[go: up one dir, main page]

TWI230349B - Method and apparatus for analyzing manufacturing data - Google Patents

Method and apparatus for analyzing manufacturing data Download PDF

Info

Publication number
TWI230349B
TWI230349B TW91117089A TW91117089A TWI230349B TW I230349 B TWI230349 B TW I230349B TW 91117089 A TW91117089 A TW 91117089A TW 91117089 A TW91117089 A TW 91117089A TW I230349 B TWI230349 B TW I230349B
Authority
TW
Taiwan
Prior art keywords
data
page
item
analysis
mining
Prior art date
Application number
TW91117089A
Other languages
Chinese (zh)
Inventor
Shawn B Smith
Brian P Grigsby
Hung J Pham
Tony L Davis
Manjunath S Yedatore
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/194,920 external-priority patent/US6965895B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Application granted granted Critical
Publication of TWI230349B publication Critical patent/TWI230349B/en

Links

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A method for data mining information obtained in an integrated circuit fabrication factory (""fab"") that includes steps of: (a) gathering data from the fab from one or more of systems, tools, and databases that produce data in the fab or collect data from the fab; (b) formatting the data and storing the formatted data in a source database; (c) extracting portions of the data for use in data mining in accordance with a user specified configuration file; (d) data mining the extracted portions of data in response to a user specified analysis configuration file; (e) storing results of data mining in a results database; and (f) providing access to the results.

Description

1230349 A7 _ B7 五、發明説明() 本發明之一或多個具體實施例係關用於分析一工廠 產生之資訊的方法及設備,該工廠可指(但不限於僅止於) 積體電路("1C")製造或組裝(,,半導體組裝,,或稱,,fab”)工廠 等。 第1圖顯示根據先前技藝存在於積體電路(,,ic”)生產 或製造(”半導體製造廠,,或稱,,製造廠")工廠之良率分析工 具基本架構。如第1圖所示,光罩工廠1000產生光罩 1〇1〇。如第1圖進一步顯示,製程工作追蹤系統1〇2〇(”WIP 追縱系統1020")當其在製造廠内前經各種用於在晶圓或 基板可追蹤晶圓(晶圓及基板之名詞係交互使用以表示各 種半導體晶圓或基板,如包括但不限於玻璃基板)上製造 (及測試)積體電路時。WIP追蹤系統1〇2〇對晶圓之追蹤係 利用(但不限於)植入工具1030、擴散、氧化、沉積工具 1040、化學機械整平工具1〇5〇(,,CMp工具1〇5〇,,)、電阻坡 覆工具1060(例如但不限於披覆光阻工具)、步進進給工具 1070、配置工具1〇8〇、蝕刻/潔淨工具1〇9〇、雷射測試工 具1 100 '參數測試工具i丨1()、晶圓分類工具112〇及最終 測試工具1 1 3 0等為之。這些工具大多數用於製造廠以產 生積體電路,不過以上所列舉者僅(為範例,其它仍可有加 者。 ' 如第1圖進一步顯示,製造廠包括許多用於獲得工具 第4頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 線一 經濟部智慧財產局員工消費合作社印製 1230349 A7 B7. 經濟部智慧財產局員工消費合作社印製 五、發明説明() 層測量值及用於自動化各種製程之系統。例如(但不限於) 第1圖所不,工具層測量及自動化系統包括使工具層執行 測量及自動作業之工具資料庫1210,該作業例如製程工具 管理(如製程方法管理),及工具感測器測量資料收集及分 析。例如(但不限於)用作示範之PC伺服器123〇下載製程 方法資料至工具(經製程方法模組1233),而由工具感測器 (經感測器模組1235)接收工具感測器測量資料,該製造方 法資料及工具感測器測量資料係儲存在如工具資料庫 1210 内 。 如第1圖進一步顯示,製造廠包括許多製程測量工 具,如缺陷測量工具126〇及1261、光罩缺陷測量工具 1265覆蓋缺陷測量工具1267、缺陷審查工具1270( "DRT 1 2 7 0 )、C D ’則里工具1 2 8 0 ("關鍵尺寸測量工具1 2 8 0 ',)、 及電壓對比測量工具129〇,其中製程測量工具係由製程評 估工具1300所驅動。 如第1圖進一步顯示,應用程式特定分析工具驅動某 些製程測量工具。例如缺陷管理工具131〇分析由缺陷測 量工具1260及1261產生之資料;光罩分析工具1 320分 析由光罩缺陷測量工具1265產生之資料;覆蓋分析工具 1330分析覆蓋缺陷測量工具1267產生之資料;cd分析工 具1340分析由CD測量工具128〇產生之資料,而測試體 工具1350分析由雷射測試工具」1〇〇、參變數測試工具 1 1 1 〇、Ba圓分類工具1 1 2 〇及最終測試工具i丨3 〇產生之資 料。 第5頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)1230349 A7 _ B7 V. Description of the Invention () One or more specific embodiments of the present invention relate to a method and equipment for analyzing information generated by a factory, which may refer to (but not limited to) integrated circuits (&Quot; 1C ") manufacturing or assembly (,, semiconductor assembly, or, fab ") factory, etc. Figure 1 shows the production or manufacturing (" semiconductor ") of the integrated circuit (,, ic) in accordance with the prior art The basic structure of the yield analysis tool of the manufacturing plant, or, "manufacturing plant" factory. As shown in Figure 1, the photomask factory 1000 generates a photomask 1010. As further shown in Figure 1, the manufacturing process works Tracking system 1020 ("WIP tracking system 1020 ") When it is used in a manufacturing plant, it is used to trace wafers on wafers or substrates (the terms of wafers and substrates are used interchangeably to represent various semiconductor crystals (Including but not limited to glass substrates) when manufacturing (and testing) integrated circuits. WIP tracking system 1020 wafer tracking system uses (but is not limited to) implant tool 1030, diffusion, oxidation, deposition tool 1040, chemical mechanical leveling tool 1050 (, Cmp tool 105). ,,), resistance slope coating tool 1060 (such as, but not limited to, covering photoresist tool), step feed tool 1070, configuration tool 108, etching / cleaning tool 1090, laser test tool 1 100 'Parameter test tool i (1), wafer sorting tool 112, and final test tool 1 130. Most of these tools are used in manufacturing plants to produce integrated circuits, but the above list is only an example (others can be added.) As shown further in Figure 1, the manufacturing plant includes many tools for obtaining tools. Page 4 This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling this page). Thread 1 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 1230349 A7 B7. Printed by the Consumers' Cooperative of the Property Bureau V. Description of the invention () Layer measurement values and systems used to automate various processes. For example (but not limited to) shown in Figure 1, the tool layer measurement and automation system includes the tool layer measurement and automation system. Tool database 1210 for automatic operations, such as process tool management (such as process method management), and tool sensor measurement data collection and analysis. For example (but not limited to) a PC server 123 used as a demonstration to download process methods Data to the tool (through the process method module 1233), and the tool sensor (via the sensor module 1235) receives the tool sensor measurement data, the system Method data and tool sensor measurement data are stored in, for example, tool database 1210. As further shown in Figure 1, the manufacturing plant includes many process measurement tools, such as defect measurement tools 1260 and 1261, and mask defect measurement tools 1265. Defect Measurement Tool 1267, Defect Inspection Tool 1270 (" DRT 1 2 7 0), CD 'Zeri Tool 1 2 8 0 (" Key Dimension Measurement Tool 1 2 8',), and Voltage Contrast Measurement Tool 129. Among them, the process measurement tool is driven by the process evaluation tool 1300. As further shown in Figure 1, application-specific analysis tools drive certain process measurement tools. For example, the defect management tool 1310 analyzes the data generated by the defect measurement tools 1260 and 1261. Mask analysis tool 1 320 analyzes the data generated by the mask defect measurement tool 1265; coverage analysis tool 1330 analyzes the data generated by the coverage defect measurement tool 1267; cd analysis tool 1340 analyzes the data generated by the CD measurement tool 1280, and test Body tool 1350 analysis by laser test tool "100", parametric variable test tool 1 1 1 0, Ba circle classification tool 1 1 2 〇 and the final test tool i 丨 3 〇. Page 5 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)

A7 B7 經濟部智慧財產局員工消費合作社印製 1230349 五、發明説明() 如第!圖進-步顯示’資料庫追蹤/關聯工具透過通 信網路而由一或多個個應用程式特定分析工具獲得資 料。例如,統計分析工具1400由如缺陷管理工具131〇、 CD分析工具134〇及測試體工具135〇處獲得資料,而後 儲存在關係資料庫1410中。 最後,應良率管理方法至儲#於資料抽取資料庫 1420之資料上,該資料係透過通信網路由wip追蹤系統 1020及工具資料庫1210中抽取出。 先前技藝中使用在製造廠之良率管理系統曾遭遇許 多問題。第2圖顯示使用在製造廠的一先前技藝流程,該 先前技藝製程使用本文所指之終點線(End-〇f-line)監控。 終點線監控係使用"追蹤指標"回饋迴路。在第2圖中,例 如(但不限於)低良率、品質不良及裝置速度緩慢之追縱指 標可在方塊2000處經辨認。隨後,在方塊2〇1〇之》,壞產 品”度量值(即與產生該追蹤指標之晶圓產品相關之測量值) 將與度量之原訂規格比較。如果該度量值”超出規格”,程 序繼續至2 0 3 0 ’在該處將會針對"超出規格"採取一行動, 而後提供回饋至製程控制工程師以矯正該"超出規格"之 情況。另一方面,如果該度量值係”在規格内",程序繼續 至2020,在該處將分析工廠以往失敗經歷。如果經鑑定此 係已發生之問題,程序繼續至2040,否則(即無先前經驗) 程序繼續至2050。在方塊2040處!,根據有關先前經驗之 產品或工具建議而採取行動,而後提供回饋至製程控制工 程師以採取與與先前相同之行動。如方塊205 0所示,將 第6頁 本紙張尺度適用中國國家標準(CNS)A4規格(210Χ 297公釐) (請先閲讀背面之注意事項再填寫本頁)A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1230349 V. Description of Invention () The figure further shows that the database tracking / correlation tool obtains data from one or more application-specific analysis tools via a communication network. For example, the statistical analysis tool 1400 obtains data from, for example, the defect management tool 1310, the CD analysis tool 1340, and the test body tool 1350, and then stores them in the relational database 1410. Finally, the yield management method should be stored on the data in the data extraction database 1420, which is extracted from the communication network routing wip tracking system 1020 and the tool database 1210. Yield management systems used in manufacturing plants in previous techniques have encountered many problems. Figure 2 shows a prior art process used in a manufacturing plant, which was monitored using the End-Of-line referred to herein. The finish line monitoring system uses a "tracking indicator" feedback loop. In Figure 2, tracking indicators such as (but not limited to) low yield, poor quality, and slow device speed can be identified at block 2000. Then, in box 2010, the "bad product" metric (that is, the measurement value associated with the wafer product that generated the tracking index) will be compared with the original specification of the metric. If the metric is "out of specification", The process continues until 2 30 'where an action will be taken against " out of specification " and then feedback will be provided to the process control engineer to correct the " out of specification ". On the other hand, if the metric The value system is "in the specifications", and the process continues to 2020, where the factory's past failures will be analyzed. If it is determined that the problem has occurred, the process continues to 2040, otherwise (ie, no previous experience) the process continues to 2050. At block 2040! , Acting on a product or tool recommendation about previous experience, and then providing feedback to the process control engineer to take the same action as before. As shown in box 2050, page 6 This paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page)

1230349 A7 B7 五、發明說明() 對工具或裝置舊有資料進行一失效關聯分析。如果獲得關 聯性,程序繼續至2060,否則(未獲得關聯性)程序繼續至 2070。在方塊2〇6〇處,該”壞"工具或裝置經”矯正,,,而後 提供回饋至製程控制工程師。在方塊2070,將進行一工薇 維護工作。 上述終點線監控製程有幾個相關問題。例如:(a)低良 率通常是由數個問題產生;(b)"規格”界限通常依未確定理 論之結果而設定;(c)先前生產失敗歷程的知識通常未書面 化’即使書面化亦未廣泛分送;(d)資料及資料使用權均零 散;及(e)進行一關聯分析前必須先產生一工作假設,而關 聯性之數目十分龐大,可使用在進行關聯分析之資源卻十 分有限。 例如,典型之資料回饋及問題矯正工程過程通常需要 下列步驟:(a)定義問題(通常發生之時間約為1天);(b) 選擇關鍵分析變數如良率百分比、缺陷百分比等等(通常 發生之時間約為1天);(c)形成一假設,關於選定之關鍵 分析變數異常現象(通常發生之時間約為1天);(d)使用各 種”本能感覺”方法將假設分類(通常發生之時間約為i 天);(e)研訂實驗策略及實驗測試計畫(通常發生之時間約 為1天);(f)執行測試及收集資料(通常發生之時間約為i 5 天);(g)適配該模型(通常發生之時間約為1天);(h)診斷 該模型(通常發生之時間約為1天)丨;(〇詮釋該模型(通常發 生之時間約為1天);及⑴執行辨認測試以證明已改進(通 常發生之時間約為20天),而如果沒有改進,由(c)開始執 第7頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂· 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明說明() 行下個實驗,通常會涉及五次重覆。結果,典型之問題續 正時間約為7個月。 隨著線寬縮小及新科技與材料被使用於製造積體電 路(如鋼金屬化,及新型低介電常數膜),減低(在製程或 巧染導致)缺陷率益增重要。找到根本原因所需時間係克 服缺陷之關鍵。這些問題在移轉至300毫米(8叶)晶圓時 更不易克服。因此,在同時進行許多事項時,不能維持良 率成為一主要之困難。 除了上述問題外,問題也發生在半導體製造廠須花費 大量資金在缺陷偵測設備及缺陷資料管理軟體,以儘力監 控缺陷及持續降低缺陷密度。現行在缺陷資料管理軟體之 先前技藝技術需要研發下列一今多個解決方案:缺陷趨 t 勢(例如,依缺陷型式及尺寸之柏拉圖(paret〇S)分析);(b) 晶圓層缺陷對良率圖;及(C)在特別及人工基礎下依型式及 尺寸之破壞比率。對這每一個解決案,主要的缺點是使用 者對其希望繪製的必須具有先前知識。然而,由於資料的 廣泛,使用者朝向根本原因之可能性很低。此外,即使可 為每一變數產生一圖表,對於如此大量之圖表,使用者實 際上不可能全部分析。 除了上述問題外所產生的進一步問題是使用在半導 體製造廠之資料多係”間接度量資料”。本文中之名詞”間接 度量資料"指以間接度量方式收集!之資料,該間接度量係 > 經假設是以預測方式有關於製造廠之製程。例如,在金屬 線被圖樣化在積體電路上後,可能會使用關鍵尺寸掃描電 第8頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 線一 經濟部智慧財產局員工消費合作社印製 1230349 A71230349 A7 B7 V. Description of the invention () Perform a failure correlation analysis on the old data of the tool or device. If correlation is obtained, the process continues to 2060, otherwise (no correlation) the process continues to 2070. At block 2600, the "bad" tool or device is "corrected" and then provided to the process control engineer. At block 2070, a maintenance job will be performed. There are several related issues with the aforementioned finish line monitoring process. For example: (a) low yield is usually caused by several problems; (b) the "specification" limit is usually set based on the results of undefined theory; (c) the knowledge of previous production failure history is usually not written 'even if written It has not been widely distributed; (d) the data and the right to use the data are scattered; and (e) a working hypothesis must be generated before performing a correlation analysis, and the number of correlations is very large, and the resources used for correlation analysis can be used However, it is very limited. For example, the typical data feedback and problem correction engineering process usually requires the following steps: (a) define the problem (usually takes about one day); (b) select key analysis variables such as percentage of yield, percentage of defect And so on (usually takes about one day); (c) forming a hypothesis about the selected key analysis variable anomaly (usually takes about one day); (d) using various "instinct sense" methods to Assumed classification (usually takes about i days); (e) Develop experimental strategies and experimental test plans (usually takes about one day); (f) Perform testing and collection Data (usually takes about 5 days); (g) Adapt the model (usually takes about 1 day); (h) Diagnose the model (usually take about 1 day) 丨; ( 〇 Interpret the model (usually takes about 1 day); and ⑴ Perform recognition tests to prove that it has improved (usually takes about 20 days), and if there is no improvement, start from page (c) The paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling out this page). Order printed by the Intellectual Property Bureau Staff Consumer Cooperative of the Ministry of Economic Affairs A7 B7 1230349 V. Description of the invention ( The next experiment usually involves five repetitions. As a result, the typical problem renewal time is about 7 months. As the line width shrinks and new technologies and materials are used to make integrated circuits (such as steel metallization) , And new low-dielectric-constant films), it is important to reduce the increase in defect rate (due to process or ingenious dyeing). The time required to find the root cause is the key to overcome the defects. These problems are transferred to 300 mm (8-leaf) crystals. It is more difficult to overcome when round Therefore, inability to maintain yield becomes a major difficulty when doing many things at the same time. In addition to the above problems, the problems also occur in semiconductor manufacturing plants that have to spend a lot of money on defect detection equipment and defect data management software to try their best to monitor defects And continuously reduce the defect density. Current prior art technologies in defect data management software require the development of multiple solutions: defect trends (eg, paretos analysis by defect type and size); (b ) Wafer layer defect to yield diagram; and (C) Destruction ratios by type and size on a special and artificial basis. For each of these solutions, the main disadvantage is that users must have prior knowledge of what they want to draw . However, due to the wide range of data, the likelihood of users moving to the root cause is low. In addition, even if a graph can be generated for each variable, for such a large number of graphs, it is practically impossible for the user to analyze all of them. In addition to the above problems, a further problem is that the data used in semiconductor manufacturers is mostly "indirect measurement data". The term "indirect measurement data" in this article refers to the data collected by indirect measurement! The indirect measurement system is assumed to be related to the manufacturing process of the manufacturer in a predictive manner. For example, the metal wire is patterned in the product. After the circuit is installed, the critical dimensions may be used. Page 8 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling out this page). Printed by the Intellectual Property Bureau Staff Consumer Cooperative 1230349 A7

Order

1230349 A7 B7 五、發明説明() 併入”一特定積體電路資料度量值之分析表中,因為積體 電路資料度量值係單一不連續之測量值。不易結合"併入,, (請先閲讀背面之注意事項再填寫本頁) 處理工具時間基礎資料及不連續之資料度量值限制了使 用處理工具時間基礎資料作為使工廠效率最佳化之方 法。 經濟部智慧財產局員工消費合作社印製 除上述所指問題外,使用關係資料庫以儲存製造廠内 產生之資料亦為問題來源。舉例而言,關係資料庫例如(但 不限於)〇RACLE及SQL飼服器,係為組織及參照資料元 件間已定義或指定關係之需求而產生。使用時,關係資料 技術之使用者(如程式設計師)提供預定一資料元件如何與 另一資料70件發生關聯之概要。一旦資料庫被植入,程式 使用者即依據預建之關係查詢包含於資料庫内之資訊。此 ^ ’當此關係資料庫被㈣在製造廠時,先前技藝之關係 貝料庫具有二個固有問題。第一個問題是使用者(如程式 設計師)在為須建立器模型之資料產生明確概要(即關係及 資料庫表格)前’必須對資料具有深入之認知。該概要進 灯特別安全維護資料元件關係之控制。將資料置入資料庫 之軟體及由資料庫_取資料之程式.軟體,必須使用資料庫 間任何一貝料間之概要關係。第二問題是,儘管關係資料 庫用於擷取小型資料交易(例如金融交易、空運訂票及其 他)具有卓越之TPS (即交易處理規格)評價,但其在產生 i資料、、且以支援供改進製造廠生產良率之決策支援系 統(例如資料倉儲、資料採掘)i之表現有所不足。 &了以上指出問題,進一步產生之問題係當使用先前 第10頁 本紙張尺度適用中國國家i^s)A4^2_i〇x297; -------- 1230349 、發明説明() 技藝中之資料分析演算法之結果於半導體製程產業,以a 量化生產良率問題。此演算法包括線性迴歸分析、及人: 使用決策樹資料採掘。這些演算法遭遇二個基本問題 在一給定資料組中幾乎經常有超過一個影響良率之a 題;然而這些演算法最佳之用途是去尋得"一個"解答,a 非在特定製&廠内冑量化-組影#良率的分散問題= 這些演算法無法完全自動"交遞,,分析;亦即線性迴歸分) 需要在分析前以人工預備及定義變數類別,且決策樹 採掘需求-"人類使用者"在分析中定義—目標變數/ 分析本身定義各種參數。 馬 除了以上才曰出問題,進-步產生之問題係資料採掘 別大之資料組。例如根據先前技藝,資料採掘明顯大型次 料組只有在使用某些程度之領域知識(即有關一 : 那些領域代表"有興趣"之資訊),以過濾資料組 , 析資料中變數之大小及數量…曰減低將分 士奎—〜M 一屋生減小的資料組,藉 由專豕疋義之價值系統(即’重要性之定義)對已 術/模型加以收集,而後猜測將驅動分析系統之"好問 為使此方法論有效,工具通常係經人工配 。 評估果 由最終將 :估-果之人員操作。這些人員通常為被評估之製程的負 貝人,因為此即其收集資料及形成適當問題 、 所需之Jt I λ , 採*集資料組 專業知識(更精確地說,係對特殊製程 求之資料採集及建立卫作關聯性來煩擾這5 =需 導致1 T > —座叢專家將 、 作時間之不足,及在不同製程間獲得 果,因盔又件不一致之結 為該資料採掘之程序大部份是需要人力介入而驅 第11頁 規格;:公爱) 6請先閲讀背面之注意事項再填寫本頁) -訂· 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 動,最後即使成功,大多數之”得利”卻已失去或被縮減。 例如,費時之人工處理資料及分析過程在人力及設備消耗 上十分昂貴,而且如果無法及早獲致結果,.將沒有足夠時 間進行發現之改變。 除了以上指出之問題,進一步產生之問題如下。良率 增進及工廠效率改進監控努力之重要部份,集中在終點線 功能測試資料、線上參數資料、線上度量資料及用於製造 積體電路之特定製程工具間之關聯性。在實現此關聯性時, 需要決定一特定”資料之數字攔"關聯於所有工廠處理工 具資料(其中處理工具資料係表為類別屬性)之攔位間之關 係。良好關聯性之定義為處理工具(即類別)資料之一特定 襴位在該攔位中具有一類別,關聯至一選定數字攔(即稱 應變數或”DV”)之值的非期望^圍。此分析之目標係能識 別一可能造成非期望Dv讀數之類別(例如一工廠製程工 具),而將其從製造廠處理流程中移除,直到工程師能確 定該處理工具已正確操作。在半導體製造廠資料庫内給定 之大量工具及"類工具”類別資料中,很難使用人工試算表 搜尋技藝(稱為”共通性研究”)將一卖等處理工具分離出。 儘管有此限制,在半導體產業中存在些技藝以侦測不佳的 處理工具或類別製程資料。例如,此可藉由進行產品共通 性分析而完成。然*,此技藝f求一特定處 二 袖 ^ - 曰 < 先刖知 識’而且如果使用者對失效性質沒洧真正的瞭 相當耗時。另一技藝使用先進’資料採掘演算法,如類神: 網路或決策樹。這些技藝可能有效,但在資料採掘需求之 第12頁 本紙張尺度適财國國家標準(CNS)A4規格(2獻297公复 (請先閱讀背面之注意事項再填寫本頁) -口 線! 經濟部智慧財產局員工消費合作社印製1230349 A7 B7 V. Description of the invention () Incorporated into the analysis table of a specific integrated circuit data measurement value, because the integrated circuit data measurement value is a single discontinuous measurement value. It is not easy to combine " (Read the notes on the back before filling this page.) Processing tool time basic data and discontinuous data measurements limit the use of processing tool time basic data as a method to optimize plant efficiency. In addition to the problems mentioned above, the use of relational databases to store data generated in the manufacturing plant is also a source of problems. For example, relational databases such as (but not limited to) RACLE and SQL feeders are organizations and It is generated by referring to the needs of defined or specified relationships between data components. In use, users of relational data technology (such as programmers) provide a summary of how one data component is related to another 70 pieces of data. Once the database is Implantation, the program user will query the information contained in the database according to the pre-built relationship. This ^ 'as this relationship data When the library was trapped in the manufacturing plant, the relationship between the previous technology and the shell database had two inherent problems. The first problem was that the user (such as a programmer) was generating a clear summary of the data that needed to be modeled (ie, the relationship and data). Database table) must have an in-depth knowledge of the data. This profile is particularly safe to maintain the control of the relationship of data components. The software that puts data in the database and the program that takes data from the database_. The software must use the database The second problem is that although the relational database is used to retrieve small data transactions (such as financial transactions, air reservations and others) with excellent TPS (ie transaction processing specifications) evaluation, Its performance in generating i data and supporting decision-making support systems (such as data warehousing and data mining) for improving the production yield of manufacturing plants is inadequate. &Amp; With the problems identified above, further problems should be used Previous page 10 This paper size applies to the Chinese country i ^ s) A4 ^ 2_i〇x297; -------- 1230349 、 Invention description () Data analysis calculations in technology The results of this method are used in the semiconductor process industry to quantify production yield problems. This algorithm includes linear regression analysis and human: mining using decision tree data. These algorithms encounter two basic problems in a given data set almost often There are more than one problem that affects yield; however, the best use of these algorithms is to find a "solution", a non-specific system & factory quantification-group shadow # yield dispersion problem = These algorithms cannot be fully automated " delivery, analysis; that is, linear regression points) need to manually prepare and define variable categories before analysis, and the decision tree mining requirements-"human users" are defined in the analysis — The target variable / analysis itself defines various parameters. In addition to the problems mentioned above, the problems arising from further development are data mining and other large data groups. For example, according to previous techniques, it is obvious that data mining only uses a certain degree of domain knowledge (that is, about one: those domain representatives " interested " information) to filter the data set and analyze the size of the variables in the data. And the number ... reducing the data set that will reduce Fenshikui ~~ M in one room, collect the surgery / model through the specialized value system (ie, the definition of importance), and then guess will drive the analysis Systematic ”To make this methodology effective, tools are usually manually configured. The evaluation result is operated by the person who will: evaluate-result. These people are usually the bearers of the process being evaluated, because this is the data needed to collect the data and form the appropriate questions, Jt I λ, and gather the expertise of the data set (more precisely, for special processes Data collection and establishment of satellite associations to annoy this 5 = need to lead to 1 T >-experts in the cluster, lack of working time, and obtain results between different processes, due to the inconsistency of the helmet and the data mining Most of the procedures require human intervention to drive the specifications on page 11 ;: public love) 6 Please read the notes on the back before filling out this page)-Order · Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 1230349 V. Description of the invention () In the end, even if it succeeds, most of the "gains" have been lost or reduced. For example, the time-consuming manual processing of data and analysis is very expensive in terms of labor and equipment, and if results are not obtained early, there will not be enough time to make changes. In addition to the issues identified above, further issues arise as follows. An important part of the yield improvement and factory efficiency improvement monitoring efforts focuses on the correlation between the finish line functional test data, online parameter data, online measurement data, and specific process tools used to manufacture integrated circuits. In realizing this correlation, it is necessary to determine the relationship between a specific "data number block" and the block associated with all factory processing tool data (where the processing tool data table is a category attribute). The definition of good correlation is processing A specific niche of the instrument (ie category) data has a category within the block that is associated with the value of a selected number block (called the strain number or "DV"). This analysis is aimed at Identifies a category (such as a factory process tool) that may cause undesired Dv readings and removes it from the manufacturing process until the engineer can be sure that the process tool is operating correctly. Given in the semiconductor manufacturing database In a large number of tools and "types of tools" category materials, it is difficult to use manual spreadsheet search techniques (known as "common research") to separate processing tools such as one-selling. Despite this limitation, there are techniques in the semiconductor industry to detect poor processing tools or types of process data. This can be done, for example, by performing a product commonality analysis. Of course, this technique f seeks a specific place, two sleeves ^-said < knowledge beforehand ' and it is quite time consuming if the user is not aware of the nature of the failure. Another technique uses advanced ‘data mining algorithms, such as gods: the web or decision trees. These techniques may be effective, but on page 12 of the data mining needs, the paper size is suitable for the national standard (CNS) A4 specification of the rich country (2 297 public reply (please read the precautions on the back before filling this page)-mouth line! Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

