TW201812592A - Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same - Google Patents
Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same Download PDFInfo
- Publication number
- TW201812592A TW201812592A TW105128960A TW105128960A TW201812592A TW 201812592 A TW201812592 A TW 201812592A TW 105128960 A TW105128960 A TW 105128960A TW 105128960 A TW105128960 A TW 105128960A TW 201812592 A TW201812592 A TW 201812592A
- Authority
- TW
- Taiwan
- Prior art keywords
- time
- data
- cache
- algorithm
- specific
- Prior art date
Links
- 230000015654 memory Effects 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000012545 processing Methods 0.000 claims description 60
- 230000036962 time dependent Effects 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 12
- 230000003044 adaptive effect Effects 0.000 claims description 6
- 239000013589 supplement Substances 0.000 claims description 2
- 230000006870 function Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
本發明關於一種用於決定雲端儲存設備架構快取資料的方法及一種用該方法的雲端儲存設備系統,特別是關於一種用於決定雲端儲存設備架構的快取記憶體中的資料之方法及使用該方法的雲端儲存設備系統。 The invention relates to a method for determining a cloud storage device architecture cache data and a cloud storage device system using the method, in particular to a method and a method for determining data in a cache memory of a cloud storage device architecture. The cloud storage device system of the method.
對雲端服務系統而言,通常會嘗試盡可能快速地提供其服務給客戶,以回應客戶的請求。當客戶數量不大時,這標的很容易達到。然而,如果客戶數量大增,受制於雲端服務系統的硬體架構以及網路流量,回應時間必然會有快慢之分,但應在合理範圍之內。另一方面,如果一雲端服務在商業上與其它雲端服務競爭,無論其受限於何種事物,該雲端服務系統應技術性地以有限的資源在最短的時間內回應客戶的請求。這是個常見的眾多雲端系統開發者面對的議題,大家都在期盼能夠有合適的解決方案。 For cloud service systems, it is often tried to provide their services to customers as quickly as possible in response to customer requests. This target is easy to reach when the number of customers is small. However, if the number of customers increases greatly, subject to the hardware architecture of the cloud service system and network traffic, the response time will inevitably have a speed, but it should be within a reasonable range. On the other hand, if a cloud service is commercially competitive with other cloud services, regardless of what is limited, the cloud service system should technically respond to the client's request with the limited resources in the shortest time. This is a common issue faced by many cloud system developers, and everyone is looking forward to having the right solution.
在傳統的工作環境中,請見第1圖,有許多客戶端電腦1通過網際網路3連接到一伺服器4。伺服器4是主要處理客戶請求的設備,可能會進行複雜的計算或僅執行儲存資料的存取。對後者而言,儲存的資料可以保留在一快取5或一輔助記憶體6中。快取5或輔助記憶體6的數量可以不限於1個,而是該雲端服務所需的任何的數量。伺服器4、快取5及輔助記憶體6形成雲端服務系統的架構。快取5可能指的是動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)或靜態隨機存取記憶體(Static Random-Access Memory,SRAM)。輔助記憶體6可能是固態硬碟(Solid State Drive,SSD)、硬碟(Hard Disk Drive,HDD),可寫式數位多功能影音光碟(Digital Versatile Disc,DVD),甚或是磁帶。快取5與輔助記憶體6的物理性差異在於斷電時的資料儲存性。對快取5而言,資料在需要使用時暫時性地儲存而當斷電時消失。然而,無論是否通電,輔助記憶體6均能夠長久地儲存資料。快取5具有快速存取資料的優點,但是卻有揮發性(易失性)、高價格及較小儲存空間的缺點。 In the traditional working environment, see Figure 1, there are many client computers 1 connected to a server 4 via the Internet 3. Server 4 is a device that primarily handles client requests and may perform complex calculations or perform only access to stored data. For the latter, the stored material can be retained in a cache 5 or a secondary memory 6. The number of cache 5 or auxiliary memory 6 may not be limited to one, but any number required for the cloud service. The server 4, the cache 5 and the auxiliary memory 6 form the architecture of the cloud service system. The cache 5 may refer to a dynamic random access memory (DRAM) or a static random access memory (SRAM). The auxiliary memory 6 may be a solid state drive (SSD), a hard disk drive (HDD), a writeable digital Versatile Disc (DVD), or even a magnetic tape. The physical difference between the cache 5 and the auxiliary memory 6 is the data storage property at the time of power failure. For cache 5, the data is temporarily stored when needed and disappears when power is lost. However, the auxiliary memory 6 can store data for a long time regardless of whether or not it is powered. Cache 5 has the advantage of fast access to data, but has the disadvantage of being volatile (volatile), high price and small storage space.
如上所述,很明顯,為了達到多數請求所需的熱資料(較多存取)能快速地被存取,並以可忍受的較慢速度提供冷資料(較少存取),決定合適的資料儲存於快取5當中是很重要的,且能改善雲端服務效能。平均而言,回應所有來自客戶端電腦請求的時間會落在可接受的範圍內。近來,有 許多傳統演算法可用於決定何種資料應被快取儲存(儲存於快取5中)。舉例而言,Least Recently Used(LRU)演算法、Most Recently Used(MRU)演算法、Pseudo-LRU(PLRU)演算法、Segmented LRU(SLRU)演算法、2-way set associative演算法、Least-Frequently Used(LFU)演算法、Low Inter-reference Recent Set(LIRS)演算法等等。這些演算法由被分析資料本身的近因與頻率之特性而執行,其結果與其它資料無關(不具有與資料相關之特性)。還有許多的習知技術,諸如中國第CN101777081A號專利與DOI:10.1109/SKG.2005.136論文,揭露了其它型態的快取演算法。它們被歸類為“與資料相關演算法”,以原始的快取資料(來自前述傳統快取演算法的結果)當作標的資料以獲得“與資料相關”的資料並進行快取儲存。這意味著新的快取資料與原始快取資料有某種程度上的關聯(新的快取資料有較高的機會與原始快取資料一同出現)。上述該些演算法被察覺到在某些模式的工作負載上有效。然而,因為它們都計算出現於相對時段的資料,而不是絕對時段的資料,這導致了一個現象:被所有演算法選出快取儲存於一第一時段(例如首8個小時)的資料,可能不盡然會在一第二時段(例如首8個小時後的8個小時)中被存取。這很容易理解,因為幾乎所有資料存取都是絕對時間相關或頻率相關的,舉例而言,於每天早晨8:55AM到9:05AM間開機、於每周三2:00PM開的會議、兩周結 算一次的工資、每月最後一天進行的盤點等等。因此,時間戳本身就是考慮快取資料的一個重要且獨立因子。然而,目前尚未看到有提出以此為考量的解決方案。 As mentioned above, it is clear that the hot data (more access) required to achieve most requests can be accessed quickly and provide cold data (less access) at a slower rate that can be tolerated, determining the appropriate It is important to store the data in the cache 5 and improve the performance of the cloud service. On average, the time to respond to all requests from client computers falls within acceptable limits. Recently, there are many traditional algorithms that can be used to determine which data should be cached (stored in cache 5). For example, Least Recently Used (LRU) algorithm, Most Recently Used (MRU) algorithm, Pseudo-LRU (PLRU) algorithm, Segmented LRU (SLRU) algorithm, 2-way set associative algorithm, Least-Frequently Used (LFU) algorithm, Low Inter-reference Recent Set (LIRS) algorithm, and so on. These algorithms are performed by the characteristics of the proximity and frequency of the data being analyzed, and the results are independent of other data (no data-related characteristics). There are also many conventional techniques, such as Chinese Patent No. CN101777081A and DOI: 10.1109/SKG.2005.136, which disclose other types of cache algorithms. They are classified as "data-related algorithms", using the original cached data (from the results of the aforementioned traditional cache algorithm) as the target data to obtain "data-related" data and cache storage. This means that the new cached data is somewhat related to the original cached data (new cached data has a higher chance of appearing alongside the original cached data). The above algorithms are perceived to be effective on certain mode workloads. However, because they both calculate the data that appears in the relative time period, rather than the data in the absolute time period, this leads to a phenomenon: the data selected by all algorithms to be cached for storage in a first time period (for example, the first 8 hours) may Not necessarily will be accessed during a second time period (for example, 8 hours after the first 8 hours). This is easy to understand because almost all data accesses are absolutely time-correlated or frequency-dependent, for example, starting at 8:55AM to 9:05AM every morning, meeting at 2:00PM every Wednesday, two weeks. The settlement of the salary, the inventory on the last day of the month, and so on. Therefore, the timestamp itself is an important and independent factor in considering cached data. However, no solution has been proposed to consider this.
本段文字提取和編譯本發明的某些特點。其它特點將被揭露於後續段落中。其目的在涵蓋附加的申請專利範圍之精神和範圍中,各式的修改和類似的排列。 This paragraph of text extracts and compiles certain features of the present invention. Other features will be revealed in subsequent paragraphs. The intention is to cover various modifications and similar arrangements in the spirit and scope of the appended claims.
本發明的目的在提供一種用於決定雲端儲存設備架構的快取記憶體中的資料之方法及使用該方法的雲端儲存設備系統,該方法以於過去一段時間內被存取的與時間相關的資料來分析那些資料應被快取儲存。該方法包含步驟:A.紀錄一雲端儲存設備系統的快取記憶體於過去一段時間內的處理內容,其中每一處理內容包含一紀錄時間,或一紀錄時間與過去該段時間內被存取的快取資料;B.指定於未來的一特定時間;C.基於一參考時段,對每一來自處理內容的快取資料計算出一與時間相關的置信度;D.排序該些與時間相關的置信度;及E.提供具有較高與時間相關的置信度的快取資料於該快取記憶體中,並當該快取記憶體於未來的該特定時間前耗盡時,移除該快取記憶體中具有較低與時間相關的置信度之快取資料。步驟E可以步驟E’所取代:E’提供具有較高與時間相關的置信度的快取資料與從至少一種其它快取演算法計算得到的資料到快取記憶體中,以在未來的該特定時間前 耗盡快取記憶體的使用,其中在具有較高與時間相關的置信度之快取資料及從其它快取演算法計算得到的資料間存在一固定比率。 It is an object of the present invention to provide a method for determining data in a cache memory of a cloud storage device architecture and a cloud storage device system using the same, which method is time-dependent to be accessed in a past period of time Data to analyze which data should be cached for storage. The method comprises the steps of: A. recording the processing content of the cache memory of the cloud storage device system in a past period of time, wherein each processing content includes a recording time, or a recording time and the past time period are accessed. Caching data; B. specifying a specific time in the future; C. calculating a time-dependent confidence for each cached data from the processed content based on a reference period; D. sorting the time-related Confidence; and E. providing cache data having a higher time-dependent confidence in the cache memory, and removing the cache memory when the cache memory is exhausted before the specific time in the future Cache data with lower time-dependent confidence in memory. Step E may be replaced by step E': E' provides cache data with a higher time-dependent confidence and data calculated from at least one other cache algorithm into the cache memory for future The use of cache memory is exhausted before a certain time, where there is a fixed ratio between cache data with higher time-dependent confidence and data calculated from other cache algorithms.
依照本發明,該固定比率可基於資料數量或資料佔據空間而計算。該特定時間可為一小時中的一特定分鐘、一天中的一特定小時、一周中的一特定日、一月中的一特定日、一季中的一特定日、一年中的一特定日、一月中的一特定周、一季中的一特定周、一年中的一特定周,或一年中的一特定月。以二連續紀錄的處理內容間隔一時間跨度的方式定期地記錄該些處理內容。該參考時段可為於一小時中的特定分鐘內、於一日中的特定小時內,或於一年中的特定日內。 According to the present invention, the fixed ratio can be calculated based on the amount of data or the space occupied by the material. The specific time may be a specific minute of one hour, a specific hour of the day, a specific day of the week, a specific day of the month, a specific day of the season, a specific day of the year, a specific day of the year, A specific week in January, a specific week in a season, a specific week in a year, or a specific month in a year. The processing contents are periodically recorded in such a manner that the processing contents of two consecutive records are separated by a time span. The reference period may be within a particular minute of an hour, within a particular hour of the day, or within a particular day of the year.
該與時間相關的置信度可由下列步驟計算得到:C1.計算一第一數量,該第一數量為參考時段於過去該段時間內出現的數量;C2.計算一第二數量,該第二數量為當一標的快取資料存取時,該參考時段的數量;及C3.將該第二數量除以該第一數量。 The time-dependent confidence can be calculated by the following steps: C1. Calculating a first quantity, the first quantity is the quantity that occurs in the reference period in the past period of time; C2. calculating a second quantity, the second quantity The number of reference periods for accessing a target cache; and C3. dividing the second number by the first number.
