when the machine loads the code and executes (eg, the smart phone is loaded and executed), the machine becomes the device for practicing the present invention. The method and apparatus of the present invention can also be transmitted by a transmission medium such as a cable, an optical fiber, or any transmission type, and the code is received, loaded, and executed by a machine (such as a smart phone). The machine becomes the device for carrying out the invention.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The detailed description of the preferred embodiments of the present invention is intended to be limited to the scope of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

101、102、103‧‧‧GPS衛星 101, 102, 103‧‧‧ GPS satellites

104、105、 106‧‧‧細胞基地台 104, 105, 106‧‧‧ cell base station

107‧‧‧行動訓練裝置 107‧‧‧Action training device

108‧‧‧資料運算伺服器 108‧‧‧Data computing server

109‧‧‧信號特徵資料庫 109‧‧‧Signal signature database

201‧‧‧接收單元 201‧‧‧ receiving unit

202‧‧‧資料暫存單元 202‧‧‧data temporary storage unit

203‧‧‧資料分類單元 203‧‧‧Information Classification Unit

204‧‧‧資料加密單元 204‧‧‧ Data Encryption Unit

205‧‧‧備分資料庫 205‧‧ ‧Backup database

206‧‧‧蜂巢無線網路 206‧‧‧Hive Wireless Network

207‧‧‧資料解密單元 207‧‧‧Information decryption unit

208‧‧‧資料融和單元 208‧‧‧Information integration unit

209‧‧‧位置解算單元 209‧‧‧ position solving unit

401‧‧‧第一參考座標 401‧‧‧ first reference coordinates

402‧‧‧第一位置資訊 402‧‧‧First location information

403‧‧‧第二參考座標 403‧‧‧second reference coordinates

404‧‧‧第二位置資訊 404‧‧‧Second location information

405‧‧‧估算之細胞基地台 位置 405‧‧‧ Estimated cell base station position

301~311‧‧‧步驟 301~311‧‧‧Steps

501~506‧‧‧步驟 501~506‧‧‧Steps

601~606‧‧‧步驟 601~606‧‧‧Steps

701~710‧‧‧步驟 701~710‧‧‧Steps

圖1所示為本發明實施例以衛星和蜂巢式網路為基礎之一簡化架構示意圖;圖2所示為本發明實施例之位置估算的資料訓練架構示意圖;圖3所示為本發明實施例之位置估算的資料訓練架構流程示意圖;圖4所示為依據本發明實施例之位置估算的一經度緯度標繪圖;圖5所示為一藉由該複數個服務類別訓練資料進行位置估算之架構流程示意圖;圖6所示為一藉由該複數個鄰居類別訓練資料進行位置估算之架構流程示意圖;圖7所示為本發明實施例之位置估算方法之位置決定的 架構流程示意圖。 FIG. 1 is a schematic diagram showing a simplified architecture of a satellite and a cellular network according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a data training architecture for location estimation according to an embodiment of the present invention; FIG. FIG. 4 is a longitude latitude plot of position estimation according to an embodiment of the present invention; FIG. 5 is a position estimation by using the plurality of service category training data. Schematic diagram of the architecture flow; FIG. 6 is a schematic diagram showing the architecture of the location estimation by using the plurality of neighbor category training data; FIG. 7 is a schematic diagram of the location estimation method according to the embodiment of the present invention. Schematic diagram of the infrastructure flow.

107‧‧‧行動訓練裝置 107‧‧‧Action training device

108‧‧‧資料運算伺服器 108‧‧‧Data computing server

109‧‧‧信號特徵資料庫 109‧‧‧Signal signature database

201‧‧‧接收單元 201‧‧‧ receiving unit

202‧‧‧資料暫存單元 202‧‧‧data temporary storage unit

203‧‧‧資料分類單元 203‧‧‧Information Classification Unit

204‧‧‧資料加密單元 204‧‧‧ Data Encryption Unit

205‧‧‧備份資料庫 205‧‧‧Backup database

206‧‧‧蜂巢無線網路 206‧‧‧Hive Wireless Network

207‧‧‧資料解密單元 207‧‧‧Information decryption unit

208‧‧‧資料融合單元 208‧‧‧Data Fusion Unit

209‧‧‧位置解算單元 209‧‧‧ position solving unit

Claims (10)