五、發明説明( 1230349 廣泛領域專業知識,使其難以成立。另外,這些資料採掘 决算法給定係較緩慢,因為此通用資料分析技藝需求大量 演算成本。使用上述分析技藝,使用者在試圖經由基本或 複雜分析以辨認一問題上所花費之時間,通常比發覺該不 良處理工具後實際改正更多。 最後,除了上述問題,進一步產生之問題如下。資料 採掘演算法如類神經網路、規則歸納搜尋及決策樹,通常 比一般線性統計有較令人滿意之方法,在大型資料組内尋 求關聯性。然而,當使用這些演算法在低成本硬體(例如 視窗2000伺服器)中分析大型資料組,會產生些許限制。 在這些限制中主要受關注的係在此技藝需求使用之隨機 使用權記憶體(RAM)及擴充中央處理器(cpu)的負載。通 常一大型半導體製造資料組(例如,大於4〇百萬字元組) 之類神經網路分析會持續超過數小時,而甚至可能違反視 窗2000操作系統對ram有2G位元組之限制。此外,此 大型資料組之規則歸納或決策樹分析雖然並不一定會違 反單一視窗程序對RAM之限制,但在分析完成前仍可能 須持續數小時。 需求能在此技藝中解決上述一或多個個問題。 螢明目的及概述: 本發明之一或多個具體實施例有利於滿足上述此技 藝之需求。特定言之,本發明之一具體實施係用於資料採 掘積體電路製造廠("製造廠")内獲得之資訊的方法,包括 第13頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂· 線一 經濟部智慧財產局員Η消費合作社印製 1230349 A7 B7 五、發明説明() 下列步驟:⑷聚集來自於製造廠中一或多個在製造廠内產 生資料或…料之系統、工具及資料庫的資料;㈨格式 化該資料、並將已格式化之資料儲存於—來源資料庫中; ⑷根據使用者特定之設定檔抽取資料之一部份而進行資 料之採掘;⑷對該經抽資料的部份加以資料採掘,以 回應使用者特定之分析設定檔;⑷儲存該資料採掘之結果 於一結果資料庫中;並(f)提供結果之使用 周式簡單說明: 第1圖顯示根據先前技藝之一積體電路生產或製造廠(一" 半導體組裝廠”或”組裝廠”)内之良率分析工具基本 架構; 第2圖顯示使用在該組裝廠内的’一先前技藝製程,此先前 製程較佳部份係指終點線監控; 第3圖顯示根據本發明一或多個具體實施例製造之製造資 料分析系統’以及由原始未格式化輸入資料至資料 採掘結果的資料自動流程,其結果係應用在使用本 發明之一或多個具體實施例之積體電路製程; 第4圖顯示根據本發明之一或多個具體實施例用於構成一 未結構化資料項目進入智慧庫(Intelligence base) 之方法的邏輯資料流; 第5圖顯示原始時間基礎資料的一(實例,及特別是製程工 具光束電流對時間之函’數的圖表; 第6圖顯示如何將第5圖中之原始時間基礎資料分成各片 第14頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂. 線 經濟部智慧財產局員工消費合作社印製 1230349 A7 B7 五、發明説明() 段; 第7圖顯示該原始時間基礎資料如何關聯至第6圖中之片 段1 ; 第8圖顯示BIN 一 S上片段7内之γ範圍之信賴度; 第9圖顯示一 3層分支的資料採掘運作; 第10圖顯示根據本發明之一或多個具體實施例,由一 DataBrainCmdCeter實施之散佈隊列; 第11圖顯示根據本發明之一或多個具體實施例製造之使 用者編輯及設定槽介面帛組的分析模板使用者介 面部份; 第12圖顯示根據本發明之一或多個具體實施例製造之設 定檔之分析模板部份; 第1 3圖顯示一超角錐方塊結構’; 第14圖顯示一超角錐方塊且強調其中之一層; 第15圖顯示來自由超角錐方塊第二層抽取之超方塊的超 方塊層(自組織圖); 第16圖顯示一具有高、低及中間區域之自組織圖,其中 每個n群集及低群集均加以標註以供後續自動 化地圖匹配分析; 第17圖顯示一單元突出一超方塊; 第1 8圖顯示由一數字分佈限定,,虛擬,,類別,· 第19圖顯示計算落差分數(落差分(數=所有落差(未在任何 圓内)之和)及直徑分數^直徑分數=該三圓圈之Dv 平均直徑),其中Dv類別係依據該Dv的數字分 第15頁 (請先閱讀背面之注意事項再填寫本頁) 、tr. 線一 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 佈; 第20圖顯示計算一給定IV之主要分數,考慮三因數:落 差分數大小、直徑分數大小和IV出現在該系列之 DV計分列表上之次數; 第21圖顯示輸入至資料智囊(DataBrain)模組之資料矩陣 的子集之實例; 第22圖顯示一數字(BIN)對類別(工具ID)之實例; 第23圖顯示供三工具使用的一計分臨界值; 第24圖顯示來自製造廠内缺陷檢驗工具或缺陷審查工具 之缺陷資料檔; 第25圖顯示由資料編譯演算法產生之資料矩陣之實例; 及 第26圖顯示來自DefectBrain模組之一典型輸出。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 第16頁 圖號對照說明: 1000光罩工廠 1020 WIP 追蹤 1 040擴散、氧化、沉積工具 1060電阻披覆工具 1080展開工具 110 0雷射測試工具 1120晶圓分類工具 1210工具資料庫 1 2 3 3製程配方模組 1010 光罩 1030 植入工具 1050 * CMP 工具 1070 步進進給工具 1090蝕刻/潔淨工具 11 1 0變數測試工具 11 3 0 I最終測試工具 1230 PC伺服器 1235感測器模組 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ297公釐) 1230349 A7 B7 經濟部智慧財產局員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 4050檔案系統 發明詳細說明: 本發明之一或多個具體實施停可使用良率增進,藉由 提供下列中之一或多個:(a)餐體電路("1C")生產廠(”半導 體製造廠”或’·製造廠”)資料輸入,即藉由建立多重格式資 五、發明説明() 1260 缺陷測量工具 1265光罩缺陷測量工具 1270缺陷審查工具 1290電壓對比測量工具 1 3 1 0缺陷管理工具 1330覆蓋分析工具 1 3 5 0 測試體工具 1 4 1 0關係資料庫 3000資料分析系統 3020資料轉換模組 3040主載入器模組 3 05 5^及觸當介面模組 3070網路管理者模組 3090結果資料庫 3110圖形及分析引擎 4000製造廠資料倉儲 4020資料剖析器 4040資料载入器 4060關係資料庫 1261缺陷測量工具 1267覆蓋缺陷測量工具 1280 CD測量工具 13 00製程評估工具 1320光罩分析工具 1340 CD分析工具 1 4 0 0統計分析工具 1 4 2 0抽取資料庫 3010 ASP資料轉換模組 3030自適應資料庫 3050智慧庫 3060主建立器模組 3080資料智囊引擎模組 3100網路視覺化模組 3 1 20網路伺服器資料庫 4010未格式化資料流 4 0 3 0格式化資料流 第17頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349V. Description of the invention (1230349 Extensive field expertise makes it difficult to establish. In addition, these data mining algorithms are given slowly because this general data analysis technique requires a lot of calculation costs. Using the above analysis techniques, users are trying to It takes more time for basic or complex analysis to identify a problem than to actually correct it after discovering the bad processing tool. Finally, in addition to the above problems, further problems arise as follows. Data mining algorithms such as neural networks, rules Inductive search and decision trees usually have a more satisfactory method than general linear statistics to find relevance in large data sets. However, when using these algorithms to analyze large-scale data in low-cost hardware (such as Windows 2000 servers) Data sets will have some restrictions. The main concerns in these restrictions are the random use right memory (RAM) and the expansion of the central processing unit (CPU) load required for this technology. Usually a large semiconductor manufacturing data set ( For example, neural network analysis such as greater than 40 million characters) will continue to exceed After several hours, it may even violate the Windows 2000 operating system's 2G ram limit. In addition, the rule summary or decision tree analysis of this large data set does not necessarily violate the RAM limit of a single window program, but It may still take several hours before the analysis is completed. It is required to be able to solve one or more of the above problems in this technique. Bright and clear purpose and summary: One or more specific embodiments of the present invention are conducive to meeting the requirements of this technique. In particular, a specific implementation of the present invention is a method for information obtained in a data mining integrated circuit manufacturing plant (" manufacturing plant "), including the Chinese standard (CNS) A4 on page 13 of this paper. Specifications (21〇χ 297 mm) (Please read the notes on the back before filling in this page) Order · Line 1 Member of the Intellectual Property Bureau of the Ministry of Economy Η Printed by Consumer Cooperatives 1230349 A7 B7 5. Description of the invention () The following steps: ⑷ gather Data from one or more systems, tools, and databases in the manufacturing facility that generate data or ... materials within the manufacturing facility; ㈨ format the data and format it The data is stored in the source database; ⑷ extracting a part of the data according to the user-specific profile to extract the data; 资料 extracting the data from the extracted part of the data in response to the user-specific analysis A configuration file; ⑷ storing the results of this data mining in a results database; and (f) providing a simple description of the use of the results: Figure 1 shows the integrated circuit production or manufacturing plant (a " "Semiconductor assembly plant" or "assembly plant") the basic structure of the yield analysis tool; Figure 2 shows the 'a previous technology process used in the assembly plant, the better part of this previous process refers to the finish line monitoring; Figure 3 shows a manufacturing data analysis system 'manufactured according to one or more specific embodiments of the present invention, and an automatic data flow from raw unformatted input data to data mining results, the results of which are applied to use one or more of the present invention Integrated circuit manufacturing process of a specific embodiment; FIG. 4 shows one or more specific embodiments of the present invention for forming an unstructured data item to enter the intelligent The logic data flow of the intelligence base method; Figure 5 shows the original time base data (example, and especially the graph of the beam current versus time of the process tool); Figure 6 shows how to convert the 5th The original time basic information in the picture is divided into pieces. Page 14 This paper size applies Chinese National Standard (CNS) A4 specification (21 × 297 mm) (Please read the precautions on the back before filling this page) Order. Department of Economics Printed by the Intellectual Property Bureau Employee Cooperative Cooperative 1230349 A7 B7 V. Description of the invention () paragraph; Figure 7 shows how the original time basic data is related to fragment 1 in Figure 6; Figure 8 shows within fragment 7 on BIN-S Reliability of γ range; Figure 9 shows the data mining operation of a 3-layer branch; Figure 10 shows the distribution queue implemented by a DataBrainCmdCeter according to one or more specific embodiments of the present invention; Figure 11 shows according to this The user edits and configures the analysis template user interface part of the slot interface unit set manufactured by one or more embodiments of the invention; FIG. 12 shows one or more specific embodiments according to the present invention. The analysis template part of the manufacturing profile is shown in the example; Figure 13 shows a super pyramid box structure '; Figure 14 shows a super pyramid box with emphasis on one of the layers; Figure 15 shows the extraction from the second layer of the super pyramid box The superblock layer (self-organizing map) of the superblock; Figure 16 shows a self-organizing chart with high, low, and middle regions, where each n cluster and low cluster are labeled for subsequent automated map matching analysis; Figure 17 shows a unit highlighting a super square; Figure 18 shows the number defined by a numerical distribution, virtual, and category, Figure 19 shows the calculation of the number of falling differences (falling differences (number = all falling differences (not in any circle)) Sum) and diameter score ^ diameter score = average diameter of Dv of the three circles), where Dv category is divided according to the Dv number page 15 (please read the precautions on the back before filling this page), tr. Line one Printed by A7 B7 1230349, Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention () Distribution; Figure 20 shows the calculation of the main scores for a given IV, considering three factors: the size of the difference, the diameter score The size and number of times the IV appears on the DV scoring list for the series; Figure 21 shows an example of a subset of the data matrix entered into the DataBrain module; Figure 22 shows a number (BIN) versus category ( Example of tool ID); Figure 23 shows a scoring threshold for three tools; Figure 24 shows a defect data file from a defect inspection tool or defect review tool in the manufacturing plant; Figure 25 shows a data compilation algorithm An example of the resulting data matrix; and Figure 26 shows a typical output from the DefectBrain module. (Please read the notes on the back before filling this page) Printed on page 16 by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, drawing number comparison instructions: 1000 photomask factory 1020 WIP tracking 1 040 diffusion, oxidation, deposition tools 1060 resistance coating Tool 1080 Deployment tool 110 0 Laser test tool 1120 Wafer sorting tool 1210 Tool library 1 2 3 3 Process recipe module 1010 Mask 1030 Implant tool 1050 * CMP tool 1070 Step feed tool 1090 Etching / cleaning tool 11 1 0 Variable test tool 11 3 0 I Final test tool 1230 PC server 1235 Sensor module This paper size is applicable to China National Standard (CNS) A4 specifications (21 × 297 mm) 1230349 A7 B7 Employees of Intellectual Property Bureau, Ministry of Economic Affairs Printed by a consumer cooperative (please read the notes on the back before filling this page) Detailed description of the invention of the 4050 file system: One or more specific implementations of the present invention can be used to improve yield, by providing one or more of the following : (A) The data input of the body circuit (" 1C ") manufacturing plant ("semiconductor manufacturing plant" or "· manufacturing plant"), that is, by establishing multiple formats Description (1260) Defect measurement tool 1265 Mask defect measurement tool 1270 Defect inspection tool 1290 Voltage contrast measurement tool 1 3 1 0 Defect management tool 1330 Coverage analysis tool 1 3 5 0 Test body tool 1 4 1 0 Relation database 3000 data Analysis system 3020 data conversion module 3040 main loader module 3 05 5 ^ and touch interface module 3070 network manager module 3090 results database 3110 graphics and analysis engine 4000 manufacturer data warehouse 4020 data parser 4040 Data Loader 4060 Relation Database 1261 Defect Measurement Tool 1267 Coverage Defect Measurement Tool 1280 CD Measurement Tool 13 00 Process Evaluation Tool 1320 Mask Analysis Tool 1340 CD Analysis Tool 1 4 0 0 Statistical Analysis Tool 1 4 2 0 Extract Database 3010 ASP data conversion module 3030 adaptive database 3050 wisdom library 3060 master builder module 3080 data think tank engine module 3100 network visualization module 3 1 20 web server database 4010 unformatted data stream 4 0 3 0 Formatted data stream page 17 This paper size applies to China National Standard (CNS) A4 specifications (210X297 mm) 1230349

五、發明説明() 經濟部智慧財產局員Η消費合作社印製 料槽案流;(b)可索引上萬測量值之資料庫,如(例如但不 限於)可索引上萬測量值之混合資料庫在例如(但不限於) 一 Oracle系統中;(c)決策分析資料输入及快速輸出多個 資料組供分析用;(d)獨立的分析自動化及使用”資料價值 系統π自動發出問題;(e)多個資料採掘技藝,例如而限於 類神經網路、規則歸納及多變量統計;(f)視覺化工具,具 有f〇統計之多樣性將所尋得品質化;及(g) 一應用程式脈 務供應者("ASP”)用於端點對端網路傳遞系統以提供快速 配置。使用本發明之一或多個具體實施例,典型之資料回 饋及問題續正工程流程通常會需要下列步驟:(a)定義問題 (通常發生之時間約為〇天);監控所有關鍵分析變數, 如良率百分比、缺陷百分比等等(通常發生之時間約為〇 天),(c)形成一有關所有關鍵分析變數異常的假設(通常發 生之時間約為0天);(d)使用統計之信賴水準及關鍵將假 設評等(即(例如在設定檔中依據經驗)提供之指令,其指出 如何將假設計分或評價假設,包括例如但不限於某些人工 智慧規則之加權-請注意用於類別資料如工具資料之矯正 關鍵,與用於數字資料如探測資料之端正關鍵不同通常 發生之時間約為i天);(〇研訂實驗策略及實驗測試計晝 (通常發生之時間約為i天);⑺執行測試 發生之時間約…⑷適配該模型(通常集發=p: 約為1天);(h)診斷該模型(通常發生之時間約為工天);(i) 錢:釋該模型(通常發生之時間“為 j1大),及(j)執行辨認測 試以證明改進(通常發生之時間約為2〇天),而無須重覆。 第18頁 广請先閲讀背面之涑意事項存填寫本頁) #· 訂· 線一 1230349 A7 五、發明說明() 、、Ό果,典型之改正問題之時間約為一個半(1.5)月。 第3圖顯不根據本發明之一或多個具體實施例製造之 t造廠資料分析系統3ηΛΛ (請先閲讀背面之注意事項再填寫本頁) • 3000以及由原始未格式化輸入資料 至資料採掘之結果的資料自動流程,其係應用在使用本發 2之-或多個具體實施例之積體電路製程。根據本發明之 次多個具體實施例,龜由你八4 藉由使刀析流程之各步驟以及由分 析的一階段至另一階段泣 仅之程自動化,將可使人工資料採 掘一製程而將資料採掘任果韓為 ,、 煳、口禾锝馮改進製程中之缺點大幅 減低、或消除。此外,根撼大路 根據本發明之一或多個具體實施例, 可在資料分析設定時提供使用者或客戶使用權,且可經由 市售可用的且已t裝之介面如網際網路瀏覽器查閱結 :。-應用程式服務供應("ASP,:)系統分佈方法(即,為熟 習本技藝者所熟知的-項以網路為基架之資料轉換方法) 係進行此-網路劉覽器介面之較佳方法。據此第3圖所 示之製造廠資料分析系統3000的一或多個具體實施例, 可使用於收集及分析之資料係來自一或多個製造廠位置 之一公司,或可使用於收集及分析之資料係來自每一家公 司的一或多個製造廠位置之數家公司。此外,對於一或多 經濟部智慧財產局員工消費合作社印製 個此具體實施例,設定及(或)查閱結果之使用者戈客戶可 以是來自同一公司不同部門的不同使用者或客戶,或者來 自不同公司不同部門的不同使用者或客戶, 具中資料將依 據保全需求而以帳號管理方法而和!以隔離。 根據本發明之一或多個具/體實施例:(a)眘姐你a 貢枓係自動擷 取、處理及格式化以便資料採掘工具可加以運 <用,(b ) —價 第19頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公爱) A7 B7 1230349 五、發明説明() 值系統經使用,且問題自動產生,以致資料採掘工具將回 覆有關結果;及(c)該結果將自動投遞’而可由遠端使用權 以便可快速地依據結果採取相關之行動。 如第3圖所示,ASP資料轉換模組3010係一資料聚 集流程或模組,其由製造廠内許多不同型式之資料來源中 至少之一獲得不同型式之資料,例如(但不限於):(a)來自 MES(”管理執行系統”)之產品設備歷史資料;(b)來自一設 備介面資料來源之資料;(c)來自製造廠提供資料來源之處 理工具配方及處理工具測試程式;及(d)來自製造薇提供資 料來源之原始設備資料,例如(但不限於)探針測試資料、 E-測試(電性測試)資料、缺陷測量資料、遠端診斷資料收 集及後處理資料。根據本發明之一或多個具體實施例,Asp 資料轉換模組3010接受及(或)收集以客戶-及(或)工具指 定格式形式傳輸之資料,例如(但不限於)儲存來自工具之 原始輸出資料的客戶資料收集資料庫(中央集中或其他), 及(或)直接來自資料來源。進一步,此資料接受或收集可 依排定時程或隨取隨用而進行。再者,資料可以加密,及 可以FTR檔透過一如客戶内部網路之保全網路(如保全電 子郵件)傳輸。根據本發明之一或多個具體實施例,A” 資料轉換模組3010係在PC伺服器上執行之軟體應用程 式,且係根據熟習本技藝者所知之多種方法中任和 、 C + +、Perl 及 Visual Basic 編寫。作[為一實 > X例通常資料係 普遍可用,包括:(a)WIP(製程工作)資邙, U負訊,通常包括約每 批(一批晶圓通常是指處理時在一晶盒内一 哎移動之25片 第20頁 (請先閲讀背面之注意事項再填寫本頁) 訂· 經濟部智慧財產局員工消費合作社印製 1230349V. Description of the invention () Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and the Consumer Cooperatives; It is stored in, for example (but not limited to) an Oracle system; (c) decision analysis data input and rapid output of multiple data sets for analysis; (d) independent analysis automation and use "data value system π automatically issues; e) multiple data mining techniques, such as, but not limited to, neural network-like, rule induction, and multivariate statistics; (f) visualization tools, with the diversity of f0 statistics to quantify the results obtained; and (g) an application The " ASP " is used by end-to-end network delivery systems to provide rapid configuration. Using one or more specific embodiments of the present invention, a typical data feedback and problem remediation engineering process usually requires the following steps: (a) define the problem (usually occurs in about 0 days); monitor all key analysis variables, Such as the percentage of yield, the percentage of defects, etc. (usually occurs in about 0 days), (c) forming a hypothesis about the abnormality of all key analysis variables (usually occurs in about 0 days); (d) using statistics Reliability level and key instruction provided by hypothetical rating (ie, based on experience in a profile), which indicates how to assign false designs or evaluate hypotheses, including, for example, but not limited to, the weighting of certain artificial intelligence rules-please pay attention to The correction key for category data, such as tool data, is different from the correction key used for digital data, such as detection data, which usually takes about i days); (Develop experimental strategies and experimental test days (usually occurs about i day); 时间 the time it takes to perform the test is about ... ⑷ adapt the model (usually distributed = p: about 1 day); (h) diagnose the model (usually occurs Time is about working days); (i) money: explain the model (generally occurs "time is j1 large), and (j) perform recognition tests to prove improvement (generally occurs about 20 days) without the need for Repeat. Page 18 Please read the intentions on the reverse page and fill in this page) # · · 线 一 1230349 A7 V. Description of the invention (), Ό Fruit, the typical time to correct the problem is about one and a half ( 1.5) month. Figure 3 shows a factory data analysis system 3ηΛΛ that is not manufactured according to one or more specific embodiments of the present invention (please read the precautions on the back before filling this page) • 3000 and the original unformatted The data automatic process of inputting data to the result of data mining is applied to the integrated circuit manufacturing process using the present invention or one or more specific embodiments. According to the second specific embodiment of the present invention, the tortoise is yours. By automating the steps of the knife analysis process and the process from one stage of the analysis to the other, it will enable manual data mining to a process and data mining. Disadvantages in the process are greatly reduced In addition, according to one or more specific embodiments of the present invention, it can provide users or customers with the right to use when setting up data analysis, and can use commercially available and installed interfaces such as the Internet. Browser Lookup:--Application Service Provisioning (" ASP, :) System Distribution Method (ie, a method known to those skilled in the art-item-based data conversion method) is to do this- The preferred method of the network browser interface. According to one or more specific embodiments of the manufacturer data analysis system 3000 shown in FIG. 3, the data used for collection and analysis can be from one or more manufacturers. A company located in one location, or data that can be used for collection and analysis is one from each company's one or more manufacturing plant locations. In addition, one or more employees ’cooperatives of the Intellectual Property Bureau of the Ministry of Economy printed this In a specific embodiment, the user who sets and / or checks the results may be different users or customers from different departments of the same company, or different users or customers from different departments of different companies or Households, according to the data with the data preservation requirements and methods to account management! To isolate. According to one or more embodiments of the present invention: (a) Sister Sister You a tribute is automatically retrieved, processed, and formatted so that the data mining tool can be used < use, (b)-price 19 The paper size of this page applies to the Chinese National Standard (CNS) A4 specification (210X297 public love) A7 B7 1230349 V. Description of the invention () The value system has been used and the problem has automatically occurred, so that the data mining tool will respond to the relevant results; and (c) The results will be delivered automatically and can be used remotely so that relevant actions can be taken quickly based on the results. As shown in Figure 3, the ASP data conversion module 3010 is a data aggregation process or module that obtains different types of data from at least one of many different types of data sources in the manufacturing plant, such as (but not limited to): (A) product equipment historical data from MES ("Management Execution System"); (b) data from a device interface data source; (c) processing tool recipes and processing tool test programs from the data source provided by the manufacturer; and (D) Original equipment data from sources provided by Manufacturing Wei, such as (but not limited to) probe test data, E-test (electrical test) data, defect measurement data, remote diagnostic data collection, and post-processing data. According to one or more specific embodiments of the present invention, the Asp data conversion module 3010 accepts and / or collects data transmitted in the format specified by the customer- and / or tool, such as (but not limited to) storing the original data from the tool The customer data collection database (centralized or otherwise) that outputs data, and / or directly from the data source. Further, this information can be received or collected on a scheduled basis or on demand. Furthermore, data can be encrypted, and FTR files can be transmitted over a security network (such as security e-mail) like a customer's intranet. According to one or more specific embodiments of the present invention, the A ”data conversion module 3010 is a software application program executed on a PC server, and is based on various methods known to those skilled in the art, C + + , Perl and Visual Basic. [For a practical example] X cases are generally available, including: (a) WIP (process work) resources, U negative information, usually including about each batch (a batch of wafers usually Refers to 25 pieces that are moved in a crystal box during processing. Page 20 (please read the precautions on the back before filling this page). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1230349

五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 阳圓)12000個項目(WIp資訊通常是由製程工程師來使用 權),(b)设備介面資訊,例如通常包括每批12〇〇〇〇個項目 之原始處理工具資料·請注意以往設備,介面資訊通常未由 任何人所使用權;(c)製程度量衡資訊,通常包括每批1〇〇〇 個項目(製程度量衡資訊通常由製程工程師使用權);(句 缺陷資訊,通常包括每批1〇〇〇個項目(缺陷資訊通常由良 率工程師使用權);(e)E_測試(電性測試)資訊,通常包括每 批次10000個項目(E-測試資訊通常由裝置工程師使用 權);及(f)分類(具/資料記錄及位元圖)資訊,通常包括每 批2〇〇〇個項目(分類資訊通常由生產工程師使用權)。一般 人應瞭解這些資料可達到每一晶圓約136〇〇〇個獨一的測 量值。 ·' 經濟部智慧財產局員工消費合作社印製 如第3圖進一步顯示,資料轉換模組3〇2〇根據熟習 本技藝者所知多種方法中任何之一者將由ASP資料轉換 模組3010接收之原始資料轉換及(或)編譯成包括關鍵/攔 位/資料之資料格式,而後該轉換資料儲存在自適應資料庫 3 030中。由資料轉換模組3〇2〇實施之資料轉換處理需要 將資料分類;合併處理例如(但不限於)製造-測試批次ID 轉換(例如,此有用於邊界)、晶圓ID轉換(例偵測及割痕 ID)及晶圓/光罩/模具座標常態化及轉換(例如但不限於視 是否在座標常態化中使用一刻槽或一晶圓基準測量值而 定);而資料規格例如(但不限於)測試、Bin探測資料(例 如對某些終點線探測測試,可能有1 〇至1 〇〇個失效模 式)、度量衡資料等之規格界限,及經計算之資料型式, 第21頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349 A7 B7 五、發明説明() 例如(但不 — 限於)極限、批次、晶圓、區域及層面資料。根 據本發明之V. Description of the invention () (Please read the notes on the back before filling this page) Yangyuan) 12,000 items (WIp information is usually used by process engineers), (b) Equipment interface information, such as Original processing tool data for batches of 12,000 items. Please note that in the past equipment, the interface information is usually not used by anyone; (c) system scale information, which usually includes 1,000 items per batch (system level scales) Information is usually used by process engineers); (defect information, usually including 1,000 items per batch (defect information is usually used by yield engineers); (e) E_test (electrical test) information, usually including 10,000 items per batch (E-test information is usually used by the device engineer); and (f) classification (with / data records and bitmap) information, which usually includes 2,000 items per batch (classification information is usually The right to use by the production engineer). The average person should understand that these data can reach about 136,000 unique measurements per wafer. · 'The Intellectual Property Bureau of the Ministry of Economic Affairs' employee consumption cooperation Printed as shown in Figure 3, the data conversion module 3002 converts and / or compiles the original data received by the ASP data conversion module 3010 into any of the various methods known to those skilled in the art. The data format of key / stop / data, and then the conversion data is stored in the adaptive database 3 030. The data conversion process implemented by the data conversion module 3020 needs to classify the data; merge processing such as (but not limited to) ) Manufacturing-test batch ID conversion (for example, this is used for boundary), wafer ID conversion (such as detection and cut ID) and wafer / photomask / mould coordinate normalization and conversion (such as but not limited to In the normalization of the coordinates, a notch or a wafer reference measurement is used; and the data specifications such as (but not limited to) tests and Bin detection data (for example, some end-line detection tests may have 10 to 10) 〇 failure modes), the specification limits of metrological data, etc., and the calculated data types, page 21 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 1230349 A7 B7 V. Description Ming () such as (but not - limited to) the limit, the batch, the wafer level and regional information according to the present invention.

一或多個具體實施例,資料轉換模組· 3 020係 在P C词月g l. +L 器上執行之軟體應用程式,,且係根據熟習本技 藝者所知客錄士、、t丄One or more specific embodiments, the data conversion module · 3 020 is a software application program executed on a PC + g + + device, and according to the person skilled in the art,

万法中任何之一以Oracle Dynamic PL-SQL & Perl編宜。抽祕丄 馬根據本發明之一或多個具體實施例,由資料 轉換模組3 〇 9 Π杳 貢施之資料轉換處理需要根據熟習本技藝 者所知多插f7 力古T任何之一使用一通用編譯器,將原始資 料檔轉換成"古八Μ 1 、又兄刀格式化”之工業用檔(即該資料格式係,,一 般化,,,以勤艾@ Α 致不&待轉換之輸入資料有多少格式,均只使 用少數幾錄k -V·、、 °根據本發明之一或多個具體實施例, 經轉換$妙· # 田案保持原始資料中之”層”資訊(可使後續流程 由低:資料"到達,,高g資料)而〒包含工業特定資訊。一旦 原始貝料輸入此格式,其將被輸入自適應資料庫3〇3〇中 儲存。 根據本發明之一或多個具體實施例,用於輸入資料的 通用檔袼式係藉由使用下列分層結構定義:產A id、何 處·何時?何物?及數值。例如,對一半導體製造廠,其 明確地定義如下:”產品ID ”係由:批次⑴、晶圓⑴、溝 槽①、光罩ID、模具1〇及子模具卡氏座標中一或 多個所辨涊,何處? ”係由:處理流程/組裝線製造步驟及 次步驟中一或多個所辨認;"何時?"係由曰期,測量時間中 一或多個所辨認;,,何物? ” ,由如量值名稱(例如但不限 於良率)、測量值型式/類別及晶圓分類中一或多個所辨 邊,數值?係定義為例如(但不限於)良率:5 i 4%。使用本 (請先閲讀背面之注意事項再填寫本頁) 訂· 線一 經濟部智慧財產局員工消費合作社印製 第2頂Any one of the methods is compiled with Oracle Dynamic PL-SQL & Perl. Extracting Secret Horses According to one or more specific embodiments of the present invention, the data conversion processing by the data conversion module 3 009 杳 杳 Gong Shi needs to insert more f7 according to the knowledge of the person skilled in the art. A general-purpose compiler that converts the original data file into an "Industrial file format of" Gu Ba M 1 and Brother Knife Format "(that is, the data format is ,, generalized ,, to Qin Ai @ Α 致 不 & How many formats of the input data are to be converted, only a few recorded k-V ,,, ° According to one or more specific embodiments of the present invention, converted $ 妙 · # 田 案 maintains the "layer" in the original data Information (which enables subsequent processes to reach from low: data " arrival, high-g data) and not include industry-specific information. Once the raw material is entered in this format, it will be entered into the adaptive database 3300 for storage. According to According to one or more specific embodiments of the present invention, a general file format for inputting data is defined by using the following hierarchical structure: Aid, Where? When? What? And numerical values. For example, for a semiconductor Manufacturing plant, which is clearly defined as follows: " Product ID "is identified by one or more of: batch size, wafer size, trench ①, mask ID, mold 10, and sub-mold Kelvin coordinates, where is it?" Is derived from: process flow / assembly One or more of the line manufacturing steps and sub-steps are identified; " when? &Quot; is identified by date, one or more of the measurement times; ,, what? ", Such as by the name of the quantity (such as but not limited to Yield), measured value type / category, and one or more of the discriminated edges in the wafer classification. The value? Is defined as, for example (but not limited to) the yield: 5 i 4%. Use this (please read the precautions on the back first) (Fill in this page again) Order 2 Printed by the Consumers Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

12303491230349

五、發明說明( 具體實施例’任何工廠資料均可加以表示。 根據本發明+ JL&gt; ^ , ,β之一或多個具體實施例,資料轉換模組 3 02 0 一般上合迫娜 (請先閲讀背面之注意事項再填寫本頁) X、蜗譯由ASP資料轉換模組3 〇丨〇所收集之新 型式資料。4#免丨β 分 、⑺疋’:貝料轉換模組3020將產生一”空中&quot; 資料庫”交握&quot;, 以使該新型式資料藉由例如產生用於資料 使用權之雜法^ § 雜晏程式而儲存在自適應資料庫3030。最後,根 據本發明$ _々# , 、 或多個具體實施例,當資料到達製造廠資料 刀析系統3GG()時’資料將儲存在自適應資料庫3030。 根據本發明之一或多個具體實施例,ASP資料轉換模 、、且3〇1〇包括一聚集來自於SmartSysTM資料庫之處理工具 感測器資料的模組(SmartSysTM程式係由應用材料公司出 程式其可收集、分析、及儲存例如來自於製造廠 之處理工具的感測器資料)。此外,資料轉換模組3020包 括模組,其轉換SmartSysTM處理工具感測器資料成為由 主載入器模組3040及主建立器模組3060所預備之資料成 為供資料採掘使用之資料組。 經濟部智慧財產局員工消費合作社印製 根據本發明之一或多個具體實施例,一資料編譯演算 法可使用由個別處理(即工廠或組裝線)工具之時間基礎資 料以建立度量衡資料量度及現存非最佳化製造廠(即工廢 條件)間一&quot;直接&quot;的連結。此資料編譯演算法一重要部份係 當晶圓處理時,編譯在(工廠或組裝線)處理工具中產生之 時間基礎操作條件資料成為關鍵(積體電路特定統計資 料’而隨後可藉由資料智囊(DataBrain)資料智囊引擎模 組3 080依以下之詳述加以分析,以提供自動資料採掘錯 第23頁 &quot; — ....... —......... 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) ------- 1230349 Δ7 Α7 ___ Β7 五、發明説明() 誤债測分析。根據本發明之一或多個具體實施例,將實施 下列步驟以編譯該時間基礎處理工具資料: {請先閲讀背面之注意事項再填寫本頁) a·產生一設定檔(使用詳述於下之使用者介面),其特 定數位化之精細度用於一般時間基礎資料袼式;及 b·編譯由ASP資料轉換模組3〇1〇擷取之時間基礎處 理工具資料,由各種(例如但不限於)ASCII資料、 權案格式變成一該設定檔之一般時間基礎資料槽 格式。 以下顯示用於一般時間基礎資料檔格式的定義之具 體實施例。根據這些具體實施例,有利的是對一將被視為 &quot;有價值&quot;之檔案,無須所有資料範圍均完全。相反地如下 文中,某些資料範圍可由與半導;、體製造執行系統(MES)主 機通信之&quot;後處理”資料填充路由稍後再植入。 〈表頭開始〉 [產品ID碼] [批次ID碼] [母批次ID碼] [晶圓ID碼] [溝槽ID碼] 經濟部智慧財產局員工消費合作社印製 [WIP模組] [WIP子模組] [WIP子模組步驟] ί [追蹤輸入日期] [追蹤輸出日期] 第24頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公复) 1230349 A7 B7 五、發明説明() [製程工具ID] [使用之製程工具配方] 〈表頭結束〉 〈資料開始〉 (參數開始) [參數英文名稱] [參數ID數字] [資料收集開始時間] [資料收集結束時間] 時間增量,資料值1 時間增量,資料值2 時間增量,資料值3 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 〈參數結束〉 〈參數開始〉 [參數英文名稱] [參數ID數字] [資料收集開始時間] [資料收集結束時間] 時間增量,資料值1 時間增量,資料值2 時間增量,資料值3 第25頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) 1230349 A7 B7 五、發明説明() 〈資料結束〉 根據此具體實施例,需要上述以斜體字表示之項目而 能適當地併入檔案内容至積體電路資料度量。 如上述’根據本發明之一或多個具體實施例,用於時 間基礎資料編譯之設定檔明確說明範圍與那一組時間基 礎負料將代表晶圓統計資料。根據一個此類具體實施例, 一設定槽也可包含某些有關該設定檔將處理那些時間基 礎原始資料格式之資訊,及有關壓縮該原始樓之一或多個 選擇。以係一設定檔之具體實施例的實例。 〈表頭開始〉 [應用於此設定檔之延伸檔名] [原始資料壓縮檔&lt;Y或N〉之] [產生影像壓縮檔 &lt;檔案/參數之數目&gt;] [影像壓縮檔解析度] 〈表頭結束〉 &lt;分析表頭之開始&gt; [總體圖形統計 &lt;開/關〉,Ν片段] [X軸時間統計&lt;開/關&gt;,Ν片段] [Υ軸參數統計 &lt;開/關&gt;,.Ν片段] 以下解說上述提出之設定&quot;檔參數。 延伸檔名:設定檔中本行列出延伸檔名及(或)命名發 第26頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公董) (請先閱讀背面之注意事項再填寫本頁) 訂· 線一 經濟部智慧財產局員工消費合作社印製V. Description of the invention (specific embodiment 'any plant data can be expressed. According to the invention + JL> ^,, β one or more specific embodiments, the data conversion module 3 02 0 is generally compelling (please (Please read the notes on the back before filling this page) X. Snail translation of the new type of data collected by the ASP data conversion module 3 〇 丨 〇 4 # FREE 丨 β points, ⑺ 疋 ': the shell material conversion module 3020 will Generate an "over-the-air" database "hands-on" so that this new type of data is stored in the adaptive database 3030 by, for example, generating a miscellaneous method for data usage rights ^ § Miscellaneous programs. Finally, according to this Invention $ _々 #,, or multiple specific embodiments, when the data reaches the manufacturer's data analysis system 3GG (), the data will be stored in the adaptive database 3030. According to one or more specific embodiments of the present invention, The ASP data conversion module, and 301 includes a module that aggregates processing tool sensor data from the SmartSysTM database (The SmartSysTM program is programmed by Applied Materials and can be collected, analyzed, and stored, for example, from Processing by the manufacturer Tool sensor data). In addition, the data conversion module 3020 includes a module that converts SmartSysTM processing tool sensor data into data prepared by the main loader module 3040 and the main builder module 3060. The data group used for data mining. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. According to one or more specific embodiments of the present invention, a data compilation algorithm can use the time basis of the individual processing (ie factory or assembly line) tools. Data to establish a "direct" link between the measurement data and existing non-optimized manufacturing plants (ie, waste conditions). An important part of this data compilation algorithm is compiled in the (factory) Or assembly line) The time-based operating condition data generated in the processing tool becomes the key (integrated circuit specific statistics') and can then be analyzed by the DataBrain data think tank engine module 3 080 in accordance with the following detailed description to Provide automatic data mining error Page 23 &quot; — ....... —......... This paper size applies to China National Standard (CNS) A4 specification (210X297 (%) ------- 1230349 Δ7 Α7 ___ Β7 V. Description of the invention () Analysis of false debt measurement. According to one or more specific embodiments of the present invention, the following steps will be implemented to compile the time-based processing tool data: {Please read the notes on the back before filling this page) a. Generate a configuration file (using the user interface detailed below), the specific digitized fineness is used for general time basic data format; and b · Compile the time-based processing tool data retrieved by the ASP data conversion module 3010, and change from various (such as, but not limited to) ASCII data and file formats to a general time-based data slot format for the profile. A specific example of the definition of the format of a general time base data file is shown below. According to these specific embodiments, it is advantageous for a file to be considered &quot; valuable &quot; without the need for all data ranges to be complete. Conversely, as described below, certain data ranges can be filled with "post-processing" data communication routes with the semiconductor, MES host, and later implanted. <Beginning of Header> [Product ID Code] [ Batch ID code] [Parent batch ID code] [Wafer ID code] [Groove ID code] Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs [WIP module] [WIP submodule] [WIP submodule Steps: ί [Tracking input date] [Tracking output date] Page 24 This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 public copy) 1230349 A7 B7 V. Description of the invention () [Processing tool ID] [Using the Process tool recipe] <End of header> <Data start> (Parameter start) [English name of parameter] [Parameter ID number] [Data collection start time] [Data collection end time] Time increment, data value 1 time increment, Data value 2 Time increment, data value 3 (Please read the precautions on the back before filling this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs <Parameter end> <Parameter start> [Parameter English name] [Parameter ID number [Data collection start time] [Data End time of the set] Time increment, data value 1 time increment, data value 2 time increment, data value 3 page 25 This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 1230349 A7 B7 5 Explanation of the invention () <End of data> According to this specific embodiment, the items indicated in italics are needed to properly incorporate the file content into the integrated circuit data metrics. As described above, according to one or more of the present invention In a specific embodiment, a configuration file for compiling time-based data clearly states the range and which set of time-based negative materials will represent wafer statistics. According to one such specific embodiment, a setting slot may also contain some information about the setting The file will process information about those time-based raw data formats, as well as options for compressing one or more of the original buildings. An example of a specific embodiment of a profile. <Header Start> [Extensions Applied to This Profile File name] [Original data compressed file &lt; Y or N>] [Generate image compressed file &lt; number of files / parameters &gt;] [Image compressed file resolution] <End of header> &lt; Analysis The beginning of the head> [Overall graphic statistics &lt; On / Off>, N segment] [X-axis time statistics &lt; On / Off &gt;, N segment] [Z axis parameter statistics &lt; On / Off &gt;, .N [Snippet] The following explains the above-mentioned settings &quot; file parameters. Extension file name: In the configuration file, the bank lists the extension file name and / or the name of the page. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297). Dong) (Please read the notes on the back before filling out this page) Order · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

1230349 A7 — _ B7 五、發明説明() 明關鍵字,其指出將使用在給定設定檔中定義之參數編譯 一給定原始、一般時間基礎資料檔β 原始資料壓縮檔:設定檔中之本行‘指出如果須保持原 始負料之壓縮檔複本-使用此選項將導致槽案被壓縮而儲 存在達成目錄結構中。 產生影像壓縮檔:設定檔中之本行指出如果在原始時 間基礎資料檔内之資料須以標準x_y格式繪製,以使該資 料之”原始”視圖可無須壓縮而儲存及快速擷取,及互動地 繪出原始資料檔(這些檔案可為大型而且對一單一處理工 具每個月可能加到1 00至200億位元組)。影像選項之數 目使x-y資料圖之不同關鍵區域之多數快照能被儲存,以 致該資料”放大”視圖也可供使用。 影像壓縮槽解析度:設定槽中之本行定義將應用至由 產生影像壓縮檔選項抓取之任何X-y圖形之標準影像壓縮 程度。 總體圖統計:設定槽中之本行指出系統將為在問題中 由設定檔處理之所有檔案格式產生總體統計資料,以下將 描述這些統計資料如何產生。 X軸時間圖統計:設定檔中之本行指出系統將為在問 題中由設定槽處理之所有檔案格式產生由X軸為時間範 圍所疋義之統計資料,以下將描述這些統計資料如何產 生。 ! 百分比資料圖統計:設定k中之本行指出系統將為在 問題中由設定檔處理之所有檔案格式產生百分比統計資 第27頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁} -訂· 線一 經濟部智慧財產局員工消費合作社印製1230349 A7 — _ B7 V. Description of the invention () Key words that indicate that a given original, general time basic data file will be compiled using the parameters defined in a given configuration file β Original data compression file: the original in the configuration file Row 'indicates that if a compressed copy of the original negative material must be maintained-using this option will cause the trough case to be compressed and stored in the reach directory structure. Generate image compression file: This line in the configuration file indicates that if the data in the original time base data file must be drawn in the standard x_y format, so that the "raw" view of the data can be stored and quickly retrieved without compression, and interactive Map raw data files (these files can be large and can add up to 10-20 billion bytes per month for a single processing tool). The number of image options allows most snapshots of different key areas of the x-y data map to be stored, so that a "zoomed in" view of the data is also available. Image Compression Slot Resolution: This line in the setting slot defines the standard image compression level that will be applied to any X-y graphics captured by the Generate Image Compression option. Overall chart statistics: This line in the settings slot indicates that the system will generate overall statistics for all file formats processed by the profile in the problem. The following describes how these statistics are generated. X-axis time chart statistics: This line in the configuration file indicates that the system will generate statistical data defined by the X axis as the time range for all file formats processed by the setting slot in the problem. The following describes how these statistics are generated. ! Percentage data graph statistics: This line in setting k indicates that the system will generate percentage statistics for all file formats processed by the profile in the question. Page 27 This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 mm) ) (Please read the precautions on the back before filling out this page} -Order · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

五、發明説明( 每一片 經 濟 部 智 慧 財 產 局 員 工 消 合 社 印 製 1230349 料’以下將描述這此絲 統計如何產生。十“4如何產生。以下將描述這些 根據本發明之一或多個具 、 (也稱X軸時間圖形統 1 w下之統計資料 盔一加士 )係參數對參數為基礎針對 母-個時間基礎資料圖而產 資斜细芬^ ^ 對各給定時間基礎 貝枓組及一給定之參數,資料依 U v ^ , 槽之疋義劃分成許多 片1又。X軸時間圖形片 ^ 邊Λ 疋義為取X轴之整個寬度(從 敢小之X值至最大之v杜、 v 個相η之辦曰 而4將该Χ軸範圍劃分成Ν 個相同之增1。產生每一片段之統計資料並 了解如何運作’首先參考第5圖,其顯亍、.、、、 料的實例,特別是製程工具…:顯不原始時間基礎資 ,他 具先束電流對時間之函數的一圖 表。第6圖顯示如何將帛 諸片段,及第7圖: ' 時間基礎資料分成 6圖之片段丨。 楚貝枓如何關聯至第 以下係典型之片段統計資料(實例為N片段 段1 0組統計資料)·· 1 ·片段内·之面積 2·片段内資料之γ軸平均值· 3·片段内資料之γ軸值的標準差 4·片段之斜率 5 ·片段之Y軸最小值 6·月段之Y軸最大值 ( 7· Y軸平均值與前一片段之變化百分比 8· Y軸平均值與下一片段之變化百分比 第28頁 (請先閱讀背面之注意事項再填寫衣頁)V. Description of the invention (each piece printed by the Consumer Property Agency of the Intellectual Property Bureau of the Ministry of Economic Affairs printed 1230349 materials' The following will describe how these statistics are generated. Ten "4 how are generated. The following will describe these according to one or more of the present invention. , (Also known as X-axis time graph system 1 watts of statistical data helmet 1 plus) is a parameter-based parameter for the mother-time-based data map and the product is oblique ^ ^ for each given time base Group and a given parameter, the data is divided into many pieces according to U v ^, the meaning of the slot 1. The X-axis time graphic piece ^ The edge Λ means to take the entire width of the X-axis (from the small X value to the largest The vdu, v phase η, and 4 will divide the X-axis range into N identical increments 1. Generate statistics for each segment and understand how it works' First refer to Figure 5, which shows, Examples of materials, especially process tools ...: Shows the original time base information, he has a chart of the function of the beam current as a function of time. Figure 6 shows how to put the fragments, and Figure 7: 'Time The basic information is divided into 6 pieces of pictures 丨. Chu Bei枓 How to relate to the following typical segment statistics (example is N segment 10 groups of statistics) ·· 1 · within the segment · area 2 · the average value of the gamma axis of the data in the segment · 3 · the data in the segment Standard deviation of the γ-axis value 4 · Slope of the fragment 5 · Minimum value of the Y-axis of the fragment 6 · Maximum value of the Y-axis of the month (7 · Percentage change between the average value of the Y-axis and the previous fragment 8 · The average value of the Y-axis and the Percentage change of one snippet page 28 (please read the precautions on the back before filling in the clothing page)

1230349 at Β7 五、發明説明( 9· Y軸標準偏差值與前一片段之變化百分比 10· Y軸標準偏差值與下一片段之變化百分比 第8圖為片段7 BIN—S内Y範圍之信賴度 &amp; w貫例。使 用上述資訊,製程工程師可調整處理工具之配署 、 、 夏方式(處 理工具設定),以獲得較低BIN-S失效的範圍。 統計 之總 根據本發明之一或多個具體實施例,下列2 資料為由未經杜凱氏(Tukey)資料清理之資料計算出 體統計資料。 1 ·曲線下之全部面積 2· Y軸斜率改變10%或以上之數目 向 3 · X轴9 5 %資料寬度(即,由資料中央開始向右 左檢取95%之資料) 經濟部智慧財產局員工消費合作社印製 4· 95%X軸資料寬度之γ軸平均值 5_ 95%X軸資料寬度之γ轴標準差 6· 95°/〇X軸資料寬度之γ軸範圍 7· X軸95 %之曲線下的面積 8· X軸最左邊2.5%之資料寬度 9· X軸最左邊2.5%之曲線下之面積 10· X軸最右邊2.5%之資料寬度 11· X軸最右邊2.5%之曲線下之面積 1 2 · X軸90%資料寬度(即,由資料中央開如向 向左檢取90%之資料) ί 13· 90%Χ軸資料寬度之γ軸平均值 14· 90%Χ軸資料寬度之γ軸標準差 第29頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公楚) 1230349 Α7 Β7 五、發明説明() 15· 90/〇X軸資料寬度之γ軸範圍 (請先閲讀背面之注意事項再填寫本頁) 16· X軸90 %之曲線下的面積 1 7 · X軸最左邊5 %之資料寬度 1 8 · X軸最左邊5 %之曲線下之面積 19· X軸最右邊5%之資料寬度 20· X軸最右邊5%之曲線下之面積 21· X軸75%資料寬度(即,由資料中央開始向右及 向左檢取7 5 %之資料) 22· 75%Χ軸資料寬度之γ軸平均值 23· 75%Χ軸資料寬度之γ軸標準差 24· 75%Χ軸資料寬度之γ軸範圍 經濟部智慧財產局員工消費合作社印製 25· X軸75 %之曲線下的面積 26. X軸最左邊12_5°/。之資料寬度 27· X軸最左邊12.5%之曲線下之面積 28· X軸最右邊I2·5%之資料寬度 29· X軸最右邊12.5%之曲線下之面積 儘管上述具體實施例中使用之百分率係一般百分率 如90、95及75等,其他百分率之實施例亦可使用。其中 此百分率可修改成位於其中之值,例如有意地調整該資料 之’•精華&quot;部位使其多少較寬些。 進一步之具體實施例中,其類似上述之總體統計資料 是以5000%杜凱氏資料清除而計算ί出,而又一具體實施例 中,其類似上述之總體統計資料是以500%杜凱氏資料清 除而計算出。 第30頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349 A7 A7 ___ _ B7 五、發明説明() 據本發明之一或多個具體實施例,百分比資料統計 2如上述有關x軸時間圖形統計資料中所列之10組統計 貝料。百分比資料及x轴時間統計資料間之差異在於該片 丰又疋義之方式。在x轴時間統計資料,該片段是以X軸上 N個相同部份為基礎。然而,對百分比統計資料,該片段 寬度是在X軸上變化,因為該片刻是由片段中含有之資料 的百分比所限定。例如,如果百分比資料是以1〇片段&quot;進 行&quot;分割,則第一片段將是資料的前l0% (以χ軸為參考的 最左邊10%資料點)。 如第3圖進一步顯示,主載入器模組3〇4〇(可由時間 產生事件或負料到達事件觸動)由自適應資料庫3 〇擷取 格式化資料(例如資料檔3035);而後將其轉換成智慧庫 3〇5〇。根據本發明之一或多個具體實施例,智慧庫3〇5〇 包括熟習本技藝者所知的0racle關係資料庫。根據本發明 之一或多個具體實施例,當資料由製造廠”漸漸,,進入時, 主載入器模組3040測試自適應資料庫3〇3〇之目錄,決定 足夠數量之資料已到達可被擷取並轉移至智慧庫3〇5()。 根據本發明之一或多個具體實施例,主載入器模組 3〇40及智慧庫3050至少包含用於管理、參考及抽取大量 未結構化、關聯性資料之方法及設備。根據本發明之一或 多個具體實施例,智慧庫3050係一混合資料庫,其至少 包含一智慧庫關係資料庫組件及丨一智慧庫檔案系統組 件根據一此類之具體實施例’該關係資料庫組件使用一 離湊-索引演算法產生使用權鑰匙以分離儲存在一散佈檔 第31頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 線 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 案庫内之資料。有利的是,此可使未結構化之原始資料快 速轉換成一正式結構,因此可略過市售資料庫產品之限 制,而具有快速儲存結構化檔案在磁碟,陣列之優勢。 根據本發明之一或多個具體實施例,設定智慧庫3〇5〇 的第一步驟涉及定義可能有的不連續測量值資料之可應 用層。然而,根據本發明之一或多個具體實施例,將不需 要為了開始建構供該不連續資料用之智慧庫3〇5〇,而預先 考慮一給定不連續資料之層數。相對地,只需要在智慧庫 3〇5内某些點定義新層與先前各層之關係(子層或超層 為了解此關係’將考慮以下實例。在製造廠内,一共同層 可能是一晶圓集合;此可在智慧庫3〇5〇内被編為第i層。 其次,在該晶圓集合内之每一特定晶圓可被編為第2層。 其次,在該晶圓上任何晶片之子群組可被編為第3層(或 為多數層,視該子群組類別之一致性而定)。有利的是, 智慧庫3050之彈性可使任何給定資料型式被儲存在智慧 庫3050,只要其性質可被索引至現存可應用至該資料型式 之範圍的最低層。 經濟部智慧財產局員Η消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 有利的是,根據本發明之一或多個具體實施例,智慧 庫3050之資料載入過程比傳統關聯性資料庫之資料載入 過程要容易,由於對智慧庫3〇5〇而言,每一新資料型式 一須針對該特疋層ID以能表示不連續製造層與資料測量 值(或舊有資料)間之關係的格式重鸾。例如在製造廄内, 給疋之資料必須重寫成含有”第丨層&quot;ID、&quot;第2層&quot;ID等 之諸行,隨後測量值針對晶圓組合之集合加以記錄。此智 第32頁1230349 at Β7 V. Explanation of the invention (9 · Y-axis standard deviation value and the percentage change of the previous segment 10 · Y-axis standard deviation value and the percentage change of the next segment Figure 8 shows the trust of the Y range in the segment 7 BIN-S Degree &amp; Example. Using the above information, the process engineer can adjust the processing tool configuration, summer mode (processing tool setting) to obtain a lower range of BIN-S failures. Statistics are always based on one of the inventions or In specific embodiments, the following 2 data are volume statistics calculated from data that has not been cleaned up by Tukey's data: 1. The total area under the curve 2. The number of changes in the Y-axis slope by 10% or more toward 3 · 95% data width of the X axis (ie, 95% of the data is retrieved from the center of the data to the right and left) printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4. 95% of the X axis data width is the average value of the γ axis 5_ 95% X-axis data width γ-axis standard deviation 6.95 ° / 〇 X-axis data width γ-axis range 7 · Area under the X-axis 95% curve 8 · X-axis leftmost 2.5% data width 9 · X-axis maximum Area under the curve of 2.5% on the left Data width 11 · The area under the 2.5% curve on the far right of the X axis 1 2 · 90% data width of the X axis (ie, the data center is opened to retrieve 90% of the data to the left) ί 13 · 90% of the X axis data Γ-axis average value of the width 14 · 90% γ-axis standard deviation of the width of the X-axis data Page 29 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 Gongchu) 1230349 Α7 Β7 V. Description of the invention () 15 · 90 / 〇X-axis data width of the γ-axis range (please read the notes on the back before filling this page) 16 · Area under the 90% curve of the X-axis 1 7 · The data width of the leftmost 5% of the X-axis 1 8 · Area under the curve of the leftmost 5% of the X-axis 19 · Data width of the rightmost 5% of the X-axis 20 · Area of the data under the rightmost 5% of the X-axis 21 · Area 75% of the data of the X-axis (ie, starting from the center of the data) Get 75% of the data to the right and left) 22 · 75% average value of the γ axis of the X-axis data width 23 · 75% standard deviation of the γ-axis data width γ-axis 24 · 75% γ-axis data width of the γ axis Scope The area under the curve of 75% of the X-axis printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 26. The leftmost side of the X-axis is 12_5 ° /. Data width 27 · X Area under the 12.5% curve on the far left side of the axis 28. Data width of I2 · 5% on the far right side of the X axis 29. Area under 12.5% curve on the far right side of the X axis Although the percentages used in the above specific embodiments are general percentages such as 90 , 95, 75, etc., other percentage embodiments can also be used. Among them, the percentage can be modified to a value located therein, for example, the ‘Essence’ part of the data is intentionally adjusted to make it somewhat wider. In a further specific embodiment, the overall statistical data similar to the above is calculated by clearing 5000% Duke ’s data, and in another specific embodiment, the overall statistical data similar to the above is 500% Duke ’s Calculated by clearing data. Page 30 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 1230349 A7 A7 ___ _ B7 V. Description of the invention () According to one or more specific embodiments of the present invention, the percentage data statistics 2 are as above The 10 groups of statistical materials listed in the x-axis time graphic statistics. The difference between percentage data and x-axis time statistics lies in the way the film is rich and meaningful. In the x-axis time statistics, the clip is based on N identical parts on the x-axis. However, for percentage statistics, the width of the segment changes on the X axis, because the moment is defined by the percentage of data contained in the segment. For example, if the percentage data is divided by 10 segments &quot;, the first segment will be the first 10% of the data (the leftmost 10% of data points with reference to the x-axis). As further shown in Figure 3, the main loader module 3040 (which can be triggered by time-generated events or negative material arrival events) retrieves formatted data (such as data file 3035) from the adaptive database 30; then It is converted into a wisdom bank of 3050. According to one or more specific embodiments of the present invention, the wisdom database 3050 includes a database of Oracle relationships known to those skilled in the art. According to one or more specific embodiments of the present invention, when data is gradually imported from the manufacturer, when entering, the main loader module 3040 tests the directory of the adaptive database 3030 and determines that a sufficient amount of data has arrived It can be retrieved and transferred to the wisdom library 305 (). According to one or more specific embodiments of the present invention, the main loader module 3040 and the wisdom library 3050 include at least for management, reference and extraction of a large number of Method and equipment for unstructured and related data. According to one or more specific embodiments of the present invention, the wisdom database 3050 is a hybrid database, which includes at least a wisdom database relation database component and a wisdom database file system. The component is based on a specific embodiment of this type. 'The relational database component uses a split-index algorithm to generate a right-of-use key for separation and storage in a distribution file. Page 31 This paper applies Chinese National Standard (CNS) A4 specifications ( 210X 297 mm) (Please read the notes on the back before filling out this page)-Order · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 1230349 V. Description of the invention () Information in the case library Advantageously, this can quickly convert unstructured raw data into a formal structure, so it can bypass the limitations of commercially available database products, and has the advantage of quickly storing structured files on disks and arrays. According to the invention In one or more specific embodiments, the first step of setting the wisdom bank 3050 involves defining an applicable layer of discontinuous measurement data that may be present. However, according to one or more specific embodiments of the present invention, it will not In order to start building a wisdom database 3050 for the discontinuous data, the number of layers of a given discontinuous data needs to be considered in advance. In contrast, only a new layer and a certain number of points in the wisdom database 3 05 need to be defined The relationship between the previous layers (sub-layers or super-layers to understand this relationship 'will consider the following example. In a manufacturing plant, a common layer may be a collection of wafers; this can be compiled as the i-th in the wisdom library 3050 Second, each specific wafer in the wafer set can be compiled into layer 2. Second, any subgroup of any wafer on the wafer can be programmed into layer 3 (or a majority layer, depending on Consistency of this subgroup category Advantageously, the flexibility of the wisdom database 3050 enables any given data type to be stored in the wisdom database 3050, as long as its nature can be indexed to the lowest level of the range that can be applied to that data type. Intellectual Property of the Ministry of Economic Affairs Printed by the bureau / consumer cooperative (please read the notes on the back before filling this page). Advantageously, according to one or more specific embodiments of the present invention, the loading process of the data of the wisdom bank 3050 is more than that of the traditional correlation database. The data loading process should be easy. As for the wisdom database 3050, each new data type must be targeted to the special layer ID to indicate the discontinuity between the manufacturing layer and the measured data (or the old data). The format of the relationship is heavy. For example, in the manufacturing industry, the information given to the industry must be rewritten to include lines such as "Layer 丨 ID", "Layer 2" quotation ID, etc., and then the measured values are for the set of wafer combinations. Be documented. This Wisdom Page 32

1230349 A7 _ B7 五、發明説明( 經濟部智慧財產局員工消費合作社印製 慧庫3050之性質能夠載入任何可應用之資料,而無須定 義一特定關聯性資料庫概要。 有利的是,根據本發明之一或多個,具體實施例,智慧 庫3050係設計於輸出大型資料組以支援自動化資料分析 工作(說明如下),藉由使用雜湊-連結演算法以快速累積及 連結大量資料。以習知關聯性資料組輸出大型資料組之設 计通常需要在資料庫内大量”表格_連結,,(累積及輸出 料)。如習知方式,使用關聯性資料庫表格·連結會造成 出此類大型資料組之程序高度集中在CPU ,而有利的是 其與使用”雜湊-連結&quot;演算法從智慧庫3〇5〇輸出大型資 組之情形不同。 第4圖示範根據本發明之一或多個具體實施例用於 成一未結構化資料事件進入智慧庫3〇5〇之方法的一邏 資料流線。如第4圖所示,製造廠資料係在方塊4〇 i 〇 資料倉儲4000擷取。此製造廠資料可以是許多不同形 中之任一,或起源於許多不同來源中之任一,包括(而 限於)資料庫中之舊有資料及來自監控設備(例如而不限 一感測器)之製程工具之即時資料]其次,該未結構化 料將輸入資料剖析器4020。應瞭解由製造廠倉儲4〇〇〇 取資料之方式及頻率並不影響資料剖析器4〇2〇、資料載 器4040或智慧庫3〇5〇之表現。其次,資料剖析器4〇 輸出格式化資料流4030,其中該格武化資料係依據資料 載入器4040所能接受之格式(此僅係一格式問題,並未 入任何有關該資料之&quot;知識”,即只關於該資料如何顯現) 第33頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 資 料 損 (請先閲讀背面之注意事項再填寫本頁) 訂· 線- 1230349 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 其次’資料庫載入器4040讀取格式化資料流4030。資料 庫载入器4040使用一雜湊-索引演算法以在資料元件及其 在槽案系統4050位置間產生索引鍵(例,如而不限於,雜湊 -索引演算法使用資料元件之資料層ID以產生索引鍵)。隨 後’資料被儲存在檔案系統4〇5〇供後續參考與使用,而 參照權案系統4050之雜湊-索引鍵係儲存在關係資料庫 4 0 6 0。根據本發明之一或多個具體實施例,藉由將資料載 入Oracle 9i資料中心内之各層所劃分及索引之表格而產 生智慧庫3050。 -、訂· 線· 經濟部智慧財產局員工消費合作社印製 回顧第3圖,主建立器模組3〇6〇進入智慧庫3〇5〇且 使用一設定檔(使用使用者編輯及設定檔介面模組3〇5$產 生)以建立資料結構,用為資料採掘程序之輸入(說明如 下)。使用者編輯及設定檔介面模組3〇55讓使用者能夠產 生由主建立器3060運用之配置資料之設定檔。例如,主 建立器3060由智慧庫3〇5〇中獲得設定檔所特定之資料 (例如而不限於,在參數值特殊範圍内的一特殊型式之資 料),而後組合另一由智慧庫3〇5〇中獲得之設定檔所特定 的資料(例如而不限於,在參數值另一特殊範圍内的另一 特殊型式之資料)。為達此目的,智慧庫3〇5〇之智慧庫栌 案系統組件係由智慧庫305〇之智慧庫關係資料庫組件引 甩,使不同階層資料可快速合併成,,資訊向量快取記錄&amp; vector cache of informati〇n)&quot;,其铖被轉為資料以用於資 料採掘。設定檔讓使用者能^使用雜湊-索引定義新關 係,因而產生新”資訊向量快取記錄”資訊,其將被轉為資 第34頁1230349 A7 _ B7 V. Description of the invention (The nature of the printed wisdom library 3050 printed by the Intellectual Property Bureau's Consumer Cooperatives of the Ministry of Economics can be loaded with any applicable information without the need to define a summary of a specific correlation database. Advantageously, according to this One or more of the inventions, in specific embodiments, the wisdom library 3050 is designed to output large data sets to support automated data analysis tasks (described below), using a hash-link algorithm to quickly accumulate and link large amounts of data. The design of outputting large data sets of related data sets usually requires a large number of "table_links" in the database, (accumulation and output data). As is known, using the related data table forms and links will cause this kind of The program of the large data set is highly concentrated on the CPU, and it is advantageous that it is different from the case of using a "hash-link" algorithm to output a large data set from the wisdom bank 3050. Figure 4 illustrates one or more of the present invention. Various embodiments are used to form an unstructured data event into a logical data streamline of the method of entering the wisdom bank 3050. As shown in FIG. 4, manufacturing The factory data is retrieved in box 40. Data Warehouse 4000. This manufacturer data can be any of many different shapes, or originate from any of many different sources, including (but not limited to) old data in the database There are data and real-time data from process equipment of monitoring equipment (such as unlimited sensors)] Secondly, the unstructured material will be input into the data parser 4020. It should be understood that the data obtained by the manufacturer's warehouse from 4000 The method and frequency do not affect the performance of the data profiler 4020, the data carrier 4040, or the wisdom library 3050. Second, the data profiler 40 outputs a formatted data stream 4030. The format acceptable by the data loader 4040 (this is only a format issue, and does not include any &quot; knowledge &quot; about the data, i.e., only how the data appears). Page 33 This paper applies Chinese national standards ( CNS) A4 specification (210X297 mm) Data loss (please read the precautions on the back before filling this page) Order · Line-1230349 A7 B7 V. Description of the invention () (Please read the precautions on the back before filling this page)Secondly, the database loader 4040 reads the formatted data stream 4030. The database loader 4040 uses a hash-index algorithm to generate index keys between the data components and their positions in the slot system 4050 (eg, as in Not limited to, the hash-index algorithm uses the data layer ID of the data element to generate the index key.) The data is then stored in the file system 4050 for subsequent reference and use, while referring to the hash-index key of the file system 4050 It is stored in the relational database 4 0 60. According to one or more specific embodiments of the present invention, the wisdom database 3050 is generated by loading data into tables divided and indexed by each layer in the Oracle 9i data center. -, Order · Line · The Intellectual Property Bureau of the Ministry of Economic Affairs' Employee Consumption Cooperative printed a review of Figure 3, the main builder module 3060 entered the wisdom library 3050 and used a profile (using user edits and profiles Interface module 305 $ is generated) to establish the data structure, which is used as the input of the data mining process (explained below). The user edit and profile interface module 3055 enables the user to generate a profile of the configuration data used by the master builder 3060. For example, the master builder 3060 obtains the data specified by the configuration file from the wisdom database 3050 (such as, but not limited to, a special type of data within a special range of parameter values), and then combines another from the wisdom database 3〇. Data specific to the profile obtained in 50 (for example, without limitation, another special type of data within another special range of parameter values). To achieve this, the wisdom database system components of the wisdom database 3050 are deduced from the wisdom database relationship database components of the wisdom database 3050, so that different levels of data can be quickly merged into one. Information vector cache records & amp vector cache of informati〇n) &quot;, which is converted into data for data mining. Profiles allow users to use hash-index to define new relationships, thus generating new "information vector cache records" information, which will be converted to information. Page 34

經濟部智慧財產局員工消費合作社印製Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

1230349 f以下文所述方式用於資料採掘(該資料在此稱&quot;超方塊 )根據本發明之一或多個具體實施例,主建立器模組 3 060係在pC伺服益上執行之軟體應用程式,且係根據熟 習本技藝者所知多種方法中任何之一以Oracle Dynamic PL-SQL 及 peri 編寫。 操作時,主建立器模組3〇6()使用設定檔擷取及(或) 抽取超方塊定義。其次,主建立器模組3060使用超方 塊定義以產生-資訊向量快取記錄定義。其次,主建立器 模、、且3060根據該資訊向量快取記錄定義產生資訊資訊向 量快取a己錄,藉由(a)使用雜凑_索引鍵從智慧庫3〇5〇之智 慧庫關係資料庫組件擷取由資訊向量快取記錄定義所辨 認或詳細指明之檔案或資料元件列表;(b)從智慧庫3〇5〇 之秦慧庫檔案系統組件擷取檔案庫檔案;及(c)以在資訊向 量快取記錄定義内辨認之資料元件植入資訊向量快取記 錄。其次,主建立器模組3〇6〇以下列說明方式使用超方 塊定義從資訊向量快取記錄產生該超方塊,其中超方塊在 其則經一製造廠資料分析系統3〇〇〇時被指定一 ID以用於 辨涊分析結果,而且可由客戶使用於審查該分析結果。主 建立器模組3060包括子模組,其建立超方塊、清理超方 塊&quot;貝料以根據熟習本技藝者所知多種方法中之任何一種 移除將對資料採掘結果有不利影響之資料、連結超方塊以 使許多不同變數之分析可行,及編(譯Bin及參數資料成為 使用於資料採掘之袼式(例如而不限於轉換事件·驅動資料 成為收存之資料)。 第35頁 本紙張尺度適用中國國家標準(CNS)A4規格(210&gt;&lt;297公 (請先閲讀背面之注意事項再填寫本頁) 訂· 線_ 1230349 A7 B7 五、發明説明() 根據本發明之一或多個具體實施例,主建立器模組 3 060包括貝料,月理器或洗務器(例如及〇 + +等根據熟 習本技藝者所知多種方法中之任何—種所製造的應用: 體),其中資料清理可根據設定槽中提出之標準,或在接 收使用者輸入時依特別之基準進行。 根據本發明之一或多個具體實施例,主建立器模組 3060包括以各種檔案格式輸出試算表至使用者之一模 組,該格式例如(但不限於)SAS(熟習本技藝者所知之一資 料庫工具)、.jmP(JUMP圖係根據熟習本技藝者所知用以視 覺化及分析x-y資料)、·χΐ3(一熟習本技藝者所知之微軟 Excel試算表任何一種)及·txt(一熟習本技藝者所知之文字 檔格式)。根據本發明之一或多产具體實施例,主建立器 3 060包括一模組,其接收使用者產生超方塊當作輸入,且 轉移該資訊向量快取記錄至資料智囊引擎模組3〇8〇供使 用。 根據本發明之一或多個具體實施例,資料轉換模組 3 020、主載入器模組3040及主建立器3060執行以分別提 供連續更新自適應資料庫3030、智慧庫305〇,及輸出資 料供資料採掘使用。 如第3圖進一步顯示,網路管理模組3〇7〇從主建立 器模組3060將輸出資料轉移至資料智囊引擎模組3080以 用於分析。一旦由主建立器3060.輅式化之資料組可用於 &gt; 資料採掘,一自動化資料採掘過程依分析模板分析該資料 組-期望依相關分析模板所指使變數最大化或最小化,而 第36頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 線· 經濟部智慧財產局員工消費合作社印製 1230349 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 仍能考量這些變數之相對重要大小。資料智囊引擎模組 3 080包括使用者編輯及設定檔介面模組3〇55,其含有一 分析配置設定及模板建立器模組,提供.一使用者介面以建 立使用者疋義、配置參數值、資.料採掘自動化槽案用於資 料智囊引擎驅動模組3080。於是,資料智囊引擎模組3〇8〇 藉由使用變數之統計性質與變數在一自我學習類神經網 路中之相對屬性兩者之組合,而實施該自動化資料採掘流 程。該統計分佈及一既定為&quot;重要”變數(由分析模板)之大 小或例如(但不限於)變數對一自組織類神經網路圖 (’’SOM”)之結構的作用,自動產生可在其上形成相關問題 之一準則,而後呈現給最適於處理該給定特殊型式資料組 之資料採掘演算法。 經濟部智慧財產局員工消費合作社印製 根據本發明之一或多個具體實施例,資料智囊引擎模 組3 0 8 0提供彈性、自動化、反覆地資料採掘大型未知資 料組,藉由探勘在未知資料組中之統計比較以提供&quot;交遞&quot; 操作。此演算法之彈性特別有用於探勘流程,其中資料係 由數字及類別屬性組成。需要充分探勘此資料之演算法實 例包括,如(但不限於)能使類別及數字資料相互關連之特 殊變異量分析(ANOVA)技藝。此外,通常需要一個以上之 演算法以充分探勘此資料内之統計比較。此資料可在如半 導體製造、線路板組裝或平面顯示器製造之現代化不連續 製造過程中獲得。 .( 資料智囊引擎模組3080 ^括一資料採掘軟體程式(在 此稱DataBrainCmdCenter程式),其使用一包含於設定檔 第37頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) A7 B7 1230349 五、發明説明() 之分析模板及資料組以進行資料採掘分析β根據本發曰 一或多個具體實施例,DataBrainCmdCenter鞋★西上月之 低八要求〜資 料智囊模組以使用下列資料採掘演算法中之一 &lt;請先閲讀背面之注意事項再填寫本頁) 一或多氆: SOM(熟習本技藝者所知的一資料採掘演算法),·規則 法(&quot;RI”,熟習本技藝者所知的一資料採掘演算法);知納 庫(MahaCU,將於下文中說明之一種資料採掘演算法:哈 關聯數字資料至類別或屬性資料(例如但不限於 ,其 ID));逆向馬哈庫(將於下文中說明之一種資料採掘演算 法,其關聯類別或屬性資料(例如但不限於處理工I ID) 數字資料);多層分析自動化,其中係使用S〇M以進行資 料採掘,而其中來自S〇M之輸出係用以實施資料採掘, 使用(a)RI,及(b)馬哈庫;pigin(將於下文中說明之一種發 明的為料採掘决算法);DefectBrain (將於下文中詳述之一 種資料採掘演异法);及Selden(熟習本技藝者所知之一種 預測模型資料採掘演算法)。 經濟部智慧財產局員工消費合作社印製 在本發明之一或多個實施例中,DataB rain Cm d Center 程式使用一中央控制程式而能夠使用多種資料採掘演算 及統計方法。特別是,根據一或多個此類具體實施例,中 央控制程式使來自一資料採掘分析之結果能夠供後續分 支分析之輸入或執行。結果,DataBrainCmdCenter程式藉 由提供用於探勘資料的一自動化及彈性機制與由使用者 配置系統設定槽支配分析之深度及(邏輯,能進行未受限之 資料探勘而不受分析次數及型式之限制。 在其最普遍之形式中,製造廠資料分析系統3000分 第38頁 本紙張錢翻中國國家鮮(CN^^2ig謂;^ 12303491230349 f The method described below is used for data mining (the data is referred to herein as "superblock"). According to one or more specific embodiments of the present invention, the main builder module 3 060 is software executed on the pC servo server. Application written in Oracle Dynamic PL-SQL and peri based on any one of many methods known to those skilled in the art. In operation, the main builder module 3 06 () uses the configuration file to retrieve and / or extract the superblock definition. Second, the master builder module 3060 uses a hyperblock definition to generate the -information vector cache record definition. Secondly, the master builder module, and 3060 generates the information vector cache a recorded according to the definition of the information vector cache record, by (a) using the hash_index key from the wisdom library relationship of the wisdom library 3050 The database component retrieves a list of files or data components identified or specified by the information vector cache record definition; (b) retrieves the archive file from the Qinhuiku file system component of the smart library 3050; and (c) uses the The data components identified within the information vector cache record definition are populated with the information vector cache record. Secondly, the main builder module 3600 uses the definition of the superblock to generate the superblock from the information vector cache record in the following description manner, where the superblock is designated when it is passed by a manufacturer data analysis system 3000. An ID is used to identify the analysis result and can be used by the customer to review the analysis result. The main builder module 3060 includes sub-modules that create superblocks, clean up the superblocks &quot; shell materials to remove data that will adversely affect data mining results according to any of a number of methods known to those skilled in the art, Link hyperblocks to make the analysis of many different variables feasible, and edit (translated Bin and parameter data into a method used for data mining (such as, but not limited to, conversion events, driving data into stored data). Page 35 This paper Standards are applicable to China National Standard (CNS) A4 specifications (210 &gt; &lt; 297) (please read the precautions on the back before filling this page). Order and line_ 1230349 A7 B7 V. Description of the invention () According to one or more of the invention In a specific embodiment, the main builder module 3 060 includes a shell material, a month processor, or a server (for example, 0 + +, etc.), which is manufactured according to any one of a variety of methods known to those skilled in the art: ), Wherein the data cleaning can be performed according to the standard proposed in the setting slot, or according to a special benchmark when receiving user input. According to one or more specific embodiments of the present invention, the master builder module 3060 Including outputting the spreadsheet to one of the modules in various file formats, such as (but not limited to) SAS (a database tool known to those skilled in the art), .jmP (JUMP diagrams are based on those skilled in the art Known to visualize and analyze xy data), χΐ3 (a Microsoft Excel spreadsheet known to one skilled in the art), and txt (a text file format known to one skilled in the art). According to the present invention One or more productive embodiments, the main builder 3 060 includes a module that receives a user-generated hyperblock as input, and transfers the information vector cache record to the data think tank engine module 3808 for use. According to one or more specific embodiments of the present invention, the data conversion module 3 020, the main loader module 3040, and the main builder 3060 are executed to provide continuous update adaptive database 3030, wisdom library 3050, and The output data is used for data mining. As further shown in Figure 3, the network management module 3070 transfers the output data from the master builder module 3060 to the data think tank engine module 3080 for analysis. Once established by the master 3060. Normalized data sets can be used for> data mining, an automated data mining process analyzes the data set according to the analysis template-it is expected to maximize or minimize the variables according to the relevant analysis template, and the paper size on page 36 applies China National Standard (CNS) A4 Specification (210X 297 mm) (Please read the precautions on the back before filling this page)-Order · Line · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 1230349 A7 B7 V. Description of the invention ( ) (Please read the precautions on the back before filling this page) The relative importance of these variables can still be considered. The data think tank engine module 3 080 includes user edit and profile interface module 3055, which contains an analysis configuration The setting and template builder module provides a user interface to create user definitions, configuration parameter values, and data. An automated mining case is used for the data think tank engine drive module 3080. Thus, the data think tank engine module 3008 implements the automated data mining process by using a combination of the statistical properties of the variables and the relative attributes of the variables in a self-learning neural network. The statistical distribution and the size of an "important" variable (by an analysis template) or, for example (but not limited to) the effect of a variable on the structure of a self-organizing neural network diagram ("SOM"), automatically generates A criterion on which a related problem is formed, and then presented to a data mining algorithm that is best suited to handle the given particular type of data set. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. According to one or more specific embodiments of the present invention, the data think tank engine module 3 0 0 0 provides flexible, automated, and iterative data mining of large unknown data sets. The statistical comparison in the data set provides the &quot; delivery &quot; operation. The flexibility of this algorithm is particularly useful in the exploration process, where the data consists of numeric and category attributes. Examples of algorithms that need to be fully explored for this data include, but are not limited to, special variation analysis (ANOVA) techniques that can correlate categories and digital data. In addition, more than one algorithm is usually required to fully explore the statistical comparisons in this data. This information can be obtained in modern discrete manufacturing processes such as semiconductor manufacturing, circuit board assembly or flat panel display manufacturing. . (Data think tank engine module 3080 ^ includes a data mining software program (herein referred to as the DataBrainCmdCenter program), which uses a paper included in the configuration file on page 37. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) A7 B7 1230349 V. Analysis template and data set of the invention description () for data mining analysis β According to one or more specific embodiments of the present invention, DataBrainCmdCenter shoes One of the following data mining algorithms &lt; Please read the notes on the back before filling out this page) One or more: SOM (a data mining algorithm known to those skilled in the art), · Rule method (&quot; RI ", A data mining algorithm known to those skilled in the art; MahaCU, a data mining algorithm to be explained below: Kazakhstan associates digital data with category or attribute data (such as, but not limited to, its ID)); Reverse Mahaku (a data mining algorithm to be described below, its associated category or attribute data (such as, but not limited to, the processor I ID) digital data); Multi-level analysis automation, where SOM is used for data mining, and where the output from SOM is used for data mining, using (a) RI, and (b) Mahaku; pigin (to be described below) An invented algorithm for data mining is described); DefectBrain (a data mining algorithm that will be detailed below); and Selden (a predictive model data mining algorithm known to those skilled in the art). Ministry of Economic Affairs Printed by the Intellectual Property Bureau employee consumer cooperative. In one or more embodiments of the present invention, the DataBrain Cm Center program uses a central control program to enable the use of multiple data mining algorithms and statistical methods. In particular, according to one or more In this specific embodiment, the central control program enables the results from a data mining analysis to be input or executed for subsequent branch analysis. As a result, the DataBrainCmdCenter program provides an automated and flexible mechanism for exploring data and configures the system by the user Set the depth and logic of the groove-dominated analysis (logical, capable of unrestricted data exploration without restrictions on the number and type of analyses In its most common form, the manufacturer's data analysis system has 3000 points. Page 38 This paper money is the Chinese national fresh (CN ^^ 2ig); ^ 1230349

五、發明説明( (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 析由多數製造薇接收之資料,並非所有資料均由相同之合 法實體所擁有或控制。結果,不同資料組可同時在平行執 仃之貝料採掘分析中分析,而後回報至不同使用者。此 外,即使當接收之資料係來自單一製造廠(即由一單一合 法實體所擁有或控制),不同資料組可由該合法實體中之 不同群集同時在平行執行之資料採掘分析中分析。在此情 形下’此類資料採掘執行能有效地在伺服器場(farm)中平 订實施。根據本發明之一或多具體實施例,資料智囊引擎 模組3080作為一自動化命令中心且包括下列組件:(a) — 挺用 &gt; 料智囊引擎模組3080之DataBrainCmdCenter程式 (分析決策及控制程式之分支);並進一步包括:(i) 一 DataBmnCmdCenter隊列管理φ (根據熟習本技藝者所知 之多種方法中任何一種製造),其至少包含在一伺服器場 内之一組分佈從屬伺服器陣列,其中之一設置成一主控隊 列;(11)一 DataBrainCmdCeiUer負荷平衡器程式(根據熟習 本技藝者所知之多種方法中任何一種製造),其平衡在侷 服器场中之分佈及工作負荷;(出)一 DataBrainCmdCenter 帳戶管理程式(根據熟習本技藝者所知之多種方法中任何 一種製造)’其能夠創造、管理及監控客戶帳戶之狀態及 結合分析結果;及(b)使用者編輯及設定檔介面模組 3055(根據熟習本技藝者所知之多種方法中任何之一製 造)’其讓一使用者能在設定檔中.挺供分析模板資訊用於 資料採掘。 根據此具體實施例,DataB rain Cm dC enter程式主要負 、 第3須 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) A7 B7 1230349 五、發明説明() 責管理一資料採掘工作隊列,及自動分佈工作至一網路視 窗祠服器或&quot;ί司服器場的陣列。DataBrainCmdCenter程式與 使用者編輯及設定檔介面模組3 0 5 5形、成介面,以接收輪 入用於系統配置參數。根據一或多具體實施例,資料採掘 工作被定義為一由多個資料組及分析演算法組合的一組 分析運作。工作係由DataBrainCmdCenter隊列管理器程式 所管理,該程式係一駐留在個別伺服器從動隊列上之主控 隊列管理器。主控隊列管理器邏輯地分佈資料採掘工作至 有空之伺服器(由資料智囊模組實施)而使工作能同時執 行。分支執行分析的結果由DataBrainCmdCenter程式收 集,而後如有需要,其將依工作設定檔所要求輸入至後續 執行工作。 此外,DataBrainCmdCenter程式控制伺服器場負荷之 平衡。平衡有助於獲得效率並控制伺服器場中可用之伺服 器資源。適當負荷平衡可藉由即時監控個別之伺服器場伺 服器隊列’及其他根據熟習本技藝者所知之多種方法中任 何一種有關執行時間狀態資訊而達成。 在本發明之一或多個實施例中,DataBrainCmdCenter 帳戶管理程式可根據熟習本技藝者所知之多種方法的任 一者創造、管理及監控有關進行中之自動化分析的客戶帳 戶狀態。管理及狀態通訊提供控制回饋予DataBrain CmdCenter隊列管理者程式及DatdraincmdCenter負荷平 衡器程式。 &quot; 根據本發明之一或多個具體實施例,資料採掘分析的 第傾 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 線· 經濟部智慧財產局員工消費合作社印製 Ϊ230349V. Description of the invention ((Please read the notes on the back before filling out this page) The Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs prints and analyzes the information received by most manufacturing companies, not all of which is owned or controlled by the same legal entity As a result, different data sets can be analyzed simultaneously in parallel shellfish mining analysis and then reported to different users. In addition, even when the received data comes from a single manufacturing plant (that is, owned or controlled by a single legal entity) ), Different data sets can be analyzed by different clusters in the legal entity at the same time in the data mining analysis performed in parallel. In this case 'such data mining execution can be effectively implemented in the farm. According to According to one or more specific embodiments of the present invention, the data think tank engine module 3080 serves as an automated command center and includes the following components: (a) — Quite useful &gt; DataBrainCmdCenter program (analysis of decision and control program) Branch); and further includes: (i) a DataBmnCmdCenter queue management φ (according to the person skilled in the art Any one of a variety of methods), which includes at least a set of distributed slave server arrays in a server farm, one of which is set as a master queue; (11) a DataBrainCmdCeiUer load balancer program (according to those skilled in the art Any one of a variety of methods known), which balances the distribution and workload in the server farm; (out) a DataBrainCmdCenter account management program (manufactured according to any of the methods known to those skilled in the art) ' It can create, manage and monitor the status of customer accounts and combine analysis results; and (b) user edit and profile interface module 3055 (manufactured according to any of a variety of methods known to those skilled in the art) ' A user can use the analysis template information in the configuration file for data mining. According to this specific embodiment, the DataB rain Cm dC enter program is mainly negative, and the third requirement is that the paper size applies the Chinese National Standard (CNS) A4 specification ( 210X 297 mm) A7 B7 1230349 V. Description of the invention () Responsible for managing a data mining work queue and automatic distribution of work To an Internet window server server or an array of server servers. The DataBrainCmdCenter program and the user edit and configure the file interface module 3 0 5 5 into an interface to receive turns for system configuration parameters. According to one or more specific embodiments, data mining is defined as a set of analysis operations composed of multiple data sets and analysis algorithms. The work is managed by the DataBrainCmdCenter queue manager program, which is a program that resides in an individual server. The master queue manager on the slave slave queue. The master queue manager logically distributes the data mining work to the available servers (implemented by the data think tank module) so that the work can be performed simultaneously. The results of the branch execution analysis are collected by the DataBrainCmdCenter program, and if required, they will be entered into subsequent executions as required by the job profile. In addition, the DataBrainCmdCenter program controls the server field load balance. Balancing helps to gain efficiency and control the server resources available in the server farm. Appropriate load balancing can be achieved by real-time monitoring of individual server farm server queues' and other information on execution time status based on any of a number of methods known to those skilled in the art. In one or more embodiments of the present invention, the DataBrainCmdCenter account management program can create, manage, and monitor the status of a customer's account related to ongoing automated analysis based on any of a variety of methods known to those skilled in the art. Management and status communications provide control feedback to the DataBrain CmdCenter queue manager program and the DatdraincmdCenter load balancer program. &quot; According to one or more specific embodiments of the present invention, the paper size of the data mining analysis is applicable to the Chinese National Standard (CNS) A4 specification (21 × 297 mm) (Please read the precautions on the back before filling in this Page)-Order · Line · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic AffairsΪ 230349

、發明説明( m以分析數字f料以尋得可提供關聯性之群集 貝料(此步驟可能需要以數個資料採掘步驟使用可能提供 :::聯性之各種型式的資料以分析資料)。此步㈣^ 疋:田中所確疋之資料型式驅動。隨後在下列步驟中,關聯 之資料可被分析以決定可能會相關於該群集之參數資料 (此步驟可能需要以數個資料採掘步驟使用可能提供此相 關性之各種型式的資料以分析資料)。此步驟亦由設定檔 中所,定之資料型式及將進行之資料採掘分析型式所驅 動。iw後在下列步驟中,參數資料可能對類別資料分析以 決定可能會與相關參數資料產生關聯之處理工具(此步 驟可能需要以數個資料採掘步驟使用可能提供此相關性 之各種型式的處理工具以分析气資料)。隨後在下列步驟 中,處理工具感測器資料可能對類別資料分析以決定有關 可能會失效之處理工具之觀點(此步驟可能需要以數個資 料採掘步驟使用可能提供此關聯性之各種型式的感測器 &gt;料以分析資料)。根據一此類具體實施例,資料採掘分 析技藝的一體系為使用SOM,接著為規則歸納法,接著為 ANOVA,接著為統計方法。 第9圖顯示一 3層,分支之資料採掘分析執行實例。 如第9圖所示,DataBrainCmdCenter程式(在—使用者產 生之設定檔的分析模板導引下)進行一 SOM資料採掘分 析,其中群集數字資料相關於(例茹但不限於)良率,而&amp; 率之定義為有關製造廠内積體電路之製造速度。其次,如 第9圖進度顯示,DataBrainCmdCenter程式(在一使用者 第41頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公董) (請先閲讀背面之注意事項再填寫本頁) -訂· 線 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 產生之s又定檔的分析模板導引下):(昀對s〇m資料採掘分 析之輸出進行一地圖匹配分析(說明如下)以進行群集匹 配,當其有關於如(例如但不限於)電性測試結果時;及(b) 對SOM資料採掘分析之輸出進行規則歸納資料採掘分析 以提供一該群集之規則解說,當其有關於如(例如但不限 於)電性測試結果時。其次,如第9圖進一步顯示, DaUBirainCmdCenter程式(在一使用者產生之設定檔分析 模板導引下):(a)對規則歸納法資料採掘分析之輸出進行 一逆向馬哈庫及(或)AN〇VA資料採掘分析以關聯類別資 料至數字資料,係當其有關於製程工具設定如(例如但不 限於)至處理工具處所作之度量衡測量值;及(b)對地圖匹 配分析之輸出進行一馬哈庫及)an〇va資料採掘分析 以交聯數字資料至類別資料,係當其有關於製程工具如 (例如但不限於)至感測器測量值。 第1 〇圖顱示根據本發明之一或多個具體實施例,由 DataBrainCmdCenter程式實施之分佈隊列。第i i圖顯示 根據本發明之一或多個具體實施例製造之使用者編輯及 設定槽介面模組3055的分析模板使用者介面部份。第12 圖顯示根據本發明之一或多個具體實施例製造之設定檔 分析模板部份。 根據本發明之一或多個具體實施例,一演算法(以下 稱”地圖匹配,,)使用S0M以達成動化及對焦分析(即提 &gt; 供問題陳述之自動化定義)。特別是根據本發明之一或多 個具體實施例,SOM提供具有相同參數之晶圓群集之地 第4頂 本紙張尺度適用中國國家標準(CNs)A4規格(210x297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 線· 經濟部智慧財產局員工消費合作社印製 1230349 A7 --------- 五、發明説明() (請先閲讀背面之注意事項再填寫本頁) 圖。例如,如果是對資料組内之所有參數產生—地圖,其 可用以決定對_已知日夺間内(给定產品而t,會有多少獨 特之良率問題存在。據此,$些地圖可用以定義良好之&quot; 問題”以要求進一步之資料採掘分析。 因為自組織圖之本質可使分析自動化,S0M地圖匹配 技藝使用者只需要在製造廠中保持&quot;受關注&quot;變數名稱梯 籤列表,以達成完全自動化”交遞&quot;。s〇M自動地組織資 料,及識別在一資料組中代表不同&quot;製造廠問題&quot;之分離與 支配(即衝擊性)資料群集。此s〇M群集(結合下文說明之 地圖匹配演算法)使各個,,有興趣&quot;之變數能以任何群集内 已知將衝擊該,,有興趣&quot;變數行為之舊有資料加以描述。以 此方式,使用SOM結合地圖匹配演算法使製造廠能以〆 充分自動化”交遞”分析技藝應付多個衝擊良率之問題(或 其他重要問題)。 經濟部智慧財產局員工消費合作社印製 在執打一資料組之SOM分析前,必須對資料組内每 一攔產生自組織圖。為產生這些地圖,將建立如第13圖 之超角錐方塊。第13圖所示之超角錐方塊具有4層。根 據本發明之一或多個具體實施例,所有超角錐方塊成長至 各層均係2MX2An,其中n係以〇為基準之層數。此外, 角錐的每一層表示一超方塊,亦即超角錐方塊的每一層代 表資料組内之一欄位。第14圖所示為一 16攔資料組的第 2層(以〇為基準)。根據一或多偭[此類具體實施例,愈往 超角錐方塊之深度前進,超方塊的寬度(2Ληχ2Λη)愈大,而 超角錐方塊之深度維持如資料組欄位數目之定數。 第4頂 本紙張尺度適用中國國家標準(CNS)A4規格(2ΐ〇χ297公釐) ~ *------ A7 1230349 _______B7 _ 五、發明説明() (請先閱讀背面之注意事項再填寫本頁) 第15圖顯示由一超角錐方塊之第2層抽取出而來自 一超方塊之一超方塊層(自組織圖)。如第15圖所示,在各 層中之神經元(即細胞)代表該攔位中實,際紀錄之趨近值。 當朝角錐之深度向下前進時,超方塊變大,而方塊内之神 經元增加而收歛至由資料方塊每一層代表之實際攔位内 紀錄的真值。因為記憶體之限制及涉及計算時間,增長該 角錐以直到神經元收歛至其代表之真值是既不實際也不 可行。相對地,根據本發明之一或多個具體實施例,角錐 將長至遭遇某一臨界值,或達到預定之最大深度。隨後, 根據本發明之一或多個具體實施例,SOM分析將在角錐產 生之最後一層方塊上進行分析。 一旦對資料組的每一欄產生SOM,下列步驟將採行以 達成一自動化地圖匹配資料分析。 L·-^產生快照(反霜) 經濟部智慧財產局員工消費合作社印製 給定一數字應變數(”DV”)(資料攔),將一類神經地圖 定位於有關該DV之資料方塊内。此類神經地圖產生詳述 三區域之所有可能彩色區域之組合。這三區域係:高(突 丘)低(池)及中間區域,而任何在類神經地圖上之給定細 胞將落在此區域中之一。為容易瞭解此具體實施例,指定 »4色為兩區域,藍色為中間區域而紅色為低區域。隨後在 第一步驟決定一差量(delta),其係毒次需要移動之間隔以 產生彩色區域的一快照,作為自動化地圖匹配分析之基 準。請注意在移動以獲得所有快照組合時需要二個臨界點 第44頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公爱) 1230349 A7 B7 五、發明説明( 記號’亦即需有一表示一低區域臨界點之記號,及表示高 區域之另一記號。藉由改變此二記號及使用該差量,可以 產生所有需求之快照組合。 差1值計算方式如下:差量=(資料分佈百分比—此係 -使用者设定值)* 2。其次,高記號及低記號移動至本 攔資料之平均值。在此初始狀態,所有類神經地圖内之細 胞將落在㈣紅色區域巾之—。其次低記號向左移動一差 量。隨即掃描所有細胞,而後將依據下列步驟指定適當之 顏色。如果相關細胞值係:(平均值“·25 }&lt;細胞值 &lt;低記 號則其將被指定一紅色。如果相關細胞值係:(高記號 細胞值&lt;(平均值+1.25 )則其將被指定一綠色。如果相關 細胞值係·(低記號)&lt; 細胞值 &lt;(辛記號)則其將被指定一藍 色。 在每一此快照(反覆)處,所有之高及低區域均加以標 不’而後進行SOM自動分析(詳述於后)。接著,低記號向 左移動一差量以產生另一快照。隨後所有之高及低區域均 加以標示及進行S0M自動分析。此過程將持續至低記號 少於(平均值-1.25 σ )。屆時該低記號將重新設定至初始狀 態’而高記號則向右前進一差量,而後重覆該過程。此將 持續至高記號大於(平均值+1·25σ ),在此以下列虛擬程式 表示(以中文說明之)。 設定High—Marker=棚位資料¥平均值 設定Low—Marker =攔位資料之平均值 設定Delta =(資料分佈百分比,此為使用者設 第45頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) {請先閲讀背面之注意事項再填寫本頁} -訂· 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 定值)* 2 σ 言史定 Low_Iterator = Low_Marker 設定 High_Interator=High—Marker 保持迴圈,當(出§11_116:&amp;1:〇1*&lt;(平均值+1.25(7)) 開始迴圈 保持迴圈,當(High—Iter at or&gt;(平均值-1.25 σ )) 開始迴圈 行經各細胞及依據上述步驟使用 High一Iterator 及 Low一Iterator 作為臨界值將 細胞編定色彩。 藉由將高及低群竭標示抓取此快照。 進行該快照自動地圖匹配分析(詳見下章節 中)。 設定 Low—Iterator=Low-Iterator-差量。 迴圈結束 設定 High-Iterator = High_Iterator+差量 迴圈結束 第16圖顯示具有高、低及中間區域之自組織圖,及 具有經標示的各個高及低群集區域用於後續自動地圖匹 配分析。 II.自動地圖匹配分析一快照(反覆) 每一個由第一步驟產生之3 -彩色區域快照將分析如 第46頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 線:· 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五 經濟部智慧財產局員工消費合作社印製 、發明説明() 下:該有興趣區域(由使用者明確指出其有興趣於一選出 之DV(攔)類神經地圖中之池(低)或是突丘(高)區域)。一有 興趣之區域將稱為來源區域而其他相對之區域稱為目標 區域。用於獲得自動SOM評定其他(自變數&quot;IV”,即在資 料方塊内非DV之攔)地圖等級之前提,係基於該相同方塊 之行(紀錄)是由資料方塊突出。因此,如果一資料組之第 22行係位於一給定DV類神經地圖之第1 〇行第40攔,則 對所有其他IV之類神經地圖,細胞位置(22,40)亦將包含 資料組之第22行。特別是第1 7圖顯示一突出超立方塊之 細胞。如第17圖中所見,已建立一”最適配&quot;紀錄,以至 於當其經由超方塊之各層突出時,其最匹配各層之預估 值。簡言之’目標是分析至少务含來源及目標區域之紀 錄’及決定二者間之差異程度。由於該類神經地圖中形成 各群之紀錄皆相同,可以依據來源群與目標群有多強烈之 不同而將各類神經地圖評等。此評分隨後用於將類神經地 圖由最高至最低加以評等。愈高的分數表示類神經地圖中 的二群彼此愈不相同,相對地愈低之分數表示二群彼此非 常類似。因此,目的是尋找IV類神經地圖,其中二群間 之差異最大。下列所示步驟用以達成此目的。 a.將來源群集根據衝擊分數由最高至最低評等。各個 群集之衝擊分數計算如下:衝擊分數=(實際欄位平 均值-類神經地圖平均值)士群集内獨特紀錄之數 目/攔位中所有紀錄。' b•由最高評等之來源群集開始,依據下列標準將其目 第47頁2. Description of the invention (m is to analyze the data f to find clusters of materials that can provide correlations (this step may require the use of several data mining steps to use various types of data that may provide ::: linkage to analyze the data). This step is ㈣ 疋: driven by the data type identified by Tanaka. Then in the following steps, the associated data can be analyzed to determine the parameter data that may be related to the cluster (this step may need to be used in several data mining steps It is possible to provide various types of data for this correlation to analyze the data.) This step is also driven by the type of data set in the configuration file and the type of data mining analysis to be performed. In the following steps after iw, the parameter data may Data analysis to determine processing tools that may be associated with related parameter data (this step may require the use of various types of processing tools to analyze the gas data in several data mining steps). Then in the following steps, Processing tool sensor data may analyze category data to determine opinions about processing tools that may fail This step may require several data mining steps to use various types of sensors that may provide this correlation to analyze the data.) According to one such specific embodiment, a system of data mining analysis techniques is the use of SOM, Next is the rule induction method, then ANOVA, and then the statistical method. Figure 9 shows a 3-layer, branched data mining analysis execution example. As shown in Figure 9, the DataBrainCmdCenter program (in the user-created profile) Guided by the analysis template) Perform an SOM data mining analysis, in which the cluster digital data is related to (for example, but not limited to) the yield, and the definition of the & rate is related to the manufacturing speed of integrated circuits in the manufacturing plant. Second, as described in Figure 9 shows the progress of the DataBrainCmdCenter program (on a user's page 41, the paper size applies the Chinese National Standard (CNS) A4 specification (210X297)) (please read the precautions on the back before filling this page)-Order · Line Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau A7 B7 1230349 V. Description of the invention () Guided by the analysis template generated by s): ( Perform a map matching analysis on the output of the som data mining analysis (explained below) for cluster matching when it is related to, for example, but not limited to, electrical test results; and (b) the SOM data mining analysis The output is subjected to rule induction data mining analysis to provide a rule explanation of the cluster, when it is related to, for example, but not limited to, electrical test results. Second, as shown in Figure 9, the DaUBirainCmdCenter program (generated by a user Guided by the profile analysis template): (a) Perform a reverse mahaku and / or ANOVA data mining analysis on the output of rule induction data mining analysis to correlate category data to digital data. Process tool settings such as (for example, but not limited to) the weights and measures measurements made at the processing tool; and (b) performing a map of the map matching analysis output) and anova data mining analysis to cross-link digital data to The category information is related to process tools such as (for example, but not limited to) to sensor measurements. Figure 10 shows a distribution queue implemented by the DataBrainCmdCenter program according to one or more specific embodiments of the present invention. FIG. I i shows a user interface portion of an analysis template of a user editing and setting slot interface module 3055 manufactured according to one or more specific embodiments of the present invention. FIG. 12 shows a part of a profile analysis template manufactured according to one or more embodiments of the present invention. According to one or more specific embodiments of the present invention, a calculation algorithm (hereinafter referred to as "map matching,") uses SOM to achieve dynamization and focus analysis (ie, to provide &gt; an automated definition of a problem statement). Especially according to this One or more specific embodiments of the invention, SOM provides a place for wafer clusters with the same parameters. The 4th paper size is applicable to China National Standards (CNs) A4 specifications (210x297 mm) (Please read the precautions on the back before (Fill this page)-Order · Line · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1230349 A7 --------- V. Description of the invention () (Please read the precautions on the back before filling this page) Figure For example, if a map is generated for all parameters in the data set, it can be used to determine how many unique yield problems exist for a given product within a given day (for a given product, t). Maps can be used to define well-defined "questions" to require further data mining and analysis. Because the nature of self-organizing maps can automate the analysis, users of S0M map matching technology only need to keep the "attention" changes in the manufacturing plant. Number the name list to achieve a fully automated "delivery". .SOM automatically organizes the data, and identifies the separation and domination (ie impact) of data in a data set representing different "manufacturer problems". Cluster. This SOC cluster (combined with the map matching algorithm described below) enables each, and interested, variable to be affected by any known data in any cluster that is interested in the behavior of the variable. Description. In this way, the use of SOM in combination with map matching algorithms enables manufacturers to fully automate the "delivery" of analytical techniques to cope with multiple shock yield issues (or other important issues). Employees' Cooperatives, Bureau of Intellectual Property, Ministry of Economic Affairs Before printing the SOM analysis of a data set, a self-organizing map must be generated for each block in the data set. In order to generate these maps, a super pyramid box as shown in Figure 13 will be created. The super pyramid shown in Figure 13 The cube has 4 layers. According to one or more specific embodiments of the present invention, all super pyramid cubes grow to layers of 2MX2An, where n is the number of layers based on 0. In addition, Each layer of the pyramid represents a hyperblock, that is, each layer of the pyramid represents a field in the data set. Figure 14 shows the second layer of a 16 block data set (based on 0). According to a Or more [such specific embodiments, the more the depth of the super pyramid, the greater the width of the super cube (2Ληχ2Λη), and the depth of the super pyramid is maintained as a fixed number of data group fields. The paper size applies the Chinese National Standard (CNS) A4 specification (2ΐ〇χ297mm) ~ * ------ A7 1230349 _______B7 _ V. Description of the invention () (Please read the notes on the back before filling this page) Figure 15 shows a super cube layer extracted from the second layer of a super-pyramid cube and from a super cube layer of a super cube (self-organizing map). As shown in Figure 15, the neurons (ie, cells) in each layer represent the approximate values of the real and global records of the block. When the depth of the pyramid goes down, the superblock becomes larger, and the neurons in the block increase to converge to the true value recorded in the actual block represented by each layer of the data block. Because of memory limitations and the computational time involved, it is neither practical nor feasible to grow the pyramid until the neuron converges to the true value it represents. In contrast, according to one or more specific embodiments of the present invention, the pyramid will grow to meet a certain critical value, or reach a predetermined maximum depth. Subsequently, according to one or more specific embodiments of the present invention, the SOM analysis will be performed on the last layer of cubes generated by the pyramid. Once a SOM is generated for each column of the data set, the following steps will be taken to achieve an automated map matching data analysis. L ·-^ Generate a snapshot (anti-frost) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Given a digital strain number ("DV") (data block), locate a type of neural map in the data box about the DV. This type of neural map produces a combination of all possible colored regions detailing the three regions. These three areas are: high (mound), low (pool), and middle area, and any given cell on the neural-like map will fall into one of this area. For easy understanding of this specific embodiment, »4 colors are designated as two regions, blue is the middle region and red is the low region. Then in the first step, a delta is determined, which is the interval at which the poisoning time needs to be moved to generate a snapshot of the colored area, which is used as the basis for the automated map matching analysis. Please note that two critical points are required when moving to obtain all snapshot combinations. Page 44 This paper size applies the Chinese National Standard (CNS) A4 specification (21〇χ 297 public love) 1230349 A7 B7 V. Description of the invention (marked 'i.e. There needs to be a mark representing the critical point of a low area and another mark representing a high area. By changing these two marks and using the difference, a snapshot combination of all requirements can be generated. The difference 1 is calculated as follows: difference = (Percentage of data distribution—this is the value set by the user) * 2. Secondly, the high and low marks move to the average value of the data in this block. In this initial state, the cells in all neural maps will fall in ocher red The area of the towel—Next, the low mark moves to the left by a difference. Then all cells are scanned, and then the appropriate color will be specified according to the following steps. If the relevant cell value is: (average "· 25} &lt; cell value &lt; low If it is marked, it will be assigned a red color. If the relevant cell value line is: (Highly marked cell value &lt; (average value +1.25)), it will be assigned a green color. If the relevant cell value line is · (low mark) &lt; The cell value &lt; (Xin mark) will be assigned a blue color. At each snapshot (repeated), all the high and low areas are marked, and then SOM automatic analysis is performed (detailed later). Then, the low mark is moved to the left by a difference to generate another snapshot. Then all the high and low areas are marked and automatically analyzed by SOM. This process will continue until the low mark is less than (average -1.25 σ). The low mark will be reset to the initial state ', and the high mark will advance to the right by a difference, and then repeat the process. This will continue until the high mark is greater than (average value + 1 · 25σ), which is represented by the following virtual program ( In Chinese). Set High—Marker = Shelter data ¥ Average setting Low—Marker = Average data of stop data Set Delta = (Data distribution percentage, this is set by the user. Page 45 This paper scale applies to China Standard (CNS) A4 specification (210X297 mm) {Please read the notes on the back before filling out this page}-Ordered · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 1230349 V. Description of the invention () Fixed value) * 2 σ Set Low_Iterator = Low_Marker and set High_Interator = High—Marker to keep the loop, when (out §11_116: &amp; 1: 〇1 * &lt; (average value +1.25 (7)) start the loop to keep the loop, When (High-Iter at or &gt; (average-1.25 σ)) starts to cycle through the cells and use the High-Iterator and Low-Iterator as the threshold to program the cells to color according to the above steps. Take this snapshot by marking the high and low group exhaustion. Perform this snapshot automatic map matching analysis (see the next section for details). Set Low—Iterator = Low-Iterator-Difference. End of Loop Set High-Iterator = High_Iterator + Differential End of Loop. Figure 16 shows a self-organized map with high, low, and middle regions, and labeled high and low cluster regions for subsequent automatic map matching analysis. II. Automatic map matching analysis-a snapshot (repeatedly) Each 3-color area snapshot generated in the first step will be analyzed as shown on page 46. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (please first Read the notes on the back and fill out this page)-Order · Line: · Printed by the Consumers 'Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 1230349 Five Printed and Invented by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economy () Area (the user clearly indicates that they are interested in the pool (low) or ridge (high) area in a selected DV (block) neural map). One area of interest will be called the source area and the other opposite area will be called the target area. It is used to obtain the automatic SOM rating of other (independent variables &quot; IV ", that is, not a DV block in the data block) the map level, and the row (record) based on the same block is highlighted by the data block. Therefore, if a Line 22 of the data set is located at line 10 and line 40 of a given DV neural map. For all other maps such as IV, the cell position (22, 40) will also include line 22 of the data set. In particular, Figure 17 shows a cell that highlights a super cube. As seen in Figure 17, a "best fit" record has been established so that when it protrudes through the layers of the super cube, it best matches the layers of each layer. estimated value. In short, the goal is to analyze at least the source and target area records and determine the degree of difference between the two. Because the records of each group in this type of neural map are the same, various types of neural maps can be rated according to how strongly the source group and the target group are different. This score is then used to rank neuron-like maps from highest to lowest. A higher score indicates that the two groups in the neural-like map are different from each other, and a relatively lower score indicates that the two groups are very similar to each other. Therefore, the goal is to find a class IV neural map, where the differences between the two groups are greatest. The steps shown below are used to achieve this. a. The source cluster is rated from highest to lowest according to the impact score. The impact score of each cluster is calculated as follows: Impact score = (average of the actual field-average value of the neural map) the number of unique records in the cluster / all records in the block. 'b • Start with the highest-rated cluster of sources and group them according to the following criteria. Page 47

A7 B7 1230349 五、發明説明() 標群集鄰居加以標示··每一個標準均據以加權,而 實際指定之產生結果係加權後之平均值。· (請先閲讀背面之注意事項再填寫本頁) 1 ·靠近來源群集之度。此係計算由目標群集至來 源群集間之中心距離,其中該中心細胞係佔據 群集中心之細胞。在決定出二細胞後,中心距 離可使用畢氏定理算出。 2.群集内獨特紀錄的數目。 3 ·四周細胞之平均值與圍繞之細胞平均值的比 較。 此將給定一對眾之關係,亦即一來源群集關聯至 其許多相鄰之目標群集。 c.標示所有來源群集内之&amp;錄為族群1,及所有目標 群集内之紀錄為族群2。此將依據下文而用以決定 此二族群之不同。 d·使用一計分函數而以族群1及族群2為輸入,計算 IV的π分數”。此計分函數包括(例如但不限於)一改 良Τ-測試計分函數;一彩色對比計分函數;一 IV 衝擊計分函數等。 改良Τ-測試計分函數實施如下: 經濟部智慧財產局員工消費合作社印製 對各IV(類神經)地圖,計算族群1對族群2之改良 Τ -測試。 改良-Τ-測試係依據比較二滅群之一般Τ-測試。其 差別在於當計算出Τ-測試分數後,最後分數係由將 Τ-測試分數乘以一減低比而計算出。 第48頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349A7 B7 1230349 V. Description of the invention () Labeled by the neighbors of each cluster. · Each standard is weighted according to the weight, and the actual designation result is the weighted average. · (Please read the notes on the back before filling this page) 1 · Close to the source cluster. This system calculates the central distance from the target cluster to the source cluster, where the central cell line occupies the cells in the center of the cluster. After deciding the two cells, the center distance can be calculated using Bishop's theorem. 2. The number of unique records in the cluster. 3. Comparison of the average of surrounding cells to the average of surrounding cells. This gives a one-to-man relationship, i.e., a source cluster is associated with many of its adjacent target clusters. c. Mark &amp; records in all source clusters as Group 1 and records in all target clusters as Group 2. This will be used to determine the differences between the two groups based on the following. d. Use a scoring function with ethnic group 1 and ethnic group 2 as inputs to calculate the π score of IV ". This scoring function includes (for example, but is not limited to) an improved T-test scoring function; a color contrast scoring function An IV impact scoring function, etc. The improved T-test scoring function is implemented as follows: The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs prints maps of each IV (Nerve-like) map, and calculates the improved T-test for group 1 to group 2. The improved-T-test is based on a comparison of the general T-test of the two annihilates. The difference is that after the T-test score is calculated, the final score is calculated by multiplying the T-test score by a reduction ratio. Page 48 This paper size applies to China National Standard (CNS) A4 (210X297 mm) 1230349

〇dified—T — TEST = (減低比)* τ一TEST 減低比係由點數目標族群内超過來源族群平均值 之紀錄的數目而算出。接著由目,標族群内低於來源 族群平均值之紀錄的數目減去此數目。最後,除以 目標族群内所有紀錄之數目而計算減低比。 減低比=(目標紀錄低於來源平均值之數目-目標紀 錄超過來源平均值之數目)之絕對值/(目標區内所 有紀錄數)。 健存此分數供稍後IV類神經地圖評等用。 彩色對比計分函數實施如下: 比較IV類神經地圖上族群1及族群2間之彩色對 比0 IV衝擊計分函數實施如下: 將上述決定出之彩色對比分數乘以一依據DV類神 經地圖之衝擊分數。 e·對超方塊之每一個IV類神經地圖重複步驟d· f·依據改良-T-測試分數將IV類神經地圖評等。如果 在使用所有IV前或使用者特定之臨界點到達前, 該改良-T-測試分數已趨近於零,剩餘之iv類神經 地圖將使用一般τ -測試分數評等。 g·依使用者設定檔設定儲存前面某百分比之IV類神 經地圖。 ί πι·產生結果及輪入結果至耸他分妍方法 第49頁 本紙張尺度適用中國國家標準(CNS)A4規格(210Χ 297公爱) (請先閲讀背面之注意事項再填寫本頁) 訂· 線- 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 選出具有最高整體分數之前某百分之x(依使用者設 定檔中所設定)IV類神經地圖。根據本發明之二或多個具 體實施例,以下將產生自動化結果供使,用者審查而用於每 一個入選之快照。 a·顯示一入選IV之類神經地圖。自變數之s〇M地圖 將為背景地圖,具有應變數突丘及池群集位於其上 而有明顯不同之外形顏色及明顯群集標示。該地圖 之說明係以二種不同顏色(如綠、紅、藍)結合該顏 色邊界臨界點之實際數值。 b·執行此特定入選之DV以得實際結果。對一給定選 定之DV,此係IV如何與其他區分之實際結果。 c· 一較小資料組將被寫出,其只含有組成來源及目標 區域之紀錄。此較小資料組將作為供其他資料分析 方法作進一步分析的基準。例如,為獲得自動化” 問題&quot;,此較小資料組被回饋至一規則歸納資料分 析法引擎,其具有來自於執行地圖匹配之適當區域 外形。這些區域將形成規則歸納資料分析將解說之 ’’問題&quot;。規則歸納法以統計有效性產生解說變數互 動的規則。其搜尋資料庫以尋得最適配已產生之問 題的假設。〇dified—T — TEST = (reduction ratio) * τ-TEST The reduction ratio is calculated from the number of records in the target population of points that exceeds the average of the source population. Then subtract this number from the number of records in the target population that are lower than the average of the source population. Finally, the reduction ratio is calculated by dividing by the number of all records in the target group. Reduction ratio = absolute value of (number of target records below source average-number of target records exceeding source average) / (number of records in target area). Keep this score for later grade IV neuromap evaluation. The color contrast scoring function is implemented as follows: Compare the color contrast between groups 1 and 2 on a class IV neural map. The IV impact scoring function is implemented as follows: Multiply the color contrast score determined above by an impact based on the DV type neural map. fraction. e · Repeat steps d · f · for each type IV neural map of the hyperblock, and grade the type IV neural map according to the modified-T-test score. If the modified-T-test score approaches zero before all IVs are used or before a user-specific critical point is reached, the remaining iv-type neural maps will be rated using the general τ-test score. g. Store a certain percentage of the previous type IV neuromap according to the user profile settings. ί π · Production results and rotation results to shout out the other methods Page 49 This paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 public love) (Please read the precautions on the back before filling this page) Order · Line-Printed by A7 B7 1230349 of the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention () Select a certain percent x (according to the user profile) type IV neural map before the highest overall score. According to two or more specific embodiments of the present invention, automated results will be generated for the user to review for each selected snapshot. a · Display a neural map selected for IV. The som map of the independent variable will be the background map with the strain number ridges and pool clusters on it, with significantly different external colors and obvious cluster marks. The description of the map is based on the actual value of the critical point of the color boundary in two different colors (such as green, red, and blue). b. Perform this particular selected DV to get actual results. For a given selected DV, this is the actual result of how the IV differs from the others. c. A smaller data set will be written, which contains only records of the source and target area of the composition. This smaller data set will serve as a benchmark for further analysis by other data analysis methods. For example, to get the "problem of automation", this smaller data set is fed back to a regular induction data analysis engine that has the appropriate shape of the region from which map matching is performed. These regions will form a regular induction data analysis that will be explained ' 'Problems'. Rule induction uses statistical validity to generate rules for the interaction of explanatory variables. It searches the database to find the hypotheses that best fit the problems that have arisen.

Ιν·為所右DV重複上述步驟;MII 對所有使用者於設定檔内特定之DV,重複步驟I至 III。進行全部管理工作,及預備產生自動化地圖匹配結果 第50頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公釐) (請先閲讀背面之注意事項再填寫本頁)Ιν · Repeat the above steps for all the right DVs; MII repeats steps I to III for all DVs specified in the profile by the user. Carry out all management work and prepare to produce automatic map matching results Page 50 This paper size applies the Chinese National Standard (CNS) A4 specification (21〇χ 297 mm) (Please read the precautions on the back before filling this page)

經濟部智慧財產局員工消費合作社印製 1230349 Α7 Β7 五、發明説明(Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1230349 Α7 Β7 V. Description of the invention (

之報告’及將這些執行之解欠F 解谷輸入至其他資料分析方法。 根據本發明之-或多個具體實施例,該資料智囊模組 I括-在本文中稱為&quot;Pigin'f料採掘演算法程式。 係一發明的資料採掘演糞 肩舁法程式,其決定(對一目標數字 變數)在一資料組中那歧其他螯 一兵他数子變數促成(即關聯至)該 扣疋之目裇變數。儘管Pigin不分析類別資料(及據此,比 其他資料採掘演算法之範圍要窄),行分析之速度比 其他標準資料採掘演算法快且較有效率地應用記憶體。該 演算法處理稱為應變數(”DV&quot;)之目標變數(即將由資料 採掘行動所解說之變數)。該演算法依據下列步驟操作。 步驟1 ·將DV的一數字分佈當作一系列之類別,基於決 疋將夕少資料置入各類別的一使用者可配置參數。步驟工 係顯不在第1 8圖中,其由一數字分佈定義”虛擬”類別。 步驟2 : —旦由步驟丨定義該dV群組(或派系),對於各 DV類別,一系列之信賴度分伟圓圈將針對各dV類別依 據與資料組中其他數字變數一致之類別計算(以下稱自變 數或nIV&quot;)。步驟3 :依據全部展開之各個iv信賴圓,一 直徑分數及一落差分數被指定至該變數供後續使用,以決 定那一個IV最高度關聯至一分析師視為&quot;目標,,之DV❹直 徑或落差分數高者通常表示由DV至IV有,,較佳&quot;之關聯 性。步驟2及3顯示於第19圖中,其顯示計算落差分數(一 落差分數=所有落差(未在任何圓内)之總和)及直徑分數 (一直徑分數==三圓圈之DV平均直徑),其中該DV類別係 依據DV之數字分佈。本質上,第19圖係一信賴圖,其中 第51頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -訂· 經濟部智慧財產局員工消費合作社印製 1230349 A7 B7 五、發明説明() (請先閲讀背面之注意事項再填寫本頁} 每一鑽石形代表一族群,而鑽石的端點產生一個圓,晝於 圖表之右側(這些圓代表如”95%信賴圓”)。步驟4 反覆。 一旦所有1V均依據步驟1之DV定義而指定一分數,接 著DV被重新定義以稍微改變分派之定義。一旦重新定 義’所有IV將按新的DV類別定義重新計分。重置DV類 別定義之過程將持續,直到符合使用者在分析模板所特定 之反覆-人數。步驟5:整體分數。當完成所有反覆時,依 據步驟1及4所描述之各種dV之定義,將存在一系列之 IV評等。這些列表將被併入以形成iv與目標DV最具關 聯性的”主要分等,,列表。當對一給定IV計算主要分數時, 將考慮三因數:落差分數之大小、直徑分數大小及IV出 現在DV分數列表系列上的次數。此三因數結合某些基本 排除”無用結果”之標準,形成對一給定目標DV最具關聯 性IV之列表。此顯示於第2〇圖。應注意儘管上述一或多 個此類具體實施例使用落差分數及直徑分數於每一個接 觸到之IV,本發明之具體實施例並不限於此型式之分數, 而且事實上存在著使用其他計分函數以計算IV之分數的 進一步具體實施例。 經濟部智慧財產局員工消費合作社印製 根據本發明之一或多個具體實施例,資料智囊模組包 括一關聯性程式(馬哈庫),其關聯數字資料至類別或屬性 資料(例如但不限於處理工具ID),其程式提供:(a)依定性 規則分等之快速統計輸出;(b)依據[直徑分數及(或)落差分 數分等計分;(c) 一計分臨界點用以消除表現不佳之工具 ID’(d)—能力以選擇顯示’’尋得”之前面部份的數字;及(e) 第5頂 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349 A7 B7 五、發明説明() 一能力以進行一逆向執行,其中由”尋得&quot;(工具ID)之結果 可使受這些&quot;尋得”(工具ID)影響之應變數及參數(數字)被 顯示。 (請先閲讀背面之注意事項再填寫本頁} 第2 1圖顯示一輸入至資料,智嚢模組關聯程式之資料 矩陣的子集之實例。該實例顯示以批次為基準之終點線探 勘資料(BIN)及製程工具lD(Eq一Id)與製程時間(Trackin) 〇 類似資料度量也依據一晶圓、地點(光罩)或模具而產生。 第22圖顯示一數字(BIN)對類別(工具m)之實例。使 用BIN(數字)為應變數,上述資料智囊模組關聯程式對所 有資料矩陣内之Eq一Id(類別)產生類似之圖形。圖面左側 鑽石形之寬度代表經由工具執行之批次數目,而圖面右側 圓圈徑代表95%信賴水準。 為分類許多圖形,圓圈間落差空間之和(即未被圓圈 圍繞之面積),及最上方圓圈之頂部與最下方圓圈之底部 間之全部距離將用作公式的一部份,以計算何者為較佳之 &quot;落差分數,,或,,直徑分數,,。上述資料智囊模組關聯程式分 類該圖形,以提供使用者選擇何種型式之分數為較佳時之 重要依據。 經濟部智慧財產局員工消費合作社印製 根據本發明此具體實施例之另一觀點,上述資料智囊 模組關聯程式設定一計分臨界值。雖然通常有許多處理工 具可用於積體電路一特定層的處理,惟只有一部份是屬於 正常使用。那些另外之處理工具多.(半是非正常使用而使資 料有誤,而且可能在處理資料時產生不必要之干擾。上述 資料智囊模組關聯程式可以應用一使用者定義計分值,使 第53頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349 A7 B7 五、發明説明( 表現不佳之卫具可以在分析前先過渡。例如,如果計分之 臨界點定在90,第23圖所干夕一曰上 圓所不之二工具中之XTOOL3將被 濾除,㈣㈣⑷及咖⑽包含超過㈣之產品。 根據本發明之-或多個具體實施例,上述資料智囊模 組關聯程式提供&quot;計分居前之數字&quot;的選項。使用此特色, 使用者可決定每一個應變數可以顯示結果之最大數。因 此,上述資料智囊模組關聯程式進行對所有自變數之分 析’只有圖形之數字進入,,斗 進入计分居前之數字”範圍的數字才 會被顯示。 根據本發明之-或多個具體實施例,上述資料智囊模 組:聯程式亦進行一逆向執行(逆向馬哈庫),其中類別(例 如但不限於工纟ID)為應變數,而受類別影響之數字參數 (例如但不限於BIN、電性測試:度量衡等等)依盆重要性 而顯示。重要性(計分)與數字對工具ID之執行時相同。此 執饤可為&quot;黛西(Daisy)鍵&quot;,其中在正常執行時偵測到之工 ID可以自動成為逆向執行時之應變數。 根據本發明之一或多個具體實施例,資料智囊模組包 括一稱為DefeetBrain模組之程式.,其依據計分技藝將缺 陷門題》平等。然而為進行此分析’缺陷資料 換一。加以格式化(詳如下文)。第24围顯:二 製造廠内之缺陷檢驗工具或缺陷審查工具所產生之缺陷 資料檔之實例。特別是,此檔案通丨常包括之資料係關於x 及y座標、X及y模具座標、尺寸、缺陷型式分類碼及晶 圓上各缺陷之影像資訊。根據本發明之一或多個具體實施 第54頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂· 線 經濟部智慧財產局員工消費合作社印製 A7 B7 1230349 五、發明説明() 例,資料轉換模組3020編譯此缺陷資料檔成為一至少包 含尺寸、分類(例如缺陷型式)及一模具層上之缺陷密度等 的矩陣。第25圖顯示由資料轉換演算,法產生之資料矩陣 的實例。其次,根據本發明一具體實施例,DefectBrain 模組至少包括一自動化資料採掘錯誤偵測程式,其依據計 分技藝將缺陷問題評等。根據此程式,特殊尺寸揀選或一 缺陷型式之衝擊可使用在此稱為”破壞(Kill)比率,,之參數 加以量化。破壞比率定義如下: 破壞比率=一具缺陷型式之埽模具齡曰 具缺陷型式之所有模具數 另一可使用之參數係損失百分比,其定義如下: 損失百分比缺陷型式之瓌模且數目 所有模具數~ 在上述疋義中,一壞模具係指一不能作用之模具。 第26圖顯示資料智囊模組程式的一典型輸出。在第 26圖中,含有一特殊缺陷型式(在此例中為細痕)之模具數 字圖形係相對於一模具上該型式缺陷之數目而畫出。由於 有作用(即良好)與不作用(即損壞)模具資訊存在於資料矩 陣中’可直接決定含有特殊缺陷型式之模具中何者為良好 /損壞。因此在第26圖中,良好及損壞模具二者之頻率均 畫出’而損壞模具佔全部含有缺陷模具之比率(即破壞比 率)則以圖形繪出。在此圖中〃,圖♦形片段之斜率經提出與 其他所有由資料智囊模組程式產生之圖形片段之斜率比 較’而後將其由最高斜率至最低斜率評等。具有最高斜率 第55頁 本紙張尺度適用中國國家標準(CNS)A4規格(21〇χ 297公董) (請先閲讀背面之注意事項再填寫本頁} 4·· -訂· 線- 經濟部智慧財產局員工消費合作社印製 1230349 A7 經濟部智慧財產局員工消費合作社印製 五、發明説明( 之圖形將疋影響良率之最重要一環,而對良率增進工程具 有其價值。 〃 此圖表重要之特色係資料智嚢模組,程式能夠在X軸上 調整”缺陷數,,之异丄# 阳默之最大值。如果不;具此能力,萬一在模具上 *現異常數目之缺陷(如在不具重要性或假象之缺陷)時, 斜率評等將會錯誤。 根據本發明之一或多個具體實施例,資料智囊模組設 使用如資料清理器(例如根據熟習本技藝者所知之多種 ^法中任何-種所製作之Perl及C + +軟體程式)、資料編譯 =(例如根據熟習本技藝者所知之多種方法中任何一種所 製作之Perl及c + +軟體程式)及資料過濾器(例如根據熟習 本技藝者所知之多種方法中任何、一種製作之Perl及以C + + 軟體程式)’其中資料清理、資料編譯及(或)過濾資料可以 依據《又定檔中提出之標準進行,或在由使用者接收輸入時 依據特別的基準。根據本發明之一或多個具體實施例,資 料智囊模組係在PC伺服器上執行之軟體應用程式,且係 依熟習本技藝者所知之多種中任何之一以C + 十及SOm編 寫。 根據本發明之一或多個具體實施例,資料智囊引擎模 組3 080之輸出為微軟F〇xPr〇TM資料庫格式之結果資料庫 3〇90。再者,根據本發明之一或多個具體實施例,根據熟 褊本技藝者所知之多種方法中任身一種製造之網路管理 者模組3070包括保全FTR傳輸軟體,可以由使用者或客 戶用以發送資料至資料智囊引擎模組3〇8〇供分析用。 第56頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公爱) (請先閲讀背面之注意事項再填寫本頁) -訂· 線:··Report 'and input these implementation solutions F solution valley into other data analysis methods. According to one or more specific embodiments of the present invention, the data think-tank module I includes-referred to herein as &quot; Pigin'f material mining algorithm program. This is an invented data mining performance scapular method method, which decides (for a target number variable) that other variables in a data set contribute to (that is, are associated with) the deduction of the target variable. Although Pigin does not analyze category data (and accordingly, it is narrower than other data mining algorithms), the analysis is faster and more efficient than using other standard data mining algorithms. This algorithm handles the target variable ("DV &quot;) of the target variable (the variable to be explained by the data mining operation). The algorithm operates according to the following steps. Step 1 · Treat a number distribution of DV as a series of The category is based on a user-configurable parameter that puts little data into each category based on the decision. Steps are not shown in Figure 18, which are defined by a digital distribution as a "virtual" category. Step 2: Once the step丨 Define the dV group (or faction). For each DV category, a series of trustworthy circles will be calculated for each dV category based on the category that is consistent with other numerical variables in the data group (hereinafter referred to as the independent variable or nIV &quot;) Step 3: According to all the iv trust circles that are fully expanded, a diameter fraction and a drop difference number are assigned to the variable for subsequent use to determine which IV is most closely related to an analyst's view as a "target", DV❹ The diameter or the number of high dropouts usually indicates that there is a correlation from DV to IV, and it is better. "Steps 2 and 3 are shown in Figure 19, which shows the calculation of the number of dropouts (one dropout = all dropouts). The sum of the difference (not in any circle) and the diameter fraction (a diameter fraction == the average DV diameter of three circles), where the DV category is based on the digital distribution of DV. In essence, Figure 19 is a trust graph, Among them, page 51 of this paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page)-Order · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 1230349 A7 B7 V. Description of the invention () (Please read the notes on the back before filling out this page} Each diamond shape represents a group, and the end point of the diamond produces a circle, and the day is on the right side of the chart (these circles represent "95% trust Circle "). Step 4 is repeated. Once all 1Vs are assigned a score based on the DV definition of step 1, then DV is redefined to slightly change the definition of distribution. Once redefined, 'All IVs will be recalculated according to the new DV category definition. Points. The process of resetting the definition of the DV category will continue until it meets the number of users specified in the analysis template. Step 5: Overall score. When all the responses are completed, follow the steps described in steps 1 and 4. There will be a series of IV ratings for the definition of various dVs. These lists will be incorporated to form a list of "major scores," which are most relevant to the target DV, when listing the major scores for a given IV We will consider three factors: the size of the difference, the diameter score, and the number of times the IV appears on the DV score list series. This three factor combined with some basic exclusion criteria for "useless results" forms the most suitable DV for a given target. A list of correlation IVs. This is shown in Figure 20. It should be noted that although one or more of these specific embodiments use a fall difference number and diameter fraction for each of the IVs in contact, specific embodiments of the invention are not limited to This type of score, and in fact there are further specific examples of using other scoring functions to calculate the IV score. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. According to one or more specific embodiments of the present invention, the data think-tank module includes a correlation program (Mahaku), which associates digital data with category or attribute data (such as but not (Limited to the processing tool ID), its program provides: (a) fast statistical output of grading according to qualitative rules; (b) scoring based on [diameter score and / or fall difference score; (c) a critical point for scoring In order to eliminate the poorly performing tool ID '(d) —the ability to choose to display the numbers in front of the “find”; and (e) the 5th paper size applies the Chinese National Standard (CNS) A4 specification (210X297) (%) 1230349 A7 B7 V. Description of the invention (1) Ability to perform a reverse execution, in which the result of "finding" (tool ID) can make the number of strains affected by these "finding" (tool ID) and The parameters (numbers) are displayed. (Please read the precautions on the back before filling out this page} Figure 21 shows an example of a subset of the data matrix of the smart module module associated with the input data. This example shows batches Benchmark Point-line survey data (BIN), process tool ID (Eq-Id) and process time (Trackin). Similar data measurements are also generated based on a wafer, location (mask) or mold. Figure 22 shows a number (BIN ) Example of category (tool m). Using BIN (number) as the strain number, the above data think tank module association program produces similar graphics for Eq-Id (category) in all data matrices. The width of the diamond shape on the left side of the figure Represents the number of batches executed by the tool, and the circle diameter on the right side of the drawing represents 95% confidence level. To classify many graphics, the sum of the space between the circles (that is, the area not surrounded by the circle), and the top and top of the top circle The total distance between the bottom of the circle below will be used as part of the formula to calculate which is better. "Flatness number, or ,, diameter fraction,". The above information think tank module association program classifies the graph to provide What type of score the user chooses is an important basis when it is better. The Intellectual Property Bureau, Ministry of Economic Affairs, Employee Consumption Cooperative, prints another view based on this specific embodiment of the present invention, above The data think tank module related program sets a scoring threshold. Although there are usually many processing tools that can be used to process a specific layer of the integrated circuit, only a part is normal use. There are many other processing tools. It is abnormal use that makes the data wrong, and may cause unnecessary interference when processing the data. The above data think tank module related program can apply a user-defined scoring value, so that the paper size on page 53 applies the Chinese national standard ( CNS) A4 specification (210X297 mm) 1230349 A7 B7 V. Description of the invention (Poorly performing guards can be transitioned before analysis. For example, if the critical point of the score is set at 90, Figure 23 shows that XTOOL3 will be filtered out in the round two tools, and ㈣㈣⑷ and coffee ⑽ contain more than ㈣ products. According to one or more specific embodiments of the present invention, the above-mentioned data think tank module association program provides the option of "scoring the previous number". Using this feature, the user can determine the maximum number of results that can be displayed for each strain. Therefore, the above-mentioned data think tank module correlation program performs analysis on all independent variables. 'Only when the figure number enters, the number before the scoring number enters the range' will be displayed. According to the present invention-or more specific In the embodiment, the above-mentioned data think tank module: the link program also performs a reverse execution (reverse maha library), in which the category (such as, but not limited to, industrial ID) is a strain number, and the numerical parameters affected by the category (such as, but not limited to, BIN, electrical test: weights and measures, etc.) are displayed according to the importance of the basin. The importance (scoring) is the same as when the number is executed on the tool ID. This execution can be the "Daisy" key, where The work ID detected during normal execution can automatically become the strain number during reverse execution. According to one or more specific embodiments of the present invention, the data think-tank module includes a program called DefeetBrain module. Defective skills will be equal to the defect title. However, for this analysis, the defect information is changed to one. Format it (detailed below). Round 24: Defect inspection tools or defect inspection tools in the second manufacturing plant Examples of generated defect data files. In particular, this file usually includes data about x and y coordinates, X and y mold coordinates, size, defect type classification code, and image information of each defect on the wafer. According to this One or more of the inventions are implemented on page 54. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) Staff of the Intellectual Property Bureau of the Ministry of Economics Printed by the consumer cooperative A7 B7 1230349 V. Description of Invention () For example, the data conversion module 3020 compiles the defect data file into a matrix containing at least size, classification (such as defect type), and defect density on the mold layer. Figure 25 shows an example of a data matrix generated by a data conversion algorithm. Secondly, according to a specific embodiment of the present invention, the DefectBrain module includes at least an automated data mining error detection program that grades defect issues based on scoring techniques. .According to this program, special size picking or the impact of a defect type can be used here as the "Kill ratio", the parameter plus Quantify. The damage ratio is defined as follows: Damage ratio = the age of a mold with a defective pattern, the number of all molds with a defective pattern. Another parameter that can be used is the percentage of loss, which is defined as follows: percentage of loss ~ In the above definition, a bad mold refers to a mold that cannot function. Figure 26 shows a typical output of the data think-tank module program. In Fig. 26, a digital pattern of a mold containing a special defect pattern (in this case, fine marks) is drawn with respect to the number of defects of the pattern on a mold. Since the active (ie good) and non-active (ie damaged) mold information exists in the data matrix ', it can directly determine which of the molds with special defect types is good / damaged. Therefore, in Fig. 26, the frequencies of both the good and damaged molds are plotted, and the ratio of the damaged molds to all the defective molds (that is, the failure ratio) is plotted graphically. In this figure, the slope of the graph segment has been compared with the slope of all other graphic segments generated by the data think-tank module program, and then it is evaluated from the highest slope to the lowest slope. With the highest slope, page 55. This paper size is applicable to the Chinese National Standard (CNS) A4 specification (21〇χ 297). (Please read the precautions on the back before filling out this page} 4 ·· -Order · Line-Ministry of Economy Wisdom Printed by the Consumer Cooperative of the Property Bureau 1230349 A7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. The description of the invention will affect the most important part of the yield, and it has value for the yield improvement project. 〃 This chart is important The feature is the data intelligence module, the program can adjust the number of defects on the X axis, and the maximum value of # 丄 默. If not; with this ability, in the event of an abnormal number of defects on the mold (such as In the absence of importance or artifacts, the slope rating will be wrong. According to one or more embodiments of the present invention, the data think tank module is designed to be used as a data cleaner (for example, according to the knowledge of those skilled in the art). Any of a variety of methods-Perl and C + + software programs made), data compilation = (for example, Perl and C + + software programs made according to any of the methods known to those skilled in the art ) And data filters (such as Perl and C ++ software programs made in accordance with any of the various methods known to those skilled in the art), where data cleaning, data compilation, and / or filtering According to one or more specific embodiments of the present invention, the data think tank module is a software application program running on a PC server, and Any one of the various types known to those skilled in the art is written in C + 10 and SOm. According to one or more specific embodiments of the present invention, the output of the data think tank engine module 3 080 is Microsoft FoxPrTM data Database format result database 3090. Furthermore, according to one or more specific embodiments of the present invention, the network manager module 3070 manufactured according to any one of the methods known to those skilled in the art includes The security FTR transmission software can be used by users or customers to send data to the data think tank engine module 3080 for analysis. Page 56 This paper standard applies to China National Standard (CNS) A4 specification (2 10X 297 public love) (Please read the precautions on the back before filling out this page)-Order · Line: ··

肅 I I 1230349Su I I 1230349

規則以η命机欠 τ取不馬一 f林(B〇〇lea 祝則Μ回覆對資料採掘 之門翻4 异法(在此例中為規.則歸納 之問題,或提供某些關於分孳 坪 模板定Α $ _ Α φ 4或、洗计效用予由設定檔中之 演算法變數視使用何種特殊資料採拐 U ^ ^ ±1 .、鼻法k供至少包含一,,結果”(科 予資料或類別變數型式)資 之箱^ 貝枓型式,係統計輸出圖开 預疋級合,其可由使用者 分 有疋義以伴隨各個自動資料採插 於 次多個具體實施例,此類自鸢 &quot;…广 次資料採掘之資料的&quot;原如 ^ ^ ^ „ 之、⑺果身枓組,其只包括組成 禾之貝枓欄位。在自動資料採掘分 析執行完成後,所希此類資 叩。頰貧Λ均巧存於結果資料庫3〇9〇。 分佈: 經濟部智慧財產局員工消費合作社印製 如第3圖進-步顯示,根據本發明之一或多個具體實 施例,網路視覺化模組31〇〇執行圖形及分析引擎3ιι〇而 進〇由資料智囊引擎模組3080產生之結果資料庫3〇9〇, 以提供(例如但不限於)儲存在網路伺服器資料庫312〇中 之HTML報告。根據本發明之一或多個具體實施例,網路 伺服器資料庫3 120可由使用者根據熟習本技藝者所知之 多種方法中任何之一應用網路瀏覽器在(例如但不限 於)PC上傳遞報告。根據本發明之!一或多個具體實施例, 網路視覺化模組3 1 00能互動式報告結果,網路劉覽器可 用以產生圖表、報告、P〇werp〇int檔案供輸出、產生及修 第57頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349 A7 B7 五、發明説明() 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 改設定檔、帳戶管理、以電子郵件通知結果及由多個使用 者使用權而能分享資訊。另外,根據本發明之一或多個具 體實施例,網路視覺化模組31〇〇讓使用者能產生微軟 PowerPoint(及(或)Word)線上合作文件,使多個使用者(在 適當之保全進出下)能查閱及修改。根據本發明之一或多 個具體實施例,網路視覺化模組3丨〇〇係在pc伺服器上執 行之軟體應用程式,且係使用爪哇Applets、微軟主動伺 服器傳訊(ASP)程式及XML編寫。例如,網路視覺化模組 3 1 00包括一管理模组(例如,在pc伺服器上執行之軟體應 用程式,且係根據熟習本技藝者所知之多種方法中任何之 一以網路微軟ASP編寫),其可用於新使用者設定(例如但 不限於包括進入各種系統機能,保全規範),及可用於使 用者權限(包括使用權(例如但不限於)資料分析結果、設定 檔設定及其他類似者)。網路視覺化模組31〇〇也包括工作 監看模組(例如,在PC伺服器上執行之軟體應用程式,且 係根據熟習本技藝者所知之多種方法中任何之一以網路 微軟ASP編寫),其可讓使用者查看分析結果及製作報 告。網路視覺化模組3100也包括一圖表模組(例如,在pc 伺服器上執行之軟體應用程式,且係根據熟習本技藝者所 知之多種方法中任何之一種網路微軟ASp編寫),其讓使 用者能使用其網路瀏覽器產生特別的圖表。網路視覺化模 組3 100也包括一連結-方塊模組(貪|如,在pc伺服器上執 行之軟體應用程式,且係根據熟習本技藝者所知之多種方 法中任何之一網路微軟ASP編寫),其讓使用者能在資料 第58頁 (請先閲讀背面之注意事項再填寫本頁} 装· -訂· 線一 1230349The rules are based on the η life machine and the τ fetch (1) and the forest (B〇〇lea, Zhu M, reply to the door of data mining, 4 different methods (in this case, the rules are summarized, or provide some information about the points). The 模板 ping template determines Α $ _ Α φ 4 or, the calculation effect is determined by the algorithm variables in the configuration file, depending on what special data is used U ^ ^ ± 1. The nasal method k includes at least one, and the result " (Keyo data or categorical variable types) Information box ^ shell type, the system meter output map is pre-integrated, which can be classified by users to accompany each automatic data acquisition in multiple specific embodiments, This kind of data from the kite &quot; ... wide-range data mining &quot; is the same as ^ ^ ^ „, the 枓 果 身 枓 group, which includes only the constellation 禾 之 field. After the automatic data mining analysis is completed, I hope that such resources are available. The cheeks are all stored in the result database 3900. Distribution: Printed by the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs as shown in Figure 3, according to one or more of the present invention In a specific embodiment, the network visualization module 3100 executes a graphics and analysis engine 3ιιο A database of results 390 generated by the data think tank engine module 3080 is provided to provide (for example, without limitation) an HTML report stored in a web server database 3120. According to one or more of the present invention In a specific embodiment, the web server database 3 120 may be used by a user to transmit a report on a PC, such as, but not limited to, a PC in accordance with any one of a variety of methods known to those skilled in the art. One or more specific embodiments, the network visualization module 3 1 00 can interactively report the results, and the network browser can be used to generate charts, reports, and Pοwerp〇int files for output, generation, and repair. The paper size of this page applies the Chinese National Standard (CNS) A4 specification (210X297mm) 1230349 A7 B7 V. Description of the invention () Printing and modification of the profile, account management, notification of the results by email and Multiple users can use the right to share information. In addition, according to one or more specific embodiments of the present invention, the network visualization module 3100 allows users to generate Microsoft Powe rPoint (and / or Word) online cooperation documents, enabling multiple users (under appropriate security access) to view and modify. According to one or more specific embodiments of the present invention, the network visualization module 3 丨〇〇 is a software application running on a pc server, and is written using Java Applets, Microsoft Active Server Messaging (ASP) programs, and XML. For example, the network visualization module 3 1 00 includes a management module ( For example, a software application running on a pc server and written in online Microsoft ASP according to any of a number of methods known to those skilled in the art, which can be used for new user settings (such as but not limited to including Enter various system functions, security specifications), and can be used for user rights (including use rights (such as, but not limited to) data analysis results, profile settings, and the like). The network visualization module 3100 also includes a job monitoring module (for example, a software application running on a PC server), and it is based on any one of a number of methods known to those skilled in the art. (Written in ASP), which allows users to view analysis results and produce reports. The network visualization module 3100 also includes a charting module (for example, a software application running on a pc server, and is written according to any one of the many methods known to those skilled in the art, the network Microsoft ASp), It allows users to generate special charts using their web browser. The network visualization module 3 100 also includes a link-block module (eg, a software application running on a pc server and is based on any one of a variety of methods known to those skilled in the art) Written by Microsoft ASP), which allows users to read the information on page 58 (please read the precautions on the back before filling in this page). Install · -Order · Line 1230349

五、發明説明() 採掘及(或)形成超方塊前組合資料組。網路視覺化 3 1 00也包括-過遽器模組(例如,在pc飼服器上執行: 體應用程式,且係根據熟習本技藝者所,知之多種方法中人 何之-網路㈣ASP編寫),其讓使用者能在此類資二 行資料採掘前過濾在超方塊收集之資料,其中此過濾步 係依據使用者特定之標準進行。網路視覺化模組31⑽驟 包括-線上資料工具模組(例如,在pc伺服器上執行之: 體應用程式,且係根據熟習本技藝者所知之多種方法中= 何之一網路微軟ASP編寫),其讓使用者能使用其網路= 覽器在一特別的基準上進行資料採掘。根據本發明之— 多個具體實施例,使用者可設立設定檔以使網路視覺化 組3100預備統計過程控制(&quot;sp(r)資訊之圖表,其讓使 者能使用一網路瀏覽器追蹤預定之資料度量。 熟習本技藝者應瞭解上述揭示之說明僅供示範及 明使用。據此,其並非希望亳無遺漏地涵蓋或使本發明 於所揭露之特定形式。例如,儘管上文曾討論某些尺寸 其僅供示範,因為使用上述具體實施例可以依各種設計 造,而此類設計之實際尺寸將依線路需求而定。 或 模 用 製 f請先閲讀背面之注意事項再填寫本頁} -訂· 線- 經濟部智慧財產局員工消費合作社印製 頁 9 5 舞 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公楚)V. Description of the invention () Mining and / or forming a pre-block combination data set. Network Visualization 3 1 00 also includes-a device module (for example, running on a pc feeder: a physical application, and based on the various methods known to those skilled in the art, who is the Internet-ASP (Compiled), which allows the user to filter the data collected in the superblock before mining such data, and the filtering step is performed according to user-specific criteria. The network visualization module 31 steps include-an online data tool module (for example, running on a pc server: a physical application, and according to a variety of methods known to those skilled in the art = any one of the network Microsoft (Written in ASP), which allows users to use their network = browser for data mining on a special benchmark. According to various embodiments of the present invention, a user may set up a profile to enable the network visualization group 3100 to prepare a statistical process control (&sp; r) chart of information, which enables the messenger to use a web browser Track predetermined data metrics. Those skilled in the art should understand that the above disclosure is for demonstration and explicit use only. Accordingly, it is not intended to be exhaustive or to cover or embody the invention in the particular form disclosed. For example, notwithstanding the above It was discussed that some dimensions are for demonstration only, because the specific embodiments described above can be made according to various designs, and the actual size of such designs will depend on the circuit requirements. Or molding f Please read the notes on the back before filling This page}-Order · Line-Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 9 5 The size of the dance paper is applicable to China National Standard (CNS) A4 (210x297)

Claims (1)

^30349 _清專利範圍 種用以採掘一積體 訊之資料的古^ 峪裊造廠(”製造廠”)中獲得資 平隹 該方法包括下列步驟· 聚集由該製造廠中· 製造廠内產+十&amp; 次多系統、工具及資料庫在 袼式t Λ該製造廄收集之資料; 中; 貝料及儲存該等資料至一來源資料 資料並根據—使用者特定設定標 對該經抽取之部份資料 用去杜〜 貝料採掘,以回應 用者特定之分析設定檔; =存該資料採掘之結果至—結果資料庫中;及 ^供該結果之使用權。 該 庫 行 使 (請先閲讀背面之注意事項再填寫本頁) — — 11 2.=請專利範圍第i項所述之方法,其中該聚集 透過一網路依隨取隨用或按排定時程即時聚 料之步驟。 -訂. 步 集 3·如申請專利範圍第i項所述之方法,μ 權之步驟包括透過一網路提供使用權的步驟。 線_ 如申請專利範㈣3項所述之方法,其中透過一網 提供使用權之步驟包括使用一劉覽器提供使用權的 驟。 ; 路 步 第60頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) 1230349 as Bo C8 --------E8 _一 ____六、申請專利範圍 5·如申睛專利範圍第1項所述之方法,其中該聚集之步 驟係以即時方式進行,且該袼式化該資料及儲存該格 式化資料至一來源資料庫之步驟亦係即時進行者。 6·如申請專利範圍第丨項所述之方法,其中該聚集之步 驟包括聚集依客戶指定及(或)工具指定格式傳輸之資 料的步驟。 7·如申请專利範圍第丨項所述之方法,其中該聚集之步 驟包括聚集加密之資料的步驟。 8 ·如申清專利範圍第〗項所述之方法,其中格式化該資 料之步驟包括格式化該資料成一包括產品識別、地點 (Where?)、時間(When?)、標的(What?)及價值之分層結 構的步驟。 9.如申請專利範圍第(8項所述之方法,其中該產品識別 係由批次1D、晶圓ID、溝槽ID、光罩id、模具ID及 子模具x,y卡氏座標中之一或多者所定義。 (請先閲讀背面之注意事項再填寫本頁)^ 30349 _ Qing patent scope is used to extract the information of an accumulated product. ^ Obtaining assets from a manufacturing plant ("manufacturing plant"). This method includes the following steps: gathering from the manufacturing plant · within the manufacturing plant Production + ten &amp; multiple systems, tools, and data bases in the method t Λ the manufacturing data collected; medium; shell materials and storage of these data to a source data and according to the user-specific settings Part of the data is used for mining ~ shell material mining, to return to the application-specific analysis profile; = save the results of the data mining to-the results database; and ^ the right to use the results. The library is exercised (please read the notes on the back before filling out this page) — — 11 2. = Please refer to the method described in item i of the patent scope, where the aggregation is available on a network or on a scheduled basis. The process of instant material gathering. -Order. Step 3. As described in item i of the scope of patent application, the step of the μ right includes the step of providing the right of use through a network. Online_ The method described in item 3 of the patent application, wherein the step of providing the right of use through a network includes the step of providing the right of use by using a browser. ; Lubu page 60 This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 1230349 as Bo C8 -------- E8 _ 一 ____ 六 、 Scope of patent application The method described in item 1 of the patent scope, wherein the step of gathering is performed in real time, and the steps of formatting the data and storing the formatted data to a source database are also performed in real time. 6. The method as described in item 丨 of the scope of patent application, wherein the step of aggregating includes the step of aggregating data transmitted in a format specified by the customer and / or a tool. 7. The method as described in item 丨 of the patent application scope, wherein the step of aggregating includes the step of aggregating encrypted data. 8 · The method as described in item No. of the Patent Scope, wherein the step of formatting the data includes formatting the data into a product identification, a location (Where?), A time (When?), A subject (What?), And Steps in the hierarchy of value. 9. The method described in the scope of patent application (item 8), wherein the product identification is based on the batch 1D, wafer ID, groove ID, mask id, mold ID, and sub-mold x, y Karst coordinates. Defined by one or more. (Please read the notes on the back before filling this page) 訂 線 經濟部智慧財產局員工消費合作社印製 ίο.如申請專利範圍第8項所述之方法,其中地點(Where?) 係由製造流線/組合線製造步释丨及次步驟中之一或多所 定義。 / 第61頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公爱) 六、申請專利乾圍 I 1 . 係由測量值之日期/時間中之一或多所定義 12.==利範圍第1項所述之方法,其中該格式化之 v’g編澤在晶圓處理時於該製造雍内之處理工具 時間基礎操作條件資料、以成為根據-設定 檔之關鍵積體電路特定統計資料的步驟。 Π.如中請專利範” 1項所述之方法,其巾該儲存之步 驟更包括由該來源資料庫抽取資料及儲存該抽取之資 料至一至少包含-關係資料庫組件與一槽案系統組件 之混合資料庫的步驟。 14. 如申請專利範圍第13項所述之方法,其中該關係資料 庫,且件使用雜湊·索引演算法,用以對儲存於該播案 系統組件内之不連續資料產生使用權鑰匙。 15. 如申請專利範圍第14項所述之方法,其中該抽取之步 經濟部智慧財產局員工消費合作社印製 驟包括使用一雜湊-連結演算法、以從該混合資料庫累 積資料之步驟。 16. 如申請專利範圍第14項所述之(方法,其中該抽取之步 驟包括使用該設定檔獲得i超方塊定義、使用該超方 塊定義以產生一資訊向量快取記錄定義、及產生一資 第62頁 1230349 A8 B8 C8 D8 六、申請專利範圍 訊向量快取記錄之步驟。 17·如申請專利範圍第16項所述之方法,其中該產生一資 訊向量快取記錄之步驟包括下列步驟:(a)使用雜凑 索弓丨鍵從該關係資料庫組件擷取該資訊向量快取記錄 定義所得辨識之檔案及資料元件列表;(b)從該檔案系 統組件擷取該檔案;及(c)以在該向量快速記錄定義所 得辨識之資料元件植入該資訊向量快取記錄中。 18·如申請專利範圍第I?項所述之方法,其中該抽取之步 驟更包括使用超方塊定義 &lt;該負訊向量快取記錄產生 超方塊的步驟。 19·如申請專利範圍第1項所述之方法,其中該資料採掘 之步驟包括使用一或多之自組織圖資料採掘、規則歸 納資料採掘、資料採掘以關聯數字資料至類別或屬性 資料及資料採掘以關聯類別或屬性資料至數字資料的 步驟。 經濟部智慧財產局員工消費合作社印製 2〇·如申請專利範圍第丨項所述之方法,其中該資料採掘 之步驟包括自組織圖資料採掘以形成群集、在該s〇M 資料採掘之輸出上作地圖匹配.分析以進行群集匹配、 在該SOM資料採掘輸出上ί乍規則歸納資料採掘以分析 一群集之規則解說、於該規則歸納資料採掘之輸出上 第63頁 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公爱) '^ - 1230349 ABCD 六、申請專利範圍 關聯類別資料至數字資料、及在該地圖匹配資料採掘 關聯數字資料至類別資料之步驟。 21.如申請專利範圍第20項所述之方法,其中該SOM資 料採掘之步驟自動組織資料庫、並辨認一資料組中代 表不同”製造廠問題’’之分離與支配資料群集,而地圖匹 配分析以一群集内已知將對該’’有興趣&quot;變數行為產生 影響之任何舊有資料描述一 ’’有興趣之變數。 (請先閱讀背面之注意事項再填寫本頁) έ· -訂· 線:· 經濟部智慧財產局員工消費合作社印製 第64頁 本紙張尺度適用中國國家標準(CNS)A4規格(210Χ 297公釐)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The method described in item 8 of the scope of patent application, where the location (Where?) Is manufactured by the manufacturing streamline / combination line. Or more defined. / Page 61 This paper size applies to China National Standard (CNS) A4 specifications (210X 297 public love) VI. Patent application perimeter I 1. It is defined by one or more of the date / time of the measured value 12. == The method described in item 1, wherein the formatted v'g knitting and processing time data of the processing tools in the manufacturing process during wafer processing is used to become a key integrated circuit based on the-profile Steps for specific statistics. Π. The method as described in the item "Patent Patent", the storage step further includes extracting data from the source database and storing the extracted data into at least an inclusive-relationship database component and a slot system. Steps of mixing the components of the database. 14. The method as described in item 13 of the scope of the patent application, wherein the relational database uses a hashing and indexing algorithm to resolve the differences stored in the paging system components. The continuous data generates the right-of-use key. 15. The method as described in item 14 of the scope of the patent application, wherein the step of extracting is printed by the consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, including using a hash-link algorithm to extract from the hybrid Steps to accumulate data in the database. 16. The method as described in item 14 of the scope of the patent application, wherein the step of extracting includes obtaining the i-block definition using the profile and using the super-block definition to generate an information vector cache Record definition, and generating a page of page 1230349 A8 B8 C8 D8 6. The steps of patent cache and vector cache record. 17 · The method according to item 16, wherein the step of generating an information vector cache record includes the following steps: (a) using a hash cable bow key to retrieve the information vector cache record definition obtained from the relational database component A list of files and data elements; (b) retrieving the file from the file system component; and (c) inserting the identified data elements defined in the vector fast record definition into the information vector cache record. 18. If applying for a patent The method described in the first item of the scope, wherein the step of extracting further includes the step of using a superblock definition &lt; the negative vector cache record to generate a superblock. 19. The method described in the first item of the patent application scope, The data mining step includes the steps of using one or more self-organizing map data mining, rule induction data mining, data mining to associate digital data to category or attribute data, and data mining to associate category or attribute data to digital data. Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau 20 · The method described in item 丨 of the scope of patent application, in which the steps of data extraction include Self-organizing map data mining to form clusters, map matching on the output of the SOM data mining, analysis to perform cluster matching, and the SOM data mining output to summarize data mining to analyze the rules of a cluster, On the output of data extraction based on the rules on page 63, this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 public love) '^-1230349 ABCD VI. Patent application related category data to digital data, and in the map Steps for matching data mining and associating digital data to category data. 21. The method as described in item 20 of the scope of patent application, wherein the SOM data mining step automatically organizes the database and identifies a data group that represents a different "manufacturer problem" Separation and domination of data clusters, and map matching analysis describes any interested data within a cluster that is known to have an effect on the behavior of the "variable" variable. (Please read the precautions on the back before filling out this page.) · -Order · Line: · Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, page 64. This paper size is applicable to the Chinese National Standard (CNS) A4 (210 × 297) (Centimeter)
TW91117089A 2001-07-30 2002-07-30 Method and apparatus for analyzing manufacturing data TWI230349B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30812301P 2001-07-30 2001-07-30
US30812501P 2001-07-30 2001-07-30
US30812101P 2001-07-30 2001-07-30
US30812401P 2001-07-30 2001-07-30
US10/194,920 US6965895B2 (en) 2001-07-16 2002-07-12 Method and apparatus for analyzing manufacturing data

Publications (1)

Publication Number Publication Date
TWI230349B true TWI230349B (en) 2005-04-01

Family

ID=36083960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91117089A TWI230349B (en) 2001-07-30 2002-07-30 Method and apparatus for analyzing manufacturing data

Country Status (1)

Country Link
TW (1) TWI230349B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602068B (en) * 2016-10-17 2017-10-11 Data processing device and method thereof
TWI609345B (en) * 2013-07-01 2017-12-21 神乎科技股份有限公司 Processing method for financial information
US11320809B2 (en) 2019-07-31 2022-05-03 Grade Upon Technology Corporation Factory management system and control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609345B (en) * 2013-07-01 2017-12-21 神乎科技股份有限公司 Processing method for financial information
TWI602068B (en) * 2016-10-17 2017-10-11 Data processing device and method thereof
CN107957978A (en) * 2016-10-17 2018-04-24 何宏发 Data processing device and method thereof
US11320809B2 (en) 2019-07-31 2022-05-03 Grade Upon Technology Corporation Factory management system and control system

Similar Documents

Publication Publication Date Title
US6965895B2 (en) Method and apparatus for analyzing manufacturing data
CN118011990B (en) Industrial data quality monitoring and improving system based on artificial intelligence
Castellanos et al. ibom: A platform for intelligent business operation management
CN116485576A (en) An intelligent manufacturing management platform for aviation manufacturing knowledge source brain data
CN100552582C (en) Semiconductor manufacture flow path assistant decision-making system
CN117235524A (en) Learning and training platform for automatic valuation models
CN117591679A (en) Building-block product carbon footprint intelligent analysis system and method based on knowledge graph
KR20090046738A (en) Manufacturing forecast server
CN120106318B (en) Supply chain scheduling optimization method and system based on multi-source data
CN119338053B (en) Platform management method and system based on low code development
CN118153881A (en) A full-process monitoring method for business expansion based on a data center
CN119494463A (en) A method for monitoring urban operation indicators based on multi-source heterogeneity
WO2021076609A1 (en) Collaborative learning model for semiconductor applications
JP4446231B2 (en) Manufacturing data analysis method and apparatus
TWI230349B (en) Method and apparatus for analyzing manufacturing data
Tanphet et al. Applying business intelligence technology for equipment maintenance and repair plan of telecommunications services provider
CN117910934A (en) Material replaceability assessment method, device, computer equipment and storage medium
Tsang et al. Development of a data mining system for continual process quality improvement
CN116703321B (en) Pharmaceutical factory management method and system based on green production
CN121010180B (en) A method and system for intelligent management of furniture production
Taetragool et al. Method for failure pattern analysis in disk drive manufacturing
CN120196007A (en) Data perception and flow data modeling method for intelligent factory lean manufacturing
CN119250792A (en) A full life cycle management method and system for an emergency command system information support system
CN120892898A (en) Methods, devices, computer equipment and storage media for power grid equipment fault analysis
CN121169215A (en) A Big Data-Based Product Quality Lifecycle Management Method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees