TWI462053B - Method and apparatus for image processing - Google Patents
Method and apparatus for image processing Download PDFInfo
- Publication number
- TWI462053B TWI462053B TW099145926A TW99145926A TWI462053B TW I462053 B TWI462053 B TW I462053B TW 099145926 A TW099145926 A TW 099145926A TW 99145926 A TW99145926 A TW 99145926A TW I462053 B TWI462053 B TW I462053B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- diffusion
- node
- image processing
- original
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 140
- 238000003672 processing method Methods 0.000 claims description 94
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000004088 simulation Methods 0.000 claims description 9
- 238000003706 image smoothing Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- 238000012795 verification Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000009499 grossing Methods 0.000 description 5
- 230000011218 segmentation Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Image Processing (AREA)
Description
本發明是一種經由電路模型模擬操作來進行影像處理的方法,實施例包括深度資料產生、影像平滑化及影像解析度縮放之相關影像處理操作。The present invention is a method for performing image processing via a circuit model simulation operation, and embodiments include image processing operations related to depth data generation, image smoothing, and image resolution scaling.
在科技發展日新月異的現今時代中,立體影像多媒體系統逐漸被業界所重視。一般來說,在立體影像/視訊的應用中,如何將單視域之二維(Two Dimensional,2D)影像內容轉三維(Three Dimensional,3D)立體影像及雙視域影像比對(Stereo Matching)等影像處理技術,一直是目前業界急需開發的立體影像核心技術。In today's fast-changing technology era, stereoscopic multimedia systems are gradually being valued by the industry. In general, in the application of stereoscopic video/video, how to convert two Dimensional (2D) image content into three-dimensional (Three Dimensional, 3D) stereo image and two-view image matching (Stereo Matching) Image processing technology has always been the core technology of stereoscopic imaging that is urgently needed in the industry.
在現有技術中,2D轉3D技術係將傳統單視域影像轉換成多視角的內容,藉此提供使用者提供的立體影像內容;而雙視域影像比對技術係先根據雙視域影像計算出深度圖,進而根據深度影像繪圖法(Depth Image Based Rendering,DIBR)來產生多視角影像。In the prior art, the 2D to 3D technology converts a traditional single-view image into a multi-view content, thereby providing a stereoscopic image content provided by the user; and the dual-view image comparison technology is first calculated based on the dual-view image. The depth map is generated, and then the multi-view image is generated according to Depth Image Based Rendering (DIBR).
一般來說,深度資料之準確性對立體影像資料之品質具有決定性之影響。據此,如何設計出可產生準確更高之深度資料的影像處理方法為業界不斷致力的方向之一。In general, the accuracy of depth data has a decisive influence on the quality of stereoscopic image data. Accordingly, how to design an image processing method that can generate accurate and higher depth data is one of the directions that the industry is constantly striving for.
根據本發明之第一方面提出一種影像處理方法,包括下列之步驟。首先接收包括多筆原始資料之輸入資料。接著對原始資料進行轉換產生多筆轉換仿電壓訊號。然後建立至少一模擬電路模型,其中包括至少一空間資料節點、至少一擴散節點及至少一連接元件,至少一連接元件耦合至至少一空間資料節點及至少一擴散節點其中之部分或全部。接著將轉換仿電壓訊號其中之部分或全部提供至至少一擴散節點,並經由至少一連接元件將轉換仿電壓訊號其中之部分或全部擴散至至少一擴散節點,以於至少一擴散節點得到至少一筆擴散仿電壓訊號。之後根據至少一筆擴散仿電壓訊號產生處理後影像資料。According to a first aspect of the present invention, an image processing method is provided, comprising the following steps. First, input data including multiple pieces of original data is received. Then the original data is converted to generate multiple converted analog voltage signals. At least one analog circuit model is then formed, including at least one spatial data node, at least one diffusion node, and at least one connection element, the at least one connection element being coupled to at least one of the spatial data nodes and at least one of the diffusion nodes. And then supplying part or all of the converted analog voltage signal to the at least one diffusion node, and diffusing part or all of the converted analog voltage signal to the at least one diffusion node via the at least one connection element to obtain at least one diffusion node Diffusion of imitation voltage signals. The processed image data is then generated based on at least one of the diffused imitation voltage signals.
根據本發明之第二方面提出一種影像處理裝置,包括輸入單元、轉換單元、模擬單元及控制單元。輸入單元接收包括多筆原始資料之輸入資料。轉換單元對原始資料轉換產生多筆轉換仿電壓訊號。模擬單元建立至少一模擬電路模型,其中包括至少一資料節點、至少一擴散節點及至少一連接元件,至少一連接元件耦合至至少一空間資料節點及至少一擴散節點其中之部分或全部。控制單元將轉換仿電壓訊號其中之部分或全部提供至至少一擴散節點,並經由該至少一連接元件將轉換仿電壓訊號其中之部分或全部擴散至至少一擴散節點,以於至少一擴散節點得到至少一筆擴散仿電壓訊號。模擬單元根據至少一筆擴散仿電壓訊號產生處理後影像資料。According to a second aspect of the present invention, an image processing apparatus includes an input unit, a conversion unit, an analog unit, and a control unit. The input unit receives input data including a plurality of original materials. The conversion unit generates a plurality of converted analog voltage signals for the original data conversion. The analog unit establishes at least one analog circuit model including at least one data node, at least one diffusion node, and at least one connection element, the at least one connection element being coupled to at least one of the spatial data node and at least one of the diffusion nodes. The control unit provides part or all of the converted analog voltage signal to the at least one diffusion node, and diffuses part or all of the converted analog voltage signal to the at least one diffusion node via the at least one connection element to obtain the at least one diffusion node At least one diffused imitation voltage signal. The analog unit generates the processed image data according to at least one of the diffused imitation voltage signals.
為了對本實施例之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present embodiments, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
本實施例之影像處理裝置及方法係應用電路模型模擬操作來進行相關之影像處理操作。The image processing apparatus and method of the present embodiment apply a circuit model simulation operation to perform related image processing operations.
請參照第1圖,其繪示依照本發明實施例之影像處理方法的流程圖。本實施例之影像處理方法包括下列之步驟。首先如步驟(a),接收包括多筆原始資料之輸入資料Di。接著如步驟(b),對原始資料進行轉換以產生多筆轉換仿電壓訊號v。然後如步驟(c),建立至少一模擬電路模型,其中包括至少一空間資料節點、至少一擴散節點及至少一連接元件,其中此至少一連接元件耦合於此至少一空間資料節點及此至少一擴散節點之間。Please refer to FIG. 1 , which is a flowchart of an image processing method according to an embodiment of the invention. The image processing method of this embodiment includes the following steps. First, as step (a), the input data Di including a plurality of original materials is received. Then, as in step (b), the original data is converted to generate a plurality of converted analog voltage signals v. And then, as in step (c), establishing at least one analog circuit model, including at least one spatial data node, at least one diffusion node, and at least one connecting component, wherein the at least one connecting component is coupled to the at least one spatial data node and the at least one Between the diffusion nodes.
接著如步驟(d),將轉換仿電壓訊號v其中之部分或全部提供至至少一擴散節點,並經由至少一連接元件將轉換仿電壓訊號其中之部分或全部擴散至至少一擴散節點,以於至少一擴散節點得到至少一筆擴散仿電壓訊號v_diff。之後如步驟(e),根據至少一筆擴散仿電壓訊號v_diff產生處理後影像資料o。And then, according to step (d), supplying part or all of the converted analog voltage signal v to the at least one diffusion node, and diffusing part or all of the converted analog voltage signal to the at least one diffusion node via the at least one connecting component. At least one diffusion node obtains at least one diffused analog voltage signal v_diff. Then, in step (e), the processed image data o is generated according to at least one of the diffused imitation voltage signals v_diff.
接下來,係列舉若干實施例,來對本實施例之影像處理方法做進一步的說明。Next, a series of embodiments will be taken to further explain the image processing method of this embodiment.
本實施例之影像處理方法係應用在二維(Two Dimensional,2D)轉三維(Three Dimensional,3D)技術中,用以根據初始深度資料來產生深度分佈資料。The image processing method of the embodiment is applied to a two-dimensional (2D) three-dimensional (3D) technique for generating depth distribution data according to initial depth data.
請參照第2圖,其繪示依照本發明第一實施例之輸入資料的示意圖。本實施例之影像處理方法根據輸入資料Di產生深度分佈資料Do。舉例來說,輸入資料Di包括m×n筆原始資料Di(1,1)、Di(1,2)、Di(1,3)、…、Di(m,n),其中m及n為大於1之自然數。輸入資料Di與顯示於顯示器中之影像資料DV對應,影像資料DV包括m×n筆畫素資料I(1,1)、I(1,2)、…、I(m,n),其中m×n筆原始資料Di(1,1)-Di(m,n)分別對應至顯示於顯示器中之m×n個畫素的m×n筆畫素資料I(1,1)-I(m,n)。在本實施例中,輸入資料Di為對應至影像資料DV之初始深度資料,各m×n筆原始資料Di(1,1)-Di(m,n)之數值分別指示各m×n筆畫素資料對應之深度;深度分佈資料Do則為根據影像資料DV之初始深度資料所產生之精細度較高之深度分佈資料。Please refer to FIG. 2, which is a schematic diagram of input data according to a first embodiment of the present invention. The image processing method of this embodiment generates the depth distribution data Do based on the input data Di. For example, the input data Di includes m×n pen original data Di(1,1), Di(1,2), Di(1,3), . . . , Di(m,n), where m and n are greater than The natural number of 1. The input data Di corresponds to the image data DV displayed in the display, and the image data DV includes m×n pen element data I(1,1), I(1,2), . . . , I(m,n), where m× The n-th original data Di(1,1)-Di(m,n) respectively correspond to m×n-pixel data I(1,1)-I(m,n) of m×n pixels displayed in the display. ). In this embodiment, the input data Di is the initial depth data corresponding to the image data DV, and the values of the m×n pen original data Di(1,1)-Di(m,n) respectively indicate the m×n pen pixels. The depth corresponding to the data; the depth distribution data Do is the depth distribution data with higher fineness generated according to the initial depth data of the image data DV.
據此,本實施例之影像處理方法係被應用來根據二維(Two Dimensional,2D)影像資料DV及初始深度資料產生三維(Three Dimensional,3D)立體影像資料,換言之,即是進行2D影像內容轉3D立體影像之處理操作。Accordingly, the image processing method of the present embodiment is applied to generate three-dimensional (3D) stereoscopic image data according to two-dimensional (2D) image data DV and initial depth data, in other words, to perform 2D image content. Transfer processing of 3D stereoscopic images.
舉例來說,原始資料Di(1,1)-Di(m,n)分別包括mxn筆8位元資料,換言之,各筆原始資料Di(1,1)-Di(m,n)具有介於0-255的數位值。當各原始資料Di(1,1)-Di(m,n)對應至較大之數位值時,表示對應之畫素資料I(1,1)-I(m,n)具有較淺之深度;當各原始資料Di(1,1)-Di(m,n)對應至較小之數位值時,表示對應之畫素資料I(1,1)-I(m,n)具有較深之深度。For example, the original data Di(1,1)-Di(m,n) respectively includes mxn pen 8-bit data, in other words, each piece of original data Di(1,1)-Di(m,n) has a A numeric value from 0-255. When the original data Di(1,1)-Di(m,n) corresponds to a larger digit value, it indicates that the corresponding pixel data I(1,1)-I(m,n) has a shallow depth. When each of the original data Di(1,1)-Di(m,n) corresponds to a smaller digit value, it indicates that the corresponding pixel data I(1,1)-I(m,n) has a deeper depth.
請參照第3圖,其繪示依照本發明第一實施例之影像處理方法的流程圖。首先如步驟(a),接收對應至影像資料DV之初始深度資料,並以其中之m×n筆畫素深度資料做為m×n筆原始資料Di(1,1)-Di(m,n)。接著如步驟(b),對各m×n筆原始資料Di(1,1)-Di(m,n)進行轉換,以對應至m×n筆原始資料Di(1,1)-Di(m,n)分別產生m×n筆轉換仿電壓訊號SV(1,1)、SV(1,2)、…、SV(m,n)。舉例來說,步驟(b)之轉換步驟係直接以各筆原始資料Di(1,1)-Di(m,n)之數位值做為各筆轉換仿電壓訊號SV(1,1)-SV(m,n)的數位電壓值。Please refer to FIG. 3, which is a flow chart of an image processing method according to a first embodiment of the present invention. First, as step (a), the initial depth data corresponding to the image data DV is received, and the m×n pen pixel depth data is used as the m×n pen original data Di(1,1)-Di(m,n). . Then, as in step (b), each m×n pen original data Di(1,1)-Di(m,n) is converted to correspond to the m×n pen original data Di(1,1)-Di(m). , n) respectively generate m×n pen-converted analog voltage signals SV(1,1), SV(1,2), . . . , SV(m,n). For example, the conversion step of step (b) directly uses the digital value of each piece of original data Di(1,1)-Di(m,n) as the converted analog voltage signal SV(1,1)-SV. The digital voltage value of (m, n).
接著如步驟(c),建立包括至少一空間資料節點、至少一擴散節點及至少一連接元件之模擬電路模型M。在一個操作實例中,模擬電路模型M如第5圖所示,包括m×n個具有相近電路結構之子電路模型M(1,1)、M(1,2)、…、M(m,n),其分別對應至m×n筆原始資料Di(1,1)-Di(m,n)。由於各m×n個子電路模型具有相近之電路結構,接下來,僅以模擬電路模型中對應至原始資料Di(i,j)之子電路模型M(i,j)為例,來對模擬電路模型M中各個子電路模型M(1,1)-M(m,n)做進一步的說明,其中i與j分別為小於或等於m之自然數及小於或等於n之自然數。Next, as in step (c), an analog circuit model M including at least one spatial data node, at least one diffusion node, and at least one connecting element is established. In an operation example, the analog circuit model M, as shown in Fig. 5, includes m × n sub-circuit models M(1, 1), M(1, 2), ..., M(m, n) having similar circuit structures. ), which respectively correspond to m×n pen original data Di(1,1)-Di(m,n). Since each m×n sub-circuit model has a similar circuit structure, next, the sub-circuit model M(i, j) corresponding to the original data Di(i, j) in the analog circuit model is taken as an example to simulate the circuit model. Each sub-circuit model M(1,1)-M(m,n) in M is further described, wherein i and j are natural numbers less than or equal to m and natural numbers less than or equal to n, respectively.
請參照第4圖,其繪示依照本發明第一實施例之子電路模型M(i,j)的電路圖。子電路模型M(i,j)包括空間資料節點NS(i,j)、擴散節點ND(i,j)、空間資料連接元件RS及z個擴散連接元件RD1、RD2、…、RDz,其中z為自然數,其中空間資料連接元件RS及擴散連接元件RD1-RDz例如為電阻模型元件。在步驟(c)中,空間資料連接元件RS被耦合於空間資料節點NS(i,j)及擴散節點ND(i,j)之間,各z個擴散連接元件RD1-RDz之一端被耦合至擴散節點ND(i,j),另一端耦合至一個模擬電路模型M中另一個子電路模型之擴散節點上。Referring to FIG. 4, a circuit diagram of a sub-circuit model M(i, j) according to a first embodiment of the present invention is shown. The sub-circuit model M(i,j) includes a spatial data node NS(i,j), a diffusion node ND(i,j), a spatial data connection element RS, and z diffusion connection elements RD1, RD2, . . . , RDz, where z It is a natural number, wherein the spatial data connection element RS and the diffusion connection elements RD1 - RDz are, for example, resistance model elements. In the step (c), the spatial data connection element RS is coupled between the spatial data node NS(i,j) and the diffusion node ND(i,j), and one of the z diffusion connection elements RD1-RDz is coupled to The diffusion node ND(i,j) is coupled to a diffusion node of another sub-circuit model in the analog circuit model M.
以第4圖之例子來說,z等於4;而在步驟(c)中,擴散連接元件RD1-RD4之另一端分別被耦合至子電路模型M(i-1,j)、M(i,j-1)、M(i,j+1)及M(i+1,j)中之擴散節點ND(i-1,j)、ND(i,j-1)、ND(i,j+1)及ND(i+1,j)。同理可推,於步驟(c)中將m×n個子電路模型M(1,1)-M(m,n)中所有之m×n個擴散節點ND(1,1)-ND(m,n)經由對應之擴散連接元件相互連接,使得模擬電路模型M中各子電路模型M(1,1)-M(m,n)彼此串聯形成一個節點與電阻網路,如第5圖所示。In the example of Fig. 4, z is equal to 4; and in step (c), the other ends of the diffusion connecting elements RD1-RD4 are respectively coupled to the sub-circuit models M(i-1, j), M(i, J-1), M(i, j+1) and diffusion nodes ND(i-1,j), ND(i,j-1), ND(i,j+) in M(i+1,j) 1) and ND(i+1,j). Similarly, in step (c), all m×n diffusion nodes ND(1,1)-ND(m) in m×n sub-circuit models M(1,1)-M(m,n) , n) are connected to each other via corresponding diffusion connection elements such that each sub-circuit model M(1,1)-M(m,n) in the analog circuit model M is connected in series to form a node and a resistance network, as shown in FIG. Show.
舉例來說,所有模擬電路模型M(1,1)-M(m,n)中之空間資料擴散連接元件RS(1,1)-RS(m,n)的電阻值為實質上相等,且為使用者給定之定值。For example, the resistance values of the spatial data diffusion connection elements RS(1,1)-RS(m,n) in all the analog circuit models M(1,1)-M(m,n) are substantially equal, and The set value given to the user.
舉例來說,模擬電路模型M(i,j)中各z個擴散連接元件RD1-RDz之電阻值ωdiffuse 滿足:For example, the resistance value ω diffuse of each z diffusion connection elements RD1-RDz in the analog circuit model M(i,j) satisfies:
其中α、β為預定參數;Ct 為原始資料Di(i,j)對應之畫素資料的顏色資訊;Cn 為各擴散連接元件RD1-RDz連接之擴散節點(即是ND(i-1,j)、ND(i,j-1)、ND(i,j+1)及ND(i+1,j))上,各筆原始資料對應之畫素資料的顏色資訊。舉例來說,畫素資料的顏色資訊Ct 及Cn 可由對應畫素資料中,各顏色次畫素資料之絕對值總和來得到。Where α and β are predetermined parameters; C t is the color information of the pixel data corresponding to the original data Di(i, j); C n is the diffusion node connected to each diffusion connecting element RD1-RDz (ie ND(i-1) , j), ND(i, j-1), ND(i, j+1), and ND(i+1, j)), the color information of the pixel data corresponding to each piece of original data. For example, the color information C t and C n of the pixel data can be obtained by summing the absolute values of the sub-pixel data of the respective pixels in the corresponding pixel data.
接著如步驟(d),將對應至m×n筆原始資料Di(1,1)-Di(m,n)之轉換仿電壓訊號SV(1,1)-SV(m,n)分別提供至m×n個空間資料節點NS(1,1)-NS(m,n),藉此經由模擬電路模型M中各空間資料連接元件及擴散連接元件間之電壓擴散操作驅動m×n個子電路模型M(1,1)-M(m,n)發生電壓位準重新分配,以於擴散節點ND(1,1)-ND(m,n)分別得到m×n筆擴散仿電壓訊號SVD(1,1)、SVD(1,2)、…、SVD(m,n)。Then, as in step (d), the converted pseudo-voltage signals SV(1,1)-SV(m,n) corresponding to the m×n pen original data Di(1,1)-Di(m,n) are respectively supplied to m×n spatial data nodes NS(1,1)-NS(m,n), thereby driving m×n sub-circuit models via voltage diffusion operations between spatial data connection elements and diffusion connection elements in the analog circuit model M M(1,1)-M(m,n) voltage level redistribution, so that the diffusion node ND(1,1)-ND(m,n) respectively obtains m×n pen diffusion-like voltage signal SVD(1 , 1), SVD (1, 2), ..., SVD (m, n).
之後如步驟(e),根據m×n筆擴散仿電壓訊號SVD(1,1)-SVD(m,n)產生深度分佈資料Do。Then, as in step (e), the depth profile data Do is generated from the m×n pen diffusion analog voltage signal SVD(1,1)−SVD(m,n).
在本實施例之影像處理方法中,雖僅以步驟(a)直接以各筆原始資料Di(1,1)-Di(m,n)之數位值做為各筆轉換仿電壓訊號SV(1,1)-SV(m,n)的數位電壓值的情形為例做說明,然,本實施例之影像處理方法並不侷限於此。In the image processing method of the present embodiment, only the step (a) directly uses the digital value of each of the original data Di(1,1)-Di(m,n) as the converted analog voltage signal SV (1). The case of the digital voltage value of 1)-SV(m, n) is taken as an example. However, the image processing method of the present embodiment is not limited thereto.
在其他例子中,當影像資料DV為動態視訊資料時,本實施例之影像處理方法亦可根據下列方程式,來執行根據原始資料Di(x,y)產生對應之轉換仿電壓訊號SV(x,y)之操作:In other examples, when the image data DV is a dynamic video data, the image processing method in this embodiment may also perform a corresponding converted analog voltage signal SV (x, according to the original data Di(x, y) according to the following equation. y) operation:
sv(x,y)=γ×Dipre (x,y)+(1-γ)×Di(x,y)Sv(x,y)=γ×Di pre (x,y)+(1-γ)×Di(x,y)
其中x及y分別為小於或等於m之自然數及小於或等於n之自然數;γ為預先給定之參數;Dipre (x,y)為對應至前一段圖框時間(Frame Time)之前一筆影像資料中,對應至畫素資料I(x,y)之深度資料;其中x及y分別為小於或等於m及小於或等於n之自然數。經由前述操作,本實施例之影像處理方法可以增強深度分佈資料Do之深度對比度。Where x and y are respectively a natural number less than or equal to m and a natural number less than or equal to n; γ is a predetermined parameter; Di pre (x, y) is a period corresponding to the previous frame time (Frame Time) In the image data, corresponding to the depth data of the pixel data I(x, y); wherein x and y are natural numbers less than or equal to m and less than or equal to n, respectively. Through the foregoing operation, the image processing method of the embodiment can enhance the depth contrast of the depth distribution data Do.
在再一個例子中,本實施例之影像處理方法亦可經由疊加一個強化電壓於空間資料節點NS(其原具有轉換仿電壓訊號SV)上,藉此達到強調移動物體深度之效果。舉例來說,本實施例之影像處理方法根據下列方程式,來執行疊加此強化電壓於空間資料節點NS上之操作:In still another example, the image processing method of this embodiment can also achieve the effect of emphasizing the depth of the moving object by superimposing an enhanced voltage on the spatial data node NS (which originally has the converted analog voltage signal SV). For example, the image processing method of this embodiment performs the operation of superimposing the enhanced voltage on the spatial data node NS according to the following equation:
SV(x,y)=Di(x,y)+min(δ,κ|Cpre (x,y)-Ccur (x,y)|)SV(x,y)=Di(x,y)+min(δ,κ|C pre (x,y)-C cur (x,y)|)
其中min(δ,κ|Cpre (x,y)-Ccur (x,y)|)即為欲疊加於轉換仿電壓訊號SV上之強化電壓值;κ為預先給定之參數;δ為此強化電壓值的上限值;Cpre (x,y)及Ccur (x,y)分別為前一段圖框時間跟目前圖框時間在(x,y)位置的畫素資料顏色。Where min(δ, κ|C pre (x, y)-C cur (x, y)|) is the enhanced voltage value to be superimposed on the converted pseudo-voltage signal SV; κ is a predetermined parameter; The upper limit value of the enhanced voltage value; C pre (x, y) and C cur (x, y) are the color of the pixel data at the (x, y) position of the previous frame time and the current frame time, respectively.
在本實施例中,雖僅以模擬電路模型M中包括與原始資料Di(1,1)-Di(m,n)數目實質上相同之子電路模型M(1,1)-M(m,n),並分別以子電路模型M(1,1)-M(m,n)上之資料節點NS(1,1)-NS(m,n)分別接收與原始資料Di(1,1)-Di(m,n)對應之轉換仿電壓訊號SV(1,1)-SV(m,n)的情形為例做說明,然,本實施例之影像處理方法並不侷限於此。在其他例子中,影像處理方法於步驟(c)中產生之模擬電路模型亦可包括數量不等於原始資料數目之子電路模型;對應地,使用者亦可經由使部份之資料節點為浮接狀態(Floating)或捨棄部份原始資料的手段來將原始資料Di(1,1)-Di(m,n)其中之部分或全部輸入至模擬電路模型M中,藉此經由相似之操作來得到處理後影像資料。In the present embodiment, the sub-circuit model M(1,1)-M(m,n) including the number of the original data Di(1,1)-Di(m,n) is substantially included in the analog circuit model M. ), and respectively receive the data data NS(1,1)-NS(m,n) on the sub-circuit model M(1,1)-M(m,n) and the original data Di(1,1)- The case of converting the imitation voltage signal SV(1,1)-SV(m,n) corresponding to Di(m,n) is taken as an example. However, the image processing method of the embodiment is not limited thereto. In other examples, the analog circuit model generated by the image processing method in the step (c) may also include a sub-circuit model whose number is not equal to the number of original data; correspondingly, the user may also make the data node of the portion be in a floating state. (Floating) or means of discarding part of the original data to input part or all of the original data Di(1,1)-Di(m,n) into the analog circuit model M, thereby being processed by a similar operation Post-image data.
本實施例之影像處理方法係應用在雙視域影像比對(Stereo Matching)技術中,用以根據第一及第二視角影像資料來產生深度分佈資料。The image processing method of this embodiment is applied to the dual-view image matching (Stereo Matching) technology for generating depth distribution data according to the first and second viewing angle image data.
請參照第6圖,其繪示依照本發明第二實施例之輸入資料的示意圖。在本實施例中,輸入資料Di’為對應至第一視角影像資料DvL及第二視角影像資料DvR的視差資料,深度分佈資料Do’為對應至第一或第二視角影像資料DvL及DvR的深度分佈資料。據此,本實施例之影像處理方法係被應用來根據第一及第二視角影像資料DvL及DvR的視差資料產生對應之深度分佈資料,換言之,即是進行雙視域影像比對操作。Please refer to FIG. 6, which is a schematic diagram of input data according to a second embodiment of the present invention. In this embodiment, the input data Di' is parallax data corresponding to the first view image data DvL and the second view image data DvR, and the depth distribution data Do' is corresponding to the first or second view image data DvL and DvR. Depth distribution data. Accordingly, the image processing method of the present embodiment is applied to generate corresponding depth distribution data according to the parallax data of the first and second viewing angle image data DvL and DvR, in other words, to perform dual-view image comparison operation.
更詳細的說,第二實施例之影像處理方法與第一實施例之影像處理方法不同之處在於其中之步驟(a’)更包括如第7A及7B圖所示之子步驟。首先如步驟(a1),接收第一視角影像資料及第二視角影像資料DvL及DvR。舉例來說,第一及此第二視角影像資料DvL及DvR分別為對應至左眼視角及右眼視角之影像資料。In more detail, the image processing method of the second embodiment is different from the image processing method of the first embodiment in that the step (a') further includes sub-steps as shown in Figs. 7A and 7B. First, as in step (a1), the first view image data and the second view image data DvL and DvR are received. For example, the first and second viewing angle image data DvL and DvR are image data corresponding to the left eye viewing angle and the right eye viewing angle, respectively.
接著如步驟(a2),決定w筆水平視差值Dx1、Dx2、…、Dxw,並在第一視角影像資料DvL相對於第二視角影像資料DvR具有第k筆水平視差值Dxk時,找出第一視角影像資料DvL與第二視角影像資料DvR之第一原始相異度資料(Disparity)DIS_k,k為影像比對視窗之索引,其值係為大於或等於1且小於或等於w之自然數。舉例來說,第一原始相異度資料DIS_k包括m×n筆原始畫素相異度資料DIS(1,1,Dxk)、DIS(1,2,Dxk)、…、DIS(m,n,Dxk),其中步驟(a2)係經由下列方程式運算,來找出第一原始相異度資料DIS_k之各m×n筆原始畫素相異度資料DIS(1,1,Dxk)-DIS(m,n,Dxk):Then, as step (a2), the w horizontal disparity values Dx1, Dx2, ..., Dxw are determined, and when the first view image data DvL has the kth horizontal disparity value Dxk with respect to the second view image data DvR, The first original disparity data (Disparity) DIS_k, k of the first view image data DvL and the second view image data DvR is an index of the image comparison window, and the value is greater than or equal to 1 and less than or equal to w Natural number. For example, the first original dissimilarity data DIS_k includes m×n original pixel dissimilarity data DIS(1,1, Dxk), DIS(1, 2, Dxk), ..., DIS(m, n, Dxk), wherein step (a2) is to find each m×n original pixel dissimilarity data DIS(1,1,Dxk)-DIS(m) of the first original dissimilarity data DIS_k by the following equation operation ,n,Dxk):
其中x及y分別為小於或等於m之自然數及小於或等於n之自然數。Where x and y are respectively a natural number less than or equal to m and a natural number less than or equal to n.
然後如步驟(a3),以第一原始相異度資料DIS_k做為輸入資料Di’,其中m×n筆原始資料Di’(1,1)-Di’(m,n)為第一原始相異度資料DIS_k中,分別對應至m×n個畫素I(1,1)-I(m,n)之m×n筆第一原始畫素相異度資料DIS(1,1,Dxk)-DIS(m,n,Dxk)。Then, as in step (a3), the first original dissimilarity data DIS_k is used as the input data Di', wherein the m×n pen original data Di'(1,1)-Di'(m,n) is the first original phase. In the heterogeneous data DIS_k, the first original pixel dissimilarity data DIS(1,1, Dxk) corresponding to m×n pixels I(1,1)-I(m,n) respectively -DIS(m,n,Dxk).
本實施例之影像處理方法於步驟(a3)之後係對應地執行分別與第3圖步驟(b)-(d)相似之步驟:(b’)對各m×n筆原始資料Di(1,1)-Di(m,n)進行轉換,以分別產生m×n筆轉換仿電壓訊號SV’(1,1)-SV’(m,n);(c’)對應至m×n筆原始資料Di(1,1)-Di(m,n)產生模擬電路模型M’,其中包括擴散節點ND’(1,1)-ND’(m,n)及對應之擴散連接元件連結形成之節點與電阻網路;及(d’)將轉換仿電壓訊號SV’(1,1)-SV’(m,n)分別提供至m×n個空間資料節點NS’(1,1)-NS’(m,n),並於m×n個子電路模型M’(1,1)-M’(m,n)之擴散節點ND’(1,1)-ND’(m,n)分別得到m×n筆擴散仿電壓訊號SVD’(1,1,Dxk)-SVD’(m,n,Dxk)。The image processing method of this embodiment performs steps corresponding to steps (b)-(d) of FIG. 3 correspondingly after step (a3): (b') for each m×n pen original data Di(1, 1) -Di(m,n) is converted to generate m×n pen-converted analog voltage signals SV'(1,1)-SV'(m,n); (c') corresponds to m×n original The data Di(1,1)-Di(m,n) generates an analog circuit model M', which includes the nodes formed by the diffusion nodes ND'(1,1)-ND'(m,n) and the corresponding diffusion connecting elements. And the resistor network; and (d') provide the converted analog voltage signal SV'(1,1)-SV'(m,n) to m×n spatial data nodes NS'(1,1)-NS', respectively (m,n), and obtain m from the diffusion nodes ND'(1,1)-ND'(m,n) of m×n sub-circuit models M′(1,1)-M′(m,n) ×n pen spreads the analog voltage signal SVD'(1,1,Dxk)-SVD'(m,n,Dxk).
舉例來說,本實施例之子電路模型M’(1,1)-M’(m,n)與第一實施例中之子電路模型M(1,1)-M(m,n)不同之處在於子電路模型M’(i,j)中之各z個擴散連接元件RD1’-RDz’之電阻值ωdiffuse 滿足:For example, the sub-circuit model M'(1,1)-M'(m,n) of the present embodiment is different from the sub-circuit model M(1,1)-M(m,n) in the first embodiment. The resistance value ω diffuse of each z diffusion connection elements RD1'-RDz' in the sub-circuit model M'(i,j) satisfies:
其中α、β、γ為預定參數;Gs (x,y)為平滑化操作後第一視角影像資料DvL之梯度值;Ct 為各該些原始資料對應之畫素資料的顏色資訊;Cn 為擴散連接元件RD1’-RDz’連接之子電路模型所接收之原始資料對應之畫素資料的顏色資訊。Wherein α, β, γ are predetermined parameters; G s (x, y) is a gradient value of the first view image data DvL after the smoothing operation; C t is the color information of the pixel data corresponding to each of the original materials; n is the color information of the pixel data corresponding to the original data received by the sub-circuit model connected by the diffusion connecting element RD1'-RDz'.
於步驟(d’)之後及步驟(e’)之前,本實施例之影像處理方法更包括步驟(f)、(g)及(h)。如步驟(f),判斷數值k是否將介於1到相異度尋找視窗參數w之間的自然數皆輪選過;若否,表示本實施例之影像處理方法尚未針對所有之w個水平視差值Dx1、Dx2、…、Dxw找出其對應之w筆第一原始畫素相異度資料DIS_1-DIS_w(與其對應之轉換仿電壓訊號及擴散仿電壓訊號)。據此執行步驟(g),以將參數k設定為介於1到相異度尋找視窗參數w之間尚未被輪選過的自然數,並重複步驟(a1)-(a3)之操作,以找出對應至下一個水平視差值之下一筆第一原始相異度資料DIS_k。After the step (d') and before the step (e'), the image processing method of the embodiment further includes steps (f), (g) and (h). In step (f), it is determined whether the value k is rounded up between 1 and the natural number between the dissimilarity search window parameters w; if not, it indicates that the image processing method of the embodiment has not been applied to all w levels. The disparity values Dx1, Dx2, ..., Dxw find the corresponding first original pixel dissimilarity data DIS_1-DIS_w (corresponding to the converted imitation voltage signal and the diffused imitation voltage signal). According to this, step (g) is performed to set the parameter k to a natural number between 1 and the dissimilarity finding window parameter w that has not been rounded, and repeat the operations of steps (a1)-(a3) to Find a first original dissimilarity data DIS_k corresponding to the next horizontal disparity value.
在找出下一筆第一原始相異度資料後,本實施例之影像處理方法亦對應地重複步驟(b’)-(d’)之操作,以產生對應至下一筆第一原始相異度資料之模擬電路模型M’,並得到對應至下一筆第一原始相異度資料之m×n筆擴散仿電壓訊號SVD’(1,1,Dxk)-SVD’(m,n,Dxk)。After finding the next first original dissimilarity data, the image processing method of the embodiment also repeats the operations of steps (b')-(d') correspondingly to generate the corresponding first original dissimilarity. The analog circuit model M' of the data is obtained, and the m×n pen diffusion-like voltage signal SVD'(1,1, Dxk)-SVD'(m, n, Dxk) corresponding to the next first original dissimilarity data is obtained.
以上針對所有之w個水平視差值Dx1、Dx2、…、Dxw找出其對應之w筆第一原始畫素相異度資料DIS_1-DIS_w的部分或是全部處理流程亦可以用平行處理方式進行。The above part or all of the processing processes for all the w horizontal disparity values Dx1, Dx2, ..., Dxw to find the corresponding w original first pixel disparity data DIS_1-DIS_w may also be processed in parallel processing. .
當介於1到相異度尋找視窗參數w之間的自然數所對應的數值k皆完成處理時,表示本實施例之影像處理方法已針對所有w個水平視差值Dx1-Dxw找出對應之w筆第一原始相異度資料DIS_1-DIS_w,換言之,即是對應地找出w×m×n筆第一原始畫素相異度資料DIS(1,1,Dx1)-DIS(m,n,Dx1)、DIS(1,1,Dx2)-DIS(m,n,Dx2)…DIS(1,1,Dxw)-DIS(m,n,Dxw)。據此本實施例之影像處理方法執行步驟(h),以對應至各m×n筆原始資料Di(1,1)-Di(m,n)找出w筆擴散仿電壓訊號。以m×n筆原始資料Di(1,1)-Di(m,n)中之第(i,j)筆原始資料Di(i,j)為例來說,其係對應至下列w筆擴散仿電壓訊號SVD’(i,j,Dx1)、SVD’(i,j,Dx2)、SVD’(i,j,Dx3)、…、SVD’(i,j,Dxw)。When the value k corresponding to the natural number between the dissimilarity finding window parameter w is completed, it indicates that the image processing method of the embodiment has found corresponding correspondence for all w horizontal disparity values Dx1-Dxw. The first original dissimilarity data DIS_1-DIS_w, in other words, correspondingly finds the first original pixel dissimilarity data DIS(1,1,Dx1)-DIS(m, w×m×n n, Dx1), DIS(1,1, Dx2)-DIS(m,n,Dx2)...DIS(1,1,Dxw)-DIS(m,n,Dxw). According to the image processing method of this embodiment, step (h) is performed to find the w-split-like analog voltage signal corresponding to each m×n pen original data Di(1,1)-Di(m,n). Taking the (i,j) original data Di(i,j) of the m×n pen original data Di(1,1)-Di(m,n) as an example, the system corresponds to the following w pen diffusion. Imitation voltage signals SVD'(i,j,Dx1), SVD'(i,j,Dx2), SVD'(i,j,Dx3),...,SVD'(i,j,Dxw).
對應地,本實施例之影像處理方法之步驟(e’)中包括步驟(e1),以找出各m×n筆原始資料Di’(1,1)-Di’(m,n)對應之w筆擴散仿電壓訊號中,具有最小電壓值之最低擴散仿電壓訊號SVDmin (1,1)-SVDmin (m,n),藉此找出深度分佈資料Do中,分別與原始資料Di’(1,1)-Di’(m,n)對應之輸出畫素相異度資料Do’(1,1)、Do’(1,2)、…、Do’(m,n)。以m×n筆原始資料Di(1,1)-Di(m,n)中之第(i,j)筆原始資料Di(i,j)為例來說,步驟(e1)之操作可以下列方程式表示:Correspondingly, the step (e') of the image processing method of the embodiment includes the step (e1) to find that each m×n pen original data Di′(1,1)-Di′(m,n) corresponds to In the pen-split-like voltage signal, the lowest-diffused pseudo-voltage signal SVD min (1,1)-SVD min (m,n) with the smallest voltage value is used to find the depth distribution data Do, respectively, with the original data Di'(1,1)-Di'(m,n) corresponds to the output pixel dissimilarity data Do'(1,1), Do'(1,2),...,Do'(m,n). Taking the (i,j) original data Di(i,j) of the m×n original data Di(1,1)-Di(m,n) as an example, the operation of the step (e1) may be as follows The equation represents:
據此,可對應地得到原始資料Di(i,j)對應之輸出畫素相異度資料Do’(i,j)。Accordingly, the output pixel dissimilarity information Do'(i, j) corresponding to the original data Di(i, j) can be correspondingly obtained.
在另一個例子中,步驟(e)中更包括步驟(e2),以根據最低擴散仿電壓訊號前後對應之3筆擴散仿電壓訊號產生一個二次方函數曲線,並以此二次方函數曲線之最小值來做找出精確度到小數點以下之輸出畫素相異度資料Do’(1,1)-Do’(m,n)。舉一個操作實例來說,第(i,j)筆原始資料Di(i,j)對應之輸出畫素相異度資料Do’(i,j)(即是最低擴散仿電壓訊號SVDmin (i,j))為對應至水平視差值Dx5之擴散仿電壓訊號SVD’(i,j,5)。步驟(e2)中之操作將對應至水平視差值Dx4、Dx5及Dx6之擴散仿電壓訊號SVD’(i,j,4)、SVD’(i,j,5)及SVD’(i,j,6)代入下列方程式中,以對應地找出參數a、b及c:In another example, the step (e) further includes a step (e2) for generating a quadratic function curve according to the three diffused imitation voltage signals corresponding to the front and rear of the lowest diffused analog voltage signal, and using the quadratic function curve The minimum value is used to find the output pixel dissimilarity data Do'(1,1)-Do'(m,n) with accuracy below the decimal point. For an example of operation, the output pixel difference data Do'(i,j) corresponding to the (i,j) original data Di(i,j) (ie, the lowest diffusion analog voltage signal SVD min (i) , j)) is a diffused analog voltage signal SVD'(i, j, 5) corresponding to the horizontal disparity value Dx5. The operation in step (e2) will correspond to the diffused analog voltage signals SVD'(i,j,4), SVD'(i,j,5) and SVD'(i,j) of the horizontal disparity values Dx4, Dx5 and Dx6. , 6) Substituting into the following equations to find the parameters a, b, and c correspondingly:
ax2 +bx+c=yAx 2 +bx+c=y
其中對應至原始資料Di(i,j)之輸出畫素相異度資料Do’(i,j)等於:The output pixel dissimilarity data Do'(i,j) corresponding to the original data Di(i,j) is equal to:
據此,依據前述步驟(a’)-(e’)、(f)-(h)之操作,本實施例之影像處理方法可對應地根據第一視角影像資料DvL(例如是左眼視角影像資料)相對於第二視角影像資料DvR(例如是右眼視角影像資料)之第一原始相異度資料DIS_1-DIS_w來產生深度分佈資料Do’。Accordingly, according to the operations of the foregoing steps (a')-(e'), (f)-(h), the image processing method of the embodiment may be correspondingly based on the first view image data DvL (for example, a left-eye view image) Data) The depth distribution data Do' is generated with respect to the first original dissimilarity data DIS_1-DIS_w of the second view image data DvR (for example, the right eye view image data).
在本實施例中,雖僅以本實施例之影像處理方法根據第一視角影像資料DvL相對於第二視角影像資料DvR之第一原始相異度資料DIS_1-DIS_w來產生深度分佈資料Do’的情形為例做說明,然,本實施例之影像處理方法並不侷限於此。在另一個例子中,本實施例之影像處理方法更可經由與前述實施例相近之操作,來對應地根據第二視角影像資料DvR(例如是右眼視角影像資料)相對於第一視角影像資料DvL(例如是左眼視角影像資料)之第二原始相異度資料DIS’_1-DIS’_w來產生深度分佈資料Do’。In the present embodiment, the depth distribution data Do' is generated based on the first original dissimilarity data DIS_1-DIS_w of the first view image data DvL with respect to the second view image data DvR only by the image processing method of the embodiment. The case is described as an example. However, the image processing method of this embodiment is not limited thereto. In another example, the image processing method in this embodiment can be correspondingly based on the second view image data DvR (for example, the right eye view image data) relative to the first view image data, according to operations similar to those of the foregoing embodiment. The second original dissimilarity data DIS'_1-DIS'_w of the DvL (for example, the left-eye viewing image data) is used to generate the depth distribution data Do'.
在再一個例子中,本實施例之影像處理方法更可經由比對第一視角影像資料DvL相較於第二視角影像資料DvR之深度分佈資料Do’及第二視角影像資料DvR相較於第一視角影像資料DvL之深度分佈資料Do"的一致性,來提升深度分佈資料的精準程度。舉例來說,針對第一視角深度分佈資料Do’及第二視角深度分佈資料Do"來說,係保留其中滿足下列方程式條件之輸出畫素相異度資料:In still another example, the image processing method of the embodiment can compare the depth distribution data Do′ and the second perspective image data DvR of the second perspective image data DvR with respect to the first perspective image data DvL. The consistency of the depth distribution data Do" of the image data DvL of one view image is used to improve the accuracy of the depth distribution data. For example, for the first view depth distribution data Do' and the second view depth distribution data Do" Keep the output pixel dissimilarity data in which the following equations are met:
換言之,即是僅留下深度分佈資料Do’中彼此一致之輸出畫素相異度資料。In other words, only the output pixel dissimilarity data which coincides with each other in the depth distribution data Do' is left.
對於不滿足前述方程式的輸出畫素相異度資料來說,可用任何影像補洞(Inpainting)技術將其資料補滿。本實例以其對應之輸出畫素相異度資料以其左右兩側位置最接近且滿足前述方程式(即是被保留下來)之輸出畫素相異度資料的最小值來取代。For the output pixel dissimilarity data that does not satisfy the above equation, any image fill-in (Inpainting) technique can be used to fill up the data. This example replaces the corresponding output pixel dissimilarity data with the minimum value of the output pixel dissimilarity data whose position on the left and right sides is closest and satisfies the above equation (ie, is retained).
在本實施例中,雖僅以影像處理方法於步驟(b’)所建立之m×n個子電路模型M’(1,1)-M’(m,n)具有如第3圖所示之電路結構的情形為例做說明,然,本實施例之影像處理方法並不侷限於此。在另一個例子中,在影像處理方法所建立之各m×n個子電路模型M"(1,1)-M"(m,n)中更包括時間資料節點及時間資料擴散連接元件。以模擬電路模型M"(1,1)-M"(m,n)中之第(i,j)個模擬電路模型M"(i,j)來說,其與第3圖所示之電路結構不同之處在於其更包括時間資料節點NT(i,j)及時間資料擴散連接元件RT(i,j),如第8圖所示。In the present embodiment, the m×n sub-circuit models M′(1,1)-M′(m,n) established in the step (b′) only by the image processing method have the same as shown in FIG. 3 . The case of the circuit structure is taken as an example. However, the image processing method of this embodiment is not limited thereto. In another example, each of the m×n sub-circuit models M′(1,1)-M”(m,n) established by the image processing method further includes a time data node and a time data diffusion connection element. In the analog circuit model M"(1,1)-M"(m,n), the (i,j)th analog circuit model M"(i,j), and the circuit shown in FIG. The structure is different in that it further includes a time data node NT(i, j) and a time data diffusion connecting element RT(i, j), as shown in FIG.
時間資料擴散連接元件RT(i,j)耦合於時間資料節點NT(i,j)及擴散節點ND(i,j)之間,而時間資料擴散連接元件RT(i,j)之電阻值ωtime 滿足:The time data diffusion connecting element RT(i,j) is coupled between the time data node NT(i,j) and the diffusion node ND(i,j), and the time data diffusion connecting element RT(i,j) has a resistance value ω Time meets:
其中λ、σ為預定參數;Ccur 為各原始資料於目前圖框時間中對應之畫素資料(例如是第一視角影像資料DvL中之各筆畫素資料)的顏色資訊;Cpre 為各原始資料於先前圖框時間中對應之畫素資料的顏色資訊。據此,本實施例之影像處理方法亦可參考相關於對應於前後不同圖框畫面之顏色資訊,來產生深度分佈資料Do’。Where λ and σ are predetermined parameters; C cur is the color information of the corresponding pixel data (for example, each of the first-view image data DvL) in the current frame time; C pre is the original The color information of the corresponding pixel data in the previous frame time. Accordingly, the image processing method of the embodiment may also generate the depth distribution data Do' by referring to the color information related to the different frame frames before and after.
另外,亦可應用諸如單眼線索資訊(Monocular Cues)(例如是線性透視(Linear Perspective)來輔助產生深度分佈資料Do’的操作。此外,半全域(Semi-global)及全域(Global)比對機制,諸如動態規劃(Dynamic Programming)或信任擴散機制(Belief Propagation)亦可被應用在本實施例之影像處理方法中,以提高第一及第二視角影像資料DvL及DvR之比對精確度。In addition, Monocular Cues (for example, Linear Perspective) can be applied to assist in the operation of generating the depth profile data Do'. In addition, semi-global and global alignment mechanisms are also used. For example, Dynamic Programming or Belief Propagation can also be applied to the image processing method of the embodiment to improve the alignment accuracy of the first and second viewing angle image data DvL and DvR.
在本實施例中,雖僅以影像處理方法直接應用第一及第二視角影像資料DvL及DvR來進行相關比對操作的情形為例做說明,然,本實施例之影像處理方法並不侷限於此。在其他例子中,為了簡化整體資料運算量,本實施例之影像處理方法亦可在進行相關於第一及第二視角影像資料DvL及DvR之比對操作前先對其進行解析度縮減操作;換言之,即是根據解析度縮減後之第一及第二視角影像資料DvL及DvR來進行比對操作,並得到解析度較低之深度分佈資料。之後,在對深度分佈資料進行放大,藉此在資料運算量大幅縮減的情況下得到相同解析度之深度分佈資料。In this embodiment, the case where the first and second view image data DvL and DvR are directly applied by the image processing method to perform the correlation comparison operation is taken as an example. However, the image processing method in this embodiment is not limited. herein. In other examples, in order to simplify the overall amount of data calculation, the image processing method of this embodiment may perform a resolution reduction operation before performing the comparison operation on the first and second viewing angle image data DvL and DvR; In other words, the comparison operation is performed based on the first and second viewing angle image data DvL and DvR after the resolution is reduced, and the depth distribution data having a low resolution is obtained. Thereafter, the depth distribution data is enlarged to obtain depth distribution data of the same resolution when the amount of data calculation is greatly reduced.
舉例來說,本實施例前述針對深度分佈資料進行放大之操作可經由如第1圖所示之影像處理方法流程步驟來實現。在一個操作實例中,欲進行放大之深度分佈資料例如具有s×t筆原始資料,而其係欲放大為解析度等於s’×t’之放大深度分佈資料,其中s、t、s’及t’為大於1之自然數,且s及t分別滿足:s<s’及t<t’。在這操作實例中,本實施例之影像處理方法係經由產生包括s×t個資料節點及s’×t’個擴散節點之模擬電路模型,並經由電壓擴散操作於s’×t’個擴散節點得到s’×t’筆擴散節點擴散仿電壓訊號。據此,經由前述電路模擬操作,本實施例之影像處理方法亦可對應地進行資料解析度放大操作。For example, the foregoing operation for amplifying the depth distribution data in the embodiment may be implemented by the image processing method flow step as shown in FIG. 1. In an operation example, the depth distribution data to be amplified has, for example, s×t pen original data, and is intended to be enlarged into an enlarged depth distribution data having a resolution equal to s′×t′, where s, t, s′ and t' is a natural number greater than 1, and s and t satisfy: s<s' and t<t', respectively. In this example of operation, the image processing method of the present embodiment generates an analog circuit model including s×t data nodes and s′×t′ diffusion nodes, and operates on s′×t′ diffusion via voltage diffusion. The node obtains the s'×t' pen diffusion node to diffuse the imitation voltage signal. Accordingly, the image processing method of the embodiment can also perform the data resolution amplification operation correspondingly through the foregoing circuit simulation operation.
本實施例之影像處理方法根據使用者輸入的資料來產生影像對應的深度分佈資料。與第一及第二實施例不同之處在於本實施例之影像處理方法更可提供一使用者介面來接收使用者提供之使用者操作事件;而本實施例之影像處理方法參考使用者提供之使用者操作事件,選擇性地增減m×n個子電路模型中部份之節點及擴散連接元件,或選擇性地設定m×n個子電路模型中各空間資料節點對應之電壓訊號及擴散連接元件之阻值。另外,本實施例之影像處理方法更對應地分別驅動模擬電路模型發生對應之電壓位準重新分配,以於模擬電路模型之擴散節點上分別對應得到使用者控制之擴散仿電壓訊號。The image processing method of this embodiment generates depth distribution data corresponding to the image according to the data input by the user. The difference between the first embodiment and the second embodiment is that the image processing method of the embodiment further provides a user interface to receive a user operation event provided by the user; and the image processing method of the embodiment is provided by the user. The user operates the event to selectively increase or decrease the nodes and the diffusion connection elements of the m×n sub-circuit models, or selectively set the voltage signals and the diffusion connection elements corresponding to the spatial data nodes in the m×n sub-circuit models. Resistance value. In addition, the image processing method of the embodiment further correspondingly drives the voltage level re-allocation corresponding to the analog circuit model, so as to respectively obtain the user-controlled diffusion-like voltage signal on the diffusion node of the analog circuit model.
舉例來說,前述使用者介面可提供影像分割(Segmentation)影像處理工具以及筆刷工具。影像分割工具係回應於使用者觸發之使用者操作事件,選擇性地對輸入資料進行物件分割操作,以找出輸入資料中之物件分配資訊;筆刷工具則讓使用者可以選擇性指派數值資訊給對應的輸入資料。本實施例之影像處理方法更可在執行建立模擬電路模型之操作步驟(c)中,參考前述資訊來對資料節點或擴散節點進行增減,或對擴散連接元件及空間資料連接元件進行電阻值設定。For example, the aforementioned user interface can provide an image segmentation image processing tool and a brush tool. The image segmentation tool selectively performs an object segmentation operation on the input data in response to a user-triggered user operation event to find an object distribution information in the input data; the brush tool allows the user to selectively assign numerical information. Give the corresponding input data. The image processing method in this embodiment can further increase or decrease the data node or the diffusion node by referring to the foregoing information in the operation step (c) of performing the establishment of the analog circuit model, or perform resistance values on the diffusion connection component and the spatial data connection component. set up.
在一個操作實例中,於建立模擬電路模型之操作步驟(c)中,影像處理方法係先參考物件分配資訊來對擴散連接元件進行電阻值設定。當物件分配資訊指示兩個擴散結點屬於同一個物件分割時,本實施例之影像處理方法係使用與第一實施例相同之方法來對位於期間之擴散連接元件進行電阻值設定;當物件分配資訊指示兩個擴散節點屬於不同的物件分割時,本實施例之影像處理方法則對應地將其間之擴散連接元件之電阻值設為一個極大值,以確保分屬不同物件分割間之擴散節點間具有較低的電壓擴散情形。In an operation example, in the operation step (c) of establishing an analog circuit model, the image processing method first performs resistance value setting on the diffusion connection element with reference to the object allocation information. When the object allocation information indicates that the two diffusion nodes belong to the same object segmentation, the image processing method of the embodiment uses the same method as the first embodiment to set the resistance value of the diffusion connecting element during the period; when the object is allocated When the information indicates that the two diffusion nodes belong to different object segments, the image processing method in this embodiment correspondingly sets the resistance value of the diffusion connection element therebetween to a maximum value to ensure that the diffusion nodes between different object segments are separated. Has a lower voltage spread situation.
接著,於建立模擬電路模型之操作步驟(c)中,影像處理方法接著根據使用者所指派之(與特定擴散節點對應之)數值資料來建立資料節點及資料連接元件;相對地,針對使用者未指派任何原始資料之擴散節點來說,影像處理方法則不進行相關之資料節點及資料連接元件建立操作。據此,影像處理方法可於步驟(c)中參考前述參考物件分割資訊及使用者之數值資料指派資訊來建立對應之模擬電路模型,以進行相對應之影像處理操作。Then, in the operation step (c) of establishing the analog circuit model, the image processing method then establishes the data node and the data connection component according to the numerical data assigned by the user (corresponding to the specific diffusion node); For a diffusion node that does not assign any original data, the image processing method does not perform related data node and data connection component establishment operations. Accordingly, the image processing method may refer to the reference object segmentation information and the user's numerical data assignment information in step (c) to establish a corresponding analog circuit model for performing corresponding image processing operations.
本實施例之影像處理方法係應用在影像平滑化(Smooth)應用場合中,用以針對輸入影像資料產生平滑化影像資料。The image processing method of this embodiment is applied to an image smoothing (Smooth) application for generating smoothed image data for input image data.
本實施例之影像處理方法用以根據輸入資料Di"產生影像平滑化資料Do"。舉例來說,輸入資料Di"包括對應至m×n個畫素之m×n筆畫素資料I(1,1)-I(m,n),其中包括第一次畫素資料Isub1(1,1)-Isub1(m,n),而影像平滑化資料Do"包括對應至此m×n個畫素之m×n筆平滑化次畫素資料Ism1(1,1)-Ism1(m,n)。The image processing method of this embodiment is configured to generate image smoothing data Do" according to the input data Di". For example, the input data Di" includes m×n pen pixel data I(1,1)-I(m,n) corresponding to m×n pixels, including the first pixel data Isub1(1, 1) -Isub1(m,n), and the image smoothing data Do" includes the m×n pen smoothing sub-pixel data Ism1(1,1)-Ism1(m,n) corresponding to the m×n pixels .
請參照第9圖,其繪示依照本發明第四實施例之影像處理方法的流程圖。首先如步驟(a),接收m×n筆第一次畫素資料Isub1(1,1)-Isub1(m,n),並以其做為輸入資料。然後如步驟(b),對各m×n筆第一次畫素資料Isub1(1,1)-Isub1(m,n)進行轉換,以分別對應地產生m×n筆轉換仿電壓訊號SV(1,1)-SV(m,n)。Please refer to FIG. 9, which is a flowchart of an image processing method according to a fourth embodiment of the present invention. First, as step (a), the first pixel data Isub1(1,1)-Isub1(m,n) of the m×n pen is received and used as input data. Then, as in step (b), the first pixel data Isub1(1,1)-Isub1(m,n) of each m×n pen is converted to respectively generate an m×n pen-converted voltage signal SV ( 1,1)-SV(m,n).
接著如步驟(c),對應至m×n筆第一次畫素資料Isub1(1,1)-Isub1(m,n)產生模擬電路模型M’"。舉例來說,模擬電路模型M’"包括m×n個子電路模型M’"(1,1)-M’"(n,m),各m×n個模擬電路模型M’"(1,1)-M’"(n,m)包括資料節點NS、擴散節點ND、資料擴散連接元件RS及x個擴散連接元件RD1-RDx,資料擴散連接元件RS耦合於資料節點NS及擴散節點ND之間,各x個擴散連接元件RD之一端耦接至擴散節點ND,另一端耦接至m×n個子電路模型M’"(1,1)-M’"(m,n)中另一個子電路模型,其中x為自然數。Then, as in step (c), the first pixel data Isub1(1,1)-Isub1(m,n) corresponding to the m×n pen generates an analog circuit model M′”. For example, the analog circuit model M′” Including m × n sub-circuit models M'"(1,1)-M'"(n,m), each m×n analog circuit models M'"(1,1)-M'"(n,m) The data node NS, the diffusion node ND, the data diffusion connection element RS and the x diffusion connection elements RD1-RDx, the data diffusion connection element RS is coupled between the data node NS and the diffusion node ND, and one end of each of the x diffusion connection elements RD The other end is coupled to the diffusion node ND, and the other end is coupled to another sub-circuit model of the m×n sub-circuit models M′′(1,1)−M′′(m,n), where x is a natural number.
接著如步驟(d),將對應至各m×n筆第一次畫素資料Isub1(1,1)-Isub1(m,n)之轉換仿電壓訊號SV(1,1)-SV(m,n)提供至資料節點NS,以分別驅動m×n個子電路模型M’"(1,1)-M’"(m,n)發生電壓位準重新分配,以於m×n個子電路模型M’"(1,1)-M’"(n,m)之擴散節點ND分別得到m×n筆擴散仿電壓訊號SVD(1,1)-SVD(m,n)。Then, as in step (d), the converted pseudo-voltage signal SV(1,1)-SV(m, corresponding to the first pixel data Isub1(1,1)-Isub1(m,n) of each m×n pen is converted. n) supplied to the data node NS to drive voltage level re-distribution of m×n sub-circuit models M′"(1,1)-M'"(m,n), respectively, for m×n sub-circuit models M The diffusion node ND of '"(1,1)-M'"(n,m) respectively obtains an m×n pen-diffused pseudo-voltage signal SVD(1,1)-SVD(m,n).
之後如步驟(e),根據m×n筆擴散仿電壓訊號SVD(1,1)-SVD(m,n)產生包括m×n筆平滑化次畫素資料Ism1(1,1)-Ism1(m,n)之影像平滑化資料Do"。Then, as in step (e), the m×n pen-spreading pseudo-voltage signal SVD(1,1)-SVD(m,n) is generated to include the m×n pen smoothing sub-pixel data Ism1(1,1)-Ism1( m, n) image smoothing data Do".
在一個例子中,各m×n筆畫素資料I(1,1)-I(m,n)例如更分別包括第二次畫素資料及第三次畫素資料Isub2(1,1)-Isub2(m,n)及Isub3(1,1)-Isub3(m,n),而本實施例之影像處理方法更例如經由與前述步驟(a)-(e)實質上相近之操作步驟來找出其對應之平滑化次畫素資料Ism2(1,1)-Ism2(m,n)及Ism3(1,1)-Ism(m,n)。In one example, each m×n pen pixel data I(1,1)-I(m,n) includes, for example, a second pixel data and a third pixel data Isub2(1,1)-Isub2, respectively. (m, n) and Isub3(1,1)-Isub3(m,n), and the image processing method of the present embodiment is further found, for example, via substantially similar operational steps to steps (a)-(e) above. Corresponding smoothing sub-pixel data Ism2(1,1)-Ism2(m,n) and Ism3(1,1)-Ism(m,n).
舉例來說,本實施例前述針對深度分佈資料進行放大之操作可經由如第1圖所示之影像處理方法流程步驟來實現。在一個操作實例中,欲進行放大之深度分佈資料例如具有s×t筆原始資料,而其係欲放大為解析度等於s’×t’之放大深度分佈資料,其中s、t、s’及t’為大於1之自然數,且s及t分別滿足:s<s’及t<t’。For example, the foregoing operation for amplifying the depth distribution data in the embodiment may be implemented by the image processing method flow step as shown in FIG. 1. In an operation example, the depth distribution data to be amplified has, for example, s×t pen original data, and is intended to be enlarged into an enlarged depth distribution data having a resolution equal to s′×t′, where s, t, s′ and t' is a natural number greater than 1, and s and t satisfy: s<s' and t<t', respectively.
在這操作實例中,本實施例之影像處理方法係經由產生包括s×t個資料節點及s’×t’個擴散節點之模擬電路模型,並經由電壓擴散操作於s’×t’個擴散節點得到s’×t’筆擴散節點擴散仿電壓訊號。據此,經由前述電路模擬操作,本實施例之影像處理方法亦可對應地進行資料解析度放大操作。In this example of operation, the image processing method of the present embodiment generates an analog circuit model including s×t data nodes and s′×t′ diffusion nodes, and operates on s′×t′ diffusion via voltage diffusion. The node obtains the s'×t' pen diffusion node to diffuse the imitation voltage signal. Accordingly, the image processing method of the embodiment can also perform the data resolution amplification operation correspondingly through the foregoing circuit simulation operation.
據此,經由選擇性地設定模擬電路模型中擴散節點及資料節點之數目,使用者亦可利用本實施例之影像處理方法實現影像資料之解析度縮放操作。Accordingly, the user can also use the image processing method of the embodiment to implement the resolution scaling operation of the image data by selectively setting the number of the diffusion nodes and the data nodes in the analog circuit model.
以本發明前述各實施例所述之影像處理方法來說,其係可以若干發展成熟之電腦可讀取程式來實現,並記錄於對應之電腦可讀取媒體中。如此,使用者可應用電腦處理器對前述電腦可讀取媒體進行存取,以根據其中儲存之此電腦可讀取程式來執行本發明前述各實施例所述之影像處理方法。According to the image processing method described in the foregoing embodiments of the present invention, it can be implemented by a plurality of well-developed computer readable programs and recorded in corresponding computer readable media. In this manner, the user can access the computer readable medium by using a computer processor to execute the image processing method according to the foregoing embodiments of the present invention according to the computer readable program stored therein.
舉例來說,本發明前述各實施例之影像處理方法可以第10圖所示之影像處理裝置1來實現。更詳細的說,影像處理裝置1包括輸入單元10、轉換單元20、模擬單元30及控制單元40。在一個操作實例中,影像處理裝置1中之各輸入單元10、轉換單元20、模擬單元30及控制單元40為軟體模組,換言之,即是前述各單元係由處理器執行相對應之程式碼來實現。For example, the image processing method according to each of the foregoing embodiments of the present invention can be implemented by the image processing apparatus 1 shown in FIG. In more detail, the image processing apparatus 1 includes an input unit 10, a conversion unit 20, an analog unit 30, and a control unit 40. In an operation example, each input unit 10, conversion unit 20, analog unit 30, and control unit 40 in the image processing apparatus 1 is a software module. In other words, each unit is executed by a processor. to realise.
輸入單元10接收包括多筆原始資料之輸入資料Di。轉換單元20對原始資料進行轉換,以產生多筆轉換仿電壓訊號v。模擬單元30建立對應之模擬電路模型,其中包括至少一空間資料節點、至少一擴散節點及至少一連接元件。控制單元40轉換仿電壓訊號其中之部分或全部提供至至少一擴散節點,並經由至少一連接元件將轉換仿電壓訊號其中之部分或全部擴散至至少一擴散節點上,以於至少一擴散節點得到至少一筆擴散仿電壓訊號v_diff。控制單元根據至少一筆擴散仿電壓訊號v_diff產生處理後影像資料o。The input unit 10 receives input data Di including a plurality of pieces of original data. The converting unit 20 converts the original data to generate a plurality of converted analog voltage signals v. The analog unit 30 establishes a corresponding analog circuit model including at least one spatial data node, at least one diffusion node, and at least one connecting element. The control unit 40 converts some or all of the analog voltage signals to the at least one diffusion node, and diffuses part or all of the converted analog voltage signals to the at least one diffusion node via the at least one connection component to obtain the at least one diffusion node. At least one diffused imitation voltage signal v_diff. The control unit generates the processed image data o according to at least one of the diffused imitation voltage signals v_diff.
本發明前述實施例係有關於一種影像處理方法。相較於某些傳統深度資料產生方法,本發明實施例之影像處理方法具有可產生精確性更高之立體影像資料的優點;相較於傳統影像平滑化方法,本發明實施例之影像處理方法分具有可有效地對輸入影像進行平滑化操作之優點。The foregoing embodiments of the present invention relate to an image processing method. Compared with some conventional depth data generating methods, the image processing method of the embodiment of the present invention has the advantage of producing more accurate stereoscopic image data; compared with the conventional image smoothing method, the image processing method of the embodiment of the present invention The division has the advantage of effectively smoothing the input image.
綜上所述,雖然本案專利說明書已以較佳實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the patent specification has been disclosed above in the preferred embodiments, it is not intended to limit the disclosure. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the appended claims.
DV...影像資料DV. . . video material
Di...輸入資料Di. . . Input data
I(1,1)-I(m,n)、I1(1,1)-I1(m,n)、I2(1,1)-I2(m,n)...畫素資料I(1,1)-I(m,n), I1(1,1)-I1(m,n), I2(1,1)-I2(m,n). . . Pixel data
Di(1,1)-Di(m,n)...原始資料Di(1,1)-Di(m,n). . . Source material
M(i,j)、M"(i,j)...模擬電路模型M(i,j), M"(i,j)...analog circuit model
NS(1,1)-NS(m,n)...空間資料節點NS(1,1)-NS(m,n). . . Spatial data node
ND(1,1)-ND(m,n)...擴散節點ND(1,1)-ND(m,n). . . Diffusion node
RS...空間資料擴散連接元件RS. . . Spatial data diffusion connecting element
RD1-RDx...擴散連接元件RD1-RDx. . . Diffusion connection element
Dx1-Dxw...水平視差值Dx1-Dxw. . . Horizontal disparity value
NT...時間資料節點NT. . . Time data node
RT...時間資料擴散連接元件RT. . . Time data diffusion connecting element
DvL、DvR...第一、第二視角影像資料DvL, DvR. . . First and second perspective image data
1...影像處理裝置1. . . Image processing device
10...輸入單元10. . . Input unit
20...轉換單元20. . . Conversion unit
30...模擬單元30. . . Analog unit
40...控制單元40. . . control unit
第1圖繪示依照本發明實施例之影像處理方法的流程圖。FIG. 1 is a flow chart of an image processing method according to an embodiment of the invention.
第2圖繪示依照本發明第一實施例之輸入資料的示意圖。2 is a schematic diagram showing input data according to a first embodiment of the present invention.
第3圖繪示依照本發明第一實施例之影像處理方法的流程圖。FIG. 3 is a flow chart showing an image processing method according to a first embodiment of the present invention.
第4圖繪示依照本發明第一實施例之子電路模型的電路圖。Fig. 4 is a circuit diagram showing a sub-circuit model in accordance with a first embodiment of the present invention.
第5圖繪示依照本發明第一實施例之模擬電路模型的電路圖。Fig. 5 is a circuit diagram showing an analog circuit model in accordance with a first embodiment of the present invention.
第6圖繪示依照本發明第二實施例之輸入資料的示意圖。Figure 6 is a schematic diagram showing input data according to a second embodiment of the present invention.
第7A及7B圖繪示依照本發明第二實施例之影像處理方法的流程圖。7A and 7B are flowcharts showing an image processing method according to a second embodiment of the present invention.
第8圖繪示依照本發明第二實施例之子電路模型的電路圖。Figure 8 is a circuit diagram showing a sub-circuit model in accordance with a second embodiment of the present invention.
第9圖繪示依照本發明第四實施例之影像處理方法的流程圖。FIG. 9 is a flow chart showing an image processing method according to a fourth embodiment of the present invention.
第10圖繪示依照本發明實施例之影像處理裝置的方塊圖。FIG. 10 is a block diagram of an image processing apparatus according to an embodiment of the present invention.
(a)-(e)...操作步驟(a)-(e). . . Steps
Claims (34)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/152,093 US8754891B2 (en) | 2010-08-18 | 2011-06-02 | Method for image processing and an apparatus thereof |
| US13/339,136 US20120127172A1 (en) | 2010-08-18 | 2011-12-28 | Systems and methods for image refinement using circuit model optimization |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US37473510P | 2010-08-18 | 2010-08-18 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201209753A TW201209753A (en) | 2012-03-01 |
| TWI462053B true TWI462053B (en) | 2014-11-21 |
Family
ID=46763747
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW099145926A TWI462053B (en) | 2010-08-18 | 2010-12-24 | Method and apparatus for image processing |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI462053B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI559275B (en) | 2015-02-09 | 2016-11-21 | 財團法人工業技術研究院 | Pixel driving method and associated display device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1074943A2 (en) * | 1999-08-06 | 2001-02-07 | Mixed Reality Systems Laboratory Inc. | Image processing method and apparatus |
| TW200804941A (en) * | 2006-07-07 | 2008-01-16 | Ntn Toyo Bearing Co Ltd | Method and device for correcting pattern |
| TW200825621A (en) * | 2006-12-08 | 2008-06-16 | Univ Nat Cheng Kung | 3-D image-forming apparatus |
| WO2008111080A1 (en) * | 2007-03-15 | 2008-09-18 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Method and system for forming a panoramic image of a scene having minimal aspect distortion |
| TW200933491A (en) * | 2008-01-21 | 2009-08-01 | Ind Tech Res Inst | Method of synthesizing an image with multi-view images |
-
2010
- 2010-12-24 TW TW099145926A patent/TWI462053B/en active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1074943A2 (en) * | 1999-08-06 | 2001-02-07 | Mixed Reality Systems Laboratory Inc. | Image processing method and apparatus |
| US6930685B1 (en) * | 1999-08-06 | 2005-08-16 | Canon Kabushiki Kaisha | Image processing method and apparatus |
| TW200804941A (en) * | 2006-07-07 | 2008-01-16 | Ntn Toyo Bearing Co Ltd | Method and device for correcting pattern |
| TW200825621A (en) * | 2006-12-08 | 2008-06-16 | Univ Nat Cheng Kung | 3-D image-forming apparatus |
| WO2008111080A1 (en) * | 2007-03-15 | 2008-09-18 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Method and system for forming a panoramic image of a scene having minimal aspect distortion |
| TW200933491A (en) * | 2008-01-21 | 2009-08-01 | Ind Tech Res Inst | Method of synthesizing an image with multi-view images |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201209753A (en) | 2012-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109360235B (en) | Hybrid depth estimation method based on light field data | |
| JP6021541B2 (en) | Image processing apparatus and method | |
| KR101625830B1 (en) | Method and device for generating a depth map | |
| JP5153940B2 (en) | System and method for image depth extraction using motion compensation | |
| JP5429896B2 (en) | System and method for measuring potential eye strain from stereoscopic video | |
| CN102047288B (en) | System and method for depth extraction of images with forward and backward depth prediction | |
| CN109644280B (en) | Methods for generating hierarchical depth data for a scene | |
| US10271038B2 (en) | Camera with plenoptic lens | |
| JP2012019513A (en) | Method and apparatus for converting 2d image to 3d image | |
| CN109993781B (en) | Parallax image generation method and system based on binocular stereo vision matching | |
| KR20200021891A (en) | Method for the synthesis of intermediate views of a light field, system for the synthesis of intermediate views of a light field, and method for the compression of a light field | |
| KR101717379B1 (en) | System for postprocessing 3-dimensional image | |
| JP6128748B2 (en) | Image processing apparatus and method | |
| US8754891B2 (en) | Method for image processing and an apparatus thereof | |
| CN104270624A (en) | A Region-Based 3D Video Mapping Method | |
| KR20170046434A (en) | Image processing method and image processing apparatus | |
| KR20170047780A (en) | Low-cost calculation apparatus using the adaptive window mask and method therefor | |
| JP2016032298A (en) | Video rendering apparatus and method | |
| JP4862004B2 (en) | Depth data generation apparatus, depth data generation method, and program thereof | |
| KR101451236B1 (en) | Method for converting three dimensional image and apparatus thereof | |
| TWI462053B (en) | Method and apparatus for image processing | |
| KR20080047673A (en) | 3D image conversion device and method | |
| KR20140051035A (en) | Method and apparatus for image encoding | |
| CN102404583A (en) | System and method for depth enhancement of 3D image | |
| CN107590857A (en) | For generating the apparatus and method of virtual visual point image |