一種位置估算方法,係用於以衛星與蜂巢式網路為基礎之混合性無線網路,包括下列步驟:依據同一CGI碼參數之該複數個服務類別訓練資料進行一第一方位資訊和一第一位置資訊和一第一參考信號強度值之估算;依據同一CGI碼參數之該複數個鄰居類別訓練資料進行一第二方位資訊和一第二位置資訊和一第四參考信號強度值之估算;以及結合該第一方位資訊、該第一位置資訊、該第一參考信號強度值、該第二方位資訊、該第二位置資訊和該第四參考信號強度值來確定該細胞基地台之位置。 A location estimation method for a hybrid wireless network based on a satellite and a cellular network, comprising the steps of: performing a first orientation information and a first based on the plurality of service category training data of the same CGI code parameter. Estimating a position information and a first reference signal strength value; estimating a second position information and a second position information and a fourth reference signal strength value according to the plurality of neighbor class training data of the same CGI code parameter; And determining the location of the cell base station in combination with the first orientation information, the first location information, the first reference signal strength value, the second orientation information, the second location information, and the fourth reference signal strength value. 如申請專利範圍第1項所述之位置估算方法,其中該第一方位資訊和該第一位置資訊和該第一參考信號強度值之估算,包括下列步驟:依據該複數個服務類別訓練資料之該複數個GPS位置座標使用一算法定義一第一參考座標;依據該第一參考座標將該複數個服務類別訓練資料劃分複數個群集;依據該複數個服務類別訓練資料之該複數個信號強度值定義一第一參考信號強度值、一第二參考信號強度值以及一第三參考信號強度值;依據該第一參考信號強度值對每一群集計算一相(proximity)值,並自該複數個群集選擇一具有高總和相近值之群集;依據該具有高總和相近值之群集之該複數個服務類別訓練資料,基於第二參考信號強度值計算一第一位置資訊;以及依據該第三參考信號強度值來判斷細胞基地台位置之一第一方位資訊。 The method for estimating a position according to claim 1, wherein the first orientation information and the first location information and the first reference signal strength value are estimated, comprising the steps of: training data according to the plurality of service categories; The plurality of GPS position coordinates define a first reference coordinate by using an algorithm; the plurality of service category training data is divided into a plurality of clusters according to the first reference coordinate; and the plurality of signal strength values of the training data according to the plurality of service categories Defining a first reference signal strength value, a second reference signal strength value, and a third reference signal strength value; calculating a probability value for each cluster according to the first reference signal strength value, and from the plurality of The cluster selects a cluster having a high sum of similar values; calculating a first location information based on the second reference signal strength value according to the plurality of service category training data of the cluster having a high total similar value; and according to the third reference signal The intensity value is used to determine the first orientation information of one of the cell base station positions. 如申請專利範圍第2項所述之位置估算方法,其中更包括使用重心算法來計算第一參考座標。 The position estimating method according to claim 2, further comprising using a gravity center algorithm to calculate the first reference coordinate. 如申請專利範圍第2項所述之位置估算方法,其中更包括使用重心算法來計算第一參考信號強度值、使用最低信號強度值來定義第二參考信號強度值以使用最高信號強度值來定義第三參考信號強度值。 The method of position estimation according to claim 2, further comprising: using a centroid algorithm to calculate a first reference signal strength value, and using a lowest signal strength value to define a second reference signal strength value to be defined using the highest signal strength value The third reference signal strength value. 如申請專利範圍第2項所述之位置估算方法,其中更包括使用權重平均算法來計算一第一位置資訊。 The method for estimating a position as described in claim 2, further comprising using a weighted average algorithm to calculate a first location information. 如申請專利範圍第1項所述之位置估算方法,其中該第二方位資訊和該第二位置資訊和該第四參考信號強度值之估算,包括下列步驟:依據該複數個鄰居類別訓練資料之該複數個GPS位置座標使用一算法定義一第二參考座標;依據該第二參考座標將該複數個鄰居類別訓練資料劃分複數個群集;依據該複數個鄰居類別訓練資料之該複數個信號強度值定義一第四參考信號強度值、一第五參考信號強度值以及一第六參考信號強度值;依據該第四參考信號強度值對每一群集計算一相(proximity)值,並自該複數個群集選擇一具有高總和相近值之群集;依據該具有高總和相近值之群集之該複數個鄰居類別訓練資料,基於第五參考信號強度值計算一第二位置資訊;以及依據該第六參考信號強度值來判斷細胞基地台位置之一第二方位資訊。 The method for estimating a location according to claim 1, wherein the second orientation information and the second location information and the fourth reference signal strength value are estimated to include the following steps: training data according to the plurality of neighbor categories The plurality of GPS position coordinates define a second reference coordinate by using an algorithm; and the plurality of neighbor class training data is divided into a plurality of clusters according to the second reference coordinate; the plurality of signal strength values of the training data according to the plurality of neighbor categories Defining a fourth reference signal strength value, a fifth reference signal strength value, and a sixth reference signal strength value; calculating a probability value for each cluster according to the fourth reference signal strength value, and from the plurality of The cluster selects a cluster having a high sum of similar values; calculating a second location information based on the fifth reference signal strength value according to the plurality of neighbor class training data of the cluster having a high total similar value; and according to the sixth reference signal The intensity value is used to determine the second orientation information of one of the cell base station positions. 如申請專利範圍第6項所述之位置估算方法,其中更包括使用重心算法來計算第二參考座標。 The position estimating method of claim 6, wherein the method further comprises using a centroid algorithm to calculate the second reference coordinate. 如申請專利範圍第6項所述之位置估算方法,其中更包括使用重心算法來計算第四參考信號強度值、使用最低信號強度值來定義第五參考信號強度值以使用最高信號強度值來定義第六參考信號強度值。 The position estimating method according to claim 6, wherein the method further comprises: using a center of gravity algorithm to calculate a fourth reference signal strength value, and using a lowest signal strength value to define a fifth reference signal strength value to be defined using the highest signal strength value. The sixth reference signal strength value. 如申請專利範圍第6項所述之位置估算方法,其中更包括使用權重平均算法來計算一第二位置資訊。 The location estimation method according to claim 6, wherein the method further comprises using a weighted average algorithm to calculate a second location information. 如申請專利範圍第1項所述之位置估算方法,其中結合該第一方位資訊、該第一位置資訊、該第一參考信號強度值、該第二方位資訊、該第二位置資訊和該第四參考信號強度值來確定該細胞基地台之位置,包括下列步驟:若該第四參考信號強度值為未取得,則使用該第一位置資訊來確定該細胞基地台之位置;若該第四參考信號強度值為取得,且該第一參考信號強度值小於該第四參考信號強度值,則使用該第二位置資訊來確定該細胞基地台之位置;若該第四參考信號強度值為取得,且該第一參考信號強度值不小於該第四參考信號強度值,且該第一方位資訊和該第二方位資訊為相同一方位,則使用該第一位置資訊來確定該細胞基地台之位置;依據該第一參考座標以及該第二參考座標定義一區間;若該第四參考信號強度值為取得,且該第一參考信號強度值不小於該第四參考信號強度值,且該第一方位資訊和該第二方位資訊為位於該區間,則使用該第一位置資訊來確定該細胞基地台之位置;以及若該第四參考信號強度值為取得,且該第一參考信號強度值不小於該第四參考信號強度值,且該第一方位資訊和該第二方位資訊為不位於該區間,則使用該第一位置資訊和該第二位置資訊來計算一平均值以確定該細胞基地台之位置。 The method for estimating a position according to claim 1, wherein the first orientation information, the first location information, the first reference signal strength value, the second orientation information, the second location information, and the first Determining the position of the cell base station by using four reference signal strength values, comprising the steps of: determining the location of the cell base station if the fourth reference signal strength value is not obtained; If the reference signal strength value is obtained, and the first reference signal strength value is less than the fourth reference signal strength value, the second location information is used to determine the location of the cell base station; if the fourth reference signal strength value is obtained And the first reference signal strength value is not less than the fourth reference signal strength value, and the first orientation information and the second orientation information are the same orientation, and the first location information is used to determine the cell base station Position: defining an interval according to the first reference coordinate and the second reference coordinate; if the fourth reference signal strength value is obtained, and the first reference signal strength value Not less than the fourth reference signal strength value, and the first orientation information and the second orientation information are located in the interval, the first location information is used to determine the location of the cell base station; and if the fourth reference signal If the intensity value is obtained, and the first reference signal strength value is not less than the fourth reference signal strength value, and the first orientation information and the second orientation information are not located in the interval, the first location information is used. The second position information is used to calculate an average to determine the location of the cell base station.
TW99140703A 2010-11-25 2010-11-25 Method for estimating the position of cell tower TWI469669B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99140703A TWI469669B (en) 2010-11-25 2010-11-25 Method for estimating the position of cell tower
CN201110394452.9A CN102573054B (en) 2010-11-25 2011-11-25 Method for estimating position of cell base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99140703A TWI469669B (en) 2010-11-25 2010-11-25 Method for estimating the position of cell tower

Publications (2)

Publication Number Publication Date
TW201223307A TW201223307A (en) 2012-06-01
TWI469669B true TWI469669B (en) 2015-01-11

Family

ID=46417219

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99140703A TWI469669B (en) 2010-11-25 2010-11-25 Method for estimating the position of cell tower

Country Status (2)

Country Link
CN (1) CN102573054B (en)
TW (1) TWI469669B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717742B (en) * 2013-12-13 2018-07-06 中国电信股份有限公司 The method and system of debugging is carried out to base station database based on GPS positioning
CN104754736B (en) * 2015-04-08 2018-05-18 苏州佳世达电通有限公司 The method for estimating base station location

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774797B2 (en) * 2002-05-10 2004-08-10 On Guard Plus Limited Wireless tag and monitoring center system for tracking the activities of individuals
TW200952525A (en) * 2008-04-18 2009-12-16 Qualcomm Inc System and/or method for reducing initial position uncertainty in SPS operation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US20050227703A1 (en) * 2004-03-30 2005-10-13 Cheng Steven D Method for using base station power measurements to detect position of mobile stations
US7440983B2 (en) * 2004-12-10 2008-10-21 Nokia Corporation Velocity adjustment in learning cell identity
CN101529941B (en) * 2006-10-27 2012-05-30 艾利森电话股份有限公司 Method and apparatus for estimating the location of an access point in a wireless communication network
US8195202B2 (en) * 2008-11-25 2012-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Device and method for AGPS high accuracy positioning in unknown cell areas
CN101895812B (en) * 2009-03-12 2014-02-26 无锡爱维特信息技术有限公司 A positioning method with best matching signal strength in cellular network
TWI410662B (en) * 2009-04-30 2013-10-01 Mstar Semiconductor Inc Positioning method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774797B2 (en) * 2002-05-10 2004-08-10 On Guard Plus Limited Wireless tag and monitoring center system for tracking the activities of individuals
TW200952525A (en) * 2008-04-18 2009-12-16 Qualcomm Inc System and/or method for reducing initial position uncertainty in SPS operation

Also Published As

Publication number Publication date
CN102573054B (en) 2016-06-29
CN102573054A (en) 2012-07-11
TW201223307A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
CN102573053B (en) System and method for realizing hybrid positioning on cloud server
US10750470B2 (en) Systems and methods for determining if a receiver is inside or outside a building or area
Liu et al. Improving positioning accuracy using GPS pseudorange measurements for cooperative vehicular localization
RU2459216C1 (en) Providing base station almanac to mobile station
JP5419891B2 (en) Providing Wi-Fi location information to mobile devices to estimate the location of mobile devices
US9639557B2 (en) Positioning system
CN101952738B (en) Efficient use of expected user altitude data to aid in determining the location of a mobile station
GB2499625A (en) Hybrid method for locating mobile phones
US20170192102A1 (en) eLORAN POSITIONING VIA CROWDSOURCING
US9686766B2 (en) Location positioning using M2M ecosystem
CN107111641A (en) For the location estimation for the database for updating location data
KR20070120085A (en) Location mark database and server, location mark database construction method and location based service using it
US11226391B2 (en) Floor levels of a venue
EP2422213A1 (en) A method of improved positioning
KR101257073B1 (en) Server for database and method for managing database thereof
Anisetti et al. Landmark-assisted location and tracking in outdoor mobile network
TWI469669B (en) Method for estimating the position of cell tower
Ma et al. LTE user equipment RSRP difference elimination method using multidimensional scaling for LTE fingerprint-based positioning system
TWI426290B (en) Method of estimating the location of a mobile user
KR101545562B1 (en) Method and Apparatus for Positioning by Using Round Trip Time
KR20120071643A (en) Method and apparatus of allocation channel dynamically
KR100880255B1 (en) Mobile terminal positioning method using weighted average algorithm and positioning server for it
Al Hallak et al. Mobile positioning technique using signal strength measurement method with the aid of passive mobile listener grid
US9628959B1 (en) Using velocity data to improve location accuracy of Wi-Fi crowdsourcing
Anisetti et al. Accurate localization and tracking of mobile terminal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees