TWI462480B - High performance of fully-digitally controlled pwm converters - Google Patents
High performance of fully-digitally controlled pwm converters Download PDFInfo
- Publication number
- TWI462480B TWI462480B TW099144031A TW99144031A TWI462480B TW I462480 B TWI462480 B TW I462480B TW 099144031 A TW099144031 A TW 099144031A TW 99144031 A TW99144031 A TW 99144031A TW I462480 B TWI462480 B TW I462480B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- digital
- error signal
- duty cycle
- conversion circuit
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 31
- 230000009897 systematic effect Effects 0.000 claims description 5
- 238000013139 quantization Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 16
- 230000004044 response Effects 0.000 description 12
- 230000010355 oscillation Effects 0.000 description 11
- 230000001052 transient effect Effects 0.000 description 9
- 230000007704 transition Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 206010050031 Muscle strain Diseases 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明涉及一種轉換電路,更具體地,本發明涉及一種高性能數位控制轉換電路。 The present invention relates to a conversion circuit, and more particularly to a high performance digital position conversion conversion circuit.
當今,數位控制轉換電路由於其具有的許多獨特優點,如其採用的先進控制演算法、較強的通信能力及高抗干擾能力等,而廣受歡迎。數位控制轉換電路中包含有模數轉換器(analog to digital converter,ADC)和數位脈寬調製器(digital pulse width modulator,DPWM)等量化裝置。如第1圖所示,傳統地,如果DPWM的解析度NDPWM低於ADC的解析度NADC,即DPWM的一個單位解析度(Least Significant Bit,LSB)所產生的電壓△VDPWM大於ADC的一個LSB所產生的電壓△VADC,則DPWM的一個LSB所導致的輸出電壓Vo與額定輸出電壓VREF的差值將大於ADC能夠檢測到的最小變化值△VADC,這會使得系統無法鎖住輸出電壓Vo,輸出電壓Vo將在額定輸出電壓VREF附近發生彈跳而一直改變,這種現象稱之為“極限環振盪”。它會導致輸出電壓Vo大幅振盪,很難分析和補償輸出電壓Vo的雜訊干擾和轉換器帶來的電磁干擾(Electro Magnetic Interference,EMI)。也就是說,在傳統數位控制轉換電路中,DPWM的解析度NDPWM必須高於ADC的解析度NADC,否則將產生極限環振盪。 Today, digitally controlled conversion circuits are popular because of their many unique advantages, such as advanced control algorithms, strong communication capabilities, and high immunity to interference. The digital control conversion circuit includes quantization means such as an analog to digital converter (ADC) and a digital pulse width modulator (DPWM). As shown in Fig. 1, conventionally, if the resolution of the DPWM N DPWM is lower than the resolution of the ADC N ADC , that is, the voltage ΔV DPWM generated by a Least Significant Bit (LSB) of the DPWM is larger than that of the ADC. The voltage generated by an LSB is ΔV ADC , and the difference between the output voltage V o and the rated output voltage V REF caused by one LSB of the DPWM will be greater than the minimum change value ΔV ADC that the ADC can detect, which will make the system unable to lock. When the output voltage V o is stored , the output voltage V o will bounce around the rated output voltage V REF and is always changed. This phenomenon is called "limit ring oscillation". It causes the output voltage V o to oscillate greatly, making it difficult to analyze and compensate for the noise interference of the output voltage V o and the electromagnetic interference (EMI) caused by the converter. That is to say, in the conventional digital control conversion circuit, the resolution of the DPWM N DPWM must be higher than the resolution of the ADC N ADC , otherwise the limit cycle oscillation will occur.
傳統的DPWM結構是基於計數器的。該種結構的DPWM的解析度和系統的時鐘頻率有關。以降壓型轉換器中基於計數器的DPWM為例,由DPWM的一個LSB所產生的輸出電壓△Vo為:△Vo=Vin.△D=Vin.fSW/fclock (1)其中,Vin為系統輸入電壓,△D為占空比解析度,fSW為開關頻率,fclock為系統時鐘頻率。 The traditional DPWM architecture is based on a counter. The resolution of this type of DPWM is related to the clock frequency of the system. Taking the counter-based DPWM in the buck converter as an example, the output voltage ΔV o generated by one LSB of the DPWM is: ΔV o =V in . △ D = V in . f SW /f clock (1) where V in is the system input voltage, ΔD is the duty cycle resolution, f SW is the switching frequency, and f clock is the system clock frequency.
在實際應用中,開關頻率fSW高頻化趨勢越來越明顯,一般大於500KHz,而系統時鐘頻率fclock大於200MHz時成本將大幅增加,因而系統中採用的系統時鐘頻率fclock一般小於200MHz,所以由DPWM的一個LSB所產生的輸出電壓△Vo較大,即DPWM的解析度NDPWM較低。例如,開關頻率fSW取為500KHz,系統時鐘頻率fclock取為200MHz,設系統輸入電壓Vin為12V,則由DPWM的一個LSB所產生的輸出電壓△Vo為30mV。對於常見的數位控制轉換電路來說,這樣的輸出電壓較大,其對應的DPWM的解析度NDPWM較低。 In practical applications, the switching frequency f SW high-frequency trend is more and more obvious, generally greater than 500KHz, and the system clock frequency f clock is greater than 200MHz, the cost will be greatly increased, so the system clock frequency f clock used in the system is generally less than 200MHz, Therefore, the output voltage ΔV o generated by one LSB of the DPWM is large, that is, the resolution of the DPWM N DPWM is low. For example, the switching frequency f SW is taken as 500 kHz, the system clock frequency f clock is taken as 200 MHz, and the system input voltage V in is 12 V, the output voltage ΔV o generated by one LSB of the DPWM is 30 mV. For a common digitally controlled conversion circuit, such an output voltage is large, and the corresponding DPWM resolution N DPWM is low.
為提高DPWM的解析度,現有技術中提出了許多方法,如採用延遲線結構、混合法、恒定導通時間法、抖動法等等。但這些方法不僅複雜,還需更換硬體設備,不適於普遍應用。另外,這些方法有時還會使得系統瞬態回應性能變差。因此,現有技術中很難得到具有較高解析度的DPWM,即使能夠獲得,其成本也非常昂 貴。 In order to improve the resolution of DPWM, many methods have been proposed in the prior art, such as a delay line structure, a hybrid method, a constant on-time method, a dither method, and the like. However, these methods are not only complicated, but also require replacement of hardware devices, which is not suitable for general application. In addition, these methods sometimes make the system transient response performance worse. Therefore, it is difficult to obtain a DPWM having a higher resolution in the prior art, and even if it can be obtained, the cost is very high. expensive.
在現有技術中,為避免極限環振盪,ADC的解析度要低於DPWM的解析度,而DPWM的解析度較低,因而ADC的解析度也相應更低。較低的ADC解析度使得系統瞬態回應變差且輸出電壓的精度變低。 In the prior art, in order to avoid limit cycle oscillation, the resolution of the ADC is lower than the resolution of the DPWM, and the resolution of the DPWM is lower, so the resolution of the ADC is correspondingly lower. The lower ADC resolution makes the system transient back strain poor and the accuracy of the output voltage becomes lower.
本發明的一個目的在於解決傳統數位控制轉換電路中為避免極限環振盪而降低系統性能的問題。 An object of the present invention is to solve the problem of reducing system performance in order to avoid limit ring oscillation in a conventional digitally controlled conversion circuit.
為解決上述問題,本發明提出了一種新型數位控制轉換電路。所述新型數位控制轉換電路包括轉換電路,所述轉換電路提供輸出電壓;模數轉換電路,所述模數轉換電路接收所述輸出電壓與一參考電壓且所述模數轉換電路根據所述輸出電壓與所述參考電壓產生數位誤差信號;數位控制電路,所述數位控制電路對系統狀態進行判斷並根據系統狀態產生占空比信號;數位脈寬調製電路,所述數位脈寬調製電路接收所述占空比信號並根據所述占空比信號產生類比占空比信號以控制所述轉換電路。 In order to solve the above problems, the present invention proposes a novel digital control conversion circuit. The novel digital control conversion circuit includes a conversion circuit that provides an output voltage, an analog to digital conversion circuit that receives the output voltage and a reference voltage, and the analog to digital conversion circuit is configured according to the output a voltage and the reference voltage generate a digital error signal; a digital control circuit, the digital control circuit determines a system state and generates a duty cycle signal according to a system state; a digital pulse width modulation circuit, the digital pulse width modulation circuit receiving station The duty cycle signal is generated and an analog duty cycle signal is generated based on the duty cycle signal to control the conversion circuit.
為解決上述問題,本發明還提出了一種用數位控制電路控制轉換電路的方法。所述方法包括接收輸出電壓和參考電壓並產生數位誤差信號;判斷系統狀態並產生系統狀態信號;根據所述系統狀態信號和所述數位誤差信號採用系統控制模式;利用所述系統控制模式調節輸出電壓。 In order to solve the above problems, the present invention also proposes a method of controlling a conversion circuit by a digital control circuit. The method includes receiving an output voltage and a reference voltage and generating a digital error signal; determining a system state and generating a system status signal; employing a system control mode according to the system status signal and the digital error signal; and adjusting the output by using the system control mode Voltage.
本發明採用上述結構的電路和/或上述步驟的方法,其採用的模數轉換器(analog to digital converter, ADC)的解析度可以比數位脈寬調製器(digital pulse width modulator,DPWM)的解析度更高,電路易於實現且系統瞬態回應性能以及輸出電壓精度均得到提高,同時,輸出電壓不會產生極限環振盪。 The present invention adopts the circuit of the above structure and/or the method of the above steps, which adopts an analog to digital converter (analog to digital converter, The resolution of the ADC can be higher than that of the digital pulse width modulator (DPWM), the circuit is easy to implement, the system transient response performance and the output voltage accuracy are improved, and the output voltage is not generated. The limit cycle oscillates.
LSB‧‧‧單位解析度 LSB‧‧ unit resolution
△VDPWM/△VADC‧‧‧電壓 △V DPWM /△V ADC ‧‧‧ voltage
PID‧‧‧兩階比例積分微分 PID‧‧‧ two-order proportional integral differential
Tdt‧‧‧時間 T dt ‧‧‧ time
Io‧‧‧輸出電流 I o ‧‧‧Output current
10‧‧‧數位控制轉換電路 10‧‧‧Digital Control Conversion Circuit
101‧‧‧轉換電路 101‧‧‧Transition circuit
103‧‧‧數位控制電路 103‧‧‧Digital Control Circuit
DPWM‧‧‧數位脈寬調製器 DPWM‧‧‧Digital Pulse Width Modulator
ADC‧‧‧模數轉換器 ADC‧‧·Analog Converter
V‧‧‧電壓 V‧‧‧ voltage
Vo‧‧‧輸出電壓 V o ‧‧‧output voltage
d(k)‧‧‧數位占空比信號 d(k)‧‧‧Digital duty cycle signal
e(k)‧‧‧系統誤差信號 e(k)‧‧‧ systematic error signal
s(k)‧‧‧系統狀態信號 s(k)‧‧‧ system status signal
eA/D(k)‧‧‧數位誤差信號 e A/D (k)‧‧‧ digital error signal
VREF‧‧‧額定輸出電壓 V REF ‧‧‧rated output voltage
Vacc‧‧‧量化參考信號 V acc ‧‧‧Quantified reference signal
第1圖示出傳統數位控制轉換電路中極限環振盪產生的波形示意圖。 Fig. 1 is a diagram showing the waveform generated by the limit cycle oscillation in the conventional digital control conversion circuit.
第2圖示出根據本發明一實施例的新型數位控制轉換電路10。 FIG. 2 shows a novel digital control conversion circuit 10 in accordance with an embodiment of the present invention.
第3圖示出第2圖所示數位控制轉換電路10中占空比生成器的一種結構20。 Fig. 3 shows a structure 20 of the duty ratio generator in the digital control conversion circuit 10 shown in Fig. 2.
第4圖示出數位控制轉換電路中系統單位階躍回應示意圖。 Figure 4 shows a schematic diagram of the system unit step response in a digitally controlled conversion circuit.
第5圖示出第2圖所示數位控制轉換電路10工作時的輸出電壓波形示意圖以及系統狀態判斷示意圖。 Fig. 5 is a view showing the waveform of the output voltage and the state of the system state when the digital control conversion circuit 10 shown in Fig. 2 is operated.
第6圖示出根據本發明一個實施例的用數位控制方法控制轉換電路的流程圖。 Figure 6 is a flow chart showing the control of a conversion circuit by a digital control method in accordance with one embodiment of the present invention.
第7(a)圖示出採用傳統數位控制轉換電路及其方法的輸出電壓的實驗波形示意圖。 Fig. 7(a) is a diagram showing an experimental waveform of an output voltage using a conventional digitally controlled conversion circuit and its method.
第7(b)圖示出根據本發明一個實施例的數位控制轉換電路的輸出電壓的實驗波形示意圖。 Figure 7(b) is a diagram showing experimental waveforms of the output voltage of the digitally controlled conversion circuit in accordance with one embodiment of the present invention.
第8圖示出系統狀態轉換以及系統控制模式轉換過程。 Figure 8 shows the system state transition and system control mode transition process.
第9(a)圖示出採用傳統數位控制轉換電路及其方法的輸出電壓的瞬態回應示意圖。 Figure 9(a) shows a schematic diagram of the transient response of the output voltage using a conventional digitally controlled conversion circuit and its method.
第9(b)圖示出根據本發明一個實施例的數位控制 轉換電路的輸出電壓的瞬態回應示意圖。 Figure 9(b) illustrates digital control in accordance with one embodiment of the present invention A schematic diagram of the transient response of the output voltage of the conversion circuit.
第10(a)圖示出在傳統數位控制轉換電路中採用非線性控制器的輸出電壓波形示意圖。 Figure 10(a) is a diagram showing the waveform of an output voltage using a nonlinear controller in a conventional digitally controlled conversion circuit.
第10(b)圖示出在根據本發明一個實施例的數位控制轉換電路中採用非線性控制器的輸出電壓波形示意圖。 Fig. 10(b) is a diagram showing an output voltage waveform in which a nonlinear controller is employed in a digitally controlled conversion circuit according to an embodiment of the present invention.
本發明提出了一種新型數位控制轉換電路及其方法。和傳統數位控制轉換電路相比,本發明提出的新型數位控制轉換電路採用的模數轉換器(analog to digital converter,ADC)的解析度可以比數位脈寬調製器(digital pulse width modulator,DPWM)的解析度高,電路易於實現且系統瞬態回應性能以及輸出電壓精度均得到提高,同時,輸出電壓不會產生極限環振盪。 The invention proposes a novel digital control conversion circuit and a method thereof. Compared with the conventional digital control conversion circuit, the analog to digital converter (ADC) adopted by the novel digital control conversion circuit proposed by the present invention can be compared with a digital pulse width modulator (DPWM). The resolution is high, the circuit is easy to implement, and the system transient response performance and output voltage accuracy are improved. At the same time, the output voltage does not cause limit cycle oscillation.
第2圖示出根據本發明一個實施例的數位控制轉換電路10。如第2圖所示,數位控制轉換電路10包括轉換電路101以及數位控制電路103。轉換電路101的輸出電壓Vo與額定輸出電壓VREF的差值經ADC模組採樣轉換後得到數位誤差信號eA/D(k)。系統狀態判斷器接收數位誤差信號eA/D(k)以及一量化參考信號Vacc並根據eA/D(k)和Vacc對系統狀態進行判斷,產生系統狀態信號s(k)。在本實施例中,當系統處於穩態時,s(k)=0;當系統處於動態時,s(k)=1。本技術領域的技術人員應當理解,系統狀態信號s(k)也可以取其他值來分別表示系統處於穩態和動態。系統誤差產生器接收數位誤差信號eA/D(k)以及系統狀態信號s(k)並根據eA/D(k)和s(k)產生 系統誤差信號e(k),該系統誤差信號e(k)控制占空比生成器以得到數位占空比信號d(k)。數位占空比信號d(k)經DPWM模組轉換後得到類比占空比信號以控制轉換電路101,從而對輸出電壓Vo進行調節。 Figure 2 shows a digitally controlled conversion circuit 10 in accordance with one embodiment of the present invention. As shown in FIG. 2, the digital control conversion circuit 10 includes a conversion circuit 101 and a digital control circuit 103. The difference between the output voltage V o of the conversion circuit 101 and the rated output voltage V REF is sampled and converted by the ADC module to obtain a digital error signal e A/D (k). The system state determiner receives the digital error signal e A/D (k) and a quantized reference signal V acc and determines the system state based on e A/D (k) and V acc to generate a system state signal s(k). In the present embodiment, s(k) = 0 when the system is in steady state and s(k) = 1 when the system is in motion. Those skilled in the art will appreciate that the system status signal s(k) may also take other values to indicate that the system is in steady state and dynamics, respectively. The system error generator receives the digital error signal e A/D (k) and the system state signal s(k) and generates a systematic error signal e(k) according to e A/D (k) and s(k), the system error signal e(k) controls the duty cycle generator to obtain a digital duty cycle signal d(k). Digital duty cycle signal d (k) obtained after conversion module DPWM duty cycle signal to control the analog conversion circuit 101, thereby adjusting the output voltage V o.
電路在工作時,系統狀態判斷器首先判斷系統狀態,然後再相應地改變系統控制模式。當系統狀態判斷器判定系統處於穩態時,由系統誤差產生器產生的系統誤差信號e(k)為0,即e(k)=0。此時,占空比生成器將產生一占空比信號。然後,系統控制模式轉換為穩態控制模式。此時,占空比信號經DPWM模組轉換後得到一類比占空比信號去控制轉換電路101,以使得輸出電壓Vo保持在額定輸出電壓VREF附近,輸出電壓Vo與額定輸出電壓VREF的差值經ADC模組量化的量化值後不會超過量化參考信號Vacc,其中,量化參考信號Vacc應為小於系統輸出電壓額定誤差範圍的自然數。在穩態時,系統採用穩態控制模式,無論數位誤差信號eA/D(k)為何值,系統輸出電壓Vo與額定輸出電壓VREF的差值量化值都保持在Vacc內,不會產生極限環振盪。 When the circuit is in operation, the system state determiner first determines the system state and then changes the system control mode accordingly. When the system state determiner determines that the system is in a steady state, the system error signal e(k) generated by the system error generator is 0, that is, e(k)=0. At this point, the duty cycle generator will generate a duty cycle signal. Then, the system control mode is switched to the steady state control mode. At this time, the duty cycle signal is converted by the DPWM module to obtain a analog-like duty ratio signal to control the conversion circuit 101, so that the output voltage V o is maintained near the rated output voltage V REF , and the output voltage V o and the rated output voltage V are The difference between the REF and the quantized value quantized by the ADC module does not exceed the quantized reference signal V acc , wherein the quantized reference signal V acc should be a natural number less than the nominal error range of the system output voltage. In steady state, the system adopts the steady-state control mode. Regardless of the value of the digital error signal e A/D (k), the difference between the system output voltage V o and the rated output voltage V REF is kept within V acc , Limit cycle oscillations are generated.
當系統狀態判斷器判定系統處於動態時,系統誤差產生器輸出的系統誤差信號等於數位誤差信號eA/D(k),即e(k)=eA/D(k),系統控制模式轉換為動態控制模式。此時,占空比生成器產生占空比信號d(k)。當系統處於動態時,一旦輸出電壓Vo發生變化,系統將調節占空比信號d(k)以對輸出電壓Vo進行調節。在動態時,系統採用動態控制模式對輸出電壓進行及時調節,亦不會產生極限環振盪。 When the system state determiner determines that the system is dynamic, the system error signal output by the system error generator is equal to the digital error signal e A/D (k), ie e(k)=e A/D (k), system control mode conversion For dynamic control mode. At this time, the duty ratio generator generates a duty ratio signal d(k). When the system is dynamic, once the output voltage V o changes, the system will adjust the duty cycle signal d (k) for adjustment of the output voltage V o. In the dynamic state, the system uses the dynamic control mode to adjust the output voltage in time, and does not generate limit cycle oscillation.
可見,系統通過判斷系統狀態以相應地採取穩態控制或動態控制對輸出電壓Vo進行調節,從而避免了極限環振盪的產生。 It can be seen that the system adjusts the output voltage V o by judging the state of the system to correspondingly adopt steady state control or dynamic control, thereby avoiding the occurrence of limit cycle oscillation.
應當注意,在系統被判定為處於動態時,電路控制模式立即轉換為動態控制模式,而在系統被判定為處於穩態時,占空比生成器首先產生一占空比信號,在占空比信號產生後,電路控制模式才轉換為穩態控制模式。 It should be noted that when the system is determined to be dynamic, the circuit control mode immediately transitions to the dynamic control mode, and when the system is determined to be in steady state, the duty cycle generator first generates a duty cycle signal at the duty cycle. After the signal is generated, the circuit control mode is converted to the steady state control mode.
第3圖示出第2圖所示數位控制轉換電路10中占空比生成器的一種結構20。如第3圖所示的實施例,所述占空比生成器包括DUTY模組和兩階比例積分微分(Proportion Integration Differentiation,PID)模組。系統誤差產生器首先產生系統誤差信號e(k),當e(k)=0時,即系統被判定為處於穩態時,DUTY模組生成一定值占空比信號D提供至DPWM模組;當e(k)=eA/D(k)時,即系統被判定為處於動態時,PID模組給出一即時占空比信號d(k)=d(k-1)+ae(k)+be(k-1)+ce(k-2)提供至DPWM模組。其中,d(k-1)為k-1時刻的即時占空比信號,e(k)、e(k-1)和e(k-2)分別為k、k-1和k-2時刻的系統誤差信號,a、b和c為兩階PID的控制參數。應當注意,系統狀態一旦被判定出來後將被鎖存,直到系統被判定為進入另一狀態。 Fig. 3 shows a structure 20 of the duty ratio generator in the digital control conversion circuit 10 shown in Fig. 2. As shown in the third embodiment, the duty cycle generator includes a DUTY module and a two-stage Proportion Integration Differentiation (PID) module. The system error generator first generates a system error signal e(k). When e(k)=0, that is, when the system is determined to be in a steady state, the DUTY module generates a certain value duty signal D to be supplied to the DPWM module; When e(k)=e A/D (k), that is, when the system is judged to be dynamic, the PID module gives an instantaneous duty cycle signal d(k)=d(k-1)+ae(k) ) +be(k-1)+ce(k-2) is provided to the DPWM module. Where d(k-1) is the instantaneous duty cycle signal at time k-1, and e(k), e(k-1), and e(k-2) are k, k-1, and k-2 moments, respectively. The systematic error signals, a, b and c are the control parameters of the two-order PID. It should be noted that the system state will be latched once it is determined until the system is determined to enter another state.
DUTY模組產生定值占空比信號D是通過下述方式實現的。DUTY模組接收k-2,…,k時刻的數位誤差信號eA/D(k-2)、eA/D(k-1)、eA/D(k)和k-1時刻的即時占空比信號d(k-1),當由ADC模組產生的數位誤差信號滿足條件: eA/D(k)=eA/D(k-1)=eA/D(k-2)=0 (1)時,所獲得的即時占空比信號d(k-1)便為所述的合適的定值占空比信號D,即D=d(k-1)。 The DUTY module generates a fixed duty cycle signal D by the following method. The DUTY module receives the instantaneous error signals e A/D (k-2), e A/D (k-1), e A/D (k), and k-1 instants at k-2, ..., k. The duty cycle signal d(k-1), when the digital error signal generated by the ADC module satisfies the condition: e A/D (k)=e A/D (k-1)=e A/D (k-2 When 0 (1), the obtained instantaneous duty cycle signal d(k-1) is the appropriate fixed duty duty signal D, that is, D = d(k-1).
本技術領域的技術人員應當明白,在第3圖所示的實施例中,即時占空比信號由兩階比例積分微分電路產生,而在其他實施例中,即時占空比信號也可以由階比例積分微分電路產生,相應地,該即時占空比信號由k-m,…,k時刻的系統誤差信號以及K-1時刻的即時占空比信號和m階比例積分微分電路的控制參數決定,而定值占空比信號的產生條件為eA/D(k)=eA/D(k-1)=…=eA/D(k-m)=0。 Those skilled in the art will appreciate that in the embodiment illustrated in FIG. 3, the immediate duty cycle signal is generated by a two-stage proportional integral derivative circuit, while in other embodiments, the immediate duty cycle signal can also be derived from the order. The proportional integral derivative circuit generates, correspondingly, the instantaneous duty cycle signal is determined by the system error signal at time km, ..., k, and the instantaneous duty cycle signal at time K-1 and the control parameter of the m-th order proportional integral derivative circuit, and The condition for generating the duty cycle signal is e A/D (k)=e A/D (k-1)=...=e A/D (km)=0.
本技術領域的技術人員還應當明白,在第3圖所示的實施例中,即時占空比信號由PID產生,而在其他實施例中,即時占空比信號也可以由其他具有類似功能的補償網路產生,如在Z域裏補償的n零點n極點網路。 It should also be understood by those skilled in the art that in the embodiment shown in FIG. 3, the immediate duty cycle signal is generated by the PID, while in other embodiments, the immediate duty cycle signal can also be used by other similar functions. The compensation network is generated, such as the n-zero n-pole network compensated in the Z domain.
在另一實施例中,第2圖所示數位控制轉換電路10中的占空比生成器包括補償網路而不包括DUTY模組。不管系統被判定為穩態或動態,占空比信號都由補償網路產生。以兩階PID作為補償網路為例,當系統被判定為處於動態或者穩態時,PID模組均給出一即時占空比信號d(k)=d(k-1)+ae(k)+be(k-1)+ce(k-2)提供至DPWM模組。 In another embodiment, the duty cycle generator in digital control conversion circuit 10 shown in FIG. 2 includes a compensation network and does not include a DUTY module. The duty cycle signal is generated by the compensation network regardless of whether the system is determined to be steady state or dynamic. Taking the two-stage PID as the compensation network as an example, when the system is judged to be dynamic or steady state, the PID module gives an instantaneous duty cycle signal d(k)=d(k-1)+ae(k ) +be(k-1)+ce(k-2) is provided to the DPWM module.
在一個實施例中,系統狀態判斷器對系統狀態的判定過程如下。 In one embodiment, the system state determiner determines the system state as follows.
如果系統最初處於動態,當輸出電壓Vo在額定輸出電壓VREF附近的一定範圍內保持了一段時間Tdt,則系 統將被判定為進入穩態。其中,所述額定輸出電壓VREF附近的一定範圍應使得系統輸出電壓Vo與額定輸出電壓VREF的差值經ADC模組採樣後獲得的數位誤差信號eA/D(k)保持在-p到p之間,即:-p≦eA/D(k)≦p (2)其中,p為小於量化參考信號的非負整數,p的取值可以視系統精度要求而定,如p取為1。 If the system is in a dynamic Initially, when the output voltage V o T dt holding a period of time within a certain range around the nominal output voltage V REF, the system will be determined as steady state. Wherein, a certain range around the rated output voltage V REF should be such that the difference between the system output voltage V o and the rated output voltage V REF is maintained by the digital error signal e A/D (k) obtained after sampling by the ADC module - Between p and p, namely: -p≦e A/D (k) ≦p (2) where p is a non-negative integer smaller than the quantized reference signal, and the value of p may depend on the accuracy of the system, such as p Is 1.
而所述一段時間Tdt可以大於輸出電壓Vo做阻尼振盪的週期。對於本系統來說,單位階躍輸入是最惡劣的工作條件。因此,只要所述一段時間Tdt大於單位階躍回應的週期,則該時間Tdt將大於在其他輸入條件下輸出電壓Vo做阻尼振盪的週期。第4圖示出系統單位階躍回應示意圖。如第4圖所示,所述一段時間Tdt遠大於Td1和Td2的最大值,即:Tdt>>Td1(3) The period of time T dt may be greater than the output voltage V o for the period of the damped oscillation. For this system, the unit step input is the worst working condition. Therefore, as long as the period of time T dt is greater than the period of the unit step response, the time T dt will be greater than the period during which the output voltage V o is damped under other input conditions. Figure 4 shows a schematic diagram of the system unit step response. As shown in Fig. 4, the period T dt is much larger than the maximum values of T d1 and T d2 , namely: T dt >>T d1 (3)
Tdt>>Td2(4)如上所述,系統進入穩態的條件為公式(2)、(3)、(4)。 T dt >>T d2 (4) As described above, the conditions under which the system enters a steady state are equations (2), (3), and (4).
如果系統最初處於穩態,則一旦輸出電壓Vo上出現擾動,則系統將被判定為進入動態。一種擾動判斷方法是當輸出電壓Vo與額定輸出電壓VREF的差值量化值超出Vacc的範圍,即:| eA/D(k)|≧Vacc (5)則輸出電壓Vo上出現擾動。 If the system is initially in a steady state, the output voltage V o appears disturbances once the system is determined to enter the dynamic. A disturbance judging method is when the difference quantized value of the output voltage V o and the rated output voltage V REF exceeds the range of V acc , that is: | e A / D (k) | ≧ V acc (5) on the output voltage V o There was a disturbance.
在另一實施例中,若輸出電壓Vo與額定輸出電壓VREF的差值經ADC模組採樣後獲得的數位誤差信號eA/D(k)比起上一時刻的數位誤差信號eA/D(k-1)的變化大於q,即:|△eA/D(k)|>q (6)則輸出電壓Vo上出現擾動,其中,q為自然數。 In another embodiment, if the difference between the output voltage V o and the rated output voltage V REF is sampled by the ADC module, the digital error signal e A/D (k) is compared with the digital error signal e A at the previous moment. The change of /D (k-1) is greater than q, that is: |Δe A/D (k)|>q (6), the disturbance occurs on the output voltage V o , where q is a natural number.
本技術領域的技術人員應當理解,上述關於系統狀態的判定只是示例性的。系統狀態的判定也可以通過其他條件實現。 Those skilled in the art will appreciate that the above determination of system status is merely exemplary. The determination of the system status can also be achieved by other conditions.
第5圖示出第2圖所示數位控制轉換電路10工作時的輸出電壓波形示意圖以及系統狀態判斷示意圖。如第5圖所示,在T1時段,系統處於穩態,系統控制模式為穩態控制模式,輸出電壓Vo在額定輸出電壓VREF附近設定的量化參考信號Vacc內。在進入T2時段時,輸出電壓Vo的變化值超出Vacc的範圍,即輸出電壓Vo滿足出現擾動的條件| eA/D(k)|≧Vacc,系統被判定為進入動態,此時,系統控制模式立即轉換為動態控制模式。在進入T2時段後,輸出電壓Vo在額定輸出電壓VREF附近變化,輸出電壓Vo與額定輸出電壓VREF的差值經ADC模組採樣後獲得的數位誤差信號eA/D(k)保持在在-1到1之間,即-1≦eA/D(k)≦1範圍內一段時間,系統被判定為進入穩態。在T3時段,系統再次處於穩態,輸出電壓Vo在額定輸出電壓VREF附近設定的量化參考信號內,此時,占空比生成器產生占空比信號,然後,系統控制模式轉換為穩態控制模式。 Fig. 5 is a view showing the waveform of the output voltage and the state of the system state when the digital control conversion circuit 10 shown in Fig. 2 is operated. As shown in FIG. 5, during the T1 period, the system is in a steady state, the system control mode is a steady state control mode, and the output voltage Vo is within the quantized reference signal V acc set near the rated output voltage V REF . When entering the T2 period, the change value of the output voltage V o exceeds the range of V acc , that is, the output voltage V o satisfies the condition of occurrence of disturbance | e A / D (k) | ≧ V acc , the system is determined to enter the dynamic, this When the system control mode is immediately converted to the dynamic control mode. After entering the T2 period, the output voltage V o changes around the rated output voltage V REF , and the difference between the output voltage V o and the rated output voltage V REF is sampled by the ADC module and the digital error signal e A/D (k) The system is judged to enter a steady state for a period of time between -1 and 1, i.e., -1 ≦e A/D (k) ≦1. During the T3 period, the system is again in steady state, and the output voltage V o is within the quantized reference signal set near the rated output voltage V REF . At this time, the duty ratio generator generates a duty cycle signal, and then the system control mode is converted to stable. State control mode.
第6圖示出根據本發明一個實施例的用數位控制 方法控制轉換電路的流程圖。如第6圖所示,系統電路開始工作時,DPWM的占空比由補償網路給出,系統工作在動態控制模式。在一實施例中,補償網路可以為PID。接下來,系統誤差產生器判斷系統是否處於穩態,若系統不滿足上述公式(2)、(3)、(4)所表示的穩態條件(其中q值取為1),則系統仍將工作在動態控制模式;若系統滿足穩態條件(2)、(3)、(4),則DUTY模組開始找尋定值占空比信號D,若DUTY模組判斷出系統不滿足上述公式(1)所表示的定值占空比產生條件,DUTY模組繼續找尋定值占空比信號D,若DUTY模組判斷出系統滿足定值占空比產生條件(1),則DUTY模組給出定值占空比D。此後,系統進入穩態控制模式。此後,系統誤差產生器判斷系統是否進入動態,若系統不滿足上述公式(5)和(6)所表示的動態條件(其中q值取為1),則系統仍工作在穩態控制模式;若系統滿足動態條件(5)或(6),則系統立即進入動態工作模式,此時,占空比由補償網路給出,系統開始新一輪判斷。 Figure 6 shows the use of digital control in accordance with one embodiment of the present invention. The method controls the flow chart of the conversion circuit. As shown in Figure 6, when the system circuit starts to work, the duty cycle of the DPWM is given by the compensation network, and the system operates in the dynamic control mode. In an embodiment, the compensation network can be a PID. Next, the system error generator determines whether the system is in a steady state. If the system does not satisfy the steady state condition represented by the above formulas (2), (3), and (4) (where the q value is taken as 1), the system will still Working in the dynamic control mode; if the system satisfies the steady-state conditions (2), (3), (4), the DUTY module starts to find the fixed-value duty signal D, and if the DUTY module determines that the system does not satisfy the above formula ( 1) The specified duty cycle is generated, the DUTY module continues to find the fixed duty signal D. If the DUTY module determines that the system meets the set duty ratio (1), the DUTY module gives The duty cycle D is set. Thereafter, the system enters a steady state control mode. Thereafter, the system error generator determines whether the system enters the dynamics. If the system does not satisfy the dynamic conditions represented by the above formulas (5) and (6) (where the q value is taken as 1), the system still operates in the steady state control mode; When the system meets the dynamic condition (5) or (6), the system immediately enters the dynamic working mode. At this time, the duty cycle is given by the compensation network, and the system starts a new round of judgment.
應當注意,上述實施例中穩態條件(2)、(3)、(4),動態條件(5)和(6)以及定值占空比產生條件(1)只是示例性的。根據對系統要求,也可以通過其他條件進行判斷。 It should be noted that the steady-state conditions (2), (3), (4), the dynamic conditions (5) and (6), and the constant duty duty generation condition (1) in the above embodiment are merely exemplary. According to the requirements of the system, it can also be judged by other conditions.
應當注意,本發明提出的數位控制轉換電路及其方法可以用於各種轉換電路,如降壓型轉換電路、升壓型轉換電路以及其他類似轉換電路。 It should be noted that the digital control conversion circuit and method thereof proposed by the present invention can be applied to various conversion circuits such as a buck conversion circuit, a boost conversion circuit, and the like.
第7-10圖示出根據本發明一實施例的實驗結果。該實驗採用降壓型轉換器作為轉換電路,在Xilinx Spantan3A FPGA上進行編程。系統輸入電壓、輸出電壓及輸出電流分別為:Vin=12V,Vo=3.3V,Io=3A;開關頻率、採樣頻率及系統時鐘頻率分別為:fsw=586kHz,fs=586kHz,fclock=150MHz;採用PID作為補償網路,其帶寬為50KHz,比例參數KP=0.433,積分參數KI=2.033e4,微分參數KD=1.195e-5;DPWM和ADC的一個LSB所產生的電壓分別為:△Vo=15mV,△VADC=5mV;輸出電壓Vo設定的電壓變化範圍為:△Vacc=25mV。 Figures 7-10 illustrate experimental results in accordance with an embodiment of the present invention. The experiment used a buck converter as a conversion circuit to program on the Xilinx Spantan3A FPGA. The system input voltage, output voltage and output current are: V in =12V, V o =3.3V, I o =3A; the switching frequency, sampling frequency and system clock frequency are: f sw =586kHz, f s =586kHz, f clock =150MHz; PID is used as the compensation network, its bandwidth is 50KHz, the proportional parameter KP=0.433, the integral parameter KI=2.033e4, the differential parameter KD=1.195e-5; the voltage generated by one LSB of DPWM and ADC respectively It is: ΔV o =15mV, ΔV ADC =5mV; the voltage range set by the output voltage V o is: ΔV acc =25mV.
第7(a)圖示出採用傳統數位控制轉換電路及其方法的輸出電壓的實驗波形示意圖。第7(b)圖示出根據本發明一個實施例的數位控制轉換電路的輸出電壓的實驗波形示意圖。由第7(a)和7(b)圖對比可見,本發明提出的新型數位控制轉換電路中不會產生傳統數位控制轉換電路中產生的極限環振盪。 Fig. 7(a) is a diagram showing an experimental waveform of an output voltage using a conventional digitally controlled conversion circuit and its method. Figure 7(b) is a diagram showing experimental waveforms of the output voltage of the digitally controlled conversion circuit in accordance with one embodiment of the present invention. It can be seen from the comparison of the 7(a) and 7(b) diagrams that the limit cycle oscillation generated in the conventional digital control conversion circuit is not generated in the novel digital control conversion circuit proposed by the present invention.
第8圖示出系統狀態轉換以及系統控制模式轉換過程。如第8圖所示,頻道1為輸出電壓波形。頻道2為控制模式波形,其中高電平為穩態控制模式,低電平為動態控制模式。頻道3為系統狀態波形,其中高電平為穩態,低電平為動態。如第8圖所示,當輸出電壓Vo發生擾動時,系統被判定為處於動態,系統控制模式立即轉換為動態控制模式。當輸出電壓Vo在額定輸出電壓VREF附近設定的範圍內保持了一段時間,則系統被判定為處於穩態,由第8圖可知,系統處於穩態一段時間後,系統控制模式才轉換為穩態控制模式。 Figure 8 shows the system state transition and system control mode transition process. As shown in Figure 8, channel 1 is the output voltage waveform. Channel 2 is a control mode waveform, in which the high level is the steady state control mode and the low level is the dynamic control mode. Channel 3 is the system state waveform, where the high level is steady state and the low level is dynamic. As shown in Fig. 8, when the output voltage Vo is disturbed, the system is judged to be dynamic, and the system control mode is immediately converted to the dynamic control mode. When the output voltage V o is maintained for a period of time within a range set near the rated output voltage V REF , the system is determined to be in a steady state. As can be seen from FIG. 8 , after the system is in a steady state for a period of time, the system control mode is converted to Steady state control mode.
第9(a)圖示出採用傳統數位控制轉換電路及其方 法的輸出電壓的瞬態回應示意圖。第9(b)圖示出根據本發明一個實施例的數位控制轉換電路的輸出電壓的瞬態回應示意圖。由第9(a)和10(b)圖對比可見,雖然在傳統數位控制轉換電路和本發明提出的新型數位控制轉換電路中採用的DPWM的解析度一樣,由於在本發明提出的新型數位控制轉換電路中採用的ADC的解析度提高了,系統輸出電壓的瞬態回應性能得到了提高。 Figure 9(a) shows the traditional digital control conversion circuit and its square A schematic diagram of the transient response of the output voltage of the method. Figure 9(b) is a diagram showing the transient response of the output voltage of the digitally controlled conversion circuit in accordance with one embodiment of the present invention. It can be seen from the comparison of the figures 9(a) and 10(b) that although the resolution of the DPWM used in the conventional digital control conversion circuit and the novel digital control conversion circuit proposed by the present invention is the same, the novel digital control proposed in the present invention The resolution of the ADC used in the conversion circuit is improved, and the transient response performance of the system output voltage is improved.
第10(a)圖示出在傳統數位控制轉換電路中採用非線性控制器的輸出電壓波形示意圖。第10(b)圖示出在根據本發明一個實施例的數位控制轉換電路中採用非線性控制器的輸出電壓波形示意圖。由第10(a)和10(b)圖對比可見,當補償網路採用非線性控制器時,利用本發明提出的新型數位控制轉換電路及其方法,由於採用的ADC具有更高的解析度,非線性控制器可以檢測到更小的輸出電壓誤差且非線性控制器的回應更加靈敏。 Figure 10(a) is a diagram showing the waveform of an output voltage using a nonlinear controller in a conventional digitally controlled conversion circuit. Fig. 10(b) is a diagram showing an output voltage waveform in which a nonlinear controller is employed in a digitally controlled conversion circuit according to an embodiment of the present invention. It can be seen from the comparison of Figures 10(a) and 10(b) that when the compensation network uses a nonlinear controller, the novel digital control conversion circuit and method thereof proposed by the present invention have higher resolution due to the adopted ADC. The nonlinear controller can detect smaller output voltage errors and the response of the nonlinear controller is more sensitive.
10‧‧‧數位控制轉換電路 10‧‧‧Digital Control Conversion Circuit
101‧‧‧轉換電路 101‧‧‧Transition circuit
103‧‧‧數位控制電路 103‧‧‧Digital Control Circuit
DPWM‧‧‧數位脈寬調製器 DPWM‧‧‧Digital Pulse Width Modulator
ADC‧‧‧模數轉換器 ADC‧‧·Analog Converter
V‧‧‧電壓 V‧‧‧ voltage
Vo‧‧‧輸出電壓 V o ‧‧‧output voltage
d(k)‧‧‧數位占空比信號 d(k)‧‧‧Digital duty cycle signal
e(k)‧‧‧系統誤差信號 e(k)‧‧‧ systematic error signal
s(k)‧‧‧系統狀態信號 s(k)‧‧‧ system status signal
eA/D(k)‧‧‧數位誤差信號 e A/D (k)‧‧‧ digital error signal
VREF‧‧‧額定輸出電壓 V REF ‧‧‧rated output voltage
Vacc‧‧‧量化參考信號 V acc ‧‧‧Quantified reference signal
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW099144031A TWI462480B (en) | 2010-12-15 | 2010-12-15 | High performance of fully-digitally controlled pwm converters |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW099144031A TWI462480B (en) | 2010-12-15 | 2010-12-15 | High performance of fully-digitally controlled pwm converters |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201225541A TW201225541A (en) | 2012-06-16 |
| TWI462480B true TWI462480B (en) | 2014-11-21 |
Family
ID=46726230
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW099144031A TWI462480B (en) | 2010-12-15 | 2010-12-15 | High performance of fully-digitally controlled pwm converters |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI462480B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070069707A1 (en) * | 2005-09-28 | 2007-03-29 | Hitoshi Miyashita | Method and apparatus for switching regulator capable of quick feedback from load |
| US20080252280A1 (en) * | 2007-04-10 | 2008-10-16 | Aleksandar Prodic | Continuous-time digital controller for high-frequency dc-dc converters |
| WO2008140734A1 (en) * | 2007-05-08 | 2008-11-20 | International Rectifier Corporation | Digital pwm modulator with fast dynamic response and fine resolution |
| US20080303501A1 (en) * | 2004-10-01 | 2008-12-11 | Aleksandar Prodic | Digital Controller for Dc-Dc Switching Converters for Operation at Ultra-High Constant Switching Frequencies |
-
2010
- 2010-12-15 TW TW099144031A patent/TWI462480B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080303501A1 (en) * | 2004-10-01 | 2008-12-11 | Aleksandar Prodic | Digital Controller for Dc-Dc Switching Converters for Operation at Ultra-High Constant Switching Frequencies |
| US20070069707A1 (en) * | 2005-09-28 | 2007-03-29 | Hitoshi Miyashita | Method and apparatus for switching regulator capable of quick feedback from load |
| US20080252280A1 (en) * | 2007-04-10 | 2008-10-16 | Aleksandar Prodic | Continuous-time digital controller for high-frequency dc-dc converters |
| WO2008140734A1 (en) * | 2007-05-08 | 2008-11-20 | International Rectifier Corporation | Digital pwm modulator with fast dynamic response and fine resolution |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201225541A (en) | 2012-06-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5550640B2 (en) | Power converter monitoring and control | |
| US9190909B2 (en) | Control device for multiphase interleaved DC-DC converter and control method thereof | |
| US10673328B2 (en) | Inverse charge current mode (IQCM) control for power converter | |
| JP6024188B2 (en) | Power supply control circuit | |
| US9035633B1 (en) | Switching power converter control | |
| US20150326120A1 (en) | Method for controlling a dc-to-dc converter | |
| US7570037B2 (en) | Hybrid control methods for digital pulse width modulator (DPWM) | |
| JP2022543418A (en) | Digital Controller for High Performance Multiphase VRMs with Current Balancing and Near-Ideal Transient Response | |
| TW201401007A (en) | Switching converter and its controlling circuit and method | |
| EP4008050B1 (en) | Digital zero-current switching lock-in controller ic for optimized operation of resonant switched-capacitor converters (sccs) | |
| US20090015231A1 (en) | Digital pwm modulator with fast dynamic response and fine resolution | |
| TW201644161A (en) | Switched power converter with improved synchronization of a pulse width modulation switching frequency | |
| WO2010083202A1 (en) | Sensor-less operation and detection of ccm and dcm operation modes in synchronous switching power converters | |
| CN102859461A (en) | Digital control method for improving heavy-to-light (buck) load transient response of a switched mode power supply | |
| CN103633831B (en) | Control circuit, time calculation unit and control circuit operation method | |
| US11356019B2 (en) | Method, system and apparatus for constant, high switching frequency and narrow duty ratio PWM control of DC-DC converters and accurate PFM control at light load | |
| CN112117889B (en) | Adaptive slope compensation method for digital control power converter | |
| CN103109459A (en) | Method and system based on glue logic for minimizing losses in oversampled digitally controlled DC-DC converters | |
| Zhao et al. | Limit-cycle based auto-tuning system for digitally controlled low-power SMPS | |
| US7388358B2 (en) | Method and apparatus for a pulse width modulated DC-DC converter | |
| CN101938278B (en) | High-performance numerical control conversion circuit and method thereof | |
| Yu et al. | Pulse phase shift based low-frequency oscillation suppression for PT controlled CCM buck converter | |
| CN103607104A (en) | Sine wave modulation circuit and sine wave modulation method | |
| WO2025256209A1 (en) | High current-sharing accuracy and high dynamic constant on-time control system and method for multiphase buck converter | |
| TWI462480B (en) | High performance of fully-digitally controlled pwm converters |