最好,該快取演算法可以是Least Recently Used(LRU)演算法、Most Recently Used(MRU)演算法、Pseudo-LRU(PLRU)演算法、Random Replacement(RR)演算法、Segmented LRU(SLRU)演算法、2-way set associative演算法、Least-Frequently Used(LFU)演算法、Low Inter-reference Recent Set(LIRS)演算法、Adaptive Replacement Cache(ARC) 演算法、Clock with Adaptive Replacement(CAR)演算法、Multi Queue(MQ)演算法,或以來自步驟D的結果作為標的資料的與資料相關演算法。該資料的型態可為物件、區塊,或檔案。 Preferably, the cache algorithm may be a Least Recently Used (LRU) algorithm, a Most Recently Used (MRU) algorithm, a Pseudo-LRU (PLRU) algorithm, a Random Replacement (RR) algorithm, and a Segmented LRU (SLRU). Algorithm, 2-way set associative algorithm, Least-Frequently Used (LFU) algorithm, Low Inter-reference Recent Set (LIRS) algorithm, Adaptive Replacement Cache (ARC) algorithm, Clock with Adaptive Replacement (CAR) algorithm Method, Multi Queue (MQ) algorithm, or data-related algorithm with the result from step D as the target data. The type of the material can be an object, a block, or an archive.
本發明也揭露一種雲端儲存設備系統。該雲端儲存設備系統包含:一主機,用以存取資料;一快取記憶體,連接至該主機,用以暫時儲存快取資料供快速存取;一處理內容紀錄器,配置到或安裝於該快取記憶體,連接至該主機以紀錄於過去一段時間內快取記憶體的處理內容,其中每一處理內容包含一紀錄時間,或一紀錄時間與過去該段時間內被存取的快取資料、接收主機指定於未來的一特定時間、基於一參考時段,對每一來自處理內容的快取資料計算出一與時間相關的置信度、排序該些與時間相關的置信度,及提供具有較高與時間相關的置信度的快取資料於該快取記憶體中,並當該快取記憶體於未來的該特定時間前耗盡時,移除該快取記憶體中具有較低與時間相關的置信度之快取資料;及複數個輔助記憶體,連接至該主機,用以分散儲存資料供存取。 The invention also discloses a cloud storage device system. The cloud storage device system comprises: a host for accessing data; a cache memory connected to the host for temporarily storing cached data for quick access; and a processing content recorder configured to be installed or installed The cache memory is connected to the host to record the processing content of the cache memory in the past period of time, wherein each processing content includes a recording time, or a recording time and a fast access time in the past period of time Taking data, receiving the host to specify a specific time in the future, calculating a time-related confidence for each cached data from the processed content based on a reference period, sorting the time-related confidences, and providing Cache data having a higher time-dependent confidence in the cache memory, and removing the cache memory when the cache memory is exhausted before the specific time in the future Time-dependent confidence cache data; and a plurality of auxiliary memories connected to the host for distributing stored data for access.
該雲端儲存設備系統也可包含:一主機,用以存取資料;一快取記憶體,連接至該主機,用以暫時儲存快取資料供快速存取;一處理內容紀錄器,配置到或安裝於該快取記憶體,連接至該主機以紀錄於過去一段時間內快取記憶體的處理內容,其中每一處理內容包含一紀錄時間,或一紀錄時 間與過去該段時間內被存取的快取資料、接收主機指定於未來的一特定時間、基於一參考時段,對每一來自處理內容的快取資料計算出一與時間相關的置信度、排序該些與時間相關的置信度,及提供具有較高與時間相關的置信度的快取資料與從至少一種其它快取演算法計算得到的資料到快取記憶體中,以在未來的該特定時間前耗盡快取記憶體的使用,其中在具有較高與時間相關的置信度之快取資料及從其它快取演算法計算得到的資料間存在一固定比率;及複數個輔助記憶體,連接至該主機,用以分散儲存資料供存取。該固定比率可基於資料數量或資料佔據空間而計算。 The cloud storage device system may also include: a host for accessing data; a cache memory connected to the host for temporarily storing cached data for quick access; and a content recorder, configured to or Installed in the cache memory, connected to the host to record the processing content of the cache memory in the past period of time, wherein each processing content includes a recording time, or a recording time and the past time period is accessed The cache data, the receiving host specifies a specific time in the future, calculates a time-dependent confidence for each cached data from the processed content, and sorts the time-related confidences based on a reference time period. And providing cache data having a higher time-dependent confidence and data calculated from at least one other cache algorithm into the cache memory to deplete the use of the cache memory before the specific time in the future , wherein there is a fixed ratio between the cache data having a higher time-dependent confidence and the data calculated from other cache algorithms; and a plurality of supplements A memory that is connected to the host to distribute the stored data for access. This fixed ratio can be calculated based on the amount of data or the space occupied by the data.
依照本發明,未來的該特定時間可為一小時中的一特定分鐘、一天中的一特定小時、一周中的一特定日、一月中的一特定日、一季中的一特定日、一年中的一特定日、一月中的一特定周、一季中的一特定周、一年中的一特定周,或一年中的一特定月。以二連續紀錄的處理內容間隔一時間跨度的方式定期地記錄該些處理內容。該參考時段可為於一小時中的特定分鐘內、於一日中的特定小時內,或於一年中的特定日內。 According to the present invention, the specific time in the future may be a specific minute of one hour, a specific hour of the day, a specific day of the week, a specific day of the month, a specific day of the season, and a year of the season. A specific day in, a specific week in a month, a specific week in a season, a specific week in a year, or a specific month in a year. The processing contents are periodically recorded in such a manner that the processing contents of two consecutive records are separated by a time span. The reference period may be within a particular minute of an hour, within a particular hour of the day, or within a particular day of the year.
該與時間相關的置信度可由下列步驟計算得到:C1.計算一第一數量,該第一數量為參考時段於過去該段時間內出現的數量;C2.計算一第二數量,該第二數量為當一標的快 取資料存取時,該參考時段的數量;及C3.將該第二數量除以該第一數量。 The time-dependent confidence can be calculated by the following steps: C1. Calculating a first quantity, the first quantity is the quantity that occurs in the reference period in the past period of time; C2. calculating a second quantity, the second quantity The number of reference periods for accessing a target cache; and C3. dividing the second number by the first number.
最好,該快取演算法可以是LRU演算法、MRU演算法、PLRU演算法、RR演算法、SLRU演算法、2-way set associative演算法、LFU演算法、LIRS演算法、ARC演算法、CAR演算法、MQ演算法,或以處理內容紀錄器產生之資料當成標的資料的與資料相關演算法。該資料的型態可為物件、區塊,或檔案。 Preferably, the cache algorithm may be an LRU algorithm, an MRU algorithm, a PLRU algorithm, an RR algorithm, a SLRU algorithm, a 2-way set associative algorithm, an LFU algorithm, a LIRS algorithm, an ARC algorithm, CAR algorithm, MQ algorithm, or data-related algorithm for processing data generated by a content recorder as a target data. The type of the material can be an object, a block, or an archive.
快取儲存的資料是與時間相關的。因而,當下一個相關的時間來臨時,這些資料是最有可能被存取的。在該相關的時間之前,這些資料可儲存到快取記憶體中,以改進雲端儲存設備系統的性能。這是傳統快取演算法無法企及的。 Cached stored data is time dependent. Thus, when the next relevant time comes, these materials are most likely to be accessed. Prior to this relevant time, the data can be stored in cache memory to improve the performance of the cloud storage device system. This is beyond the reach of traditional cache algorithms.
1‧‧‧客戶端電腦 1‧‧‧Client computer
3‧‧‧網際網路 3‧‧‧Internet
4‧‧‧伺服器 4‧‧‧Server
5‧‧‧快取 5‧‧‧Cache
6‧‧‧輔助記憶體 6‧‧‧Auxiliary memory
10‧‧‧雲端儲存設備系統 10‧‧‧Cloud Storage Device System
100‧‧‧伺服器 100‧‧‧Server
101‧‧‧主機 101‧‧‧Host
102‧‧‧快取記憶體 102‧‧‧Cache memory
103‧‧‧處理內容紀錄器 103‧‧‧Processing content recorder
104‧‧‧輔助記憶體 104‧‧‧Assistive memory
200‧‧‧網際網路 200‧‧‧Internet
301‧‧‧個人電腦 301‧‧‧ PC
302‧‧‧平板電腦 302‧‧‧ Tablet PC
303‧‧‧智慧型手機 303‧‧‧Smart mobile phone
第1圖為傳統資料存取架構的示意圖。 Figure 1 is a schematic diagram of a conventional data access architecture.
第2圖為依照本發明一雲端儲存設備系統的示意圖。 2 is a schematic diagram of a cloud storage device system in accordance with the present invention.
第3圖為處理內容記錄的表單。 Figure 3 shows the form for processing content records.
第4圖為本發明提出方法的流程圖。 Figure 4 is a flow chart of the method proposed by the present invention.
第5圖與第6圖表列對所有快取資料計算的與時間相關的置信度。 Figure 5 and Figure 6 show the time-dependent confidence in the calculation of all cached data.
本發明將藉由參照下列的實施方式而更具體地描述。 The invention will be more specifically described by reference to the following embodiments.
第2圖顯示實踐本發明的一個理想架構。一種雲端儲存設備系統10包括了一主機101、一快取記憶體102、一處理內容紀錄器103,及數個輔助記憶體104。雲端儲存設備系統10支援雲端服務的資料儲存,它可能部分安裝於一個伺服器100中,如第2圖所示。伺服器100是用來接收來自客戶端設備請求的硬體,這些客戶端設備比如一個人電腦301、一平板電腦302,及一智慧型手機303,或其它經由網際網路200連接的遠端設備。在運行該些請求之後,伺服器100將反向傳送對應的回應給客戶端設備。每一元件將詳細說明如下。 Figure 2 shows an ideal architecture for practicing the invention. A cloud storage device system 10 includes a host 101, a cache memory 102, a processing content recorder 103, and a plurality of auxiliary memories 104. The cloud storage device system 10 supports data storage for cloud services, which may be partially installed in a server 100, as shown in FIG. The server 100 is used to receive hardware requests from client devices such as a personal computer 301, a tablet 302, and a smart phone 303, or other remote devices connected via the Internet 200. After running the requests, the server 100 will reverse the corresponding response to the client device. Each component will be described in detail below.
主機101的工作職能主要是回應來自客戶端設備的請求執行資料存取。事實上,主機101可能是伺服器100中的控制器。在其它的實施例中,如果伺服器100的中央處理器具有上述控制器相同的功能的話,主機101指的就是該中央處理器,甚或伺服器100本身。主機100的定義並非是由其形態,而是其功能來決定。此外,主機101可能具有其它的功能,例如取得用熱資料快取儲存到快取記憶體102中,但這並不在本發明的範圍內。 The job function of the host 101 is mainly to perform data access in response to a request from a client device. In fact, host 101 may be a controller in server 100. In other embodiments, if the central processor of the server 100 has the same functionality as the controller described above, the host 101 refers to the central processor, or even the server 100 itself. The definition of the host 100 is not determined by its form but by its function. In addition, host 101 may have other functions, such as obtaining a hot data cache for storage into cache memory 102, but this is not within the scope of the present invention.
快取記憶體102連接至主機101,可以暫時儲存快取資料供快速存取。實作上,快取記憶體102可以是提供資料高速存取的任何硬體。舉例而言,快取記憶體102可以是SRAM。快取記憶體102可以是一個用於大型雲端儲存設備系統的獨立模組,某些架構可以嵌設該獨立模組到主機101(CPU)中。 如同其它雲端儲存設備系統中的快取,都有一種預設的快取演算法來決定哪些資料應該快取儲存於快取記憶體102中。本發明提供一種平行機制與現有的快取演算法一起運作,用於一種特定的目的或時機。事實上,也能使該快取機制主宰,取代由原先快取演算法決定的快取資料。 The cache memory 102 is connected to the host 101, and the cache data can be temporarily stored for quick access. In practice, the cache 102 can be any hardware that provides high speed access to data. For example, the cache memory 102 can be an SRAM. The cache memory 102 can be a standalone module for a large cloud storage device system, and some architectures can embed the independent module into the host 101 (CPU). As with caches in other cloud storage device systems, there is a preset cache algorithm that determines which data should be cached for storage in cache memory 102. The present invention provides a parallel mechanism that operates with existing cache algorithms for a particular purpose or timing. In fact, the cache mechanism can also be used to replace the cached data determined by the original cache algorithm.
處理內容紀錄器103是雲端儲存設備系統10中的要件,在本實施例中,它是一個硬體模組並配置到快取記憶體102中。在其它實施例中,處理內容紀錄器103可以是軟體,安裝於快取記憶體102或主機101的控制器中。在本實施例中,處理內容紀錄器103連接到主機101,它的許多功能是本發明的特徵:紀錄於過去一段時間內快取記憶體102的處理內容,其中每一處理內容包含一紀錄時間,或一紀錄時間與過去該段時間內被存取的快取資料、接收主機101指定於未來的一特定時間、基於一參考時段,對每一來自處理內容的快取資料計算出一與時間相關的置信度、排序該些與時間相關的置信度,及提供具有較高與時間相關的置信度的快取資料於該快取記憶體102中,並當該快取記憶體102於未來的該特定時間前耗盡時,移除該快取記憶體102中具有較低與時間相關的置信度之快取資料(或提供具有較高與時間相關的置信度的快取資料與從至少一種其它快取演算法計算得到的資料到快取記憶體102中,以在未來的該特定時間前耗盡快取記憶體102的使用),這些功能將與本發明提出的方法於稍後說明。要強 調的是本發明使用的“與時間相關的置信度”用詞,相似於關聯式規則中定義的置信度。該與時間相關的置信度進一步延伸到置信度值,該值由取一個特定時間或時段作為標的以獲得一個或多個資料曾在過去歷史中被存取的機率而計算得到。 The processing content recorder 103 is a requirement in the cloud storage device system 10. In the present embodiment, it is a hardware module and is configured in the cache memory 102. In other embodiments, the processing content recorder 103 can be software installed in the cache memory 102 or the controller of the host 101. In the present embodiment, the processing content recorder 103 is connected to the host 101, and its many functions are a feature of the present invention: the processing contents of the cache memory 102 are recorded in the past period of time, wherein each processing content includes a recording time. Or a record time and the cache data accessed in the past time period, the receiving host 101 specifies a specific time in the future, based on a reference time period, and calculate a time and time for each cached data from the processed content. Relevant confidence, sorting the time-related confidences, and providing cache data having a higher time-dependent confidence in the cache memory 102, and when the cache memory 102 is in the future When the specific time is exhausted before, the cache data with lower time-dependent confidence in the cache memory 102 is removed (or the cache data with higher time-dependent confidence is provided and at least one is The data calculated by other cache algorithms is transferred to the cache memory 102 to deplete the use of the cache memory 102 before the specific time in the future. These functions will be related to the proposed method. To be described later. It is emphasized that the term "time-dependent confidence" as used in the present invention is similar to the confidence defined in the association rule. The time-dependent confidence further extends to a confidence value calculated by taking a particular time or period of time as the target to obtain the probability that one or more of the materials were accessed in the past history.
輔助記憶體104也連接至主機101,它們能分散儲存資料,供客戶需求進行存取。不同於快取記憶體102,輔助記憶體104的輸出/輸入速度較慢,以致任何儲存其中的資料,回應存取請求的存取速度較慢。輔助記憶體104中經常存取的資料將被複製並儲存到快取記憶體102中以供快取。實作上,輔助記憶體104可以是SSD、HDD、可寫式DVD,甚或是磁帶。輔助記憶體104的配置依照雲端儲存設備系統10或其上運行的工作負載的目的而決定。在本例中,有3個輔助記憶體104。事實上,在一個雲端儲存設備系統中,輔助記憶體的數量可能是幾百到幾千個,甚至更多。 The auxiliary memory 104 is also coupled to the host 101, which is capable of distributing stored data for access by customers. Unlike the cache memory 102, the output/input speed of the auxiliary memory 104 is slow, so that any data stored therein has a slower access speed in response to an access request. Frequently accessed material in the auxiliary memory 104 will be copied and stored in the cache memory 102 for caching. In practice, the auxiliary memory 104 can be an SSD, an HDD, a writable DVD, or even a magnetic tape. The configuration of the auxiliary memory 104 is determined in accordance with the purpose of the cloud storage device system 10 or the workload running thereon. In this example, there are three auxiliary memories 104. In fact, in a cloud storage device system, the number of auxiliary memories may be hundreds to thousands or even more.
在進一步說明前,本發明使用的某些定義要先行闡述。請見第3圖,第3圖為處理內容記錄的表單,用來監視快取記憶體102中的資料於過去是如何被存取的。該表單有TID(處理內容ID,由0001到0024)列、快取資料(由D01到D18)欄、參考時段(由H00到H08)欄,以及紀錄時間。H00指的是紀錄時間落於00:00到01:00間、H01指的是紀錄時間落於01:00到02:00間,以此類推。TID與快取資料欄位中的“1”意 味對應的快取資料已在“目前”紀錄時間及“最後”紀錄時間前被存取。TID與參考時段欄位中的“1”意味於對處理內容量化不同時段中的紀錄時間。處理內容是於過去該段時間內快取資料被存取的紀錄。在本例中,過去8小時中的紀錄(處理內容)拿來進行分析。為了有較佳的說明,每一處理內容具有一個對應的TID以辨認。處理內容紀錄器103以二連續紀錄的處理內容間隔一時間跨度的方式定期地記錄該些處理內容。在本例中,每一處理內容在前一次處理內容紀錄後的20分鐘進行記錄,時間跨度為20分鐘。實作上,紀錄時間不一定需要準確落在預定時間表上。舉例而言,紀錄時間可能落在00:30:18、00:50:17等時間點上,不是準確落於第15秒上而是有一段範圍。這是因為可能有某些大的資料在進行存取或處理內容紀錄器103正在等待遠端連線的快取記憶體102的回應。可以接受的更積極的方式是該時間跨度為隨機挑選的,這也是本發明的範疇。 Before the further explanation, some of the definitions used in the present invention are set forth first. See Figure 3, which is a form of processing content records for monitoring how data in the cache 102 has been accessed in the past. The form has a TID (Processing Content ID, from 0001 to 0024) column, a cache data (from D01 to D18) column, a reference time period (from H00 to H08) column, and a record time. H00 means that the recording time falls between 00:00 and 01:00, H01 means that the recording time falls between 01:00 and 02:00, and so on. The "1" in the TID and cache data fields means that the cached data has been accessed before the "current" record time and the "last" record time. The "1" in the TID and the reference period field means that the processing content is quantized for the recording time in different periods. The processing content is a record in which the cached data was accessed during the past period. In this example, the records (processing contents) in the past 8 hours are used for analysis. For better illustration, each processing content has a corresponding TID for identification. The processing content recorder 103 periodically records the processing contents in such a manner that the processing contents of the two consecutive records are separated by a time span. In this example, each processing content is recorded 20 minutes after the previous processing of the content record, with a time span of 20 minutes. In practice, the recording time does not necessarily need to be accurately placed on the scheduled timetable. For example, the recording time may fall at 00:30:18, 00:50:17, etc., not exactly at the 15th second but with a range. This is because there may be some large data being accessed or processed by the content recorder 103 waiting for a response from the remotely connected cache 102. A more positive way that is acceptable is that the time span is randomly selected, which is also within the scope of the invention.
應注意的是實作上,處理內容的數量很大,可能是上千筆或更多,舉例而言,以10分鐘為時間跨度進行三個月的紀錄,24筆處理內容僅用於說明的例子。處理內容紀錄器103有較多的處理內容,於未來的一特定時間內資料的需求就能更精準地被預測。當然,並非所有快取儲存於快取記憶體102中的資料都會於一段時間內被存取。如第3圖所示,處理 內容0015沒有被存取資料的紀錄,它僅有紀錄時間,04:50:05。 It should be noted that in practice, the amount of processing content is very large, and may be thousands or more. For example, a 10-month time span of three minutes is recorded, and 24 processing contents are for illustrative purposes only. example. The processing content recorder 103 has more processing content, and the data demand can be predicted more accurately in a specific time in the future. Of course, not all cached data stored in the cache memory 102 will be accessed for a period of time. As shown in Figure 3, the processing content 0015 has no record of accessed data, it only has a recording time, 04:50:05.
在快取記憶體102中的資料被本發明方法藉雲端儲存設備系統10決定的細節揭露前,先看一下快取資料。雖然有18筆快取資料,依照快取記憶體102的容量,快取資料的數目可能大於18。該18筆快取資料在07:50:05由本發明的方法及/或其它雲端儲存設備系統10使用的快取演算法獲得。因為如果某些資料太經常被存取,處理內容紀錄器103可從輔助記憶體104之一增加新的資料到快取記憶體102中,用於分析的快取資料也可能會因此改變。可能有其它資料於03:50:05前被快取儲存但後來被移除,是因為它沒被請求或“預期被存取”。 Before the data in the cache memory 102 is revealed by the method of the present invention by the cloud storage device system 10, the cache data is first viewed. Although there are 18 caches, depending on the capacity of the cache 102, the number of cached data may be greater than 18. The 18 cache data is obtained at 07:50:05 by the method of the present invention and/or other cache operations used by the cloud storage device system 10. Because if some of the material is accessed too often, the processing content recorder 103 can add new material from one of the auxiliary memories 104 to the cache memory 102, and the cached data for analysis may also change accordingly. There may be other information that was cached before 03:50:05 but was later removed because it was not requested or "expected to be accessed."
由第3圖,可看出快取資料的特性。快取資料D01在前3小時及最後一小時中常被存取。快取資料D02在每隔一個20分鐘內平均被存取。快取資料D03在每隔兩個20分鐘內平均被存取。快取資料D04於00:10:05至00:30:05、02:50:05至03:10:05,及05:30:05至05:50:05內平均被存取。快取資料D05在00:30:05至00:50:05及06:10:05至06:30:05被存取。快取資料D06僅於05:30:05至05:50:05內被存取。快取資料D07在00:30:05至01:10:05、03:10:05至03:50:05,及06:10:05至06:50:05平均被存取。快取資料D08僅於07:10:05至07:30:05被存取,它可能是在07:10:05後因預期性需求而加入的最新資料。 幾乎除了04:30:05至04:50:05外的每一時段,快取資料D09最常被存取。快取資料D10是隨機地被存取。快取資料D11沒有被存取的紀錄。快取資料D12在每隔一個20分鐘的40分鐘內平均被存取。快取資料D13隨機地被存取。快取資料D14在00:50:05至04:30:05間密集地被存取。快取資料D15在02:50:05至06:50:05間,除了04:30:05至04:50:05外,密集地被存取。快取資料D16和快取資料D01有相似的存取需求。快取資料D17與D18都平均地被存取,但快取資料D17於03:50:05與04:30:05間有較多的請求,快取資料D18於01:50:05與03:10:05間有較多的請求。 From Figure 3, the characteristics of the cached data can be seen. The cache data D01 is often accessed during the first 3 hours and the last hour. The cache data D02 is accessed on average every other 20 minutes. The cache data D03 is accessed on average every two 20 minutes. The cache data D04 is accessed on average from 00:10:05 to 00:30:05, 02:50:05 to 03:10:05, and 05:30:05 to 05:50:05. The cache data D05 is accessed at 00:30:05 to 00:50:05 and 06:10:05 to 06:30:05. The cache data D06 is only accessed from 05:30:05 to 05:50:05. The cache data D07 is accessed on average from 00:30:05 to 01:10:05, 03:10:05 to 03:50:05, and 06:10:05 to 06:50:05. The cache data D08 is only accessed from 07:10:05 to 07:30:05, it may be the latest information added after 07:10:05 due to expected demand. Almost every time except 04:30:05 to 04:50:05, the cache data D09 is most frequently accessed. The cache data D10 is randomly accessed. The cache data D11 has no access to the record. The cache data D12 is accessed on average every 40 minutes of 20 minutes. The cache data D13 is randomly accessed. The cache data D14 is densely accessed between 00:50:05 and 04:30:05. The cache data D15 is densely accessed from 02:50:05 to 06:50:05, except for 04:30:05 to 04:50:05. The cache data D16 and the cache data D01 have similar access requirements. The cache data D17 and D18 are both accessed on average, but the cache data D17 has more requests between 03:50:05 and 04:30:05, and the cache data D18 is at 01:50:05 and 03: There are more requests between 10:05.
本發明的主要目的在依照歷史資訊,預測於未來一特定時間所請求的資料,並在未來的該特定時間到來前,提供對應資料到快取記憶體102中。一種用來決定在雲端儲存設備系統10的快取記憶體102中的資料之方法有幾個步驟。請見第4圖,該圖為本發明提出方法的流程圖。如上所述,該方法由處理內容紀錄器103所執行。首先,紀錄雲端儲存設備系統10的快取記憶體102於過去一段時間內的處理內容(S01)。每一處理內容包含一紀錄時間(處理內容ID 0015),或一紀錄時間與過去該段時間(例子中的8小時)內被存取的快取資料。接著,指定於未來的一特定時間(S02)。快取記憶體102接收來自主機101的未來的該特定時間。依照本發明,未來的該特定時間可以是未來的任何時間或時段。舉例而言,它可以是 一小時中的一特定分鐘(對每一小時而言)、一天中的一特定小時(對每一天而言)、一周中的一特定日(對每一周而言)、一月中的一特定日(對每一個月而言)、一季中的一特定日(對每一季而言)、一年中的一特定日(對每一年而言)、一月中的一特定周(對每一個月而言)、一季中的一特定周(對每一季而言)、(對每一年而言),或一年中的一特定月(對每一年而言)。在本例中,處理內容用來決定哪些資料應該於其它天的00:00:00(H00)前被快取儲存。 The main object of the present invention is to predict the data requested at a specific time in the future according to historical information, and provide corresponding data to the cache memory 102 before the arrival of the specific time in the future. A method for determining data in the cache memory 102 of the cloud storage device system 10 has several steps. Please refer to Fig. 4, which is a flow chart of the method proposed by the present invention. As described above, the method is performed by the processing content recorder 103. First, the processing contents of the cache memory 102 of the cloud storage device system 10 over a past period of time are recorded (S01). Each processing content includes a recording time (processing content ID 0015), or a recording time and a cached data accessed during the past time (8 hours in the example). Next, it is specified at a specific time in the future (S02). The cache memory 102 receives this particular time from the host 101 in the future. In accordance with the present invention, this particular time in the future can be any time or period of time in the future. For example, it can be a specific minute in an hour (for each hour), a specific hour of the day (for each day), a specific day of the week (for each week) , a specific day of the month (for each month), a specific day of the season (for each season), a specific day of the year (for each year), mid-January a specific week (for each month), a specific week in a season (for each season), (for each year), or a specific month of the year (for each year) Word). In this example, the processing content is used to determine which data should be cached before 00:00:00 (H00) on other days.
第三步驟是基於一參考時段,對每一來自處理內容的快取資料計算出一與時間相關的置信度(S03)。參考時段指的是“於一小時中的特定分鐘內”(H00,每天第一個小時的每一個20分鐘)的時間。在其它例子中,參考時段可以是“於一日中的特定小時內”或“於一年中的特定日內”,隨時間跨度記錄數量的不同而不同。在特定的例子中,參考時段可以是“於一主時間單元中的特定子時間單元內”。舉例而言,於一天中的24小時內。該與時間相關的置信度可由下列步驟計算得到:A.計算一第一數量,該第一數量為參考時段於過去該段時間內出現的數量;B.計算一第二數量,該第二數量為當一標的快取資料存取時,該參考時段的數量;及C.將該第二數量除以該第一數量。在本例中,對所有資料來說,計算所得的與時間相關的置信度表列於第5圖中。如果未來的該特定時間是8:00AM的第一分鐘,且參考時段指的是過 去8小時內所有的20分鐘,其結果顯示於第6圖中。由第5圖與第6圖,基於不同情況,相對於其它快取資料,每一快取資料具有不同的計算得到的與時間相關的置信度。 The third step is to calculate a time-dependent confidence for each cached material from the processed content based on a reference period (S03). The reference period refers to the time of "in a specific minute of one hour" (H00, every 20 minutes of the first hour of the day). In other examples, the reference period may be "within a particular hour of the day" or "within a particular day of the year", which varies with the number of time span records. In a particular example, the reference period may be "within a particular sub-time unit in a primary time unit." For example, within 24 hours of the day. The time-dependent confidence can be calculated by the following steps: A. Calculating a first quantity, the first quantity being the quantity of the reference period that occurred in the past period of time; B. calculating a second quantity, the second quantity The number of reference periods for accessing a target cache; and C. dividing the second number by the first number. In this example, the calculated time-dependent confidence table for all data is listed in Figure 5. If the specific time in the future is the first minute of 8:00 AM, and the reference time period refers to all 20 minutes in the past 8 hours, the result is shown in Fig. 6. From Figures 5 and 6, based on different situations, each cached data has a different calculated time-dependent confidence relative to other cached data.
接著,排序該些與時間相關的置信度(S04)。例子中的結果也各自顯示於第5圖與第6圖中。最後,提供具有較高與時間相關的置信度的快取資料於該快取記憶體102中,並當該快取記憶體102於未來的該特定時間前耗盡時,移除該快取記憶體102中具有較低與時間相關的置信度之快取資料(S05)。以第6圖做為例子說明。在其它天的00:00前,也許在12:59:59 PM,除了D11,所有的資料都做為新的快取資料儲存到快取記憶體102中,供00:00以後存取請求所需。D11移除的原因是快取記憶體102的空間不夠18筆資料儲存且D11具有的與時間相關的置信度低於其它的資料。18筆快取儲存檔案用來分析的原因是因低命中率或其它因素以及新的資料(D08)加入,有一筆或多筆快取資料已被雲端儲存設備系統10移除。所有使用的快取資料數量為18。快取記憶體102中新被快取的資料是在08:00後最有可能收到請求的資料,它們都是基於與時間相關的置信度而計算出的。要注意的是以上所說的資料或快取資料型態可以是物件、區塊,或檔案。 Next, the time-dependent confidences are sorted (S04). The results in the examples are also shown in Figures 5 and 6, respectively. Finally, a cache data having a higher time-dependent confidence is provided in the cache memory 102, and the cache memory is removed when the cache memory 102 is exhausted before the specific time in the future. The cache 102 has a lower time-dependent confidence cache data (S05). Take Figure 6 as an example. Before 00:00 on other days, perhaps at 12:59:59 PM, except for D11, all the data is stored as new cache data in the cache memory 102 for access after 00:00. need. The reason for the D11 removal is that the cache memory 102 has insufficient space for 18 data storage and D11 has a lower time-related confidence than other data. The 18 cache cache files were analyzed for reasons of low hit rate or other factors and new data (D08) added, and one or more cached data has been removed by the cloud storage device system 10. The number of cached data used is 18. The newly cached data in the cache 102 is the most likely to receive the requested data after 08:00, and they are all calculated based on the time-dependent confidence. It should be noted that the above mentioned data or cache data type can be an object, a block, or a file.
在其它實施例中,最後一個步驟(S05)可能不同,這意味處理內容紀錄器103具有的功能與前一個實施例中的不同。改變的步驟內容為提供具有較高與時間相關的置信度 的快取資料與從至少一種其它快取演算法計算得到的資料到快取記憶體102中,以在未來的該特定時間前耗盡快取記憶體102的使用。在具有較高與時間相關的置信度之快取資料及從其它快取演算法計算得到的資料間存在一固定比率,該固定比率是基於資料數量或資料佔據空間而計算。再回到第6圖。如果快取記憶體102設定為快取20筆資料,當本發明所提及的用於快取資料的比率為60%,而剩餘由其它快取演算法計算得到的資料佔40%,則本方法所得的快取資料為D01、D02、D03、D07、D09、D10、D12、D13、D14、D15、D16,及D18,總共12筆資料,其餘的資料由前述快取演算法所提出。如果有某些相同的快取資料是由兩造共同提出,則由本發明或其它快取演算法所算出具有較低優先次序的資料可遞補使用,本發明並未限定之。當然,在多數情況下,快取記憶體102設計依照其容量來快取資料,而不是以資料數量決定。由上面的例子來看,60%快取記憶體102的容量應留給由本發明所決定的資料,而其餘的40%則給至少一種現有快取演算法所提出的資料。前述的快取演算法包含,但不限於Least Recently Used(LRU)演算法、Most Recently Used(MRU)演算法、Pseudo-LRU(PLRU)演算法、Random Replacement(RR)演算法、Segmented LRU(SLRU)演算法、2-way set associative演算法、Least-Frequently Used(LFU)演算法、Low Inter-reference Recent Set(LIRS)演算法、Adaptive Replacement Cache(ARC)演算法、Clock with Adaptive Replacement(CAR)演算法、Multi Queue(MQ)演算法,或是定義於發明背景中的與資料相關演算法。應注意的是如果應用與資料相關演算法,標的資料應使用本發明運算的結果,這意味由步驟S04獲得具有較高排序的快取資料再輸入到與資料相關演算法中當作標的資料,以得到該與資料相關演算法的結果。在雲端儲存設備系統10中,這是由處理內容紀錄器103產生標的資料來供與資料相關演算法使用。與資料相關演算法也可利用處理內容紀錄器103來執行。 In other embodiments, the last step (S05) may be different, which means that the processing content recorder 103 has a different function than in the previous embodiment. The changed step content is to provide cache data having a higher time-dependent confidence and data calculated from at least one other cache algorithm into the cache memory 102 to deplete faster before the specific time in the future. The use of the memory 102 is taken. There is a fixed ratio between the cache data having a higher time-dependent confidence and the data calculated from other cache algorithms, which is calculated based on the amount of data or the space occupied by the data. Go back to Figure 6. If the cache memory 102 is set to cache 20 data, when the ratio of the data for the cached data mentioned in the present invention is 60%, and the remaining data calculated by other cache algorithms accounts for 40%, then The obtained cache data are D01, D02, D03, D07, D09, D10, D12, D13, D14, D15, D16, and D18, a total of 12 pieces of data, and the rest of the data is proposed by the aforementioned cache algorithm. If some of the same cached data is jointly proposed by the two, the data with lower priority calculated by the present invention or other cache algorithms may be used in a supplemental manner, and the present invention is not limited thereto. Of course, in most cases, the cache memory 102 is designed to cache data according to its capacity, rather than the amount of data. From the above example, the capacity of the 60% cache memory 102 should be left to the data determined by the present invention, while the remaining 40% is given to at least one of the existing cache algorithms. The aforementioned cache algorithm includes, but is not limited to, Least Recently Used (LRU) algorithm, Most Recently Used (MRU) algorithm, Pseudo-LRU (PLRU) algorithm, Random Replacement (RR) algorithm, Segmented LRU (SLRU) Algorithm, 2-way set associative algorithm, Least-Frequently Used (LFU) algorithm, Low Inter-reference Recent Set (LIRS) algorithm, Adaptive Replacement Cache (ARC) algorithm, Clock with Adaptive Replacement (CAR) Algorithm, Multi Queue (MQ) algorithm, or data-related algorithm defined in the background of the invention. It should be noted that if the data-related algorithm is applied, the target data should use the result of the operation of the present invention, which means that the cached data with higher ordering is obtained from step S04 and then input into the data-related algorithm as the target data. To get the results of the data-related algorithm. In the cloud storage device system 10, this is generated by the processing content recorder 103 for use with the material related algorithms. The data related algorithm can also be executed using the processing content recorder 103.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
Claims (18)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105128960A TWI629593B (en) | 2016-09-07 | 2016-09-07 | Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105128960A TWI629593B (en) | 2016-09-07 | 2016-09-07 | Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW201812592A true TW201812592A (en) | 2018-04-01 |
| TWI629593B TWI629593B (en) | 2018-07-11 |
Family
ID=62639074
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW105128960A TWI629593B (en) | 2016-09-07 | 2016-09-07 | Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI629593B (en) |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI426393B (en) * | 2010-02-12 | 2014-02-11 | 精英電腦股份有限公司 | Cloud computing resource scheduling method and application system |
| US9086937B2 (en) * | 2012-05-16 | 2015-07-21 | Apple Inc. | Cloud-based application resource files |
-
2016
- 2016-09-07 TW TW105128960A patent/TWI629593B/en active
Also Published As
| Publication number | Publication date |
|---|---|
| TWI629593B (en) | 2018-07-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9703500B2 (en) | Reducing power consumption by migration of data within a tiered storage system | |
| JP6304406B2 (en) | Storage apparatus, program, and information processing method | |
| US7822712B1 (en) | Incremental data warehouse updating | |
| US8380929B2 (en) | Hierarchical storage management for database systems | |
| US9779027B2 (en) | Apparatus, system and method for managing a level-two cache of a storage appliance | |
| US8909614B2 (en) | Data access location selecting system, method, and program | |
| US11537584B2 (en) | Pre-caching of relational database management system based on data retrieval patterns | |
| US20180225350A1 (en) | Query dispatching system and method | |
| CN104978362B (en) | Data migration method, device and the meta data server of distributed file system | |
| US10140034B2 (en) | Solid-state drive assignment based on solid-state drive write endurance | |
| Puttaswamy et al. | Frugal storage for cloud file systems | |
| US10061702B2 (en) | Predictive analytics for storage tiering and caching | |
| CN110727406B (en) | Data storage scheduling method and device | |
| US10503608B2 (en) | Efficient management of reference blocks used in data deduplication | |
| CN113946552B (en) | Data processing method and electronic device | |
| WO2020135737A1 (en) | Methods, apparatuses, devices and mediums for partition management and data storage and querying | |
| US12026377B2 (en) | Method to implement and enforce a cost-based quota for cloud operations in backup servers based on allowed cloud budget | |
| US10282127B2 (en) | Managing data in a storage system | |
| US11132128B2 (en) | Systems and methods for data placement in container-based storage systems | |
| CN107819804B (en) | Cloud storage device system and method for determining data in cache of its architecture | |
| TWI629593B (en) | Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same | |
| JP2018041455A (en) | Method for determining data in cache memory of cloud storage structure and cloud storage system using the same | |
| HK1251377A1 (en) | Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same | |
| HK1251377B (en) | Method for determining data in cache memory of cloud storage architecture and cloud storage system using the same | |
| US11561934B2 (en) | Data storage method and method for executing an application with reduced access time to the stored data |