[go: up one dir, main page]

TWI235925B - Method and systems for finding value and reducing risk - Google Patents

Method and systems for finding value and reducing risk Download PDF

Info

Publication number
TWI235925B
TWI235925B TW090119928A TW90119928A TWI235925B TW I235925 B TWI235925 B TW I235925B TW 090119928 A TW090119928 A TW 090119928A TW 90119928 A TW90119928 A TW 90119928A TW I235925 B TWI235925 B TW I235925B
Authority
TW
Taiwan
Prior art keywords
asset
value
portfolio
investment portfolio
assets
Prior art date
Application number
TW090119928A
Other languages
English (en)
Inventor
Richard P Messmer
Christopher D Johnson
Tim K Keyes
William C Steward
Marc T Edgar
Original Assignee
Ge Capital Commercial Finance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Capital Commercial Finance filed Critical Ge Capital Commercial Finance
Application granted granted Critical
Publication of TWI235925B publication Critical patent/TWI235925B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Asset management; Financial planning or analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Technology Law (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

1235925 A7
相關申請案的交互參考 此申請案主張於1999年12月30日提案之美國臨 伽n3,792之優先權’其在此完全 、’ 發明背景 1 二本發明一般而言係關於金融設施的估價方法,更特定而 吕’係關於快速估價大量的金融設施。 大量的資產,例如貸款,如一萬筆貸款或其它金融設 她,有時候由於經濟條件,計畫性或未計畫性資產的剝 :’或是法律補償的結果,而可用於銷售。數千個商業貸 款^其它金融設施的銷售有時候牽涉到該資產等值的好幾 十fe的金額,其在幾個月内發生。當然,該資產的銷售者 想要最佳化該投資組合的價值,並將資產組合成一份 (Ranches)。此處所使用的名詞” 一份”,並不限於外來的註 解,但也包含無關於國家或管轄權的資產及金融設施組 合0 投I者可對所有的一份投標,或針對一些,,一份”來投 標。為了赢得一份,投標者基本上必須對該份提出最高的 榣仏。配合決定一投標金來對一特定者提出,一投標者通 常結合認購者來評估在一份中儘可能多的資產,並在一有 限的時間之内。當投標的時間將要截止時,該投標者將評 估在當時認購的資產’然後嘗試來推斷當時尚未由該認購 者分析出來的資產價值。 此過程的結果是,一投標者可明顯地低估一份,並提出 一沒有競爭力的標價,或高於該認購價值的標價,而假設 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公^· 1235925
A7
無法量化的風險 而其價位可使一 資產來損失一份 供一種系統,其 施,並瞭解一給 發明概要 。當然,因為該目的是要赢得每份資產, 投標者能夠回收,而由於明顯地低估該份 ,即代表了一損失的機會。其有需要來提 可便於在短期内正確地評估大量的金融設 定標案的相關回收機率及風險。 在-範例具體實施例中,提供一遞迴及適應式的方法, 其中一投資組合被分成三個主要的估價。一資產投資組合 的第一種形iu々估價之完整認購係根據一反面的例子來^ 行。第二種估價形式為有效率地自共用描述性屬性的類別 來取樣,而在該選擇性隨機樣本中的資產被完整地認購。 該第三種估價形式係使用該第一及第二部份的認購數值及 變化來接受統計上的推斷估價,並應用此統計推斷到該第 三部份中的每個資產之個別價值。叢集化及資料降低即用 於數值化該第三部份。 當該過程進行,並認購了更多的資產,以第一及第二部 份建立的資產價值數目即增加,而在第三部份中的資產數 目即減少,在該第三部份中的資產估價的變化也更多地被 定義。更特定而言,在第三部份中的資產可由群組化該資 產到叢集來估计,其根據在第一及第二部份中的資產估價 的類似性而具有數值的機率。在任何時候,有該投資組合 的數值之標記,但當該過程進行時,則會增加該估價的信 心度。假定的標價係使用該估價來產生,以決定由該投標 者所決定的參數之内的一最佳化標價。該最佳化標價係透 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
生過程來確定 過一遞迴式標價產 圖式簡單說明 圖1所示為評價 圖; 一資產的投資錤合之已知過程的 流程 圖2所π為根據本發明一具體實施例來評價一資產的投 資組合之流程圖; 圖3所不為大型資產投資組合的快速估價過程的〜第一 邯份之具體實施例的更詳細的流稃圖,其將資產分成可傲 化類別; & 圖4所不為一大型資產投資組合的快速估價過程之流程 圖,其由一基礎聚集到一份或投資組合基礎; 圖5所示為範例性資產的機率分佈’其還原數值是被推 斷的; 圖6所示為圖3的過程中一監督的學習步驟之流程圖; 圖7所示為圖3的過程中一未監督的學習步騾之流程圖; 圖8為未監督的學習過程之具體實施例; 圖9為該產生1 (第一通過)快速資產估價過程的具體實施 例; 圖1 0為用於圖8之未監督學習的一模糊叢集化方法之流 程圖; 圖1 1所示為一快速資產估計過程的模型選擇及模型加權 化之範例的一對表格; 圖12為顯示一快速資產估價過程的範例屬性之表格;及 圖13為一快速資產估價過程的一範例性叢集化方法的叢 I __ k紙張尺度適用f國國家297二)~~~~ —""— 1235925 /m. -i
集,及 圖1 4為一電腦網路架構。 發明詳細說明 圖1所示為一已知的過程,用以經由一認購循環,及經 由構成像是一拍賣中的購買資產投資組合12之標價來評價 大土貝產1 2的投貧組合。圖1為一高階的縱覽一典型的 認購及推斷處理10,其並非遞迴,也非自動化。在圖中 1 〇,逐購者認購1 4 一些來自投資組合i 2中的個別資產, 以產生一認購的第一部份丨6及一未接觸的剩餘部份丨8。 在任何的貝產被認購之前,第一部份丨6為百分之零,而剩 餘部份18為投資組合12的百分之一百。當該認購過程進 行時,第一部份1 6增加,而剩餘部份i 8減少。其目的是 要在一標案被送出來購買資產投資組合之前儘可能認購愈 多的資產。認購者小組持續個別地認購1 4,直到在一標案 必須被送出之前。一粗略的推斷20係用來評估剩餘部份 1 8。遺推fef數值2 0成為該未認講的推斷數值2 4。該粗略 推斷產生剩餘部份1 8的一估價2 4。估價2 2僅為在第一部 份1 6中個別資產數值的總和。但是,估價24為由推斷所 应生的一群組估彳貝’其可因此而折價。然後估價2 2及2 4 被加總來產生該投資組合資產數值2 6。估價過程可對每個 該投資組合的一份來執行。 圖2所示為快速資產估價的系統2 8之具體實施例。包含 在圖2中為由系統2 8在估仏資產投資組合1 2中所採取的處 理步騾。系統2 8個別地評估(”接觸” t〇uches)每個資產, 本紙張尺度適用中國國家標準(CNS) A4規袼(210X 297公釐)
五、發明説明 Ϊ235925 除了非常小量30的未接觸資產,其統計上視為無意義 務上無關緊要。特別是,所有在投資組合1 2中的資產,除 了數里30之外,皆進行一遞迴及適應式的估價32,其中 4投貧組合1 2中的資產被個別地評價,並分別在表格中列 出,然後由表格中選出,並組合成任何想要或所需要的群 組或一份,用於標售目的(如下所述)。如在圖中的丨〇,認 ’鼻者開始投資組合1 2中的個別資產的完整認購1 4,以產 生貝產的一 :¾整認購資產第一部份i 6。認購者也認 在投資組合12的第二部分36中一資產樣本,而電腦“統 計地推斷40投資組合12的一第三部份42的數值。電腦 也重複地產生4 4表格(如下述),其顯示指定給部份丨6, 3 6及4 2中的資產之數值,如下所述。在一具體實施例 中,電腦3 8可做為一獨立的電腦。在另一具體實施例中, 電腦3 8做為一伺服器,其經由網路(圖丨4中所示及說明)連 接到至少一客戶系統,例如一廣域網路(WAN)或一區域網 路(LAN)。 舉例而言,仍參考圖2,一投資組合丨2的第三部份4 2之 未取樣及未認購部份4 6係接受使用模糊_ c裝置叢集化 (FCMn)及一複合式高/預期/低/時序/風險(” hELTR”)分 數之統計推斷程序4 0,以產生兩個類別4 8及5 0。Η E L T R 係疋義成Η -高現金流量,Ε -預期的現金流量,l -低現金 田昼’ Τ -現金流量的時序(例如以月份而言,〇 _ 6,γη ’ 19-36 , 37-60) , 而 R-借 方的風險估價 用 於信用 分析)。類別4 8被視為具有整體評估的足夠共通性。類別 本紙張尺度適用中國國家標準(CNS) Α4規格(210X 297公釐)
5〇進-步區分成叢集52及54,其依序被進一 ==次區分成子叢集56及58,而叢集“被次區分成 66 Ία估:2及64。所示的叢集與子叢集皆為-樹狀圖 ,並為估h万塊68中的方格。然後這些個別的資產 值即被重新組合成—份7G,72及74,而料標價目的。 任:數目的一份皆可由該銷售者來組合成任何的安排。 每個投資组合12中的資產的個別資產資料(未示出)’被 幸S』入到,貝料庫7 6,其係來自於根據該遞迴及適應式過程 32的給定條件8G所得到的選擇資料78。當條請對任何 資產的估價建立起來時,該建立的條件8〇即儲存在資料庫 76中來用於估價其它資料庫76中的資產資料,其可共用 這種建•的仏件。因此,遞迴及適應式估價過程3 2即發展 82估價(如下述)及將其群組84起來,用於標售。^展 、圖3及4共同形成一流程圖8 5,所示為用來估價一大型資 產投資組合12的系統28(如圖2所示)之具體實施例的功能 性概述、。估價程序14,34及4〇 (也參見圖2)為同時及順 序地用糸系統2 8中,如下述的方式。如上所述,完整認購 14為第一種形式的估價程序。具有完整的樣本認購之群組 化及=樣化認購34為第二種形式的估價程序。統計推斷 4 0為第二種形式的估價程序,其為自動化的群組化及自動 化估價。程序1 4,3 4及4 0係根據如下述的方式所建立.的 目標條件。 此處所使用的”認購”代表一過程,其中一人(”認購者,,) 根據所建立的原理來評定一資產,並定義目前的購買價格 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x297公董胃) 1235925 m A7 B7 五、發明説明( 7 來購買該資產。在認購期間,該認購者使用該估價的預先 存在或已建立的條件8 〇。”條件,,代表關於根據這種類別的 資產數值及-級別的規則。舉例而言,做為一條件,一認 購者可決足該借方的三年現金流量歷史成為關於資產估價 的類別資訊,並可給定某個級別給不同現金流量的等級。 完整認購以可用兩種方式完成,一完整現金基礎方㈣ 及一部份現金基礎方式88。完整現金基礎方式Μ及部份 現金基礎万式8 8係以資產組合9 〇及9 2開始,其係完全個 別地評斷14 (見圖2)。這種完整的評斷"通常由於高金額 或其它,當的匯率,關於其它投資組合中的資產所評斷的 資產數量,或由於借方知名度高或非常可靠,所有該資產 可快速地或可靠地完.全認講,或該資產對市場標示,使得 關於認資產的數值的變化非常少。資產組合%由認講者 94評足,且每個在組合9〇中的資產接收一非常少變化的 估價’例如有現金支持的資產’或可交易的有價物品,其 具有現金價值’其置於-完整數值表格96中。所選出在表 才口 9中的貝產之個μ ^貝值係儲存成_完整認購的群組值 —組合?係由-組認購者!⑽所評定,其可於小組…目 同’但母個資產接受—折扣或部份數值,並置於—部份數 中。在表格1〇2中一份的所選出資產的個別數 值係储存成一邵份數值完整認購群組數值1〇4。完整現金 基礎方式86及部份現金基礎方式8δ的條件8〇 (示於圖 2),係储存在電腦38 (示於圖2)的_數位儲存記憶體(未 本紙張尺度適㈤中國國家標準(cS^A4規格(210X297^)—
1235925 A7 B7 五、發明說明( ) 示出)中的貝料庫7 6 (示於圖2 ),其用於自動化估價4 〇的 監督的學習2 0 6及未監督學習2 〇 8。 取樣A購3 4使用兩個程序來完成,即一完整取樣丨〇 6程 序及一部份取樣1 0 8程序。完整取樣1 〇 6係用於大型資產 類別’並包含一在所取樣的資產類別中該樣本群組的百分 之一百取樣1 10。在完整取樣1〇6中的資產並未個別認 購’而是根據所決定的共通性來以完整取樣群組丨丨2認 購。所得到的完整取樣群組估價(未示出)即產生,然後即 根據一規則1 1 4來廢除,以產生一個別的完整樣本資產數 值表1 1 6 °然後’表丨丨6中的個別完整取樣群組估價1 i 8 即被電子式上載到任何需要標售的完整取樣群組估價 118,如同在一份中的資產群組所建議者。在一認購樣本 群組中資產數目可小到丨,或任何數目的資產。部份取樣 108用於中等資產的類別,其包含由一代表性群組的百分 之一百取樣所形成的一叢集樣本群組120,其來自被取樣 的遠群組之一叢集,及在該叢集中其它群組的隨機取樣。 在部份取樣中_1 〇 8,所有的群組皆被取樣,但一些是由叢 集樣本群組1 2 0推斷得到的部份數值。部份取樣丨〇 8包含 具有人工貝料輸入〗2 5的一資產級別重新認購丨2 2 ,以產 生一 alpha信用分析師表格丨2 6,其給定一資產類別調整 128,以產生一調整的信用分析師表格13〇。如上所述, 個别產係根據財產群組化而由調整的信用分析師表格 1 3 0所選出’以產生一部份取樣信用數值丨3 2來用於對一 份7 0進行標售(示於圖2 )。 本紙張 1235925 A7 B7 五、發明説明( 9 自動化估價程序4 0使用監督的學習過程2 0 6,及一未監 督的學習過程2 0 8,及由一統計推斷演算法1 3 4上載,以 產生一認購叢集表1 3 6,其儲存在一數位儲存裝置中。在 監督的學習過程2 0 6中,一有經驗的認購者知道要問那些 問題來建立並辅助該電腦來決定一資產是否為一好的投 資,及如何來估價該資產。在未監督的學習過程2 0 8中, 該電腦分段及分類資產,並客觀地根據該資料的反饋來自 我估價該資產。一認購者定期地評斷該未監督的學習過程 2 〇 8,以決定是否該電腦可敏感於認購結論。該電腦使用 統計演算法1 3 4來構成其推斷。舉例而言,但並非限制, 一具體實施例使用由General Electric公司開發及使用Six
Sigma ( DFSS")品質範例之設計,並應用在Due Diligence (nDD’f)資產估價過程,其使用一多重世代產品開發 ("MGPD")模式來以更高的準確度來評價該資產資料。學習 過程2 0 6及2 0 8在該估價進行到現金流量還原時加入該累 積的知識,及在一繼續的,即時的基礎上之還原計算的機 率。監督的學習過程2 〇 6使用商業規則來確認具有共通方 面的資產叢集來達到估價的目的。未監督的學習過程2〇δ 使用來自先W由程序4 0所執行的資料估價之反饋,以決定 如果對於增加估價信號已有進展。對於所有可用的原始資 料及發現,些可用原始資料的叢集之相互關係的確認,可 由於使用鬲速電腦而成為可能,如下所述。 在一範例具體實施例中,-模糊叢集化方法(”FCM”)處 理,使用-HELTR分數技術之未監督的原始資料組織,其 财目目家鮮
五、發明説明( 1235925 用來推斷投資組合中資產的信用分數之估價,如下所述。 這種叢集化技術已回應於更為複雜的分類段落而開:出 來,以描述出在必須於不允許人工操作的時段中進行坪定 的投資組合中的資產及高資產數目。 -種範例方法首先在一電腦化系統中組織估價分數(靜態 及/或機率性還原)。然後即調整該估價分數給特殊的因素 及商業決策。然後對於描述相同資產的多重估價分數的一 致化,及對於會談/覆寫該推斷估價的整體調整,皆要進 行。 組織估價分數係由以電子方式校對一叢集號碼,一叢集 名稱,該叢集的描述屬性,機率性還原數值(一範例為一 Η E L T R分數),以及根據每個叢集的說明性屬性的強度在 每個叢集估價中的認購者信心度來執行。該叢集號碼為一 特定描述性屬性的組合的唯一識別,其中關於一資產的事 貝疋’其為一評估的專業人士用來評估一資產的數值。說 明性屬性的範例包含,但不限於,付款狀態,資產種類, 借方的信用額度,以一主張的分數,位置及年資來表示。 該叢集名稱在一具體實施例中,為一文數字的名稱,其描 述該叢集的描述性屬性或來源。一種描述性屬性的範例可 見於圖1 2,如下所述。 $明性屬性為事實,尺寸或向量’其可用來開發該資產 的數值。電腦邏輯用來檢查重複的叢集,如果有的話,並 警告分析者或認購者。 因為每個資產可由許多說明性屬性的組合來描述,其將 L—.. ___ - 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) A7 B7 1235925 y 人 1 五、發明説明( 發生對相同的資產有不同層級的數值。機率還原數值,或 信用分數,或任何該資產價值的數目表示,皆為在該分散 式資產層級所指定的價值之指示器。來自該不同描述式屬 性的資訊被合成,使得一購買或銷售價格可確保為一固定 數值或一機率數值。此處所使用的一範例性具體實施例為 該HELTR分數。每個叢集具有一唯一的說明性屬性組合, 及指定的HELTR分數。 每個叢集的唯一屬性貢獻於叢集數值的估價。不同屬性 的組合可提供一特殊叢集分數的較高信心度或信心間隔。 舉例而言,如果任何資產描述成一綠色的紙片,其高度等 於2.5 π ’寬度等於5 ”,其可歸屬於〇到1 〇〇〇元的數值,並 在此評價中給定非常小的信心度。如果此相同的資產被描 述成具有一更多事實,或屬性,或向量成為一真實的$2〇 美國紙鈔,其可在此2 0美元的叢集數值上建立一非常高的 信心因子。 一叢集的估價及信心度係在一時間點被決定並記錄。有 時候新的資訊成為可用,且該分析者將可改變該數值。該 數值可人工或自動地以一資料欄為及決策規則來改變,其 係透過笔細程式碼之自動化型態。先前的數值被操縱來反 應新的資訊。如同一說明性範例’其假設該先前的叢集信 心度被記錄為0 .1,且其學習到具有正確描述性屬性的不 .同貧產,如在此叢集中,其剛以在所預測的,,最有可能,,數 值之上來賣出。規則之效力使得如果此事件發生時,叢集 信心度被乘以1 〇。〇·1χ1 0=1,其為修正過的叢集信心度。 本紙張尺度適用中國國家標準(CNS) Α4規格(21〇χ 297_公羡_) 1235925 / ί I ai A7
.......................... BY 五、發明説明( ) 12 這種過程的目的在於對相同資產的多重分數一致化,控 制關於每個估價多寡的估價來源之信心度。使用該 Η E L T R做為一說明性範例,其在一特定的資產上具有相 同的資料點: 叢集 號碼 叢集 名稱 1¾ 預期 低 時間 估價 信心度 高 預期 低 時間 1 優先權位 置追索 .85 •62 •15 3 .3 (3/1.65X.85) (3/1.65X.62) (3/1.65X.15) (3/1.65X3) 2 資產類別 產業年限 .45 .4 •31 3 •7 (7/1.65X.45) (.7/1.65X.4) (.7/1.65X31) (.7/1.65X3) 3 借方使用 座標 .9 •5 2 2 •65 (.65/1.65X.9) (.65/165X5) (.65/1.54X2) (.65/1.65X2) η X 1.65 .6999 .4792 2374 2.6059 該叢集一致估價為一高數值.6999,其最有可能為.4792, 一時序2.6059時為低值.2374。不同的邏輯可應用來操縱任 何的加權。 該一致分數係在通用假設的上下文中開發。如果發生一 通用假設改變時,處理步騾128,138係包含在一方法論中 來加權該一致性_分數。說明性範例在某些估價因素中發現 為詐騙,總體經濟改變,對一資產類別所建立的一可取代 市場價值,及損失或增加關於其它所使用方法論的推斷之 資產估價方法論。 在另一具體實施例中,使用一交互關聯工具來快速地暸 解並說明一投資組合的組成。基本上,該工具係用來關聯 一使用者選擇的變數之反應於在一資產投資組合中其它的 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) -15 - _________
夂數 4工具可快速地確認在兩個屬性變數及該反應變數 之間未預期的高或低的相關性。屬性變數為兩種形式,連 系貝及屬於某類。該叉互關聯係由所有有興趣的變數及其層 級或類別之間的關聯工具來計算,其在一具體實施例中呈 現在一二維的矩陣’用以容易地識別出在該投資組合中的 資產之趨勢。 首先’孩又互關聯工具確認在該投資組合的資產中的屬 性文數,做為連續或有類別性之一。對於每個可變的聚集 層級可由級別計算連續的變數,及由數值計算有類別性的 變數。 一要以該工具確認關聯性的使用者將選擇一反應變數3 Yr,舉例而言一預期妁還原或計數。對於所有的屬性變數 (X 1及X 2 )及其級別(a及b )的配對組合,計算該反應變數 Yr的平均值,其根據:
Yr-sum (Y(xl=a及x2 =b))/count(xl = a及x2 = b)。 該反應變數的預期數值Yexpect係如下計算:
YexPect=(sum(Y(xl=a))*count(xl=a)+sum(Y(x2=b))*count(x 2=b)))/(count(xl-a)*count(X2:=b))。 由遠預期數值Yexpeet與該選擇的反應變數γ r之偏差, Yerror,其分別使用X 1 = a及χ 2 =b的發生值的加權數值,計 算如下:
Yerr〇r=Yr-Yexpect。 在一具體實施例中,預期數值與偏差皆顯示在一多維顯 示斋中’以使得與預期值的變化能夠容易辨識。 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1235925 x , A7 B7 五、發明説明( 在另一範例具體實施例中,其使用一轉換函數處理來轉 換原始資料到該最終標價,如下所述。表丨3 6使用程序 1 4 ’ 3 4及4 0所開發的修正係數來電子式地調整,以對該 資產提出一係數調整到一信用分數丨3 8,並產生一推斷的 個別資產信用數值的調整信用分析師表格丨4 〇。個別的資 產數值係視需要由資產群組在表丨4 〇中取出,以產生一推 斷的信用估價1 4 2。最後,在,,未接觸的,,資產的可忽略剩 餘部份3 0上進行一推斷,以產生一未接觸資產的表格 1 44。來自表1 44的數值係選擇來產生一未接觸的資產估 價。 完整現金估價9 8 ’邵份現金估價丨〇 4,完整取樣信用估 價118,部份信用數值132 ,推斷信用數值142,及任何 由未接觸資產表格1 4 4所指定的數值,皆被累積,且以完 整現金估價9 8的優先性來連續地互相排除到推斷的信用數 值1 4 2。該估價的加總代表該投資組合的數值。 圖4所示為系統2 8 (圖2所示)所執行的一標售準備階段 1 6 8的流程圖。該累積的估價9 8,1〇4,1 is,132,142及 1 4 4係結合於一風險喜好贷款層級估價步驟} 4 6。一決定 性現金流量橋1 4 8使用一現金流量時序表丨5 〇來產生,並 發展一隨機的現金流量橋丨52。一隨機性或機 量橋152即產t,並用來決定一提出的資產標;賈15:二 在遞迴地運用到一份模型156 ’直到達到某個臨限值 158。舉例而言,臨限值丨58為大於一些數值,某個獲利 時間("TTP”)’及一正淨值(,,NPV”)的内部回收率 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1235925 A7 B7
(,,IRR’’)。 一般而言’ NPV係定義成: 齡C◦令 (方程式A) 其中c G為時間〇時的投資,c 1為時間}的預期付款,及^ 為該折扣因素。該基本概念為今天—元的價值要/於明天 的一元。 、 在保險策略的狀況下,N p v定義成: ΝΡν=Σρ-ΣΕ-(Σ^ Υ~ (方程式Β ) w 其中P為紅利,E為預期的帳面收入,及c為主張的成本。 基本上,方程式B為淨收入做為利潤及加權的預期風險是 斤何產生的。叩/主思该加總為加總一特定區段中所有的政 朿、。也汪意到,所以的紅利,帳面收入,及主張成本已經 在進入該方程式之前被打折扣。因此,即產生一獲利性分 如果、達到臨限條件160,標價154即接受一模擬的標價 :放分:斤1 6 1,以預測該標價是否可預期成為—赢取標 2。一密封標價拍賣的結果依據由每個投標者所接收的標 饧大小而定。該拍賣的執行牵涉到開放所有的標價,並奮 ,拍賣=所有項目給最高的投標者。在傳統的密封標價拍 …中-技^者一旦送出其標價之後即不允許改變其標價, τ者不知到其&投標者的標價,直到開標為止,使得 本紙張尺度it财s
1235925
該拍賣的結果並不確定。荈二 賣的機率愈高,但價值獲辭:'較高的標價,贏得該拍 格來贏得拍賣的話。 …如果其可能在較低的價 模擬競爭性投標可增加補立 田、 由雙定-m出隹: 取高獲利點的機率,其藉 錢之前消耗到其它競爭投㈣^㊃具有=於在擁有金 執行最高的資本保持。價柊:\使侍取想要的資產 ^ λ π _ 1貝秸,夬疋由—分析式良好的處理來 咿入焦點,因為純粹的軼聞地含 …、,丄 卞”失聞性两業判斷會由一資料驅使的 万式增大,而不會受到-隱藏的時間λ,個性,或單方面 的知識。 每個潛在的投標者具有一可能標價的範圍,其可送出給 -密封的標價拍賣。該標價範圍可表示成一統計分偉。藉 由從一標價數值的分佈來隨機取樣,其可模擬一可能的^ 賣情形。進一步藉由使用一遞迴取樣技術,例如—Μ〇η“ Carlo分析,許多情形可被模擬來產生一結果的分佈。該結 果分佈包含贏得該拍賣項目及該數值增益的機率。藉由改 變其擁有自身·"的標價之數值,可決定出抵抗其本身投標價 格而赢得該拍賣的機率。 接下來的核心元素係用來模擬一競爭的投標場,市場規 則及合約的彙編,進入電腦化的商業規則,潛在競爭/市 場力量,預測的預算及優先性進到一喜好矩陣,其本身的 標價能力,喜好,風險/回收交易,其符合整理成一直好 矩陣,及一電腦化的機率最佳化。 分析1 6 0模擬一與其它公司競爭的環境,其具有不同的 ____________-1Q - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1235925
A7 B7 五、發明説明( 17 財務能力來競標由系統2 8所計算的標價。在一具體實施例 中刀析1 6 0 ’舉例而沒有限制,其包含一整體標價限 制’例如其中該資產的整體價值超過了使用系統2 8的個體 之財務能力。在—具體實施例中,分析1 6 0可評定在這種 有限資源來競標的狀況中,在不同財產組合上的標價之獲 利率。分析1 6 0也考慮過去的投標歷史,來提供已知競爭 者’及競爭投標者所喜好的不同形式的資產上的資訊。在 分析1 6 0中,然後該財產標價被評估,並由管理1 6 2設 足’及構成一最終的財產標價164。在形成該標價164之 蓟的所有估價可依需要而重複。再者,因為該過程為自我 調整及遞迴的,該財產標價164傾向隨著每次遞迴向上提 开’當由系統2 8執行.的遞迴發現到愈來愈多的數值。 由流程圖8 5所描述的過程包含一評估階段1 6 6 (圖3所示) 及一標價預備階段1 6 8 (如圖4所示)。評估階段1 6 6包含程 序1 4,3 4及4 0。評估階段丨6 6固定地執行,直到停止, 其具有自動估價程序40及取樣程序34,其嘗試來在不同 資產或資產類~別中找出額外的數值。 請再次參考圖2,並根據快速資產估價,在投資組合1 2 的資產内之資料類別170,172及1 74係對每個資產來確 認’並儲存在資料庫7 6中。遞迴及適應式估價過程3 2採 用部份的選擇資料7 8,並應用條件8 0到—統計方法中的 選擇資料7 8的部份,以增加已知的資產數值,而非一大略 推斷20的資產數值。根據方法28,該資產係區分成至少 第一部份16,第二部份36,及第三部份或剩餘部份42。 L______^20^ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)
II正替換-五、發明説明( ) 使用程序14,在部份u中的資產係完整認購來決定估價 及#伤數值完整認購估價丨0 4,並建立這種估價的條 女 使用私序3 4,過程2 8由第二部份3 6取樣一些資 座乂代表在第二邵份3 6中的群組,以決定第二部份3 6 f體取樣群組估價118 ’及部份取樣信用數值132,並 a 、這種估彳貝的額外條件8 〇。使用程序4 〇,部份監督的 子白過私206,及邵份未監督的學習過程2〇8,其由一自 動化分析者執行,例如圖2的電腦3 8。為了學習起見,該 f動化分析者拮取建立的條件8 〇及選擇的資料W,做為 '、,^伤或乘】餘'"卩份4 2,並區分第三部份4 2到部份4 6, ;、、:後進步區分每個邵份4 6到類別4 8及5 0,類別5 0區分 成叢集52,54,叢集52,54使用由資料庫76及每個過程 206及208所輸入的條件8〇來區分成子叢集%,, 6〇 ’ 62及64。個別的資產估價係在子叢集56,58,60, 62及64中由統計推斷來對該資產建立。 涘個別貝產估價係列於叢集表格丨3 6中(參見圖3 ),並在 調整138之後、列於一信用分析師表格M0中。該建立的 ,件80為客觀的,因為條件8〇來自資料庫%,其中可在 芫整認購程序1 4及樣本認購程序3 4期間來放置。換言 之,在完整數值表格9 6,部份數值表袼丨〇 2,表格丨丨6, alpha信用分析師表格126,調整的信用分析師表格130, 碉整的信用分析師表格14〇及未接觸的資產表格144中對 於所有資產所得到的資訊,被置於一數位儲存裝置中的資 料庫76,例如電腦38的硬碟儲存178,並由具有來自程序 本紙财關轉準(―)A视格(2ΐθΧ297ϋ)- 1235925
A7
1 4及3 4的條件§ 〇之程序* 〇所槿 具有-可接^〜成。在程序4G期間,輸入 二二t 度的統計意義之條件8〇。也就是說, =2^估價及建立條件8〇時遞迴地學習。監督的學 二〇6及未監督學習過程2〇8藉由關聯在 完整認購第一部份16中的資產,與在樣本 、佳罘^刀3 6中的貝產,以增加統計推斷的估價1 4 2之 :確性。選擇的資料78關於第三部份42中的一個或多個 貝產,其類似於在部份i 6及/或3 6中資產上的選擇資料 其位於資料庫76中,然後藉由統計推斷,在第三部 份42中的每個資產之數值由該所在的資訊來決定。 在由流程圖85所描述的過程期間,資產係由一個別資產 級別來估價’而該個別的資產數值被製表或群組化到一個 2多個組合。為了具有不同競標情形的最大彈性,任何投 資組合1 2的次組合在-特殊的時間框中獨立地被估價及計 價。在已知的過程1〇中,如果一資產的銷售者重新組合該 貧屋,例如藉由資產公司來群組化,或由借方的地理位置 來群組化,秦價的重新估價將因為粗略的推斷2〇將需要執 灯而成為不適當。在使用系統2 8中,因為個別的資產數值 被發展,並列於表96,102,116,13〇,14〇及144中,這些 數值可電子式地重新群組化到不同的估價98,1〇4,118, 132 ’ 142,其食物鏈’’選擇條件可互相排除,並由進行該 砰估的分析者來選擇,其進一步說明如下。如果該銷售者 群組該資產,即根據銷售者群組或一份財產的群組化^輕 易地構成,並對該份財產開發一適當的估價丨4 6。因此, - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1235925/ ‘ A7
該個別的資產數值可容易地對第三部份42來重新群租,以 客硯地獲得孩群組或一份財產的推斷之估價142。 π夕万法可用來建互資產數值。根據該標價的目的,不 同=價方法論的相對精神對於—特殊資產建立該估價技術 的需要性。―万法論係類似於食物鏈",其保持假 展方法,而選擇具有最高信心度區間的區間。 在一食物鏈的介紹說明範例中,其可喜好估價一財務資 產,其更多由在開放市場中的類似資產交易,來相對於一 個人的意見。依級別順序,該市場對市場的數值即在二個 人的意見上來選擇。 —在具有一預測的現金流量還原之投資組合中相同方式的 貝產可由一些估價技街來估計。該典型的目標係以可達到 的獲利率鬲來建立,其為未來現金流量。該估價方法論係 以其能力來分級,以正確地量化現金流量,或等量現金, 具有至少下面變化及/或最大上面變化。該資產由所有具 有優點的可用方法來估價,或可具有商業邏輯規則來消除 雙重的工作,當其已知為更準確的方法,其將可避免在一 旦使用最佳的方法時還需要來評價一資產的估價。 為了提供資產數值的最佳預測,資產由食物鏈中的每個 万法來評估,直到其對每個特殊的資產由最佳可用的方法 來估價為止。一旦發現此最佳的數值,該資產可稱為具有 其數值’無關於其它在該食物鏈中較低的其它數值(具有 更多的變化),並傳送到該完成的狀態。 做為一範例,一資產的投資組合使用一食物鏈來評估。 本紙張尺度適用中 國國家標準(CNS) A4規格(210 X 297公釐)
12359^ V 五、發明説明( 在汶良物鏈中的第一評估方法為最為靠近符合該估價目的 者,即發現具有最高程度準確性的數值(最緊密的信心度 區間)。只要該資產由一方法論所估價,其數值對該唯一 貝產來建儿,其傳送到該估價表,並由該食物鏈中任何其 它步騾來移除。來自該原始投資組合的一系列不符合任何 估價方法的資產,被保持在該未接觸的資產表中。該目的 是要驅使此未接觸表到零資產。 一食物鏈的範例如下,以喜好來排列。(a)對該資產有 100%的現金在手上,(b)對該資產有部份的現金在手上,(勾 對於類似資產有可換成現金的市場數值,(句直接認購,及 (e)推斷的認購。 該食物鏈方式提供一能力來發現最佳的機率分佈形狀, 其降低機率分佈變化(特別在該下面的尾端),提供能力來 快速地建乂機率分佈’而保持在該顧客群中所有可用的知 識’並知:供能力來提供在該發現過程中任何點處的最佳數 值估計。 如圖4所示;·該標價預備階段1 6 8的一般架構係來計價投 標1 6 4 ’其類似於可選擇估價典型,其中該赢得的投資者 將具有權利’但非義務,來恢復該投資。該數值對每份財 產廢除到三個部份,一金錢成份的時間值,一内在數值成 伤,及一可说的現金流量成份。該金錢的時間值及該内在 值可決定性地計异,並在一旦被建立時具有少許的變化。 該金錢的時間值係由採取一公司的資本成本,用以由該應 用週期的投資所相乘的一低風險投資,其代表另一個投資 -^24·. 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) ^359^: A7 B7 五、發明説明(22 ) 的機會,其在前而構成本發明。内在的數值為一已知可換 成現金的資產數值,其超過該購買價格,並在取得該資產 的控制之後立即可用。一具體實施例為在市場數值之下購 買的良好交易的安全性,做為一投資組合的一部份。可能 的現金流量變化為該假設的函數,一到期勤奮的小組構 成,且其選擇的過程來轉換原始資料到一現金流量還原流 動。此處所述的系統係用來降低負變化及發現數值。 圖5為一三角形機率分佈圖形,用於一典型最小的三點 資產評估1 8 0。根據過程4 0,即評估每個金融設施的三個 狀況之最小者。一垂直軸1 8 2代表增加的機率,及一水平 軸1 8 4代表增加的還原部份。其顯示一面向數值線丨8 8的 可換成現金或最差狀況百分比1 8 6,面向數值1 8 8的最佳 狀況百分比1 9 0,及一最有可能狀況百分比,及面向數值 1 8 8的還原數值1 9 2。該最差狀況百分比1 8 6的機率為〇, 該最佳狀況情形1 9 0的機率為〇,及還原的最可能百分比 1 9 2的機率1 9 4為由點1 9 6所代表的數值。在由一連接點 1 86,196及1—9 0之線所定義的一曲線2 〇 〇之下的一面積 1 9 8之大小則代表在該資產中的數值。該標記的資產數值 保持在由一面向數值1 8 8的100%還原之100%機率線2 〇4所 限定的一長方形面積2 0 2,其為面向數值1 8 8的部份之度 i ’其可標示為由曲線2 0 0所代表的資產。點1 § 6,19 6及 190,及線188及204,及因此區域198及2 02,將根據所 選擇的區域7 8而改變,其對有問題的資產來選擇,而條件 8 0應用到該資產,並歸因於資產數值還原的機率。水平軸 ------— __ m 本紙蒗尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) 12359參 ‘雜 A7 B7 23 五、發明説明( 184可表示成匯率單元(如美元),而非面向數值的百分 比。當使用匯率單元時,對於不同資產在曲線2 〇 〇之下的 區域1 9 8將為匯率單元,且由此區域丨9 8彼此在大小上相 關’而因此對於整體標價7 〇,7 2及7 4有意義。對於該資 產知道更多的是,其可加強更多的曲線2 0 0。統計被應用 到曲線2 0 0 ’而當條件8 〇被建立來協助建立點丨86,196及 1 9 0的位置’因此區域丨9 8及該資產的預期之數值。該現 金流量的時序會影響數值,其可根據該時序屬性的長條圖 結果。 舉例而言,該現金流量還原時序可分解到三個組別,〇 _ 6個月,7 - 1 2個月,3 _ χ 8個月等等。使用演算法j 3 4的 自動化分析咨3 8可根據一時序的敏感性研究交易來選擇該 組別寬度到估價,其相對於該尺度還原,及可能由一認購 者決定的級別。在一範例具體實施例中,一最少4個組別 必須在當該折扣因素超過2 5 %時來使用。對於在1 〇及2 5 之間的折扣因素,其必須使用最少6個組別來覆蓋該可能 的還原週期。# 根據程序40,可選擇其它的資料來源,其中一認購者將 可以用來評價一金融設施中的數值。在程序丨4及3 4中, 由認購小組94,1〇〇,114,122及140所建立的條件8〇,其 可用於此方面。根據由流程圖8 5所描述的過程,原始资料 轉為一還原,並選擇一規則組合來應用一估價到該原始资 料,且此規則組合被編碼到在條件8 〇的形式中的估價資料 庫。每次在程序1 4,3 4或4 0中的估價期間,一叢集由多
123#$替換買 日 A7 ~*^* **" τι---I Τ—,. *ιΓ 1 : .._η_··_π· r ·_„ | m 五、發明説明( ) 24 重配合來接觸,一致性預測被發展,並應用到該叢集。根 據系統2 8,現金流量的機率分佈及在該份財產層級的時序 由位在該資產層級的開發估價轉換函數1 4 6所決定,其將 採取原始資料,有理化該假設中資料將產生及聚集在該份 財產中個別資產的估價。 因為所有的還原並非同質的,其提供一種建立現金流量 還原的可變性之方法。個別的資產由群組暴露所叢集化。 當儘可能多的面向數值傳統上在允許的時間中被認購時, 其瞭解一可碉整的樣本仍維持叢集化。叢集化保留係使用 一樣本尺寸等於1 4 5加上該面計數的2 · 6 5 %來估計,以及 一變化的回歸分析。此可產生三十個樣本大小,用於1 〇 〇 個資產的一面向計數,其對於1,000個資產的面向有1 5 〇 個’ 400用於面向一 5,000個資產的確認,500用於面向計 數為10,000,及600用於20,000個面向計數。 在统计干涉程序4 0期間,資產維持在投資組合1 2的第三 部份42中,其由說明性認購屬性來叢集化,或是由每個叢 集及該認購的—樣本取出條件8 0及隨機的樣本。在一具體眚 施例中,在程序4 0中來自一叢集的取樣在當資產級別平均 變化低於1 0 %時即中止。在另一具體實施例中,取樣在當 財產級別平均變化低於1 5 %即停止。投資組合平均變化並 未用做為中止點,如果該銷售的潛在單元小於整體的投資 組合時。根據程序40,該叢急取樣的還原估價被推斷到該 對應的叢集人口。在使用系統2 8時,描準該目標是要經由 三個或更多的唯一叢集來接觸每個推斷資產估價。在程序 _____— _97 . 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1235925 A7 B7 五、發明説明( 25 4 0期間,一叢集的認購者信心度及說明性屬性的相關性被 加權。 藉由範例,在沒有限制之下,〇 =:沒有信心,此叢集的#兒 明性屬性將提供一有意義的估價;1 ==:完全信心,此叢集的 描述性屬性將提供如同個別認購每個設施之估價一般的準 確,而1到0之間的數目代表該估價中的部份信心度。這些 數值的一致性發生在調整的信心分析表1 3 0之内。在程序 4 〇中,在資產層級的現金流量即由在調整的信心分析表 1 4 0之内的總體經濟係數來調整。在一具體實施例中,總 體經濟的係數係關於主要的資產類別,例如像是,但非限 制,房地產住戶贷款或商用設備貸款。該係數可被共通地 應用,例如像是但非限制,法律氣候,國民生產毛額 ("GDP”)預測,保證人氣候,集合效率,借方群組碼,及類 似者。 / -種用以取樣一投資組合之方法包含,纟關鍵資產之中 搜尋,及屬性的附帶特性,其嚴重影響並產生風險。下表 A提供了在一-資產估價情節中一投資組合屬性的'範例表
1235925
A7 B7 五、發明説明(26 表A :投資組合屬性 借方大小(由借方群組UPB) 安全的 賣出(是/否) 保證 贷款種類(期限,周轉等) 來自在第一位置中Liensi% UPB 集合分數(〇 =不良,1=良好) TJPB之12個月集合% 最後支付本金的% #借方貸款 借方UPB的贷款部份 丨單一家庭居住 居住 零售 工業 醫梡 招待 多重家庭 土地開發/未開發/其它 辨公室 該資產屬性的分割是由編碼屬性成為’’替代變數’’來完 成。舉例而言,一共用的資產屬性為f’借方已經在過去1 2 個月中支付了嗎? ’’,其將被編碼在一變數中,如果答案 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 町
1235925 〆 , A7 B7 五、發明説明( 27 局疋局1 ,否則的話則為” 〇 ”。類似的”替代變數” 則用於其它資產屬性。 該分割程序係由使用任何處理資產屬性之統計程序來完 成’其方式可將該投資組合分割成類似屬性的群組。這種 演算法之一為K值平均叢集。在一範例中,有三個資產屬 性’未支付本金餘額(UPB),付款機率,比例由0到1 ;及
安全分數’其使用房地產擔保來擔保的機率,該資產可用 類似的屬性分類成5個群組。 裝 一旦芫成該資產的群組化,要採取的樣本數目,及提交 做為進一步認購評估則由建立該信心層級來計算,其藉由 構成有關在每個段落(k)中整體還原的敘述,以所期望來 估計每個段落(h)中整體還原來建立精確度,並提供該層 級的優先性估計及還原的範圍,做為整體未支付本金餘額 (UPB)的百分比(R),其根據: ' η
VariYR ) = ^1
線 η ==為樣本大小 Ν =為叢集大小 xi=為樣本i的UPB yi=為樣本i的還原
.V R = ~•一 =叢集預期還原百分比 1 ___ __- λΠ , 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐)
發明説明( 28 1235925 kl
N Σ' /V Σ (少,*ά· Σ' (方程式C) 為以&估計卜之誤差容許值 我.a Σ乂· " Σρ^/ .v (方程式D) 十 χΣχ,卜 χΣ ,*· Σν· Σ' - k二為Tchebyshev公式之常數:
F/?—々 ,機率 si-A 樣Ϊ1對η來求解方程式C,即可得到該給定叢集所需要的 ^ 小。求解方程式C進一步允許該使用者來敘述,以 ‘:十异的m本大小i一去之機_ n,及相關的認購數值將估 :β整體叢集還原到一誤差h之内,#假設整體段落還原 的估計係使用方程式D來決定。 、焉際上,其―很難在沒有可用的資料下來估計整體還原中 、勺又動性。一試算表工具藉由在M〇nte Carl〇模擬中產生資 料來貫施以上的.做法,並導引使用者經由該結果的分析, 直到得到一理想的樣本大小。 表B #疋供來自一 2 〇個貸款的群組之樣本輸出,其中估計 (預期)的還原在U P B的2 0 %到3 0 %之間,及U P B的範圍 在1 Μ Μ到2 Μ Μ之間。其需要8個樣本來估計該2 0個貸款 的整體還原到1 〇 %實際,7 5 %信心的狀況下。 -31 - 裝 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 1235925 Λ 止瞀1 9;;ι ir Α7 Β7 五、發明説明( 表B :樣本大小試算表工具 779.131 718.951 359.327 481.796 606.774 418.999 622.516 594.799 713.922 494.230 735.334 683.155 718.413 419.885 757.050 553.674 761.579 779.131 2.936^79 28 5% 5β3.811 434.783 1.49β.0β2 1.855.40« 2.337*206 2.943.980 3.3β2.880 3.985.39« 4.560.195 5.294.117 5.78β.>β β.523,Μ0 7:06.825 7.955.248 8.375.133 9.122.183 9.60S.8S7 10.447.435 ”.125*24« 1.089.097 ,821 ".Μ9.Ι 12.123.1 5.447.831 6.702.090 S.S38.873 10.706.452 12.207.495 14.609.180 16.911^78 19.440.132 21.153.815 24.031,814 28.387.193 29<25β·251 30.726.773 33.ββ2.971 35.β00.2β2 38^34.459 4〇.73β.»Α4 42.Sea.ft52 44.160.329 27 5% 27.7% 27.3% 27 1% 27.2% 27 4% 27.1% 27.3% 27 2% 27.3% 27 1% 27.1% 27 3% 27*259 12.042 (20.95β) 10.750 5.397 (32.565) (28.594) 25^41 25.3β3 (45.9β3) 39.857 (31.Π0) 19.066 (“.‘391 3.322 ϊ.38β (10.741) 34.790 30.810
該適當變異調整的預測係對每個資產來實施,且該估價 表係建構來包含每個該投資組合中的資產。該還原是以該 比例單位的連續機率來估價,在一具體實施例中為一份財 產(tranche)。使用系統2 8當中,内部回收率(” IRR")及變 異接著被評定。較佳的財產對於一給定的I RR具有較低的 變異。每份財產的目前淨值(’’ NPV’’)高於0的機率係使用 該計畫的折扣率來評定。一折扣率係由資本的機會成本, 加上F X交換成本,加上内含於預測的現金流量還原的變 異中的一般不確定性之風險來決定。如果其呈現超過5 % 的確定性,則該計畫將具有一負的N P V,無標售進行。交 易評估係由針對財產具有決策條件為IRR,在一份財產中 的I R R之風險變異,估計之支付該份財產的意願及能力, 獲利時間(n TPP”),及該份財產的償還風險變異,及該份 財產的預期現金流量的Ν Ρ V折扣到無風險率。 在一競爭性投標狀況下,當該資產投資組合的内容無法 轉讓時,該投資者或銷售者具有強烈的財務動機來僅選擇 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 1235925 /Vu
整體可用資產的部份來交易,其使得它們的合計財務結構 具有最佳的風險/回收。要達到最小風險/回收預期數值, 其貧產將具有最大上升機率之較高機率,甚至可更為吸引 投資者。 居永集的技貝組合被區分成獨立的可銷售次投資組合或 財厓。每份財產具有來自先前分析的預測現金流量機率分 佈及持續時間。這些財產即被給定一試驗性價格。新的資 產結合於既有的該賣方或買方的資產效能,並經由Monte Carlo炀況產生(其具有所負責的相關交互關聯性)。 孩財產選擇過程包含不買的財產之隨機選擇。一旦該投 貧組合影響為一樣式,要購買的財產之最佳選擇,在什麼 仏格等’皆雙到由隨機最佳化所發現之限制條件。 使用N P V將由於關於雙重折扣的效應而誤導,其將在悲 觀狀況情節被折扣來達到p V時來發生。使用獲利時間可 用來克服此限制,且使用盈餘資本成本或無風險率在折扣 化’像是由分析師進行該評估來決定。 、推斷估價程_序40之監督學習過程2〇6,及部份的取樣程 序1 0 8又步驟120,122及1 2 6,皆具有實質的類似性,其 在於孩認購者主動地參與在過程中,但該過程是自動化 的。圖6所不為自動化認購可分割的金融設施資產的過程 2 1 〇之流程圖。金融設施的第一叢集係由共通屬性來定義 2/ 2 ° —數值的專家意見2丨4係對於根據該屬性所定義的 叢术中k出的樣本來提出。此意見用於一樣本認購過程 2 1 6 ’而數值對於屬性的組合進行檢查,並經過一致化 Ϊ235925 胳」 A7 '^ --—— _ B7 五、發明説明( ) 。然後過程21〇選擇並設定22〇要使用的個別屬性, '.、、;?再分類222個別資產㈣叢集中。t集估價即應用224 二母個叢集資產。藉由該叢集估價’該數值由一規則廢除 6 ’以產生一信用分析師表格2 2 8。 圖7為包含數個模組的未監督學習2 〇 8之範例具體實施例 的流程圖。一資料取得模組23〇收集任何可用的相關資料 7—8、。-變數選擇模組2 3 2識別出由信用評斷所視為關鍵的 ,產相關變數,或在分離不同資產群組時具有最為明顯的 月b力者 結構性分割模組2 3 4根據由分析師選擇的關鍵 變數來分割整個資產投資組合到分組。一FCM模组2 3 6進 一步根據該資產資料的自然結構來分類每個分組到叢集。 一認購評定模組2 3 8指定評估的現金流量及風險分數138 (示於圖3)給每個叢集。然後此分數即提供給在信用分析 師表格136中的個別資產數值,用以在程序4〇中調整來自 該叢集的資產,以產生調整的信用分析師表格丨4〇。該過 程為遞迴及連續的,其可由電腦執行,所以其在別處正執 行標準認購時"可繼續。 圖8所示為用來取代圖3及4中所述過程的另一個範例性 推斷估價過程240。在另一過程2 4〇中,使用7個步騾的過 程來使用完整認購,部份認購及推斷估價之組合來快速地 估價一房地產貸款投資組合。首先,資產即根據風險來取 樣2 42。第二,資產被認購244,並記錄估價。第三,形 成市場數值叢集2 4 6,例如下述的利用ρ c μ。第四,對於 認購的貧產建JL回歸模型2 4 8。對於那些稍早建立2 4 8當 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) A7 B7 1235925 五、發明説明( 32 中的認購資產選擇一最佳模型2 5 0。第六,對該選擇的模 型計算其數量252。第七,應用該模型254,以該數量來 加權的方式,來選擇2 5 0到投資組合1 2的未認購或推斷估 價邵份4 2,以對於每個該未認購的資產來預測個別的數 值。根據過程2 4 0所產生的個別資產數值即置於調整的信 用分析師表格140中(如圖3)。 在取樣資產2 4 2中,認購者使用階層的隨機取樣來選擇 詳細評定的資產。階層係由擔保屬性來建構。房地產投資 組合的擔保屬性之範例包含擔保使用(商用或住家),先前 鑑價’市場數值叢集(由先前的鑑價數值,土地面積,建 物面積,目前的鑑價,法院拍賣實現價格,財產種類及財 產位置等來預測)。基本上,資產是以相反的方式來取 樣’即目標是由降低的未支付本金餘額(”upB,,)或先前鐘 價數量("PAA”)所排列的表列來選擇。 認購244為一大量的人工過程,其中專家認購者歸因於 一價值觀念到擔保資產。該認購的估價即儲存在一主控資 料庫表格,例如資料庫76 (示於圖2)。估價基本上是以眢 幣單位來加總(如100,000 KRW),然後是以目前市場價 格。 ' 圖9為系統28所使用的該過程之自動化部份的高階概要 290。自動化程序係由認購者用來根據程序34輔助完整認 購(也參見圖3)。在程序34中補捉的知識係應用到推斷估 價程序40來降低在金融設施的到期程度估價中的成本及不 確定性,ϋ降低到期程度估價之間的成本及變動性。該估 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 1235925! A7 B7 ¥ _ Γ祖 J 丨· 五、發明說萌了 價接受現金流量模型,其包含資產層級估價1 4 6,決定性 現金流量橋1 4 8,隨機現金流量橋丨5 2,及現金流量表 1 5 0。所得到的標價估價1 5 4接受賭博策略i 6 〇及管理調 整1 6 2來產生最後的標價丨6 4。 圖1 0為形成叢集2 4 6的一範例具體實施例的流程圖。在 形成叢集2 4 6中,認購者藉由演算法的協助,例如像是演 异法1 3 4 (不於圖3 ),來使用一分類及回歸樹(CART)為主 的模型執行分析,其造成使用先前鑑價數量("PAa”)做為 驅動變數時,由擔保使用及市場價值(”CUMV’,)群組構成 的UW資產群組。 以下列出兩種評定CART為主的模型之效能的方式。一種 方式利用一 CART為主方式的平方差的總和(s s E )與一簡單 模型之比例,其稱之為誤差比。一簡單的模型為指定一平 均資產價格給所有的資產之模型。第二種方式計算裁定的 係數,標示為R2,其定義如下: R2=l-(SSE/SST),其中SST為一整體平方的總和。 R2為在相對"於整體數量的每個分段内單一資產的貢獻, 在一特定分段内逼資產的R2數值愈高,其貢獻愈高。不同 的投資組合分段係根據代表在每個投資組合分段内,該模 型的預測能力之良好程度之兩種方式來分級,例如對於每 份財產I疋供以價格為依據的舒適層級給投標者。 本紙張尺度適财關家標準(δ^Α4規格(21〇Χ297ϋ 1235925 I1!:正替換質月:a
A7 B7五、發明説明(34 ) 財產00 資料 B C 總計 C貸款的 級數誤 差比 。貸款的 雜貸款 R-平方 CO01 目前UPBTHB總和 6^5^59,109 8戰009 728,651,119 丨 ~~—. ----— ——-— 贷款數目計數 66 10 76 SST總泰 599,969,990,091,014 72331,126,127,460 672,301,116^18^04 SSE(CARI)總泰 252,088,256^87362 26,877^27,094,865 278^65,783,682,227 SSE(簡單)總和 440,700^63,795,025 36,637,006,656,009 477,337,270,451,034 0.733617 0.18% COQ2 目前UPBIHB總禾 58,779,400 379,765,147 438^44^47 贷款數目計數 9 118 127 SST總本 32332^49,696,133 1,039,401,135^08,180 1,071,733,684^04320 SSE(CART)«總和 6,139^33,273,655 83,849^6,818,428 89^89,160,0^,084 SSE(簡單)總和 7,037,799,486368 136366,441^63,041 143,404,241,449,409 0.614882 0.06% 0003 目前UPBTHB總和 798^69^57 278,915^73 1,075,884,830 貸款數目計數 98 99 197 SST總禾 2,869,807,879,172,670 1,017,087,163,438,760 3,886,895,042,611,430 SSE(CART)總本 729304^05,050,836 65,902,258,632^74 795,206,763,683,411 SSE(簡單)總和 929,822,648,064,552 41,730,444^75,417 971^53,092,439,969 1579237 0.46% CO04 目前UPBTHB總和 916,281,888 184,828399 1,101,110^87 貸款數目計數 116 28 144 SST總本 927,232,177^39,735 223,991,862,418,47 1,151^24,039,958,210 SSEiCART)*總禾 329,869^66,636,764 92347,778,018,417 422217344,655,182 SSE(簡單>總和 688^43329,448,792 62,722,788,782,158 751^118,230,950 1.472316 0.11% GO 05 SITUPBIHB總加 221,769^81 41^505,412 265^74,692 贷款數目計數 36 19 55 SST總禾 270,033,444,922,605 164,601,058,694,453 434,634^03,617,058 SSE(CART)總禾 28^82,198,098 10,191,006,095,7® 38,738^88^93,867 SSB(簡單)、€和 28,897,015,065,918 8^19^09,247,449 37,416^24313367 1.196196 0.14%_ 目前服, ΤΉΒ總承 2,641,758^ 965,70^540 3,607,465,475 贷款數目總 數 325 274 599 SST總永 4,699376,041,422,190 2^17,412345,887330 7,216,788387309^20 SSE(CART) 總泰 1345,950,243,746,720 279,1^7,796,660,054 1,625,118,040,406,770 SSE(簡單) 總承 2,095,001,055,860,660 285^76,191,024,073 2380^77^46,884,730 0576192 022% R平方(CART) 71.4% 88.9% 77.5% R平方(簡單) 55.4% 88.6% 67.0% 表C :每個資產的級別誤差比例及R2數值 ________ 9,7 . 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 五、發明説明(35 第一步是要定義相關的投資組合分段。該分段可為預先 定義的財產,例如根據產業,未支付餘額(upB)數量厂地 區或各戶風險。上表C為根據財產及資產等級(b或〔)所定 義分段之範例。 表C提供了具有5份財產及兩個不同資產形式(B&c)的 投資組合研究所輸出的範例。該表顯示出對於不同分段如 何進行誤差比例分級。同時,每個資產的R2數值也對於在 每個分段内形式C的資產來計算。 第二步是對於該C A R T模型及簡單模型(推斷一平均價格) 的每個有興趣的投資組合分段的S S E數值。一誤差比例是 由根據CART模型的S S E除以根據簡單模型的s s E來計 算。如果該誤差比例小於1,則該CART為主的模型即為優 方;間單模型的預測為。更佳地是’一優良的模型可組合成 該CART及簡單模型的”複合式”組合,其根據該誤差比例 度量來選擇在每個分段中最佳執行的模型。 第三步是對於在每個投資組合分段内的每個資產計算R 2 數值。每個資產的R2係計算成(每個分段SST_每個分段 SSE ) / (所有資產的整體SST X在每個分段内的資產數目)。 最後,所有的分段根據在第二步驟計算的誤差比例及第 三步驟計算的R2數值來分級。該模型對於預測在兩個度量 上級數高的分段之價格數值為準確的,該誤差比例及r 2及 優良模型使用這些度量來組合。 表D顯示出以兩個效能度量為基礎的形式c的資產(由表 C )之5份財產之相對分級。 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1235925/ A7 發明説明( -~-- 36 ) -投資組合分段級數 財產CO C R平方 級數誤差比例 級數R平方 CO 01 0.73 0.18% 2 2 CO 02 0.61 0.06% 1 5 CO 03 1.58 0.46% 5 1 CO 04 CO 05 1.47 1.20 0.11% 一 -—1 — 0.14% ί__ 3 4 3 圖其使用FCM來選擇模型化的叢集。電腦μ (示於圖2) 藉由採取選擇的資料78來形成叢集246,並執行FeM分析 來產生該叢集。 圖11所示為建立模型248,選擇最佳模型25〇,並計算 數量2 5 2,其中使用資料庫76建立6個模型。電腦38 (示 於圖3)執行此過程。模型建立24 8用於輔助認購者在優先 化完整認購14及樣本為主的認購34之資產,以及用於推 斷估價。 圖11的下半部為一表格,其說明根據建立模型248d所建 立的6個模型中選擇最佳模型25〇的一範例具體實施例。 該模型根據使用做為X的變數而不同。所有的模型使用 CUMV叢集(這些對於所有資產皆存在)。來自建立模型 24 8的模型用來預測除了市場數值(”ΜΑνπ) 258之外的法院 拍賣數值("CAV”)256。其它的具體實施例(未示出)使用^ 它的模型來預測其它的數值。 〃 在選擇最佳模型250中,即選擇出所考慮的〖回歸模型
1235925 五、發明説明(
t/ό,. 的最佳模型(此處κ = 6 )。該最佳模型係對每個u w資產所 延擇,其根據以下的度量:,其中y為要 預測的UW數值,而尺為來自第以個回歸模型之預測,其 中 k=1,2,...,K。 在计异數目2 5 2時,每個κ模型在每個CUMV中選擇的次 數被计數。圖1 1包含這些C A V及M A V模型化情節的計 數。其它模型化情節可用於其它具體實施例。 δ應用模型2 5 4時,使用來自對每個非u w資產產生預 "、J之所有模型之加權的平均預測。該加權係由所計算2 5 2 的計數之頻率來建構,而該預測來自該模型化過程。在一 具體實施例中,使用一商用統計分析軟體(S AS)系統來產 生3模型。使用該S A S系統的一人工產物為每個非u w資 產將得到來自每個模型的預測UW數值,其對於該非UW 貝產存在有每個輸入變數,即” χ變數”。其它的模型化套 裝軟體共用此特徵量。以下的方程式E詳細描述該程序。 (方程式Ε ) i.j.k 在方程式C中,如果模型k產生對於資產/的預測時, Ilk,否則其為〇 ; fijk=在第i個cumV形式(i=l,2),及第j 個CUMV叢集(j =丨,2,3)之中對於ljw資產所選擇模型的 數目;及t =對於來自模型k的yt預測。請注意,僅有來自 對於一資產具有預測之每個模型化方式的貢獻,其每個皆 藉由對於相同的CUMV叢集的所有UW資產所選擇的模型 40 - 本紙張尺度適用中國國家標準⑴]^^ A4規格(21〇 x 297公釐) 12359想 .够 A7 B7 五、發明説明(38 ) 化方式的次數來加權。 過程2 4 0也用來估計該主要預測的一信心度下限(,,lcl,,. 及一信心度上限("UCL”),藉由在方程式E中置換對應的 少\之統計。
在回頭參考圖3,監督學習過程2〇6及未監督學習過程 2 0 8使用叢集化。”叢集化"為一種嘗試藉由組織該樣式到 群組或叢集來評價該貧料組合的樣式之間的關係之工具, 使得在一叢集.内的樣式彼此之間比屬於不同叢集的樣式要 較為相似。也就是說,叢集化的目的是要由一大型資料組 合中摘取自然的資料群組,產生一系統行為的簡要代表\ 未監督學習步驟20 8使用一模糊叢集化方法("fcm"),及 知識工程來自動地對.估價來群組資產。fcm為廣泛應用的 已知方法,其應用在統計模型中。該方法針對最小化的叢集 内距離及最大化叢集間距離。基本上其使用笛卡兒距離w FCM 248 (見圖1G)同時最小化該叢集内距離及最大化叢 集間距離。基本上其使用笛卡兒距離。fcm為—遞迴最佳 化演算法,其最小化該成本函數 k=l ^ I 丨丨 (方程式F ) 其上為資料點數·“為叢集數目,Xk為第k個資料點; 合:Γ:叢集中心點、k為在第1個叢集中第k個資料的 y“各程度、為大於i的常數(基本上㈣)。請注 為一實數,限制在代表第⑽資料確 疋在弟k個叢集中,而心=〇代表第i個資料確定不在第^個
1235925 A7 、發明説明( B7 叢集中。如果仏,0·5,則其代表第i個資料部份在第k個 叢术中’程度為〇·5。直覺上,該成本函數在當每個資料 $完全地屬於一特定叢集時可最小化,且沒有部份的會員 貝格私度在任何其它的叢集。也就是說,在指定每個資料 點到其所屬的叢集時不會混淆。 /、 該會員資格#以的程度係定義成: (方程式G) 泰-F!2、 ’ l||uy| y 直覺上’ #ik,及在該叢集交叉點Vi中該資料點Xk的會員 資格程度,在當xk愈靠近Vi時即增加。同時,在Xk遠 離% (其它叢集)時即變小。 該第i個叢集中心點定義為
(方程式Η ) 其為X k座標值的加權 直覺上,V i,第i個叢集中心點 總和,其中k為資料點的數目。 由一所需要的叢集數目c開始,對於每個叢集中心Vi, 卜1,2,...,0之初始估計,1^“將收斂到一1的解,其代表 該成本函數的一局部最小值或一凹點。該F C Μ解的品質, 類似於最為非線性最佳化問題,其強烈依據初始值的選 擇,即數目c及初始叢集中心點V i。 --..... ...—-- 42 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1235925 A7 B7 五、發明説明(40 ) 在一範例型的具體實施例中,整個投資組合丨2係由未監 督模糊叢集化來分段,及每個叢集由認購的專家來評斷, 藉此輔助該認購者選擇完整認購1 4及樣本認購3 4的金融 設施。另外,此FCM可僅應用到部份42。因此,每個叢 集可被指定一 HELTR複合分數,用於調整138 (參見圖3)。 基本上,該HELTR複合分數同時補捉預期的及現金流量範 圍,其時序及關於每個叢集的風險。 現在參考圖2,完整認購部份丨6對該整體投資組合1 2的 比例為在一範例具體實施例中為該資產2 5 %,所有資產的 面向數值之6 0 %。這些資產的完整認購係由於其尺寸及數 值末保證。但疋,此忍購對於所有的認購者係相當地一 致,所以該認購不可能產生明顯的標價變異。但是,該剩 下的40%包含部份3 6及42,其在該範例具體實施例中構 成該資產的7 5 %,但僅有該面向數值的4 〇 %為高度推測 性’直到被I忍購。數值在邵份3 6及4 2 f可發現到的程度, 例如播限制’在粗略推斷上額外有百分之五,該差距代表 贏得與喪失整"個投資組合標價之間的差異,或是整個財產 標價代表在獲利中數億元的差距。 根據程序4 0,在保險政策的情況下,使用統計來嘗試回 答三個基本的問提:(a)我們如何收集我們的資料?(b)我們 必須如何加總我們收集的資料?及(c)我們資料加總的準確 性如何?演算法1 3 4回答問題(c),其為一電腦為主的方 法,而沒有複雜的理論驗證。用以保險政策推斷估價的演 算法1 3 4適合於回答統計推斷,其對於傳統的統計分析過 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公董_) 1235925
A7 B7 五、發明説明(41 ) 於複雜。用於保險政策的演算法1 3 4由重複地以取代取樣 來模擬統計估計的分佈。該演算法一般而言包含三個主要 的步騾:(I)以取代來取樣,(II)評估有興趣的統計,及(ΠΙ) 估計標準差。 根據保險演算法134 ’ NPV標準誤差的估計依以下方式執 行。對於每個風險模型及每個模型中的分段,其假設在該 分段中有N個政策,使用取代取樣來收集^個樣本(例如 η = 1 0 0 )。在此範例中每個樣本也包含ν個政策。對於每個 樣本及對於所有歷史政策: A Z(AcI) IT" K^tdexp) (方程式 I) 0.72858 接下來,目前淨值由方程式j) E w 對於最新的政策來產生。對於該n個N P V數值計算該樣本 標準差。在方程式I中,Act為實際的索賠,而Wtdexp為每 個個別的政策加權的期望索賠。 圖1 2為範例條件8 0的表格,及信心分數丨3 8的範例規則 組合。其它條件可根據該·金融設施的形式,及特殊標價條 件’或任何其它該投標者的禽求或喜好來選擇。 圖1 3為類似於樹狀圖6 6 (參見圖2的下半部)之更為詳細 的樹狀圖260。在圖13中,該隔離由(a)是否安全,(㈧是否 循環,(c)是否該最後的付款為〇。該結果為6個叢集262 , 264 ’ 266 ’ 268 ’ 270 ’ 272,其平常已知為”搖動者&了。 本紙痕尺度適用巾關家鮮(CNS) A4規格(21G χ 29ϋ- 1235925
A7 B7 五、發明説明(42 ) 圖1 4所示為根據本發明一具體實施例的一範例系統 3 00。系統3 0 0包含至少一電腦做為一伺服器3〇2,及複 數個結合於伺服為3 0 2的其它電腦3 〇 4來形成一網路。在 一具體實施例中,電腦3 0 4為顧客系統,其包含一網頁瀏 覽器,及一伺服奋3 0 2,可由電腦3 〇 4透過網際網路來存 取。此外,伺服器3 02為一電腦。電腦3 〇4可經由許多介 面來内連接到網際網路,其包含一網路,例如一區域網路 (LAN)或一廣域網路(WAN),撥號連接,纟覽線數據機,及 特殊的高速I S D N專線。電腦3 〇 4可為任何内連接到網際 網路的裝置,其包含網路電話或其它網路為主的可連接設 備,包含無線網頁及衛星。伺服器3 〇 2包含一資料庫伺服 器3 0 6,其連接到一中心資料庫7 6 (也示於圖2 ),其包含 描述資產投資組合的組合之資料。在一具體實施例中,中 心資料庫76儲存在資料伺服器3〇6中,並由使用者從電腦 3 〇 4之一經由登入到電腦3 〇 4之一伺服器子系統3 〇 2來存 取。在另一具體實施例中,中心資料庫7 6係儲存在遠離伺 服器3 02的地方。伺服器3〇2進一步用來接收及儲存上述 貧產估價方法的資訊。 當系統3 00描述為一網路系統時,其可視為此處說明的 用來檢視及操縱資產投資組合的方法及演算法能夠以獨立 的私略系統來貫施,其不需要連網到其它電腦。 當本發明已藉由不同的特定具體實施例來說明之後,本 技勢的專業人士將可瞭解到本發明在申請專利範圍的精神 及範圍之下,可實施修正。 菽張尺度適^

Claims (1)

  1. ABCD 123592, 、申請專利範圍 1. 一種在購買資產的投資組合投資組合時利用一耦合至 一資料庫之電腦找出數值及降低風險之方法,該方法 包含以下步驟: 利用該資料庫計算投資組合投資組合包含於資產的一 投資組合内之每一初始資產數值;及 重新計算包含於該投資組合内之每一該資產數值,其 係利用該電腦藉由下列步驟而完成: 完整認購包含於該投資組合之一第一部份内之每 一資產,以產生包含於該投資組合之該第一部份 内之每一資產數值; 認購包含於該投資組合之一第二部份内之一資產 取樣,以根據該認購之資產取樣計算包含於該投 資組合之該第二部份内之每一資產取樣數值;及 利用一遞迴過程以統計地推導包含於該投資組合 之一第三部份内之每一資產數值,該遞迴過程包 括根據認購數值及該投資組合之該第一及第二部 为之變異數而將包含於該投資組合之該第三部份 内之該資產群組化成叢集。 2 ·如申請專利範圍第1項之方法,其中該重新計算每一該 資產數值的步驟進一步包含預先認購資產來決定資產 數值之步驟。 ' 3.如申請專利範圍第以之方法,其中該重新計算每一資 產數值的步驟進—步包含重新計算包含於該投資組八、 内之每-該資產數值,其係利用1份取樣過程藉Z 本紙張尺度適财® S家標準(CNS) A4規格(21G><297公董)
    、申請專利範圍 123592^¾^^ a. -ΐ:ή. - 第—°卩伤中之每一資產數值而重新計算包含 ;"技資、、且a之每一資產數值之步驟,該步驟包含使 四i i及未監督學習過程之步驟,以決定一現金流量 還原及一還原機率。 •如申明專利乾圍第1項之方法,該重新計算每一資產數 人、二驟進步包含藉由統計上推斷包含於該投資組 :次第二部份中之每一資產數值而重新計算包含於該 才又貝組合之每一資產數值之步驟,該步驟包含當資產 估價平均變異低於一預定的百分比時即停止重新計算 之步驟。 9·如申請專利範圍第1項之方法,其中該重新計算每-資 f婁文值的步驟進一步包含藉由統計上推斷包含於該投 貝、、且口一第二部份中之每一資產數值而重新計算包含 2該投資組合之每一資產數值之步驟,該步驟包含在 當資產的一份財產的估價中平均變異低於百分之十五 時即停止重新計算的步驟。 ίο. —種在購買貧產的投資組合投資組合時找出數值及降 低風險之投資組合投資組合估價系統,該系統包含·· 一電腦配置為一伺服器,且進一步設定有一資產投資 組合投資組合的資料庫,並可操作估價過程分析; 至少一個客戶系統,其經由一網路連接到該伺服器, 該伺服器用來·· °° 計算包含於一投資組合投資組合内的一每一初始資產 數值;及 ' -3- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 1235925
    A8 B8 C8 D8 六、申請專利範圍 重新計算包含於該投資組合内之每一資產數值,其包 含: 於完整認購包含於該投資組合之第一部份内之每 一資產之後,計算包含於該投資組合之第一部份 内之每一資產; 於完整認購包含於該投資組合之第二部份内之每 一資產之後,計算包含於該投資組合之第二部份 内之每一資產;及 利用一遞迴過程以統計地推導包含於該投資組合 之一第三部份内之每一資產數值,該遞迴過程包 括根據認購數值及該投資組合之該第一及第二部 分之變異數而將包含於該投資組合之該第三部份 内之該資產群組化成叢集。 11. 如申請專利範圍第1 0項之系統,其中該伺服器係進一步 用來根據預先認購包含於該投資組合内之每一資產來 決定包含於該投資組合内之每一資產數值。 12. 如申請專利""範圍第1 0項之系統,其中該伺服器係進一步 用來根據一部份取樣過程計算包含於該投資組合之第 二部分内之每一資產,該部份取樣過程包括自一資產 群組叢集完整取樣一代表性資產群組及隨機取樣該叢 集内之其他所有資產群組。 13. 如申請專利範圍第1 0項之系統,其中該伺服器係進一步 用來根據一完整取樣過程計算包含於該投資組合之第 二部分内之每一資產,該完整取樣過程,該完整取樣 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 8 8 8 8 A BCD 1235925 六、申請專利範圍 過程包括根據一所決定之共通性認購包含於完整取樣 資產群組之資產。 14.如申請專利範圍第1 〇項之系統,其中該伺服器係進一步 用來計算包含於該投資組合第一部分内之每一資產數 值,其係藉由: 在一完整現金基礎方式上認購一些該資產;及 在一部份現金基礎方式上認購一些該資產。 15·如申請專利範圍第1 〇項之系統,其中該伺服器係進一步 用來在統計上推斷包含於該投資組合第三部分内之每 一資產數值,包括使用統計演算法執行一自動化估 價,以構成在該投資組合投資組合中的資產數值推 斷。 16.如申凊專利範圍弟1 〇項之系統,其中該伺服器係進一步 用來在統計上推斷包含於該投資組合第三部分内之每 一資產數值,包括使甩監督及未監督學習過程之步 驟,以決定一現金流量還原及一還原機率。 17·如申凊專利範圍第1 0項之系統,其中該伺服器係進一步 用來在統計上推斷包含於該投資組合第三部分内之每 一資產數值,包括當資產估價平均變異低於一預定的 百分比時即停止重新計算。 18.如申請專利範圍第10項之系統’丨中該伺服器係進一步 用來在統計上推斷包含於該投資組合第三部分内之每 一資產數值,包括當資產的一份財產的估價中平均變 異低於一預定百分比時即停止重新計管。 -5- 1235925 ^ 9. 1 έβ C8 D8 六、申請專利範圍 19. 一種在購買資產的投資組合投資組合時找出數值及降 低風險之電腦,該電腦包含資產投資組合投資組合的 資料庫,該電腦被程式化來: 計算包含於一投資組合投資組合内之每一初始資產數 值;及 重新計算包含於該投資組合内之每一初始資產數值資 產數值,係藉由: 於完整認購包含於該投資組合之第一部份内之每 一資產之後,計算包含於該投資組合之第一部份 内之每一資產數值; 於完整認購包含於該投資組合之第二部份内之每 一資產之後,計算包含於該投資組合之第二部份 内之每一資產數值;及 利用一遞迴過程以統計地推導包含於該投資組合 之一第三部份内之每一資產數值,該遞迴過程包 括根據認購數值及該投資組合之該第一及第二部 分之變^異數而將包含於該投資組合之該第三部份 内之該資產群組化成叢集。 20. 如申請專利範圍第1 9項之電腦,其程式化來根據預先 認購包含於該投資組合内之每一資產來決定包含於該 投資組合内之每一資產數值。 21. 如申請專利範圍第1 9項之電腦,其程式化來根據一部 份取樣過程計算包含於該投資組合之第二部分内之每 一資產,該部份取樣過程包括自一資產群組叢集完整 -6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
    1235925 取樣一代表性資產群組及隨機取樣該叢集内之其他所 有資產群組。 ’ 22. 如申請專利範圍第19項之電腦,其程式化來根據一完 整㈣過程計算包含於該投資組合之第二部分内之每 一貢產i該完整取樣過程,該完整取樣過程包括根據 所决定之共通性認購包含於完整取樣資產群組之資 產。 23. 如申請專鄕„19項之電腦,其程式化來計算包含 於该投貧組合第一部分内之每一資產數值,盆係藉 由·· 八 在一完整現金基礎方式上認購一些該資產;及 在一部份現金基礎方式上認購一些該資產。 24·如申請專利範圍第19項之電腦’其程式化來在統計上 推斷包含於該投資組合第三部分内之每一資產數值, 包括使用統計演算法執行一自動化估價,以構成在該 投資組合投資組合中的資產數值推斷。 25·如申請專利範圍第23項之電腦,其程式化來在統計上 推斷包含於該投資組合第三部分内之每一資產數值, 包括使用監督及未監督學習過程之步驟,以決定一現 金流量還原及一還原機率。 26·如申請專利範圍第19項之電腦,其程式化來在統計上 推斷包含於該投資組合第三部分内之每一資產數值, 包括當資產估價平均變異低於一預定的百分比時即停 止重新計算。
    A8 B8 C8 D8 I2359_ 六、申請專利範圍 27.如申請專利範圍第1 9項之電腦,其程式化來在統計上 推斷包含於該投資組合第三部分内之每一資產數值, 包括當資產的一份財產的估價中平均變異低於一預定 百分比時即停止重新計算。 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1-,· η. 123釋 尺只 ^ I ,Ώ *.«丨••丨 “ 第090119928號專利申請案 中文圖式替換頁(93年9月)
    I 28 DD時間線 日所提之 尤明#或 開始 BID 84 Λ2 .14 40 a/!7e82 5〇λ"Γ* 70 76. 投資組合 _i
    改善的 推斷 68-
    ”最佳”數値 持續地改善 取樣的 完全認購 42 36 16 -72 。74 圖2
TW090119928A 1999-12-30 2001-08-14 Method and systems for finding value and reducing risk TWI235925B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17379299P 1999-12-30 1999-12-30
US09/737,629 US7028005B2 (en) 1999-12-30 2000-12-14 Methods and systems for finding value and reducing risk

Publications (1)

Publication Number Publication Date
TWI235925B true TWI235925B (en) 2005-07-11

Family

ID=26869538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090119928A TWI235925B (en) 1999-12-30 2001-08-14 Method and systems for finding value and reducing risk

Country Status (14)

Country Link
US (1) US7028005B2 (zh)
EP (1) EP1264257A2 (zh)
JP (1) JP2003526146A (zh)
KR (1) KR20010102452A (zh)
CN (1) CN1360697A (zh)
AU (1) AU2444101A (zh)
BR (1) BR0008638A (zh)
CA (1) CA2362444A1 (zh)
HK (1) HK1048173A1 (zh)
HU (1) HUP0301073A2 (zh)
MX (1) MXPA01008624A (zh)
PL (1) PL366205A1 (zh)
TW (1) TWI235925B (zh)
WO (1) WO2001050316A2 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284584B1 (en) * 1993-12-17 2001-09-04 Stmicroelectronics, Inc. Method of masking for periphery salicidation of active regions
JP2001357197A (ja) * 2000-04-11 2001-12-26 Sumitomo Heavy Ind Ltd ポジション表示システム及びコンピュータ可読媒体
KR100477014B1 (ko) * 2000-07-15 2005-03-17 이밸류(주) 축약모형을 이용한 위험자산의 가격 추정 방법
US7702522B1 (en) * 2000-09-01 2010-04-20 Sholem Steven L Method and apparatus for tracking the relative value of medical services
US20040236673A1 (en) * 2000-10-17 2004-11-25 Eder Jeff Scott Collaborative risk transfer system
US20090018891A1 (en) * 2003-12-30 2009-01-15 Jeff Scott Eder Market value matrix
US7110525B1 (en) 2001-06-25 2006-09-19 Toby Heller Agent training sensitive call routing system
US6978258B2 (en) * 2001-12-26 2005-12-20 Autodesk, Inc. Fuzzy logic reasoning for inferring user location preferences
US7440921B1 (en) * 2002-02-12 2008-10-21 General Electric Capital Corporation System and method for evaluating real estate transactions
US20030177056A1 (en) * 2002-03-13 2003-09-18 Kaspar Tobias Winther Method for valuating a business opportunity
KR20040011858A (ko) * 2002-07-31 2004-02-11 컨설팅하우스 주식회사 실시간 정보보안 위험분석 시스템 및 그 방법
US9818136B1 (en) 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
US7716104B2 (en) * 2004-03-04 2010-05-11 Chainbridge Software, Inc. System and method for analyzing tax avoidance
US8261122B1 (en) * 2004-06-30 2012-09-04 Symantec Operating Corporation Estimation of recovery time, validation of recoverability, and decision support using recovery metrics, targets, and objectives
US20060074707A1 (en) * 2004-10-06 2006-04-06 Schuette Thomas A Method and system for user management of a fleet of vehicles including long term fleet planning
CA2588542A1 (en) 2004-11-30 2006-06-08 Michael Dell Orfano System and method for creating electronic real estate registration
US9076185B2 (en) 2004-11-30 2015-07-07 Michael Dell Orfano System and method for managing electronic real estate registry information
US7685063B2 (en) 2005-03-25 2010-03-23 The Crawford Group, Inc. Client-server architecture for managing customer vehicle leasing
US20060248096A1 (en) * 2005-04-28 2006-11-02 Adam Unternehmensberatung Gmbh Early detection and warning systems and methods
US20060265235A1 (en) * 2005-05-12 2006-11-23 The Crawford Group, Inc. Method and system for managing vehicle leases
US7657478B2 (en) * 2006-01-18 2010-02-02 Standard & Poor's Financial Services Llc Method for estimating expected cash flow of an investment instrument
US20080091588A1 (en) * 2006-10-12 2008-04-17 Barry Clare Financial products and methods relating thereto
US20080249788A1 (en) * 2007-04-05 2008-10-09 Stephen Heller Method for developing an objective opinion
US8095396B1 (en) * 2008-03-27 2012-01-10 Asterisk Financial Group, Inc. Computer system for underwriting a personal guaranty liability by utilizing a risk apportionment system
US9892461B2 (en) * 2008-06-09 2018-02-13 Ge Corporate Financial Services, Inc. Methods and systems for assessing underwriting and distribution risks associated with subordinate debt
US8131571B2 (en) * 2009-09-23 2012-03-06 Watson Wyatt & Company Method and system for evaluating insurance liabilities using stochastic modeling and sampling techniques
US20130046710A1 (en) * 2011-08-16 2013-02-21 Stockato Llc Methods and system for financial instrument classification
KR101521110B1 (ko) * 2013-05-13 2015-05-19 농협은행(주) 폐형식 기반의 해석적 방법을 이용한 효율적 다요인 시가평가 Credit VaR 제공 장치 및 방법
EP3194865B1 (en) * 2014-08-14 2021-04-07 Vigilent Corporation Method and apparatus for optimizing control variables to minimize power consumption of cooling systems
US11436911B2 (en) 2015-09-30 2022-09-06 Johnson Controls Tyco IP Holdings LLP Sensor based system and method for premises safety and operational profiling based on drift analysis
US11151654B2 (en) 2015-09-30 2021-10-19 Johnson Controls Tyco IP Holdings LLP System and method for determining risk profile, adjusting insurance premiums and automatically collecting premiums based on sensor data
US10425702B2 (en) 2015-09-30 2019-09-24 Sensormatic Electronics, LLC Sensor packs that are configured based on business application
US10902524B2 (en) * 2015-09-30 2021-01-26 Sensormatic Electronics, LLC Sensor based system and method for augmenting underwriting of insurance policies
US10552914B2 (en) 2016-05-05 2020-02-04 Sensormatic Electronics, LLC Method and apparatus for evaluating risk based on sensor monitoring
US10810676B2 (en) 2016-06-06 2020-10-20 Sensormatic Electronics, LLC Method and apparatus for increasing the density of data surrounding an event
US10359771B2 (en) 2017-06-08 2019-07-23 Tyco Fire & Security Gmbh Prediction of false alarms in sensor-based security systems
US20190244289A1 (en) * 2018-02-08 2019-08-08 2Bc Innovations, Llc Asset utilization optimization communication system and components thereof
CN110046740A (zh) * 2019-02-21 2019-07-23 国网福建省电力有限公司 基于大数据的供应商投标行为分析预测方法
JP7680403B2 (ja) * 2022-08-22 2025-05-20 大器 日下 ゲームシステム
US12012110B1 (en) 2023-10-20 2024-06-18 Crawford Group, Inc. Systems and methods for intelligently transforming data to generate improved output data using a probabilistic multi-application network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2309853A (en) * 1941-04-10 1943-02-02 Sperry Gyroscope Co Inc Rate and attitude indicating instrument
AU2241195A (en) * 1994-04-06 1995-10-30 Morgan Stanley Group Inc. Data processing system and method for financial debt instruments
US5934674A (en) * 1996-05-23 1999-08-10 Bukowsky; Clifton R. Stock market game
US7031936B2 (en) * 1999-12-30 2006-04-18 Ge Capital Commerical Finance, Inc. Methods and systems for automated inferred valuation of credit scoring
US7039608B2 (en) * 1999-12-30 2006-05-02 Ge Capital Commercial Finance, Inc. Rapid valuation of portfolios of assets such as financial instruments
CA2309853A1 (en) * 2000-05-29 2001-11-29 Andre J. Frazer Tax-efficient asset allocation system
HK1062776A2 (zh) * 2003-08-22 2004-10-29 林立 無形財產的評估系統和方法

Also Published As

Publication number Publication date
AU2444101A (en) 2001-07-16
KR20010102452A (ko) 2001-11-15
WO2001050316A2 (en) 2001-07-12
US20010039525A1 (en) 2001-11-08
US7028005B2 (en) 2006-04-11
EP1264257A2 (en) 2002-12-11
WO2001050316A8 (en) 2002-06-20
MXPA01008624A (es) 2003-06-24
HUP0301073A2 (en) 2003-08-28
JP2003526146A (ja) 2003-09-02
PL366205A1 (en) 2005-01-24
CA2362444A1 (en) 2001-07-12
CN1360697A (zh) 2002-07-24
BR0008638A (pt) 2002-01-08
HK1048173A1 (zh) 2003-03-21

Similar Documents

Publication Publication Date Title
TWI235925B (en) Method and systems for finding value and reducing risk
TW530235B (en) Valuation prediction models in situations with missing inputs
TW552524B (en) Methods and systems for automated inferred valuation of credit scoring
TW530234B (en) Methods and systems for efficiently sampling portfolios for optimal underwriting
TWI248001B (en) Methods and apparatus for automated underwriting of segmentable portfolio assets
TWI230339B (en) Methods and systems for quantifying cash flow recovery and risk
TW530236B (en) Cross correlation tool for automated portfolio descriptive statistics
KR100771710B1 (ko) 입찰가 판정 방법 및 시스템, 컴퓨터
WO2001050313A2 (en) Rapid valuation of portfolios of assets such as financial instruments
KR20030004316A (ko) 최종 입찰 결정 방법과 그 시스템, 및 컴퓨터
TW554276B (en) Methods, system and computer for determining a winning bid for a sealed bid auction at an optimal bid price
AU2600801A (en) Valuation prediction models in situations with missing inputs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees