[go: up one dir, main page]

TWI248001B - Methods and apparatus for automated underwriting of segmentable portfolio assets - Google Patents

Methods and apparatus for automated underwriting of segmentable portfolio assets Download PDF

Info

Publication number
TWI248001B
TWI248001B TW090119908A TW90119908A TWI248001B TW I248001 B TWI248001 B TW I248001B TW 090119908 A TW090119908 A TW 090119908A TW 90119908 A TW90119908 A TW 90119908A TW I248001 B TWI248001 B TW I248001B
Authority
TW
Taiwan
Prior art keywords
asset
assets
sample
price
clusters
Prior art date
Application number
TW090119908A
Other languages
English (en)
Inventor
Christopher D Johnson
Tim K Keyes
Marc T Edgar
Chandrasekhar Pisupati
William C Steward
Original Assignee
Ge Capital Commercial Finance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Capital Commercial Finance filed Critical Ge Capital Commercial Finance
Application granted granted Critical
Publication of TWI248001B publication Critical patent/TWI248001B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Asset management; Financial planning or analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Technology Law (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

1248001 A7 B7 五、發明説明(1) 發明背景 (請先閱讀背面之注意事項再填寫本頁) 本發明係一般有關於金融工具之估價方法,而更明確 地係有關於大量金融工具之快速估價。 大數量之資產如貸款(例如數萬元貸款)或其他金融 工具,有時由於經濟狀況、有計晝或無計畫的脫產或者因 法律判決之賠償而變爲待售。數以千計之商業貸款或其他 金融工具之銷售(其有時涉及等於數十億元之資產)有時 需於數月中發生。當然,資產之賣方欲獲得其組合資產之 最佳的價値,且有時將把資產分組爲“資產部分(tranches) ”。.此處所用之“資產部分”一詞非限定於國外票據,而亦可 包含其無關國籍或管轄權之金融工具群組(groupings )。 經濟部智慧財產¾員工消費合作社印製 出價者可對所有資產部分出價,或者僅對某些資產部 分。爲了贏得一資產部分,出價者通常需對該資產部分提 出最高價。有關決定對於一特定資產部分之出價,出價者 通常將聘僱認證者以評估一資產部分中之儘可能多的資產 ,且係於有效的有限時間內。當出價之時刻將屆時,則出 價者將評估該時刻已被認證之資產’並接著嘗試推斷( extrapolate )其仍未被認證者所分析之資產的價値。 此程序完成後,出價者可能會明顯地低估一資產部分 而投出不具競爭力的標,或者可能投出高於已認證之價値 的標而承擔未知數量的風險。當然’因爲其目標在於使出 價者得以有機會獲利的成本臝得每個資產部分,所以由於 明顯低估資產部分而輸掉·資產部分出價即代表一次失去的 機會。希望能提供一種系統,其有助於在短時間內對大量 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ 4 _ 1248001 A7 B7 五、發明説明(2) 金融工具做出準確估價,並瞭解某一競標之相關的獲利可 能性。 (請先閲讀背面之注意事項再填寫本頁) 發明槪述 於一示範實施例中,提供一種反覆及適應方法,其中 一組合資產被劃分爲三種主要估價。一組合資產之第一型 式估價的完全認證係根據一負面樣本而執行。第二估價型 式係有效地取樣自共同描述性屬性之類型,而選擇性隨機 樣本中之資產被完全認證。第三估價型式係屬於統計推論 (inferred )估價,其使用認證價値及第一與第二部分之差 異,並應用統計推論以個別地估價第三部分中之每項資產 。聚集及資料減縮被使用於估價第三部分。 經濟部智慧財產局員工消費合作社印製 隨著此程序進行而有更多資產被認證,則其具有以第 一與第二部分中所建立之價値的資產數目增加而第三部分 中之資產數目減少,且第三部分中之資產的估價差異變得 越來越侷限。更明確地,第三部分中之資產係藉由將資產 分組爲群集(clusters )而被評估,根據第一及第二部分中 之資產的估價之類似性。 本發明揭露一種使用組合資產估價系統以自動認證分 割資產的方法,其包含下列步驟:以共同屬性界定金融工 具之群集,接收一專家對於所選取群集之樣本的估價意見 ,檢視屬性之組合的價値以及協調其價値。 圖形簡述 -5- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 ___B7 五、發明説明(3) 圖1爲一流程圖,其顯示用以估價一組合資產之已知 方法; 圖2爲一流程圖,其顯示依據本發明之一實施例以估 價一組合資產; 圖3爲一流程圖,其更.詳細地顯示大量組合資產之快 速估價方法的第一部分之一實施例,其將資產分割爲差異 之類型; 圖4爲一流程圖,其顯示大量組合資產之快速估價方 法的第一部分,其從一基礎聚集至一資產部分或組合資產 基礎; 圖5顯示推論出其重獲(recovery)値之示範資產的機 率分佈; (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 圖 6係圖3 之方法之 監 督 的 學 習 步 驟 之 流 程 圖 圖 7係圖3 之方法 之 未 監 督 的 學 習 步 驟 之 流 程 圖 ; 圖 8係未監 督之學 習 的 方 法 之 一 實 施 例 r 圖 9係快速資產估價方法之第 1 代 ( 第 一 通 m ) 的 實 施 例; 圖 10係使 用於圖 8 之 未 監 督 學 習 中 的 模 糊 群 集 方 法 之 —. 流程 圖; 圖 11係一 組表格 ) 其 顯 示 一 快 速 資 產 評 估 方 法 之 模 型 選 取及 模型加權 的範例 f 圖 12係一 表格, 其 顯 示 一 快 速 資 產 估 價 方 法 之 示 範 屬 性 ;及 圖 1 3係一 快速資 產 估 價 方 法 之 示 範 的 群 集 方 法 之 群 集 本紙張又度適用中國國家標準(CNS ) A4規格(210X297公釐) -6 - 1248001 A7 B7 經濟部智慧財產局"'貝工消費合作社印製 12:組合資產 16:第一部分 20:粗略推斷 26:出價 30:量 34:取樣 38:電腦 4 2:第三部分 46:未認證部分 52,54:群集 66:樹狀圖 70,72,74:資產部分 78:選取之資料 82:形成 85:流程圖 8 8:部分現金方式 94:認證者 98:認證群組値 102:部分價値表 106:完整取樣程序 (請先閲讀背面之注意事項再填寫本頁)
五、發明説明(4) 圖;及 圖14係一電腦網路槪圖 元件對照表 10:方法 14:認證 1 8 :未觸及之剩餘部分 22,24:估價 28:快速估價系統 32:估價方法 3 6:第二部分 4 0:推論 44:產生 48,50:類型 56,58,60,62,64:次群集 68:估價區塊 76:資料庫 80:標準 84:分組 8 6:完整現金方式 90,92:組 96:完整價値表 1 0 0:認證者 ♦ 104:部分價値完整認證群組値 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 1248001 A7 B7 經濟部智慧財產苟員工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) ▼裝· 訂 五、發明説明(5) 108:部分取樣程序 112.·完整取樣群組 116:完整樣本資產價値表 120:群集樣本群組 125:人工資料輸入 128:資產等級 1 3 2:部分取樣信用値 136:認證群集表 140:調整過的信用表 144:未觸及之資產表 148:現金流橋 152:推測現金流橋 156:資產部分模型 160:臨限値條件 162:管理 166:估價階段 170,172,174:類型 178:硬碟儲存 182:垂直軸 186:最差情況百分比 190.·最佳情況百分比 194:機率 198:區域 202:區域 110:百分之百取樣 114:規則 118:完整取樣群組估價 122:資產位準再認證 126:最初信用分析表 130.·調整過的信用分析表 1 3 4:統計推論演算法 138:調整過的信用得分 142:推論信用估値 146.·資產位準估價步驟 150:現金流 154:提議的資產部分出價 158:臨限値 161:模擬出價公開分析 164:資產部分出價 168:出價準備階段 176:資料 180:最小三點資產估價 1 8 4:水平軸 1 8 8:面額線 192:最可能情況百分比 196:點 200:曲線 204:100%機率線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -8- 1248001 A7 B7 五、發明説明(6) 206:監督的學習 208:未監督的學習 210:方法 212:界定 214:專家意見 216:樣本認證方法 218:協調 220:設定 222:分類 224:應用 226:規則 228:信用分析表 230:資料獲取模組 232:變數選取模組 234:等級分割模組 .236:模糊群集方法模組 23 8:認證檢視模組 240:方法 242:第一步驟 244.·第二步驟 246:第三步驟 248:第四步驟 250:第五步驟 252:第六步驟 254::第七步驟 256.·法院拍賣價格 258:市場價格 260:樹狀圖表 262,264,266:搖動者樹 268,270,272:搖動者樹 300:系統 302:伺服器 304:電腦 306:資料庫伺服器 較佳實施例之詳細敘述 (請先閱讀背面之注意事項再填寫本頁} 經濟部智慧財產苟員工消費合作社印製 圖1係說明一種已知方法之圖形1 〇,用以透過一認證 循環而估價大量的組合資產12,以利出價購買(例如)一 拍賣中之組合資產1 2。圖1係一種非反覆且非自動之典型 認證及推斷方法1 〇的高位準槪圖。於圖形1 〇中,認證者 認證(1 4 )組合資產丨2中之一些個別的資產以產生一認證 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇Χ;297公釐) 1248001 A7 B7 五、發明説明(7) (請先閲讀背面之注意事項再填寫本頁) 的第一部分1 6及一未認證的剩餘部分1 8。在任何資產被認 證前,第一部分16爲百分之零而剩餘部分18爲百分之百 。當認證程序進行時,第一部分1 6增加且剩餘部分18減 少。其目標係在出價購買組合資產之前認證儘可能多的資 產。認證者之團隊持續個別地認證(14 )直到必須出價以 前。一粗略的推斷20被做出以估價剩餘部分1 8。推斷的値 20變爲未認證的推論値24。粗略的推斷產生剩餘部分1 8 之估價24。估價22僅爲第一部分16中之個別資產値的總 和。然而,估價24爲藉由推斷所產生之群組估價且因而可 能被低估。估價22及24被接著加總以產生組合資產値26 。估價程序被執行於組合資產之每個資產部分(tranche ) 經濟部智慧財產局員工消費合作社印製 圖2係一圖形以說明快速資產估價之系統28的實施例 。圖2中包含用以估價組合資產1 2之系統28所採取的程 序步驟之表示。系統28個別地估價“觸及(touch) ”每一資 產,除了其被視爲統計上微不足道或金融上無關緊要之未 觸及資產的極少量3 0以外。明確地,組合資產12中除了 極少量30以外之所有資產均經歷一反覆及適應估價32,其 中組合資產1 2被個別地估價,個別地列入表格中,並接著 從表格選取及分組爲任何所欲或所需之群組或資產部分以 利出價之目的(如下所述)。如圖形10中,認證者開始組 合資產12中之個別資產的完整認證(14)以產生資產之一 完整認證的第一部分1 6。認證者亦認證(3 4 )組合資產1 2 之一第二部分3 6的資產之一樣本,而一電腦3 8統計上地 -10- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(8) (請先閲讀背面之注意事項再填寫本頁) 推論(40)組合資產12之一第三部分42的價値。電腦38 亦重複地產生(44 )表格(描述如下),該等表格係顯示 其指定至部分16、36及42中之資產的値(如下所述)。 於一實施例中,電腦3 8被構成爲一單獨的電腦。於其他實 施例中,電腦38係構成爲一伺服器,其透過網路,例如廣 域網路(WAN)或局部區域網路(LAN),而連接至至少一 客戶系統(顯示及描述於圖14中)。 例如,再次參考圖2,組合資產12的第三部分42之一 未取樣及未認證之部分46接受一統計推論程序40 ’其係使 用模糊C平均數群集(“FCM”)及複合的高/預期/低/時序/ 風險(“HELTR”)得分以產生兩個類型48及50。HELTR被 定義爲Η—高現金流,E—預期現金流,L一低現金流,T一 現金流之時序(例如月份:0-6、7-18、19-3 6、37-60 ),及 R—借主之風險預估(assessment ) ( 9-由信用分析者所使 經濟部智慧財產局員工消費合作社印製 用之方格)。類型48被視爲具有足夠的共同性以整體地估 價。類型50被進一步分割爲群集52及54,其接著被進一 步細分。群集52被分割爲次群集56及58,而群集54被細 分爲次群集60、62及64。群集及次群集均被顯示於"樹狀” 圖66中且成爲估價區塊68中之方格。這些個別的資產價 値被接著重組爲資產部分70、72及74以利出價。任何數 目之資產部分可由賣主組合以任何配置組。 組合資產1 2中之每一資產的個別資產資料(未顯示) 被鍵入一資料庫76,而選取之資料78係根據反覆及適應程 序32之一既定標準80而被擷取自該資料庫76。當任何資 -11 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) 1248001 A7 B7__ 五、發明説明($ (請先閲讀背面之注意事項再填寫本頁) 產之估價的標準80被建立時,則該建立的標準80被儲存 於資料庫76中以用於評估其他共用此一已建立標準之資料 庫7 6中的資產資料。反覆及適應估價程序3 2因而形成( 82 )估價(描述如下)並將其分組(84 )以用於出價。 圖3及4共同形成一流程圖85,其說明一用以估價大 量組合資產12之系統2 8 (如圖2所示)的實施例之功能槪 要。估價程序14、34及40 (亦顯示於圖2 )被同時且依序 地使用於系統28以下述之方式。如上所述,完整認證14 爲估價程序之第一型式。具有樣本之完整認證的分組及取 樣認證34爲估價程序之第二型式。統計推論40爲估價程 序之第三型式,其係一種自動分組及自動估價。程序14、34 及40係根據如下所述之客觀標準。 經濟部智慈財產局員工消費合作社印製 此處所用之“認證”是指一種處理程序,其中一個人(“ 認證者”)依據已建立之原則以檢視一資產,並決定欲購買 該資產之目前成本。於認證期間,認證者使用預先存在的 或已建立的標準80以利估價。“標準”是指相關於資產價値 及根據此等類型之評等的規則。例如,以一種標準爲例, 一認證者可決定借主之三年的現金流歷史爲相關於資產估 價之資訊的類型,且可對各種層級之現金流給予某一評等 〇 完整認證被執行以兩種方式,一種完整之現金爲基礎 的方式86及一種部分之現金爲基礎的方式88。完整現金基 礎之方式86及部分現金基礎之方式88均開始以其被個別 地完整檢視之資產組90及92 ( 14)(參見圖2)。此完整 -12- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(也 (請先閲讀背面之注意事項再填寫本頁) 檢視14通常基於大量金額,或其他適當的貨幣,其資產之 量係相關於組合資產中之其他資產而被檢視,或者基於其 借主係知名者或爲相當可靠以致其資產可被快速且可靠地 完整認證,或者其資產係市場上受囑目的以致其有關該等 資產之價値的差異是極小的。資產組90被認證者94評估 ,而該組90中之每一資產的估價有極小的差異,例如其以 現金或具有現金價値之可買賣商品爲後盾的資產,且被置 入一完整價値表96。表96之資產中所選取的個別値被儲存 爲一完整的認證群組値98。 經濟部智慧財產局員工消費合作社印製 組92係由一認證者團隊1 00所評估,該團隊可相同於 團隊94,但是其每一資產接收到一低估的或部分的價値且 被置入一部分價値表102。表102之資產部分中的資產之選 取的個別値被儲存爲一部分價値完整認證群組値 104。完整 現金基礎之方式86及部分現金基礎之方式的標準80 (如圖 2中所示)被儲存於電腦38 (如圖2中所示)之數位儲存 記憶體(未顯示)中的資料庫7 6中(如圖2中所示),以 使用於自動估價40之監督的學習206及未監督的學習208 中。 取樣認證34係使用兩個程序以完成,即一完整取樣 106程序及一部分取樣108程序。完整取樣106係用於大量 資產之類型,且包含被取樣之資產類型中的樣本群組之百 分之百取樣1 1 0。完整取樣1 0 6中之資產未被個別地認證, 而係根據一預定之共同性以認證於完整取樣群組1 1 2。一所 得之完整取樣群組估價(未顯示)被產生並接著根據規則 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ q _ 1248001 A7 B7 _ 五、發明説明(1)1 (請先閲讀背面之注意事項再填寫本頁) 114而廢除隔離以產生一個別的完整樣本資產價値表11 6。 表116中之個別的完整樣本資產値被接著電子地上載入其 出價所需的任何完整取樣群組估價11 8,如由資產部分中之 資產的群組所建議。一認證樣本群組中之資產的數目可以 是從一至任何資產的數目。部分取樣108係用於資產之中 等類型,且包含藉由從被取樣群組之一群集中之一代表性 群組的百分之百取樣以及該群集中之其他群組的隨機取樣 以形成一群集樣本群組120。於部分取樣108中,所有群組 均被取樣,而某些群組係藉由從群集樣本群組120之推斷 而被部分地估價。部分取樣108包含利用人工資料輸入125 之資產位準再認證122以產生一最初信用分析表126,其係 提供一資產等級調整128以產生一調整過的信用分析表130 。如上所述,個別的資產係依據資產部分群組而被選取自 調整過的信用分析表130以產生用於資產部分70 (顯示於 圖2中)之出價的部分取樣信用値132。 經濟部智慧財產局員工消費合作社印製 自動估價程序40利用監督的學習方法206、未監督的 學習方法208及上載自一統計推論演算法134以產生一儲 存於數位儲存裝置中之認證群集表1 3 6。於監督的學習方法 206中,一位知道問什麼問題以建立價値之有經驗的認證者 協助電腦決定某一資產是否爲好的投資以及如何估價該資 產。於未監督的學習方法208中,電腦將資產區分並歸類 ,且根據來自資料之反饋以客觀地自行評估該等資產。一 認證者週期性地檢視未監督的學習方法208以決定電腦是 否做出合理的認證結論。點腦使用統計演算法1 34以執行 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) TA '' 1248001 A7 B7 五、發明説明(如 (請先閲讀背面之注意事項再填寫本頁) 其推論。例如,非僅限於此方式,一實施例係使用Design For Six Sigma(“DFSS”)品質範例,其係由通用電氣公司( General Electric Company)所開發及使用,並應用於一種使 用多代產品開發(“MGPD”)模式之需勞力的(Due Diligence(“DD”))資產估價方法以估價其具有漸增之準確性 的資產資料。學習方法206及208將其隨著估價進行所累 積之瞭解倂入現金流重獲及重獲計算之機率,以一種持續 的、即時的方式。監督的學習方法206使用商業規則以識 別(identify )其具有估價用之共同點的資產之群集。未監 督的學習方法208使用來自其由程序40所執行之先前資料 估價的反饋以決定是否已達成有關增加估價信心的進步。 由於使用高速的電腦,故所有可用之原始資料的識別以及 這些可用原始資料之群集間相互關係的重獲均可達成,如 下所述。 經濟部智慧財產局員工消費合作社印製 於一示範的實施例中,一種使用HELTR評分技術之原 始資料的未監督組織之模糊群集平均數(“FCM”)法被利用 以推論fg用得分之估價於組合資產中之資產上’如下所述 。此等群集技術已被開發以回應更複雜的分類段,以描述 其需於不容人工處理之期間內預估之組合資產中的資產及 高資產總數。 一範例方法首先組織估價得分(固定的及/或可能性的 重獲)於一電腦化系統中。接著對特定因素及商業決定之 估價得分進行調整。然後執行其描述相同資產之多個估價 得分以及對於訪談/撤銷推論估價之整體調整的協調。 -15- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(1)3 (請先閲讀背面之注意事項再填寫本頁) 組織估價得分係藉由(以電子形式)根據每一群集之 描述性屬性的效力以整理每一群集之估價中的:群集編號 、群集名稱、群集之描述性屬性、可能性重獲値(例如 HELTR得分)及認證者之信心而執行。群集編號係一特定 組之有關資產之事實的描述性屬性的獨特識別物,其被一 評估專家用來預估一資產之價値。描述性屬性之範例包含 (但不限定於):付款狀態、資產型式、以分數表示之借 主信甩可靠度、所有權之所在及資格。於一實施例中,群 集名稱係描述群集之描述性屬性或來源的字母數字名稱。 描述性屬性之一範例可見於圖1 2,如下所述。 描述性屬性係用以產生資產價値之事實或範圍或方向 。電腦邏輯被用以檢查複製的群集,並警告分析者或認證 者。 經濟部智慧財產局員工消費合作社印製 因爲每一資產可被描述以許多描述性屬性之組合,所 以可能發生對於相同資產之各種不同位準的値。可能性重 獲或信用得分或資產價値之任何數字指示爲於不同資產位 準所指定之價値的指標。來自各種描述性屬性之所有資訊 被綜合以致其買價或售價可被確定爲一固定値或一可能的 値。此處所使用之說明性實施例爲HELTR得分。每一群集 具有一獨特組的描述性屬性且被指定HELTR得分。 每一群集之獨特屬性均有助於群集價値之估價。不同 的屬性組合提供一特定群集之得分的較高信心或信心間隔 。例如,假如任一資產被描述爲具有高度等於2.5”而寬度 等於5”之綠色紙張一則其可能歸屬於0至1 000元的價値而 -16- 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 _____B7 __ 五、發明説明( 對此預估產生極少的信心。假如此相同資產被描述以另一 事實或屬性或方向爲一張真實的$ 20美元鈔票,則將對此 $ 20美兀之群集價値產生極高的信心因數。 一群集之估價及信心被決定於一時點且被記錄。有時 會獲得新的資訊或者分析者欲改變其價値。該價値被人工 地更改,或者自動地以一資料域及決定規則,以經由電腦 碼之自動方式。先前的價値被利用以反應新的資訊。舉一 說明性範例,假設先前的群集信心被記錄爲〇. 1,而發現到 一具有如此群集中之確實描述性屬性的不同資產剛售出以 超過預測的“最可能”價値。則套用此狀況發生時的規則,即 群集信心被乘以10。0.1X10 = 1即爲更改後的群集信心。 此一方法之目的在於調和相同資產之多個得分,控制 相關於每一估價範圍之每一估價源的信心。使用’ HELTR爲 一具有樣本資料點於一特定資產的說明性範例如下: (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -17- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(^ ) 經濟部智慧財產局員工消費合作社印製 時序 δ ο (.7/1.65)(3) S (η 2.6059 s ο (η Ο (.7/1.65)(.31) un 5 .2374 預期 (.3/1.65)(.62) (.7/1.65)(.4) (.65/1.65)(.5) .4792 蛔 (.3/1.65)(.85) (.7/1.65)(.45) (.65/1.65)(.9) •6999 估價信心 un \q r A 時序 CO CO CNl ιη 預期 CN ν〇 寸· 蛔 UO οο ON , 群集名稱 抵押權位置-追索權 資產 分類_ 工業- 年份 協調_ 使用_ 借主 X 群集編號 1 “ CS CO c: I--------^裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐)_丨各- 1248001 A7 B7 五、發明説明(也 (請先閱讀背面之注意事項再填寫本頁) 群集合意(consensus)估價係.6999之高値,最可能爲 .47 92、低爲.2374以一時序爲2.60 59。不同邏輯可被應用以 處理任何加權。 合意得分係發展以總體假設之背景。假設有一總體假 設改變時,則方法步驟128、138被包含於演算方法中以力口 權合意得分。說明性範例爲某些估價因素之錯誤重獲,該 等因素包含:總體經濟改變、一資產類別所建立之可取代 的市場價値、及推論之資產估價演算方法相對於其他被利 用之演算方法的損失或增進。 於另一實施例中,一種交互相關工具被使用以快速地 暸解並描述一組合資產之成分。通常,該工具被用以將一 使用者選取之變數的回應相關聯與一組合資產中之其他變 數。該工具快速地識別介於兩個屬性變數與回應變數之間 的非預期的高或低關聯性。屬性變數係兩種型式:連續的 及類型的。交互相關之計算係藉由所有有關的變數與其框 或位準之間的相關工具,且(於一實施例中)被呈現以一 二維的矩陣以利簡易識別組合資產中的資產之間的趨勢。 經濟部智慧財產局員工消費合作社印製 首先,交互相關工具識別組合資產中之所有屬性變數 爲兩種型式(連續的或類型的)之一。對於每一變數,聚 集位準係以框計算於連續的變數,並以價値計算於類型的 變數。 一位欲以該工具識別相關性之使用者將選取一回應變 數,Y…例如用於預期重獲。對於所有屬性變數對(X 1與 x2)及其位準(a與b)之組合,依據下式以計算回應變數 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 1248001 A7 B7 五、發明説明(如 之平均値,Yr : (請先閲讀背面之注意事項再填寫本頁)
Yr = sum(Y(xl = a and x2 二 b))/count(xl = a ancj x2 = b) 回應變數之預期値,係依據下式而計算: YExpected = (s u in (Y (x 1 = a)) * count(x l = a)十 sum(Y(x2 = b)* count(x2 = b)) / (count(xl = a) * count(x2 = b)). 來自個別地使用xl = a及x2 = b之事件的加權値之預期 値,,之所選取變數,,的誤差,Y…^,以下式計 鼻· Y error =Yr - Yexpect. 於一實施例中,預期値及誤差被顯示以多維的顯示以 易於從預期値識別變數。 經濟部智慧財產局員工消費合作社印製 於另一示範實施例中,使用一種將原始資料轉換爲最 終出價的轉移函數方法,如下所述。表136係使用程序14 、34及40中所得之修改係數而被電子地調整,以提供對於 資產之信用得分3 8的係數調整並產生推論之個別資產信用 値的一調整過信用分析表140。個別資產値係藉由資產部分 分組而取自表140 (如所需)以產生一推論的信用估價142 。最後對“未觸及”資產之可忽略剩餘部分30執行一推斷以 產生一未觸及資產之表144。來自表144之値被選取以產生 -20- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(也 一未觸及資產估價。 (請先閲讀背面之注意事項再填寫本頁) 完整現金估價98、部分現金估價1〇4、完整取樣信用 估價11 8、部分丨g用値1 3 2、推論信用値14 2及任何來自未 觸及資產表144之指定値爲累積的及互斥的,以其優先順 序係從完整現金估價98依序至推論信用値142。估價之總 和代表組合資產之價値。 圖4係由系統2 8 (如圖2中所示)所執行之出價準備 階段1 68的流程圖。累積的估價98、104、11 8、1 32、142 及144被組合於風險偏好貸款位準估價步驟146。一決定性 現金流橋148係使用一現金流時序表丨5〇而產生以製作一 推測現金流橋1 5 2。一推測或可能性現金流橋1 5 2被產生並 使用以決定一提議的資產部分出價1 54,其被反覆地應用以 一資產部分模型1 5 6直到達成某一臨限値1 5 8。臨限値1 5 8 爲(例如)一收益(return )之內部費率(“IRR”),其係大 於某一値、某一獲利之時間(“TTP”)、及一正的淨現値( “NPV”) 。 通常,NPV被定義爲: 經濟部智慧財產局員工消費合作社印製 /VP^C。Ά (方程式 a) 其中C〇爲時刻0之投資,Cl·爲時刻1之預期報酬,而 r爲抵扣因素。基本觀念在於今日之一元大於明日之一元。 於保險策略之情況下,、NPV被界定爲: 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ 1248001 A7 _ _B7_ 五、發明説明(如 ^ = Σρ-Σε-(Σ〇)^ (方程式 β) (請先閱讀背面之注意事項再填寫本頁) 其中Ρ爲溢價(premium ) ,E爲預期的額定成本,而 C爲索賠成本。本質上,方程式B係有關如何產生淨收入 ’以其利潤與加權預期風險之差異。注意到其總和係加總 一特定區段中之所有策略。同時注意到所有溢價、額定成 本、及索賠成本已在代入方程式之前被折扣。結果,產生 一獲利性得分。 經濟部智慈財產局員工消費合作社印製 假如滿足臨限値條件1 60,則出價1 54便進行一模擬的 出價公開分析161以預測該出價是否可爲一獲勝的出價。 一密封之出價拍賣的結果係根據來自每一出價者之出價的 多少。拍賣之執行涉及公開所有出價並將拍賣之項目售給 最高出價者。於傳統的密封出價拍賣中,一旦出價者提呈 出價後便不容許改變其出價,且出價者不知道其他出價者 的出價直到其出價被公開,使得拍賣之結果爲不確定。藉 著提出較高價,則臝得拍賣之機率便提高,但是欲以較低 價贏得拍賣所得到的價値獲利便降低。 模擬競爭出價可增加獲得最高有利收益性之機率,藉 由設定一出價/售價之範圍,其具有一傾向以在其本身財源 耗盡前耗盡任何競爭出價者的財源以致其保留最高資本來 交易最想要的資產。藉由一種分析上健全的處理程序以專 注於出價決策,因爲單純趣味性的商業判斷可能由於一種 未經隱密議程、個性或單方面知識之資料取得方式而被擴 -22- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(± 大。 (請先閲讀背面之注意事項再填寫本頁) 每一潛在的出價者均具有一可能被用以參加密封出價 拍賣之可能出價的範圍。該出價範圍可被表示以一統計分 佈。藉由推測性地取樣自出價價値之分佈,則可模擬出一 可能的拍賣情景。進一步藉由使用一種反覆取樣技術,例 如一種Monte Carlo分析,則許多情景被模擬以產生一結果 之分佈。該結果之分佈包含臝得拍賣項目之機率及價値獲 利。藉由改變本身出價之成本,則可決定臝過本身出價之 拍賣的機率。 下列核心要件被用以模擬一競爭出價利潤:將市場規 則及契約編整爲電腦化商業規則;將潛在競爭/市場力、預 測之預算及優先順序編整爲一偏好矩陣;個人出價能力、 偏好;已協議被編整爲偏好矩陣之風險/收益取捨;以及一 電腦化之推測性最佳化。 經濟部智惡財產局員工消費合作社印製 分析1 60模擬一種競爭環境,以其他具有各種財力之 公司來出價對抗系統28所計算之出價。於一實施例中,分 析1 60 (舉例而言但非限定)包含一總出價限制,例如可能 爲其中資產之總價値超過其使用系統28之實體的財務能力 之情況。於一實;中,分析160可預估資產部分之各種組 合的獲利性,於此限制出價資源之情況下。分析1 60亦考 量其對抗已知競爭者之出價的歷史以及有關競爭出價者所 偏好之各種資產型式的資訊。於分析1 60中,資產部分出 價被接著評估並由管理1 6>2所傳送而做出一最終資產部分 出價164。在做出出價164之前的所有估價均可被重複,如 -23- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7_______
五、發明説明(A (請先閲讀背面之注意事項再填寫本頁) 所需。再者,因爲此方法爲自行調整且反覆的’所以資產 部分出價1 64可能會升高,隨著由系統28所執行之每一重 複運作而發現越來越多價値。 流程圖8 5所述之方法包含一估價階段1 6 6 (顯示於^ _ 3.中)及一出價準備階段1 68 (顯示於圖4 )。估價階段1 66 包含程序14、34及40。估價階段166不斷地運作直到終止 ,以其自動估價程序40及取樣程序34嘗試發現資產類型 之各種資產中的額外價値。. 經濟部智慧財產局員工消費合作社印製 再次參考圖2,並依據快速資產估價,則組合資產12 中之資料類型170、172及174被識別於每一資產並儲存於 資料庫76。反覆及適應估價方法32採用所選取資料78之 部分並以統計方式應用標準80於該等選取資料78之部分 以增加已知的資產價値,而非粗略推斷20之資產價値。依 據方法28,則增產被劃分爲至少第一部分1 6、第二部分36 及第三部分或剩餘者42。使用程序14,則部分16中之資 產被完整認證以決定估價98及部分價値完整認證估價104 ,並建立此估價之標準80。使用程序34,則方法28從代 表第二部分36中之群組的第二部分36取樣一資產之量以 決定第二部分36之完整取樣群組估價11 8及部分取樣信用 値1 32,並建立此估價之額外標準80。使用程序40,則部 分監督的學習方祛206及部分未監督的學習方法208被執 行以一自動分析器,例如圖2之電腦3 8。爲了學習,自動 分析器提取有關第三部分或剩餘者42之已建立標準80及 已選取資料7 8並將桌二部分4 2劃分爲部分4 6,且接著進 本紙張尺度適财關家鮮(CNS ) A4規格(210X297公釐) ~ 一 - 1248001 A7 B7 五、發明説明(太 (請先閲讀背面之注意事項再填寫本頁} 一步將每一部分46劃分爲類型48及50及將類型50劃分爲 群集52、54及將群集52、54劃分爲次群集56、58、60、 62及64,其係使用輸入自資料庫76及每一方法206與208 之標準80。藉由統計推論以建立次群集56、58、60、62及 6 4中之資產的個別資產估價。 經濟部智慧財產局員工消費合作社印製 個別資產估價被列入群集表1 3 6 (參見圖3)而在調整 138後列入信用分析表140。所建立之標準80是客觀的,因 爲標準80係來自資料庫76,其中這些標準係決定於完整認 證程序14及樣本認證程序34期間。換言之,於所有資產 之完整價値表96、部分價値表102、表116、最初信用分析 表126、調整過信用分析表130、調整過信用分析表140及 未觸及資產表144中所獲得的資訊被置入一數位儲存裝置 (例如電腦38之硬碟儲存178)中之資料庫76中,且由程 序40以來自程序14及34之標準80執行相關聯。於程序 40期間,標準80 (其具有統計上之可接受的可靠性程度) 被輸入。亦即,程序40反覆地學習於其估價及建立標準80 時。監督的學習方法206及未監督的學習方法208藉由將 完整認證第一部分16中之資產及樣本認證第二部分36中 之資產相關聯至資料庫76中已建立的標準80而增加統計 推論估價142之準確性。有關於第三部分42中之一或更多 資產的選取資料78 (類似於部分16及/或36中之資產的選 取資料78)被置入資料庫76中,並接著藉由統計推論以從 所置入之資訊決定第三部分42中之每一資產的價値。 於流程圖85所述之方法期間,資產被估價以一個別的 -25- 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 1248001 A7 ___B7 五、發明説明(么 (請先閲讀背面之注意事項再填寫本頁) 資產位準,而個別的資產價値被製成表或分組爲一或更多 組合。爲了有對於各種出價情景之最大彈性,則組合資產 12之任一子集被分別地評估及定價於一特定的時間框。於 已知的方法1 0中,假如資產之賣主重組其資產時,例如從 資產公司之群組改爲由借主之地理位置的群組,則出價之 重估可能是不足的,因爲粗略推斷20需被執行。於使用系 統28時,因爲個別資產價値被產生被列入表96、102、116 、130、140及144中,所以這些値可被電子式地重組爲不 同的估價98、104、118、132、142,其“食物鏈”選取標準爲 互斥的,且可由分析者執行估價而選取,其將被進一步描 述於下。假如賣主將資產分組,可輕易地做出依據賣主群 組或資產部分之分組,並可輕易地產生該資產部分之適當 估價146。第三部分42之個別資產値因而被輕易地重組以 客觀地獲取該群組或資產部分之推論估價142。 經濟部智慧財產局員工消費合作社印製 可利用許多方法以建立資產價値。根據估價之目標, 則不同估價方法之相對優點建立了一特定資產之估價技術 的有利條件。一種方法係類似於一“食物鏈”,其保留假設產 生方法而選取具有最高信心間隔之間隔。 於食物鏈之說明例的前言中,某人可能較偏好藉由公 開市場中之類似資產的買賣以估價一金融資產,而非僅憑 個人意見。於排序中,市場對市場之價値被選取超越一個 人的意見。 以相同方式,則一具有預估現金流重獲之組合資產中 的資產可被估價以數種估價技術。典型的目標係(以可達 •26- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 1248001 A7 B7 五、發明説明(如 (請先閲讀背面之注意事項再填寫本頁) 成之高機率)建立未來現金流將爲何。估價方法依其能力 而被排序,以準確地量化現金流,或現金同等物’具有最 少不利變數及/或最大有利變數之預估。資產係由所有具有 優點之可行方法來估價’或者可具有商業邏輯規則以刪除 重複的工作,當已知一旦最佳方法已被使用後則更準確的 方法將排除預估一資產價値之需求時。 爲了提供資產價値之最佳預測,則資產被評估以一食 物鏈中之每一方法,直到每一特定資產均被最佳的可行方 法估價時。一旦發現此最佳價値時,便將資產定爲此價値 ,而不管食物鏈中之其他較低的價値(其具有較多變數) ,並將此價値傳送至完成狀態。 經濟部智慧財產局員工消費合作社印製 舉例而言,一組合資產係使用一食物鏈以估價。食物 鏈中之第一估價方法爲最吻合估價目標之方法一即找出具 有最高準確度(最緊密之信心間隔)的價値。一旦資產被 估價以一策略(其中建立該獨特資產之價値),則該價値 被傳送至估價表並去除食物鏈中之任何進一步的步驟。未 吻合任何估價方法之原始組合資產中的資產列被保持於未 觸及資產表中。目標係使得此未觸及表中留有零個資產。 一食物鏈之範例係如下,依偏好之順序。(a )具有 100%現金的資產,(b)具有部分現金的資產,(c)類似 資產之流動性市場價値,(d )直接認證,及(e )推論認 證。 食物鏈方式得以:找出最佳機率分佈模型、減少機率 分佈變數(尤其有關不利的尾部)、提供快速建立機率分 -27- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(如 佈而保存顧客群中之所有可用知識的能力、及提供最佳價 値預測於重獲過程中之任何時刻的能力。 (請先閱讀背面之注意事項再填寫本頁) 如圖4中所示,出價準備階段168之一般架構係決定 出價1 64,類似於買賣特權估價範例,其中獲勝的投資者將 有權(但非義務)重獲投資。價値被分離爲三部分於每一 資產部分,即貨幣成分之時間價値、固有價値成分及可能 的現金流成分。貨幣之時間價値及固有價値被決定性地計 算且一旦建立後便很少變動。貨幣之時間價値的計算係採 用一低風險投資之資本的公司成本乘以其代表因執行該投 資而放棄之另一投資機會的可行期間之投資。固有價値係 一已知的流動性資產價値,其超過購買價且於控制資產後 便立即可用。一實施例係妥善交易的債券(security),其 被購買以低於市場價而成爲組合資產之部分。可能現金流 變數係一適當的勤奮小組所做的假設以及該小組所選取以 將原始資料轉換爲現金流重獲資料流的方法之函數。此處 所述之系統係用以減少負向變數並求得價値。 經濟部智慧財產局員工消費合作社印製 圖5係一典型的最小三點資產估價1 80之三角形機率 分佈圖。依據程序40,每一金融工具之三種情況的最小値 被評估。一垂直軸182代表漸增的機率而一水平軸184代 表重獲之漸增的部分。圖中顯示面額線1 8 8之最差情況百 分比186、面額188之最佳情況百分比190、及面額188之 最可能情況百分比與重獲値1 92。最差情況百分比1 86之機 率爲零’最佳情況百分比.190之機率爲零,而重獲之最可 ㉟百分比1 9 2的機率1 9 4係由點1 9 6所代表的値。於曲線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 1248001 A7 _____B7 五、發明説明(如 200之下方由連接各點186、196及190所界定之區域198 的大小係代表資產中之價値。保持於一矩形(由面額1 8 8 之100%重獲的100%機率線段204所界定)之區域202中 的標記資產價値係可歸屬於曲線200所表示之資產的面額 188之部分的量測。點186、196與190及線段188與204, 以及區域198與202,將隨著相關資產所選定之選取資料78 及資產所應用之標準80及資產價値重獲之歸屬機率而改變 。水平軸1 84可被表示以貨幣單元(例如,元)而非面額 之百分比。當貨幣單元被使用時,則不同資產之曲線200 下方的區域198將爲貨幣單元,而因此區域198之量係彼 此相關,因而對總出價70、72及74是很重要的。對於資 產之瞭解越多,則曲線200可越爲精確。當標準80被建立 時則應用統計資料至曲線200以協助建立點186、196與 190之位置,因而建立區域198並建立資產之預期値。現金 流之時序(其影響價値)可根據時序屬性之統計圖結果。 例如,現金流重獲時序可被分割爲三段框:0-6個月、 7-12個月、13-18個月,等等。使用演算法134之自動分析 器38可選取框寬度,根據估價之時序的敏感度學習交易相 對於可能由認證者所決定之估計重獲及費用。於一示範實 施例中,應使用最少4個框,當祗扣因素超過25%時。對 於10與2 5之間的抵扣因素,則應使用最少6個框以涵蓋 可能的重獲週期。 依據程序40,其他的·資料來源被選擇以使其一認證者 得以用來評估金融工具中之價値。於該情況下,於程序! 4 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~~ - (請先閲讀背面之注意事項再填寫本頁) 一裝_
、1T .加 1248001 A7 B7 五、發明説明(太 (請先閲讀背面之注意事項再填寫本頁) 及34由認證團隊94、100、114、122及140所建立之標準 80係有用的。依據流程圖85所述之方法,原始資料被轉變 爲一重獲且一規則組被選取以應用一種估價於該原始資料 ,而此規則組被編碼入估價資料庫中以標準80之形式。每 次一群集於程序14、34或40之估價期間被多次觸及時, 則產生一合意預測並應用至該群集。依據系統28,現金流 之機率分佈以及資產部分位準之時序係藉由產生估價轉移 函數146於資產位準而被決定,此函數將採用原始資料、 推理其資料將產生之假設以及聚集資產部分中之個別資產 的估價。 經濟部智慧財產局員工消費合作社印製 因爲並非所有重獲都是均勻的,所以提供一種方法以 建立現金流重獲之可變性。個別資產被聚集以群組展露。 於容許時間內傳統地認證儘可能多的面額,識別其一相當 大的樣本保留於群集。群集儲備係使用一相當於面額數之 一百五十五加上2.65%的樣本大小以及變數之復原分析而 被預測。如此產生三十之樣本大小於100筆資產之面額數 、150於1,000筆資產之面額數、400於5,000筆資產之面額 數、500於10,000筆資產之面額數、及600於20,000筆資 產之面額數。 於統計推論程序40期間,組合資產12之第三部分42 中剩餘的資產被群集以描述性認證屬性或標準80,且隨機 之樣本被取自每一群集及已認證之樣本。於一實施例中, 當資產位準平均數變數低於10%時,則便停止自程序40中 之取樣。於另一實施例中,當資產部分位準平均數變數低 -30- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A 7 B7 五、發明説明(如 (請先閱讀背面之注意事項再填寫本頁) 於1 5 %時,便停止取樣。組合資產平均數變數不被使用爲 一停止點,假如潛在之銷售的單元小於整個組合資產時。 依據程序40,則群集取樣之重獲估價被推論至相應的群集 總數上。於使用系統28時,其目標係經由三或更多唯獨群 集以觸及每一推論之資產估價。於程序40期間,一群集之 認證信心及描述性屬性之關聯性被權衡。 舉例而言,非爲限制,0 =無任何信心此群集之描述性 屬性將提供一有意義的估價;1 =有充分的信心此群集之描 述性屬性將提供如個別地認證每一工具般準確的估價,而 介於1與0之間的數字表示估價之部分信心。這些値之協 調發生於調整過的信心分析表1 30。於程序40中,於資產 位準上之現金流係接著藉由總體經濟係數而被調整於調整 過的信心分析表140中。於一實施例中,總體經濟係數相 關於主要資產類別,例如(非爲限制)不動產居住貸款或 商業設備貸款。該等係數可爲全球地適用,例如(非爲限 制)法律趨勢、國內生產總値(“GDP”)預估、保證人趨勢 、存款(collections )效率、借主群組碼,等等。 經濟部智慧財產局員工消費合作社印製 一種用以取樣一組合資產之方法包含搜尋於關鍵資產 '借主、及其嚴重地影響/產生風險之屬性的附帶特性之間 。以下表A提供一資產估價情景中之組合資產屬性的範例 歹[J 〇 -31 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 1248001 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明(衾 _表A :組合資產屬性 借主多少(依借主群組UPB) 安全的 組織的.(是/否) 擔保的 貸款型式(期間、循環,等等) 來自第一位置中之抵押權的% UPB 存款得分(0 =差,1=優) UPB之12個月的存款% 本金之最後付款的% #借主貸款 借主UPB之貸款的部分 單一家庭居住 居住 零售 工業 醫院 理解力 多數家庭 已開發土地/未開發/其他 辦公室 股票/保證金貸款 資產屬性之分割係藉由將屬性編碼爲“模擬變數”而完成 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) -32- (請先閲讀背面之注意事項再填寫本頁) 1248001 A7 B7 五、發明説明(女 。例如,一共同資產屬性爲“借主是否於最近1 2個月內付款 ? ”,假如答案爲是則以一變數編碼爲“ 1”,否則編碼爲“〇” 。類似的“模擬變數”被使用於其他資產屬性。 分割程序被完成,藉由使用任一統計程序,其處理編 碼的資產屬性以將組合資產分割爲類似資產之群組。其一 種演算法爲K平均數群集。於一範例中,其中使用三種資 產屬性:未付之本金結餘(UPB )、付款之機率(從〇至1 的得分)、及安全得分(不動產抵押品所擔保之機率), 資產可被分類爲具有類似屬性之五個群組。 一旦執行資產之分組後,則欲採用及提出以利進一步 認證檢視之樣本數被計算,藉由:建立信心位準(以其做 出有關每一分割(k )中之總重獲的聲明)、建立精確性( 以其某人所欲建立之每一分割(h )中的總重獲)、及提供 位準之現場預測及重獲之範圍而成爲總未付本金結餘(UPB )(R )之百分比,依據: —-------裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(洳 yar{YR)
N rr Σ(λ-^)2 Σ'· π =樣本大小< #=樣本大小, χ,·=樣本I之UPB ; 凡.=樣本I之重獲y , Ν - Λ = =(群集預期的重獲% Σ' , h2^k2 Ν η Σ' Ν Σ(λ,2 Ν-Ι
α方程式Q (請先閲讀背面之注意事項再填寫本頁) (方程式D) k2 經濟部智惡財產局員工消費合作社印製 π
h = error tolerance for estimating ^ = with YR
I 、-a Σ-^/ ν Σρα"- Σν Σ' *·-· :constant in TchebysheVs Formula : ^ ^V^ar(^) with probability > 1 藉由解出n之方程式C,則可獲得既定群集之所需的樣 本大小。解出方程式C進一步容許使用者確定η (以l-1/k2 之計算得樣本大小的機率),而相關的認證値將預測總群 集重獲至h之誤差內,假設其總分割重獲之預測係使用方 程式D而被決定時。 實際上,若無可用資料則不易預測總重獲之變化性。 一空白表格程式實施上述工作,藉由產生資料於一 M〇nte Carlo模擬’並透過其結果之分析以引導使用者直到取得一 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公羡) -34- 1248001 A7 B7 五、發明説明(金 適當的樣本大小。 表B提供從一 20筆貸款之群組的硏究所得之範例,以 預測(預期)之重獲於UPB的20%與30%之間,及UPB 之範圍於1MM與2MM之間。八個樣本是必須的,以預測 具有75%信心指數之20筆貸款的總重獲於實際上10%之 內。 表B :樣本大小空白表格程式幫助系統
Exo Rac Exp Rac Cume UPB 1 779.131 779.131 2.936.279 26.5% 2 716.951 1.496.062 5.447.631 ,27.5% 3 359.327 1.855.409 β.702.090 27.7% 4 4β1.79β 2.337.206 8.536.875 27.4% 606.774 2.943.980 10.706.452 27.5% 6 418.899 3.362.880 12.207.495 27.5% 7 822.516 3.985.396 14.609. t80 27.3% a 594.799 4.560.195 16.911.278 27.1% 9 713,922 5.294.117 19.440.132 27.2% 10 494.230 5,706.346 21.153.615 27.4% 11 735.334 β.323.680 · 24.031.814 27.1% 27.3% 683.155 7.206.835 26.387.193 13 743,413 7.955.24« 29.2S6.2S1 27.2% 14 419.88S β.375.133 30.728.773 33.682.971 27.3% 15 757.050 9.132.183 27.1% 16 553.674 9.685.857 32.690.262 27.1% 17 761.579 10.447.435 38.234.459 27.3% 18 877.811 11.125.246 40.756.944 27.3% 19 563.811 11.689.057 42.668.952 27.4% 20 434.763 12.123.821 44.160.329 27.5% (28.694) 25.241綠“ 39.857 \ (31.730H 19.068 ·: (44.439) J 8.922 66.336 (10.741“ 34.790 ί 30.810 %
Residual 27.259 12.042 (20.956);; 10.750 'i 5.397 Ν (eiuetcr six·)( \ 20 n (sampl· siz·)[ 6 Exp«cted R^covory % 27 5V. 【 Rang籲 | ER % Rang· | Face Value ^ 2.000.000 5.0% 44.160 329 : Min Fac· I Min ER % | Expected Recovers ί 1,000.000 25.0% 12.123 321 Confld«nc· | n I Precision Precision V· * 75.0% 2.00 1.212.382 10.0% (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印焚 適當的變數調整預測被執行於每一資產且估價表被建 構以包含每一資產於組合資產中。重獲被估價以銷售之單 元的連續機率,其於一實施例中爲資產部分。於使用系統 28時,收益(return)之內部費率(“IRR”)及變數將接著 被評估。較佳的資產部分具有較低的變數於一既定的IRR。 使用企劃之抵扣率而評估出每一資產部分之淨現値(“NPV” )係大於0。一抵扣率係決定自本金之機會成本,加上FX 交易成本,加上預測現金流重獲之變數所固有的一般不確 定性之風險。假如似乎有大於百分之五之不確定性其企劃 將具有負的NPV時,則不出價。交易評估係依其具有下列 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) -35- 1248001 A7 B7 五、發明説明(幺 決定標準之資產部分:IRR、一資產部分中之IRR的風險便 數、預測的意願與資產部分之支付的能力、獲利之時刻( “TPP”)與由資產部分之償付的風險便數、以及由資產部分 抵扣至無風險率之預期現金流的NPV。 於競爭出價環境(當組合資產之內容係不可協商時) 中,則投資者或賣主具有強烈的財務動機以僅選取將提供 其總體金融結構最佳風險/收益之交易的可得總資產的部分 。符合最小風險/收益預期値且具有最大有利機率之較高機 率的資產更能吸引投資者。 整體組;被劃分爲個別可銷售的子組合資產或資產部 分。每一資產部分具有一預估的現金流機率分佈及來自先 前分析的持續期間。這些資產部分被接著賦予一試驗價。 新的資產被組合與賣方或買方之現有資產績效,並執行 Monte Carlo實例產生(以其所使用之交互相關)。 資產部分選取程序包含隨機選取不欲購買之資產部分 。一旦組合資產效益呈現某一模式,則可藉由統計最佳化 以找出用何種價格購買受侷限之資產部分的最佳選擇。 使用NPV可能產生誤解,由於關連與雙重抵扣之效益 ,該雙重抵扣將發生於悲觀的實例景況被抵扣以獲得PV時 。使用延遲獲利可克服此限制,且邊緣資本成本或無風險 率被用於抵扣,當由分析者執行估價以決定時。 推論估價程序40之監督的學習方法206及部分取樣程 序108之步驟120、122與.126具有本質上的相似性,亦即 認證者係主動地介入該方法,但是該方法係自動化的。圖6 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) —-------^_裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -36- 1248001 A7 B7 五、發明説明(釦 (請先閲讀背面之注意事項再填寫本頁) 係一流程圖以說明一自動認證可分割金融工具資產之方法 210。金融工具之第一群集係由共同屬性而界定(212 )。 有關該價値之一專家意見2 14被提供給其來自根據屬性而 界定之群集的選取樣本。此意見被用於一樣本認證方法216 ’而其屬性之組合被檢視並協調(2 1 8 )。方法2 1 0接著選 取並設定欲使用之個別屬性(220 ),且接著將個別資產分 類爲群集(222 )。群集估價被應用至每一群集資產(224 )。使用該群集估價,則該等價値係依據一規則而被廢除 隔離(226)以產生一信用分析表228。 經濟部智慧財產局W工消費合作社印製 圖7係包含數個模組之未監督的學習208之一示範實 施例的流程圖。一資料獲取模組230任何可得的相關資料 78。一變數選取模組232識別其經由信用檢視而認爲緊要 的資產相關變數,或是於分離各個資產群組時具有最顯著 影響力者。一等級分割模組234根據由分析者所選取之關 鍵變數以將整個組合資產分割爲框。一 FCM模組236進一 步根據資產資料之自然結構以將每一框分類爲群集。一認 證檢視模組23 8對每一群集指定預計的現金流及風險得分 138 (如圖3中所示)。此得分被接著供應至其來自已於程 序40中調整過的群集之資產的信用分析表136中的個別資 產價値,以產生調整過的信用分析表140。此程序係反覆而 連續的,且可由電腦所執行以使得其可持續進行當標準認 證正於別處所執行時。 圖8說明用以取代圖3及4所述方法之另一示範的推 論估價方法。於另一方法240中,一種七個步驟的方法被 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~ 1248001 A7 ____B7_ 五、發明説明(会 (請先閱讀背面之注意事項再填寫本頁) 使用以快速地估價一不動產貸款組合資產,其係使用完整 認證、部分認證及推論估價之組合。首先,資產係依據風 險而被取樣(242 )。第二,資產被認證(244 ),且其估 價被記錄。第三,市場價値群集被形成(246 ),例如藉由 FCM (如下所述)。第四,已認證資產之復原(regression )模型被建立(248 )。第五,從那些先前所建立(248 ) 的模型中選取已認證資產之一最佳模型(250 )。第六,計 算所選取模型之分數(counts) ( 252)。第七,將( 250) 所選取之模型應用至組合資產1 2之未認證的或推論估價的 部分42,以一種依分數加權之方式來預測每一未認證資產 之個別價値。依據方法240所產生之個別資產價値被接著 置入調整過的信用分析表140 (參見圖3)。 經濟部智慧財產局8工消費合作社印製 於取樣資產(242 )時,認證者使用分層的取樣來選取 資產以利詳細的檢視。其層級係建構自抵押品屬性。不動 產組合資產之抵押品屬性的範例包含:抵押品使用(商用 或居住用)、先前的估價總數、市場價値群集(從先前估 價總數所預測)、土地面積、建築面積、目前估價總數、 法院拍賣變現價、房地產型式及房地產位置。通常,資產 被取樣以一種反向的方式,亦即故意地從一依遞減之未付 本金結餘(“UPB”)或先前估價總數(“PAA”)而排列的表 中選取。 認證(244 )係一項主要爲人工的程序,其中專家認證 者將價値之標註(notation,)歸屬至抵押品資產。已認證之 估價被儲存於一主資料庫表,例如資料庫76 (顯示於圖2 -38- 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7_____ 五、發明説明( 中)。估價通常被總結以貨幣單位(例如’ 100,000 KRW ) ,以當時流通的市場價格。 (請先閱讀背面之注意事項再填寫本頁) 圖9係系統28所使用之方法的自動部分之高階槪圖 2 9 0。自動程序係由認證者使用以協助根據程序3 4 (亦參見 圖3 )之完整認證。於程序34所得之資訊被應用於推論估 價程序40,以減低金融工具之需勞力(due dili§ence )估價 之間的成本及不確定性,並減少需勞力估價之間的成本及 變化性。該等估價進行一種現金流模型’其包含資產位準 估價14 6、決定性現金流橋1 4 8、推測現金流橋1 5 2及現金 流表150。所得的出價估價154進行賭博策略160及管理調 整162以產生最後出價164。 圖1 0係形成群集246之一示範實施例的流程圖。於形 成群集246中,認證者藉助於演算法(例如演算法134 (顯 示於圖3中))以執行使用分類及復原樹(“CART”)爲基 礎的模型之分析,其獲得以抵押品用途及市場價値( “CUMV”)群組之UW資產的分組,其使用先前估價總數( “PAA”)爲驅使變數。 經濟部智慧財產局員工消費合作社印製 以下槪述兩種方式以預估CART爲基礎的模型之績效 。一種方式利用一 CART爲基礎之方式的平方誤差總和相 對於一簡單模型的平方誤差總和之比率,其被稱爲誤差比 率。一簡單模型係一種對所有資產指定一平均資產價格的 模型。第二種方式係計算一確定之係數,標示爲R2,且定 義爲 、 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(全 R2 = 1 - ( SSE/SST),其中SST係平方之總和。 R2係每一分割中之單一資產相對於整個總數的貢獻, 於一特定分割中之一資產的R2値越高,則其貢獻便越高。 不同組合資產分割係根據兩種方式而被評等,此兩種方式 包含··提示每一組合資產分割中之模型的預測能力有多女子 ;藉由定出(例如)每一資產部分之價値以提供~g 準給出價者。 (請先閲讀北弓面之注意事項再填寫本頁} -裝 -訂 經濟部智慧財產局員工消費合作社印製
本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 1248001
A
7 B 經濟部智慧財產局8工消費合作社印製 五、發明説明(^ ) 資產部分 CO 資料 B C 總數 C貸款之 評等誤差 比率 C貸款之 每貸款R 平方 CO01 目前UPBTHB之和 645,959,109 82,692,009 728,651,119 貸款之筆數 66 10 76 SST之和 599,969,990,091,044 72,331,126,127,460 672,301,116,218,504 SSE (CART)之和 252,088,256,587,362 26,877,527,094,865 278,965,783,682,227 SSE (簡單)之和 440,700,263,795,025 36,637,006,656,009 477,337,270,451,034 0.733617 0.18% CO 02 目前UPB THB之和 58,779,400 379,765,147 438,544,547 貸款之筆數 9 118 127 SST之和 32,332,549,696,133 1,039,401,135,208,180 1,071,733,684,904,320 SSE (CART)之和 6,139,933,273,655 83,849,226,818,428 89,989,160,092,084 SSE (簡單)之和 7,037,799,486,368 136,366,441,963,041 143,404,241,449,409 0.614882 0.06% CO 03 目前UPB THB之和 798,969,257 276,915,573 1,075,884,830 貸款之筆數 98 99 197 SST之和 2,869,807,879,172,670 1,017,087,163,438,760 3,886,895,042,611,430 SSE (CART)之和 729,304,505,050,836 65,902,258,632,574 795,206,763,683,411 SSE (簡單)之和 929,822,648,064,552 41,730,444,375,417 971,553,092,439,969 1.579237 0.46% CO04 目前UPBTHB之和 916,281,888 184,828,399 1,101,110,287 貸款之筆數 116 28 144 SST之和 927,232,177,539,735 223,991,862,418,471 1,151,224,039,958,210 SSE (CART)之和 329,869,566,636,764 92,347,778,018,417 422,217,344,655,182 SSE (簡單)之和 688,543,329,448,792 62,722,788,782,158 751,266,118,230,950 1.472316 0.11% CO 05 目前UPB THB之和 221,769,281 41,505,412 263,274,692 貸款之筆數 36 19 55 SST之和 270,033,444,922,605 164,601,058,694,453 434,634,503,617,058 SSE (CART)之和 28,547,982,198,095 10,191,006,095,769 38,738,988,293,867 SSE (簡單)之和 28,897,015,065,918 8,519,509,247,449 37,416,524,313,367 1.196196 0.14% 目前UPB THB之總 和 2,641,758,934 965,706,540 3,607,465,475 貸款之總 數 325 274 599 SST之總 和 4,699,376,041,422,190 2,517,412,345,887,330 7,216,788,387,309,520 SSH (CART )之總和 1,345,950,243,746,720 279,167,796,660,054 1,625,118,040,406,770 SSE (簡單) 之總和 2,095,001,055,860,660 285,976,191,024,073 2,380,977,246,884,730 0.976192 0.22% 7 1 . 4 % 8 8 . 9 % 5 5 . 4 % 8 8.6 % 評等誤差比率及每資產之 R 平方(CART ) R平方(簡單)
表C % % 5 ο直 I-------^裝--(請先閲讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐)—4*1— 1248001 A7 B7 五、發明説明(3fe (請先閲讀背面之注意事項再填寫本頁) 第一步驟係界定相關的組合資產分割。該等分割可爲 預先界定的資產部分,例如,根據企業、未付之本金結餘 (UPB )總額、區域或消費者風險。上述表C係根據資產部 分及資產評等(B或C)之界定分割的範例。 表C提供一輸出自關於一具有五個資產部分及兩種不 同資產型式(B與C)之組合資產的硏究之範例。該表顯示 誤差比率如何被評等於不同分割。同時,每一資產之R2亦 被計算於每一分割中之型式C的資產。 第二步驟係計算CART模型及簡單模型(平均價格之 推斷)之每一相關組合資產分割的SSE價値。誤差比率之 計算係由根據CART模型之SSE除以根據簡單模型之SSE。 假如誤差比率小於一,則CART爲基礎之模型係較簡單模 型爲佳的預測。更有利地,一種最佳模型可結合CART及 簡單模型而成爲一種“混合”模型,藉由依據誤差比率量度( metric )而選擇每分割中執行最佳的模型。 經濟部智慧財產局Μ工消費合作社印製 第三步驟係計算每一組合資產分割中之每一資產的R2 値。每一資產之R2被計算以(每分割之SST -每分割之 SSE) / (所有資產之總SSTx每一分割中之資產數目)。 最後,所有分割係根據第二步驟中所計算之誤差比率 及第三步驟中所計算之R2値而被評等。此模型可準確地預 測其以兩種量度(誤差比率及R2 )均評等爲高的分割之價 値,而最佳模型係使用這些量度而被組合。 表D顯示根據兩種績效量度之型式C (從表C)資產的 五個資產部分之相對評比。 -42- 本纸張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) 1248001 A7 B7 五、發明説明(么 表D :組合資產分割評等 資產部分c〇 C R平方 評等誤差比率 評等R平方 CO01 0.73 0.18% 2 2 CO02 0.61 0.06% 1 5 CO03 1.58 0.46% 5 1 CO04 1.47 0.11% 4 4 CO05 1.20 0.14% 3 3 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局8工消費合作社印製 圖10係一流程圖以說明使用FCM來選擇組成模型之群 集的形成群集246之示範實施例。電腦38 (顯示於圖2) 形成群集246,藉由採用選取之資料78並執行FCM分析以 產生群集。 圖11顯示建立模型248、選取最佳模型250及計算總: 數252,其中係使用資料庫76以建立六個模型。電腦38( 顯示於圖3中)執行此程序。模型建立248被使用以協助 認證者將資產排定優先順序以利完整認證14及樣本爲基礎 的認證34,以及推論估價。 圖11之下半部爲一表格,其顯示從六個依據建立模型 248d所建立之模型中選取最佳模型250的一個示範實施例 。該等模型隨著哪個變數被使用爲X’s而改變。所有模型均 使用CUMV群集(這些係存在於所有資產中)。來自建立: 模型248之模型被使用以預測法院拍賣價格(“CAV”)256 ,以及市場價格(“MAV”)25 8。其他實施例(未顯示)使 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -43- 1248001 A7 B7 五、發明説明(4)1 用其他模型以預測其他價格。 (請先閲讀背面之注意事項再填寫本頁) 於選取最佳模型250中,需考慮(於此,K = 6 )之K 復原模型的最佳模型被選取。最佳模型被選取於每一 UW 資產,依據下列量度:,inja6办,其中y係待預 測之UW値,而 t 係來自kth復原模型之預測,於k二 1,2,··.,K。 於計算總數252中,計算其每一 CUMV群集中被選取 之每一 Κ模型的次數。圖11含有CAV及ΜΑ V模擬範例之 這些總數。其他模擬範例被使用於其他實施例中。 經濟部智慧財產局員工消費合作社印製 當應用模型254時,使用來自其產生每一未認證資產 之預測的所有模型之加權平均預測。該等加權係構成自計 算總數252之頻率,而該等預測係來自模擬程序。於一實 施例中,使用一種商業統計分析軟體(SAS )以產生模型。 使用SAS系統之一人工部分爲每一未認證(non-UW)資產 將獲得一預測的UW値自每一其中未認證資產出現有每一 輸入變數(即,“X變數”)的模型。其他模擬套裝軟體均共 用此特徵。下列方程式E詳述此程序。 ^yjikfuk9ik (方程式E) i.j,k 於方程式E中,假如模型k產生資產1之一預測時,
貝[J Iu = 1,而否則便爲零;fijk =模型k被選取於iihCUMV -44- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 ___ B7_ 五、發明説明(4 型式(i=l,2)及jihCUMV群集(j = l,2,3)中之UW資產的 次數總計;而^ =來自模型k之y 1的預測。需注意僅有 (請先閲讀背面之注意事項再填寫本頁) 一貢獻來自每一其中一資產具有一預測之模擬方式,各以 其模擬方式被選取於相同CUMV群集之所有UW資產的次 數來加權。 程序240亦被使用以評估平均預測之信心下限(1^〇〜〇1-Confidence Limit “LCL”)及信心上限(Upper Confidence Limit “UCL”),以取代方程式E中之 h 的相對應統計 數値。 經濟部智慧財產局員工消費合作社印製 再次回來參考圖3,監督的學習方法206及未監督的學 習方法208使用群集(clustering)。“群集”係一種工具,其 嘗試存取資料組合的型態之間的關係,藉由將各型態組織 成爲族群或群集所設定,以致其同一群集中之型態較不同 群集中之型態更爲相近。亦即,群集之目的在於從大量資 料組合中提取資料的自然群組,其產生某一系統特性之簡 明表述。未監督的學習步驟208利用一種模糊群集方法( “FCM”)及知識工程學以自動地組合資產以利估價。FCM係 一種已知的方法,其已被廣泛地使用並應用於統計模擬中 。該方法之用意在於將群集內距離減至最小並將群集間距 離增至最大。通常係使用歐幾里德距離。 FCM 248 (參見圖10)同時將群集內距離減至最小並將 群集間距離增至最大。通常係使用歐幾里德距離。FCM係 一種將成本函數減至最小之、互動最佳化演算法。 -45- 本纸張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 1248001 A7 B7 五、發明说明(4)3 (方程式F) 其中η爲資料點之數目;c爲群集之數目,Xk爲第k資 料點;Vi爲第i群集中心;# ^爲第i群集中之第k資料的 會員等級;m爲大於1之常數(通常m = 2 )。注意其# ik爲 實數且介於[〇,1]之間。# 1表示其第i資料確定於第k 群集中,而表示其第i資料確定不於第k群集中。 假如/z 0.5,則表示其第i資料係部分地於第k群集中達 等級0.5。直覺地,成本函數將被減至最小,假如其每一資 料點均確實屬於一特定群集且無會員之部分等級於任何其 他群集。亦即,無任何模糊不淸於指定每一資料點至其所 屬之群集時。 會員之等級# ik被界疋以 (請先閱讀背面之注意事項再填寫本頁) -裝· 訂 Σ (方程式G) 經濟部智慧財產局員工消費合作社印製 X「V J· 直覺地,於群集中心Vi之資料點Xk的會員等級’ ,隨著xk越接近Vi而增加。同時,//將隨著Xk越遠離V』 (其他群集)而減小。 第i群集中心Vi被界定.以 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) -46- 1248001 A7
(請先閲讀背面之注意事項再填寫本頁) 直覺地,第i群集中心’ Vi,係Xk之座標的加權總和 ,其中k係資料點之數目。 首先以群集之一所欲數目c及每一群集中心Vi’ i=l,2,…,c,之初始預測,貝[J FCM將收斂至Vi之一解答’其 代表一局部最小値或者成本函數之一鞍點(saddle point) 。FCM解答之品質,如同大多數非線性最佳化問題般,係 主要地根據初始値(數目c及初始群集中心Vi )之選擇。 經濟部智慧財產局員工消費合作社印製 於一示範實施例中,整個組合資產1 2被分割以未監督 的模糊群集,而每一群集係由認證專家所檢視,藉以協助 認證者選擇完整認證14及樣本認證34之金融工具。另一 方面,此FCM可僅應用於部分42。結果,每一群集被指定 一 HELTR複合得分,以利調整(138)之目的(參見圖3) 。本質上,HELTR複合得分獲取現金流之預期値及範圍、 其時序及每一群集相關之風險。 現在參考圖2,完整認證部分1 6相對於總組合資產1 2 之比率爲(於一示範實施例中)資產之25 %以及所有資產 之面額的60%。這些資產之完整認證係由其大小及價値而 被擔保。然而,此認證對所有認證者均爲相當一致的,所 以此認證不太可能產生顯著的出價變異。然而,剩餘的40 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) I47 - ' 1248001 A7 ___B7 _ _ 五、發明説明(4 (請先閣讀背面之注意事項再填寫本頁) %包括部分36及42,其(於示範實施例中)構成資產之 75% ’但是直到認證前只有面額之40%爲高度不確定的。 至其部分36及42f中可見之價値的程度,例如無任何限制 ’有一額外的百分之五於其總推斷,其差異代表介於臝得 或輸掉整個組合資產出價或整個資產部分出價之間的差異 ,亦即數億元之利潤。 於保險策略之情況下,依據程序40,統計資料被用以 嘗試回答三個基本問題:(a )我們應如何收集資料? ( b )我們應如何槪述我們所收集之資料?及(c )我們的資料 槪述有多精確?演算法1 34回答問題(c ),且其爲一種無 須複雜推理證據之電腦爲基礎的方法。用於保險策略推論 估價之演算法1 34適合於回答對於傳統統計分析而言爲太 複雜之統計推論。用於保險策略估價之演算法134模擬統 計預測之分佈,藉由以取代重複地取樣。此演算法通常係 由三個主要步驟所組成:(I )以取代取樣,(II )評估相 關的統計資料,及(III)預測標準偏差。 經濟部智慧財產局員工消費合作社印製 依據保險演算法1 34,則NPV標準誤差之預測被執行 如下。對於每一風險模型及對於該等模型中之每一分割, 假設有N個策略於分割中,則η個樣本係使用以取代取樣 而被選取(例如,η= 1 00 )。於此範例中,每一樣本亦含有 Ν個策略。對於每一樣本,以及對於所有歷史策略: X(Act) E. EiWtde^ (方程式 I ) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 __B7 五、發明説明(么 (請先閲讀背面之注意事項再填寫本頁) 接下來,淨目前値係由NPV= Σ P- Σ Ε-( Σ C)x A/Ew ( 方程式J )所產生於最近的策略。計算nNP V値之樣本標準 偏差。於方程式I中,Act爲實際的索賠(ciaim )而 Wtdexp爲每一個別策略之加權的預期索賠。 圖12係示範標準80及信用評分之示範規則組138的 表格。其他標準亦可被選取,根據金融工具之型式及特別 ‘的出價條件或者出價者之任何其他需求或偏好。 圖13係類似於樹狀圖表66 (參見圖2.之下部分)之更 詳細的樹狀圖表260。於圖13中,其隔離係依據(a)是否 安全,(b)是否循環往復(revolving) ,(c)最後付款是 否爲零。其結果爲六個群集262、264、266、268、270、 272,一般已知爲“搖動者(shaker)樹”。 經濟部智慧財產局員工消費合作社印製 圖14顯示依據本發明之一實施例的示範系統300。系 統300包含至少一構成爲伺服器302之電腦及多數II合至 伺服器302之其他電腦304以形成一網路。於一實施例中 ,電腦304爲包含一網路瀏覽器之用戶系統,而伺服器3〇2 係經由網際網路而可存取至電腦304。此外,伺服器3〇2爲 一電腦。電腦30彳係透過許多介面而互連至網際網路,該 等介面包含網路(例如局部區域網路(LAN )或廣域網( WAN))、撥號連接、纜線數據機及特殊高速ISDN線路。 電腦304可爲任何能夠連接至網際網路之裝置,其包含網 路電話或其他網路可連接設備(包含無線網路及衛星)。 伺服器302包含一連接至中央資料庫76 (亦顯示於圖2中 )之資料庫伺服器306,其含有描述資產之組合的資料。於 -49- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1248001 A7 B7 五、發明説明(4> 一實施例中,中央資料庫76被儲存於資料庫伺服器3〇6上 ’且由電腦304之一上的使用者透過電腦304之一登入伺 服器子系統302而存取。於另一實施例中,中央資料庫76 被遠端地儲存自伺服器302。伺服器302被進一步構成以接 收並儲存上述資產估價方法之資訊。 雖然系統300被描述爲一種網路連接的系統,但是此 處所描述以利審查之方法與演算法以及組合資產之運用亦 可被實施爲一種未連接至其他電腦的獨立電腦系統。 雖然已藉由各個特定實施例以描述本發明,但那些熟 悉本項技術者將理解本發明可於申請專利範圍之精神與範 圍內執行修改。 ---------裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐)

Claims (1)

1248001 η·%頁 月 Α8 Β8 C8 D8 今η-?、寫明示94女5· Μ 日 々、申請專利範圍 附件2A: 第0901 1 9908號專利申請案 中文申請專利範圍替換本 民國94年5月13日修正 1 · 一種使用組合資產估價系統以自動認證可分割之 金融工具資產的組合資產之電腦實施方法,組合資產估價 系統包括一耦合至資料庫之電腦,該方法包括下列步驟: 以共同屬性界定資產之第一組群集,其中第一組群集 內之各界定群集包括具有共同屬性之資產; 利用電腦執行分析使得可從用於估價目的之第一組群 集內的各界定群集選取樣本資產; 在電腦接收根據專家意見指定給各樣本資產之價値, 此價値是由專家企劃的金額,代表對應的資產之目前購買 價格; 使用專家意見對各樣本資產執行認證處理,包括:決 定是否各樣本資產包括屬性之組合且包括任意額外的屬性 ,分析具有屬性之組合的各樣本資產,及協調指定給具有 屬性之組合的各樣本資產之價値;及 根據執行的認證處理產生各樣本資產之調整値。 2 .如申請專利範圍第1項之方法,進一步包括根據 各樣本資產之認證,選取用於對包括於組合資產中的各資 產估價之個別屬性之步驟。 3 ·如申請專利範圍第2項之方法,進一步包括根據 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公瘦1 ~ ^ ---------0^— (請先閱讀背面之注意事項再填寫本頁) 訂 i# 經濟部智慧財產局員工消費合作社印製
1248001 六、申請專利範圍 選取的個別屬性,將資產分類爲第二組的群集之步驟。 4 ·如申請專利範圍第3項之方法,進一步包括根據 從認證處理指定給各樣本資產之調整價値,對包括於第二 組群集內的各群集中之各資產估價之步驟。 5 ·如申請專利範圍第4項之方法,進一步包括下列 步驟: 根據各資產的價値及選取的個別屬性的至少其中之一 ,將包括於組合資產內的資產組合;及 根據組合的資產,產生信用分析表。 6 ·如申請專利範圍第1項之方法,其中以共同屬性 界定資產之第一組群集的該步驟進一步包括使用商業規則 以識別具有共同特性之資產的第一組群集。 7 .如申請專利範圍第1項之方法,其中在電腦接收 根據專家意見指定給各樣本資產之價値的該步驟進一步包 括藉助於一有經驗的認證者而由電腦來評估資產的步驟。 8 ·如申請專利範圍第1項之方法,進一步包括下列 步驟: 在對各樣本資產執行認證處理之後,選取用於對包括 於組合資產內的各資產估價之個別屬性; 根據選取的個別屬性,將包括於組合資產內的各資產 分類爲第二組群集;及 根據從認證處理指定給各樣本資產之調整値,藉著估 價包括於第二組群集的各群集中之各資產,估價包括於組 合資產內的各資產。 — (請先閱讀背面之注意事項再填寫本頁) 訂 Φ 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -2 -
1248001 γ、申請專利範圍 9 · 一種自動認證可分割之金融工具資產之組合資產 估價系統,該系統包括: (請先閱讀背面之注意事項再填寫本頁) 一電腦,其係裝配爲一伺服器並進一步裝配有組合資 產之資料庫;及 至少一用戶系統,其係經由一網路而連接至該伺服器 ,該伺服器被裝配以: 藉由共同屬性界定資產之第一組群集,其中第一組群 集內的各界定群集包括具有共同屬性之資產, 從用於估價目的之第一組群集內的各界定群集選取樣 本資產, 接收根據專家意見指定給各樣本資產之價値,此價値 是由專家企劃的金額,代表對應的資產之目前購買價格, 使用專家意見對各樣本資產執行認證處理,包括:決 定是否各樣本資產包括屬性之組合且包括任意額外的屬性 ,分析具有屬性之組合的各樣本資產,及協調指定給具有 屬性之組合的各樣本資產之價値,及 根據執行的認證處理產生各樣本資產之調整値。 經濟部智慧財產局員工消費合作社印製 1 〇 ·如申請專利範圍第9項之系統,其中該伺服器 被進一步裝配以根據各樣本資產之認證,選取用於對包括 於組合資產中的各資產估價之個別屬性。 1 1 .如申請專利範圍第1 〇項之系統,其中該伺服 器被進一步裝配以根據選取的個別屬性,將資產分類爲第 二組的群集。 i 2 .如申請專利範圍第1 1項之系統,其中該伺服 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -3 -
1248001 六、申請專利範圍 器被進一步裝配以根據從認證處理指定給各樣本資產之調 整價値,對包括於第二組群集內的各群集中之各資產估價 〇 1 3 ·如申請專利範圍第1 2項之系統,其中該伺服 器被進一步裝配以: 根據各資產的價値及選取的個別屬性的至少其中之一 ,將包括於組合資產內的資產組合;及 根據組合的資產,產生信用分析表。 1 4 ·如申請專利範圍第9項之系統,其中該伺服器 被進一步裝配以使用商業規則而識別具有共同特性之資產 的第一組群集。 1 5 . —種自動認證可分割之金融工具資產之電腦, 該電腦包括組合資產之資料庫,該電腦被規程以: 以共同屬性界定資產之第一組群集,其中第一組群集 內之各界定群集包括具有共同屬性之資產,包括於第一組 群集內的資產被包括於儲存在資料庫內的組合資產內; 從用於估價目的之第一組群集內的各界定群集,選取 樣本資產; 接收根據專家意見指定給各樣本資產之價値,此價値 是由專家企劃的金額,代表對應的資產之目前購買價格; 使用專家意見對各樣本資產執行認證處理,包括:決 定是否各樣本資產包括屬性之組合且包括任意額外的屬性 ,分析具有屬性之組合的各樣本資產,及協調指定給具有 屬性之組合的各樣本資產之價値;及 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -4 - (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 1248001 操、〕替Η一正94年一Ϋ舞 月 AB.CD 六、申請專利範圍 根據執行的認證處理產生各樣本資產之調整値。 1 6 .如申請專利範圍第1 5項之電腦,其被規程以 根據各樣本資產之認證,選取用於對包括於組合資產中的 各資產估價之個別屬性。 1 7 .如申請專利範圍第1 6項之電腦,其被規程以 根據選取的個別屬性,將資產分類爲第二組的群集。 1 8 .如申請專利範圍第1 7項之電腦,其被規程以 根據從認證處理指定給各樣本資產之調整價値,對包括於 第二組群集內的各群集中之各資產估價。 1 9 .如申請專利範圍第1 8項之電腦,其被規程以 根據各資產的價値及選取的個別屬性的至少其中之一 ,將包括於組合資產內的資產組合;及 根據組合的資產,產生信用分析表。 2 0 .如申請專利範圍第1 9項之電腦,其被規程以 使用商業規則而識別具有共同特性之資產的第一組群集。 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨〇〆297公釐)
TW090119908A 1999-12-30 2001-08-14 Methods and apparatus for automated underwriting of segmentable portfolio assets TWI248001B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17394699P 1999-12-30 1999-12-30
US09/737,035 US6985881B2 (en) 1999-12-30 2000-12-14 Methods and apparatus for automated underwriting of segmentable portfolio assets

Publications (1)

Publication Number Publication Date
TWI248001B true TWI248001B (en) 2006-01-21

Family

ID=26869713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090119908A TWI248001B (en) 1999-12-30 2001-08-14 Methods and apparatus for automated underwriting of segmentable portfolio assets

Country Status (3)

Country Link
US (1) US6985881B2 (zh)
TW (1) TWI248001B (zh)
WO (1) WO2001050315A2 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593893B1 (en) 2000-06-13 2009-09-22 Fannie Mae Computerized systems and methods for facilitating the flow of capital through the housing finance industry
US7702580B1 (en) 2000-06-13 2010-04-20 Fannie Mae System and method for mortgage loan pricing, sale and funding
US6988082B1 (en) 2000-06-13 2006-01-17 Fannie Mae Computerized systems and methods for facilitating the flow of capital through the housing finance industry
AU2002254596A1 (en) * 2001-04-13 2002-10-28 Nav Technologies, Inc. Method and system for providing timely accurate and complete portfolio valuations
US7447652B2 (en) * 2001-05-31 2008-11-04 Ge Corporate Financial Services, Inc. Methods and systems for portfolio cash flow valuation
US7110525B1 (en) 2001-06-25 2006-09-19 Toby Heller Agent training sensitive call routing system
AU2003295807A1 (en) * 2002-12-30 2004-07-29 Fannie Mae System and method for verifying loan data at delivery
AU2003297295A1 (en) 2002-12-30 2004-07-29 Fannie Mae System and method of processing data pertaining to financial assets
AU2003297296A1 (en) * 2002-12-30 2004-07-29 Fannie Mae System and method for creating and tracking agreements for selling loans to a secondary market purchaser
US7593889B2 (en) * 2002-12-30 2009-09-22 Fannie Mae System and method for processing data pertaining to financial assets
US8666879B1 (en) 2002-12-30 2014-03-04 Fannie Mae Method and system for pricing forward commitments for mortgage loans and for buying committed loans
US20050102226A1 (en) * 2002-12-30 2005-05-12 Dror Oppenheimer System and method of accounting for mortgage related transactions
AU2003298688A1 (en) * 2002-12-30 2004-07-29 Fannie Mae System and method for pricing loans in the secondary mortgage market
US7742981B2 (en) * 2002-12-30 2010-06-22 Fannie Mae Mortgage loan commitment system and method
US20040128230A1 (en) * 2002-12-30 2004-07-01 Fannie Mae System and method for modifying attribute data pertaining to financial assets in a data processing system
US7885889B2 (en) 2002-12-30 2011-02-08 Fannie Mae System and method for processing data pertaining to financial assets
AU2003291140A1 (en) * 2002-12-30 2004-07-29 Fannie Mae System and method for facilitating sale of a loan to a secondary market purchaser
WO2004061748A1 (en) * 2002-12-30 2004-07-22 Fannie Mae System and method for defining loan products
US9818136B1 (en) 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
US8046298B1 (en) 2003-07-21 2011-10-25 Fannie Mae Systems and methods for facilitating the flow of capital through the housing finance industry
US7925579B1 (en) 2003-12-01 2011-04-12 Fannie Mae System and method for processing a loan
US7756778B1 (en) 2003-12-18 2010-07-13 Fannie Mae System and method for tracking and facilitating analysis of variance and recourse transactions
US7822680B1 (en) * 2003-12-31 2010-10-26 Fannie Mae System and method for managing data pertaining to a plurality of financial assets for multifamily and housing developments
US7657475B1 (en) 2003-12-31 2010-02-02 Fannie Mae Property investment rating system and method
US20060059063A1 (en) * 2004-08-06 2006-03-16 Lacomb Christina A Methods and systems for visualizing financial anomalies
US20060074707A1 (en) * 2004-10-06 2006-04-06 Schuette Thomas A Method and system for user management of a fleet of vehicles including long term fleet planning
CA2588542A1 (en) 2004-11-30 2006-06-08 Michael Dell Orfano System and method for creating electronic real estate registration
US9076185B2 (en) 2004-11-30 2015-07-07 Michael Dell Orfano System and method for managing electronic real estate registry information
US20060235783A1 (en) * 2005-02-22 2006-10-19 Scott Ryles Predicting risk and return for a portfolio of entertainment projects
US20060190369A1 (en) * 2005-02-22 2006-08-24 Scott Ryles Predicting risk and return for a portfolio of entertainment projects
US7801809B1 (en) 2005-06-24 2010-09-21 Fannie Mae System and method for management of delegated real estate project reviews
US20070168304A1 (en) * 2006-01-18 2007-07-19 Hletko Paul M Method of financing mobile assets
US20070219897A1 (en) * 2006-03-14 2007-09-20 Susquehanna International Group, Llp System and method for evaluating trade execution
US7747526B1 (en) 2006-03-27 2010-06-29 Fannie Mae System and method for transferring mortgage loan servicing rights
US20070288397A1 (en) * 2006-06-12 2007-12-13 Nec Europe Ltd. Methodology for robust portfolio evaluation and optimization taking account of estimation errors
US20080071664A1 (en) * 2006-09-18 2008-03-20 Reuters America, Inc. Limiting Counter-Party Risk in Multiple Party Transactions
US7761287B2 (en) * 2006-10-23 2010-07-20 Microsoft Corporation Inferring opinions based on learned probabilities
US7653593B2 (en) * 2007-11-08 2010-01-26 Equifax, Inc. Macroeconomic-adjusted credit risk score systems and methods
US9892461B2 (en) * 2008-06-09 2018-02-13 Ge Corporate Financial Services, Inc. Methods and systems for assessing underwriting and distribution risks associated with subordinate debt
US20110040582A1 (en) * 2009-08-17 2011-02-17 Kieran Mullins Online system and method of insurance underwriting
US20190244289A1 (en) * 2018-02-08 2019-08-08 2Bc Innovations, Llc Asset utilization optimization communication system and components thereof
US11468237B2 (en) 2018-05-11 2022-10-11 Kpmg Llp Audit investigation tool
US11010832B2 (en) * 2018-05-11 2021-05-18 Kpmg Llp Loan audit system and method with chained confidence scoring
WO2024038311A1 (en) * 2022-08-19 2024-02-22 Partha Sen System and method for generating and optimizing a decentralized autonomous group of assets for investment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ273472A (en) * 1993-08-27 1997-01-29 Jeffrey A Norris Automated processing of loan application
US6249775B1 (en) * 1997-07-11 2001-06-19 The Chase Manhattan Bank Method for mortgage and closed end loan portfolio management
US5995947A (en) * 1997-09-12 1999-11-30 Imx Mortgage Exchange Interactive mortgage and loan information and real-time trading system
US6807537B1 (en) * 1997-12-04 2004-10-19 Microsoft Corporation Mixtures of Bayesian networks
US6195659B1 (en) * 1998-07-14 2001-02-27 Trw Inc. Method and apparatus for morphological clustering having multiple dilation and erosion of switchable grid data cells
US6233566B1 (en) * 1998-12-31 2001-05-15 Ultraprise Corporation System, method and computer program product for online financial products trading
US6546375B1 (en) * 1999-09-21 2003-04-08 Johns Hopkins University Apparatus and method of pricing financial derivatives

Also Published As

Publication number Publication date
US20020052815A1 (en) 2002-05-02
US6985881B2 (en) 2006-01-10
WO2001050315A2 (en) 2001-07-12
WO2001050315A8 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
TWI248001B (en) Methods and apparatus for automated underwriting of segmentable portfolio assets
TW530235B (en) Valuation prediction models in situations with missing inputs
TW530234B (en) Methods and systems for efficiently sampling portfolios for optimal underwriting
TW580627B (en) System and method for efficiently providing due diligence knowledge and a computer therefor
TWI242724B (en) Methods and systems for optimizing return and present value
TWI235925B (en) Method and systems for finding value and reducing risk
TW530236B (en) Cross correlation tool for automated portfolio descriptive statistics
TWI230339B (en) Methods and systems for quantifying cash flow recovery and risk
TW552524B (en) Methods and systems for automated inferred valuation of credit scoring
KR20030004316A (ko) 최종 입찰 결정 방법과 그 시스템, 및 컴퓨터
MXPA01008622A (es) Evaluacion rapida de portafolios de activos tales como instrumentos financieros.
TW554276B (en) Methods, system and computer for determining a winning bid for a sealed bid auction at an optimal bid price
AU2600801A (en) Valuation prediction models in situations with missing inputs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees