[go: up one dir, main page]

TW201203131A - System and method for hand image recognition - Google Patents

System and method for hand image recognition Download PDF

Info

Publication number
TW201203131A
TW201203131A TW99121722A TW99121722A TW201203131A TW 201203131 A TW201203131 A TW 201203131A TW 99121722 A TW99121722 A TW 99121722A TW 99121722 A TW99121722 A TW 99121722A TW 201203131 A TW201203131 A TW 201203131A
Authority
TW
Taiwan
Prior art keywords
image
hand
identification
hand image
feature
Prior art date
Application number
TW99121722A
Other languages
Chinese (zh)
Inventor
meng-hui Wang
Yu-Kuo Chung
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW99121722A priority Critical patent/TW201203131A/en
Publication of TW201203131A publication Critical patent/TW201203131A/en

Links

Landscapes

  • Image Analysis (AREA)

Abstract

A system and method for hand image recognition is disclosed. The system and method for hand image recognition includes an image capture, a feature capture, a database, an extension computing unit and an output device. The image capture captures a hand image. The feature capture connects to the image capture and captures at least one geometry feature of the hand image to produce at least one image matter-element model. The database has several recognizable models. The extension computing unit connects to the feature capture and the database. The extension computing unit can calculate a correlation between the image matter-element model and the recognizable models. The output device which connects to the extension computing unit compares the correlation with a threshold to output a recognition signal.

Description

201203131 六、發明說明: 【發明所屬之技術領域】 本揭示内容是有關於辨識身分的方法,且特別是有 關於一種利用手部影像來辨識身分的方法。 疋 【先前技術】 隨著網際網路應用日漸普及、電子交易化時代的來 臨’傳統的保密與認證方式,已難以確保認證的安全性。 着使用者除需記憶多組密碼而可能導致錯誤外,使用密碼更 有可能會造成企業電腦網路及網際網路的舞弊事件。此 外,使用塑膠卡片、智慧卡或電腦證物卡也不安全,因為 這些卡片可能被偽造、竊取、遺失、或無法讀取資料。因 此,利用個人獨特的生物特徵進行身分辨識具有難以複製 或遭竊的特性,可有效解決安全認證的問題。 傳統的手部辨識利用電荷耦合元件(ccd, Charge-coupled Device)或照相機來擷取手部影像。然而, • 傳統擷取設備易因掌紋髒汙或受傷等因素而影響辨識結 果。此外’傳統擷取影像設備也容易因周遭環境光線強弱、 影像背景、角度…等外在因素影響,而導致辨識結果不佳。 【發明内容】 因此’本揭示内容之一技術態樣在於提供一種手部影 像之身分辨識系統及方法,以克服上述因外在因素而干^ 辨識結果的問題。 201203131201203131 VI. Description of the Invention: [Technical Field of the Invention] The present disclosure relates to a method of recognizing an identity, and more particularly to a method for recognizing an identity using a hand image.疋 [Prior Art] With the increasing popularity of Internet applications and the advent of the era of electronic trading, the traditional security and authentication methods have made it difficult to ensure the security of authentication. In addition to the user's need to memorize multiple sets of passwords, which may lead to errors, the use of passwords is more likely to cause fraud on corporate computer networks and the Internet. In addition, the use of plastic cards, smart cards or computer badges is not safe because they may be forged, stolen, lost, or unreadable. Therefore, the use of personal unique biometrics for identity identification is difficult to copy or steal, which can effectively solve the problem of security certification. Conventional hand recognition uses a ccd, a charge-coupled device or a camera to capture a hand image. However, • Traditional pick-up equipment is susceptible to identification due to factors such as palm print stains or injuries. In addition, traditional image capture equipment is also susceptible to external factors such as ambient light intensity, image background, angle, etc., resulting in poor identification results. SUMMARY OF THE INVENTION Therefore, one aspect of the present disclosure is to provide a system and method for identifying a hand image to overcome the above-mentioned problem of identifying results due to external factors. 201203131

依據本揭示内容-實施方式,一種手部影像之身 識系統,包含一影像擷取器、一特徵擷取單元、一辨 料庫…可拓計算單元及—輪出單元。影像擷取器擷取二 手部影像。特徵擷取單元與影像擷取器連接,擷取手部$ 像的至少-幾何特徵,進而產生至少―影像物元模型。二 識資料庫具有複數個辨識物元模型。可拓計算單元 特徵擷取單元及辨識資料庫連接,並利用可拓計算單元钟 算影像物元模型及辨識物元模型之間的一關聯度。輸出單 兀與可拓計算單元連接,並根據關聯度與 的結果輸出一辨識訊號。 相比1又 依據本揭示内容另一實施方式,一種藉由手部影像辨 識身分之方法包含下列步驟:利用一影像擷取器擷取一手 部影像;利用一特徵擷取單元擷取手部影像之至少一幾何 特徵,並產生至少一影像物元模型;建立至少一辨識物元 i利用可拓计真單元汁算影像物元模型及辨識物元 模型之間的一關聯度;根據關聯度與一門檻值相比較的結 果輸出一辨識訊號。 因此’本揭示内容之手部影像之身分辨識系統及方法 利用手部影像的幾何特徵來進行身分辨識,降低角度、光 線、環境等外在因素對辨識結果的影響。此外,本揭示内 容之可拓計算單元利用可拓辨識演算法來進行辨識身分的 工作,不僅建立模型簡單方便,模型建構能力強,亦可節 省大量的記憶體空間、快速分類,另外,因不需重複學習p, 可節省辨識作業的時間。 201203131 【實施方式】 第1圖繪示本揭示内容一實施方式之手部影像之身分 辨識系統及方法的流程圖。如圖所示,手部影像之身分辨 識系統及方法先利用影像擷取器擷取手部影像110,將手 部影像進行影像前處理120後,再用特徵擷取單元擷取手 部影像的幾何特徵130,並利用這些影像特徵產生影像物 元模型140。同時,本實施方式另建立辨識資料庫150,其 中包含有多數個辨識物元模型,接著,利用可拓計算單元 計算計算影像物元模型及辨識物元模型之間的關聯度 160,將此關聯度與預設的門檻值做比較170,若關聯度大 於門檻值,則顯示辨識身分180,反之,若關聯度小於門 檻值,則顯示查無此人190。 第2圖繪示第1圖之手部影像之身分辨識系統及方法 的示意圖。影像擷取器210用來擷取使用者的手部影像。 傳統的手部辨識系統是利用CCD或照相機來擷取手部影 像,然後擷取掌紋以及掌型等特徵,然而,傳統的擷取設 備有如掌紋易受髒汙或受傷等干擾而影響辨識結果的缺 點。此外,傳統擷取影像的設備容易受到周遭環境光線強 弱影響,而須使用燈光輔助或控制光線等方法來彌補。 在本實施方式中,手部影像是以感測人體熱幅射的特 定紅外線波段訊號,而後將訊號轉換成人類視覺能辨視的 影像圖形,不會有光線干擾的問題,且本實施方式擷取手 部影像時,利用熱影像分析儀以非固定式來進行影像擷取 的動作,使用者僅需將手擺放於固定距離,即可進行手部 影像的擷取。下表一為熱影像分析儀及傳統CCD或掃描器According to the present disclosure-embodiment, a hand image recognition system includes an image capture device, a feature extraction unit, a recognition library, an extension calculation unit, and a wheel-out unit. The image capture device captures two hand images. The feature capture unit is coupled to the image capture device to capture at least the geometric features of the hand image, thereby generating at least an image matter element model. The second knowledge database has a plurality of identification matter metamodels. Extension computing unit The feature extraction unit and the identification database are connected, and the extension computing unit is used to calculate the image matter element model and identify an association degree between the matter element models. The output unit 连接 is connected to the extension computing unit, and outputs an identification signal according to the correlation degree and the result. According to another embodiment of the present disclosure, a method for recognizing an identity by using a hand image includes the following steps: capturing an image of a hand by using an image capture device; and capturing a hand image by using a feature extraction unit. At least one geometric feature, and generating at least one image matter element model; establishing at least one identification object element i using the extension unit true unit juice calculation image matter element model and identifying an association degree between the matter element models; The result of comparing the threshold values outputs an identification signal. Therefore, the identification system and method of the hand image of the present disclosure utilizes the geometric features of the hand image to identify the identity and reduce the influence of external factors such as angle, light, and environment on the recognition result. In addition, the extension computing unit of the present disclosure utilizes an extension identification algorithm to identify the identity, which not only establishes a simple and convenient model, but also has a strong model construction capability, can also save a large amount of memory space, and quickly classify. Repeated learning p can save time in identifying jobs. 201203131 [Embodiment] FIG. 1 is a flow chart showing a system and method for identifying a hand image according to an embodiment of the present disclosure. As shown in the figure, the identity recognition system and method of the hand image first uses the image capture device to capture the hand image 110, and performs image pre-processing on the hand image 120, and then uses the feature extraction unit to capture the geometric features of the hand image. 130, and using these image features to generate an image matter element model 140. At the same time, the embodiment further establishes an identification database 150, which includes a plurality of identified matter element models, and then uses the extension computing unit to calculate and calculate the correlation degree 160 between the image matter element model and the identification matter element model, and associates the relationship. The degree is compared with the preset threshold value 170. If the correlation degree is greater than the threshold value, the identification identity is displayed 180. Conversely, if the correlation degree is less than the threshold value, the person 190 is displayed. Figure 2 is a schematic diagram showing the identity recognition system and method of the hand image of Figure 1. The image capture device 210 is used to capture a user's hand image. The traditional hand recognition system uses a CCD or a camera to capture the image of the hand, and then captures the characteristics of the palm print and the palm shape. However, the conventional grasping device has the disadvantage that the palm print is susceptible to contamination or injury and affects the identification result. . In addition, traditional image capture devices are susceptible to ambient light and must be compensated for by light assist or light control. In this embodiment, the hand image is a specific infrared band signal that senses the heat radiation of the human body, and then converts the signal into an image image that can be recognized by the human vision without the problem of light interference, and the present embodiment 撷When the hand image is taken, the image capture operation is performed by the thermal image analyzer in a non-fixed manner, and the user can perform the hand image capture by simply placing the hand at a fixed distance. Table 1 below is a thermal image analyzer and a conventional CCD or scanner.

201203131 之特性比較表. ^---- 擷取影像太斗 表一 ~~~~~一 ------- 熱影像分柝儀 -------—特性 1 --- .不受環贼糖_干擾而影響舰的擷取。 2‘ f完全黑暗中的環境下,依然能夠擷取影像。 3.提供一種非接觸式的擷取特徵方式。 4·不需要使用固定的圓柱限制使用者手指張開程 --只需要固定手掌拍攝距離即可。 傳統CCD或 1.必須使用圓柱固定手掌,使用者感到不適。 掃描器 2.掌紋受傷或髒汙會有辨識失敗結果產生。 須以燈光加以輔助才能取得影像。 徵, …u …π τ〜猢取于部影傢〒的特 ^,在此之前,必須先將手部影像做一些影像前處理以 沪便特徵擷取單元後續的特徵擷取。此時手部影像是以灰 Λ,呈現,灰階值越高,溫度越高,反之則否。為了讓手 ^影像只留下手部灰階值部分,須利用影像處理單元230 =·行影像分割,將手部影像與背景影像分離,確保影像中 、剩手掌的部分,背景部分灰階值為0(即黑色)時,再進行 特徵的擷取。 本實施方式採用Otsu所提出最佳臨界值擷取技術, =tsu法最主要的想法是找出一個最佳的門檻值,使得兩群 變異數的總合為最小。假設影像灰階範圍為1〜尤,而各灰 P白之點數累計分別為,《2,…,而全部總點數為#,則灰 白Z•之出現機率為:201203131 Feature Comparison Table. ^---- Capture Image Overwork Table 1~~~~~1------- Thermal Image Bifurcation--------Feature 1 --- . It is not affected by the ring thief sugar _ interference and affects the ship's capture. 2' f In the dark environment, you can still capture images. 3. Provide a non-contact capture feature. 4. There is no need to use a fixed cylinder to limit the user's finger opening process - just fix the distance of the palm. Conventional CCD or 1. The cylinder must be used to secure the palm of the hand and the user feels uncomfortable. Scanner 2. If the palm print is injured or dirty, there will be a result of identification failure. You must use the light to assist in obtaining the image. The sign, ...u ... π τ ~ is taken from the special part of the film family. Before this, the hand image must be pre-processed to capture the subsequent features of the feature acquisition unit. At this time, the hand image is gray, and the higher the gray level value, the higher the temperature, and vice versa. In order to leave only the hand grayscale value part of the hand image, the image processing unit 230 =· line image segmentation is used to separate the hand image from the background image to ensure that the part of the image and the remaining palm portion are grayscaled. When 0 (ie black), the feature is captured. This embodiment adopts the optimal threshold extraction technique proposed by Otsu. The main idea of the =tsu method is to find an optimal threshold value so that the sum of the two groups of variances is the smallest. Assume that the grayscale range of the image is 1~ especially, and the points of each gray P white are cumulatively, "2,..., and all the total points are #, then the probability of occurrence of gray Z• is:

LSI 7 201203131LSI 7 201203131

N 現在假設用臨界值A將影像中之像素分為(^和C2兩 個群集,(^表示灰度值範圍為[1,]之像素群集;而c2則表 示灰度值範圍為|>+1,Z]之像素群集。此時這兩個群集的機 率分佈分別為、w7,兩個群集之平均數分別為、/X/, 則:N Now suppose that the pixel in the image is divided into two clusters (^ and C2 with a threshold A, (^ represents a cluster of pixels with a gray value range of [1,]; and c2 represents a range of gray values of |> +1, Z] pixel cluster. At this time, the probability distribution of the two clusters is w7, and the average of the two clusters is /X/, then:

K ^0=Σ,Ρι /=7 =w{k) (2) wi = = /~wW i=K+J (3) μ〇 = Σ Τί^ο =南 \^k) (4) ^=ςιΆ= i=K+l w; uT —u{k) (5) 又這兩個群集的變異數分別為&、 <,變異總數為<K ^0=Σ,Ρι /=7 =w{k) (2) wi == /~wW i=K+J (3) μ〇= Σ Τί^ο =South\^k) (4) ^= ςιΆ= i=K+lw; uT —u{k) (5) The variation of the two clusters is &, <, the total number of mutations is <

則: =ΥΜ~^)2 A ⑹ /=/ % i=k+I ? Pi wl ⑺ ⑹= --w0a20(k)+\ ⑻Then: =ΥΜ~^)2 A (6) /=/ % i=k+I ? Pi wl (7) (6)= --w0a20(k)+\ (8)

Otsu認為當能找到一個灸值使得變異數總合 < 為最 小,這個A:就是最佳的門檻值。接下來將影像像素灰階值 小於A值者設為0(表示黑色),大於等於々值者則不改變灰 階值,如式(9),重新分配灰階值到影像就可以分離背景與 手部的效果。 (9) 201203131 請繼續參照的2圖,完成分 掌後,接著進行特漏取㈣作的背景與手 像擷取器21〇連接,丰 特徵擷取早70 22〇與影 影像物元模型。“像的幾何特徵,進而產生 手部幾何特徵是生物辨識系統研究的熱門項目之一, 由於手部幾何特徵受光線或環境影響最小’與膚色無關,Otsu believes that when a moxibustion value can be found so that the total number of variances is < the minimum, this A: is the optimal threshold. Next, the image pixel grayscale value is less than the A value is set to 0 (indicating black), and the greater than or equal to the threshold value does not change the grayscale value, as in equation (9), redistributing the grayscale value to the image can separate the background and The effect of the hand. (9) 201203131 Please continue to refer to Figure 2, after the completion of the split, then the background of the special leak (4) is connected with the image picker 21〇, and the feature is taken as 70 22〇 and the image object model. “The geometrical features of the image, which in turn produces the geometrical features of the hand, is one of the hottest items in the study of biometric systems. Since the geometrical features of the hand are minimally affected by light or the environment, it has nothing to do with skin color.

只與大小、形狀及長度有關,因此,本實施方式利用擷取 手部的幾何特徵來進行身分辨識。 第3圖繪示第1圖之手部影像之身分辨識系統及方法 中手部影像的幾何特徵示意圖。擷取手部幾何特徵時必須 先偵測出手部的邊緣像素,以像素的多寡來代表手掌的大 小,在偵測邊緣的同時,將邊緣座標記錄下來,記錄完座 標之後,可發現指尖和谷間的座標關係有規律的變化性。 運用座標的規律變化關係,可以找出指間和谷間的位置, 在第3圖中’ A〜G點為谷間、η〜L點為指尖。找到指尖和 谷間座標後’利用兩點座標距離公式去計算出手指寬度、 手指長度。利用指尖和谷間的相對距離來找出手指寬度, 例如:姆指中間線段是利用Α點和Β點各自對Η點的1/2 距離處取一個座標點,利用這兩點計算長度,其他四根手 指寬度也利用此法在1/3和2/3處各自取點計算長度。手指 長度則是利用兩個谷間點算出中點,計算中點與指尖點的 距離,即可得知手指長度,例如:Α點與Β點找出中點, 再將中點與Η點算出長度即可,其他四根手指也如法炮製。 201203131 在經過影像前處理後,手部影像中只剩下手部區 度值,此時記下所有灰度值像素點數多寡,並記;二二二 域中灰階值最大、最小值。本實施方式整理出2 徵如下表二所示。 特 表二手部特徵 11 : 手掌周長 姆指長度 食指長度 中指長度 無名指長度 _14 15Only in relation to size, shape and length, the present embodiment utilizes the geometric features of the hand to perform identity recognition. FIG. 3 is a schematic diagram showing the geometric features of the hand image in the identity recognition system and method of the hand image of FIG. 1 . When extracting the geometric features of the hand, you must first detect the edge pixels of the hand. The size of the palm is represented by the number of pixels. When the edge is detected, the edge coordinates are recorded. After the coordinates are recorded, the fingertips and valleys can be found. The coordinate relationship is regularly variability. Using the regular relationship of coordinates, you can find the position between the fingers and the valley. In Figure 3, the points A to G are between the valleys and the points η to L are the fingertips. After finding the fingertip and the inter-valley coordinates, use the two-point coordinate distance formula to calculate the finger width and finger length. Use the relative distance between the fingertip and the valley to find the finger width. For example, the middle segment of the thumb is to take a coordinate point from the 1/2 distance of each point and use the two points to calculate the length. The width of the four fingers is also used to calculate the length at each of 1/3 and 2/3. The length of the finger is calculated by using the two valley points to calculate the midpoint. The distance between the midpoint and the fingertip point is calculated, and the length of the finger can be known. For example, the midpoints are found by the Α and Β, and the midpoint and the Η are calculated. The length is OK, and the other four fingers are also processed. 201203131 After the image pre-processing, only the hand area value is left in the hand image. At this time, record the number of pixels of all gray value values, and record the maximum and minimum gray level values in the 22nd domain. The second aspect of the present embodiment is as shown in Table 2 below. Special second-hand features 11 : Palm circumference Length of the thumb Index length of the middle finger Length of the ring finger _14 15

8 9 1/3食指寬度 1/3中指寬度 18 1/3小姆指窗1 磨 2/3中指寬度_ 2/3無名指宽& 2/3小姆指寬度 ^1灰階區間個叙 ---^ 第2灰階區間個鉍 ---- 第3灰階區卩 第4灰階區 第5灰階區卩 1/3無名指寬兔 ------I_I a〜〜日 tSE 激 明繼續參照第2圖,完成上述的前置作業後, 拓計算單it 250進行身分辨識。在進行身分辨識之^用 用者必須提供手部影像以建立辨識資料庫24〇,使辨 ,庫240具有複數個辨識物元模型。本實施方式藉由收 夕張手部影像的特徵當作訓練樣本,並將訓練樣本中 徵值建立辨識物元模型,完成辨識物元模型後就可以建 辨,資料庫240,日後要進行身分驗證時,只需利用可 计算單元250計算影像物元模型及辨識物元模型之間的 關聯度,便可進行身分驗證。另一方面,輸出單元2恥 可拓計算單元連接250,根據關聯度與門檻值相比較的纟 201203131 果輸出一辨識訊號。以下針對可拓理論做基本的介紹: 可拓理論是大陸學者蔡文教授在1983年發表,可拓學 的兩大支柱是物元理論和可拓集合理論,利用物元模型描 述訊息,可以進行量變和質變的综合分析。因此可同時研 究量和質兩者對問題的影響程度,使用者更能對系統特徵 之真實性得到完整的訊息。 首先介紹物元的定義方法,設事物i?的名稱為7V,其 關於特徵C的量質為F,則描述事物的基本元或物元為 (10): R = (N, C, V) (10) 如果一個物元有多種特徵則用稱為多維物元。設事物 有w個特徵分別為C7,C2,...,C„,其對應的量值分別為 ,…,,則物元的表示式為(11): ’N C, v, R = * c2 • V2 >=- r2 > c„ l n K. Λ.8 9 1/3 index finger width 1/3 middle finger width 18 1/3 small thumb finger window 1 mill 2/3 middle finger width _ 2/3 ring finger width & 2/3 small thumb finger width ^ 1 gray interval interval - --^ The second gray interval interval 铋---- The third gray-scale region 卩 the fourth gray-scale region, the fifth gray-scale region 卩 1/3 ring finger wide rabbit ------I_I a~~ day tSE After continuing to refer to Figure 2, after completing the above pre-operation, the extension calculation unit is used to identify the identity. In the identification of the user, the user must provide a hand image to create an identification database 24, so that the library 240 has a plurality of identification object models. In this embodiment, the feature of the image of the hand image of the eve is used as a training sample, and the eigenvalue of the training sample is used to establish an identification matter element model, and the identification of the matter element model can be established, and the database 240 can be verified in the future. In time, the identity verification unit 250 can be used to calculate the image matter element model and identify the degree of association between the matter element models, so that the identity verification can be performed. On the other hand, the output unit 2 shame extension unit connection 250 outputs an identification signal based on the correlation degree and the threshold value 201203131. The following is a basic introduction to the extension theory: The extension theory was published by Professor Cai Wen, a mainland scholar, in 1983. The two pillars of extenics are matter-element theory and extension set theory, which can be described by using matter-element models. A comprehensive analysis of quantitative and qualitative changes. Therefore, both the quantity and the quality can be studied simultaneously, and the user can get a complete message about the authenticity of the system characteristics. First, the definition method of the matter element is introduced. Let the name of the object i? be 7V, and the quantity of the feature C is F, then the basic element or matter element describing the thing is (10): R = (N, C, V) (10) If a matter element has multiple characteristics, it is called a multi-dimensional matter element. Let the things have w characteristics of C7, C2, ..., C„, and their corresponding magnitudes are respectively, ..., then the expression of the matter element is (11): 'NC, v, R = * c2 • V2 >=- r2 > c„ ln K. Λ.

可拓集合的定義:設論域,若對中任一元素w且 w @ ,則有一實數A:⑻@ (- 〇〇, 〇〇)與之對應,則可拓集合為 (12) ^ = {(u,y)\u 6 U,y = K(u)e f-〇〇,〇〇;} (12) 而少=尤〇)為2的關聯函數,尺⑼為w之關聯度,其範圍 為-〇〇到〇〇,其可拓集合2在U論域中可表示成(13): A = A+ u J0u A~ (13) 其中 A+ = { (u ,y^u g U ,y = K( x) > 0 } (14) 5 3 11 201203131 J 〇 = f (μ, y^u a u , y ~ κ (x) = o } A = ,y'u & u ,y = K(x)<〇} 1式(14),,稱為j的正域’ I稱為2的負域,而^。則 稱為J的零界。關聯函數在應用上有不同的形式,設 為=<〜於,和<^,办,為@1且無公共端點,則初等關聯函數 表示為(8): K(x) = D(x,Xo,X) (15)The definition of the extension set: set the domain, if any element w and w @, then there is a real number A: (8) @ (- 〇〇, 〇〇) corresponding to it, then the extension set is (12) ^ = {(u,y)\u 6 U,y = K(u)e f-〇〇,〇〇;} (12) and less = You〇) is a correlation function of 2, ruler (9) is the degree of association of w, The range is -〇〇 to 〇〇, and its extension set 2 can be expressed as (13) in the U universe: A = A+ u J0u A~ (13) where A+ = { (u , y^ug U , y = K( x) > 0 } (14) 5 3 11 201203131 J 〇= f (μ, y^uau , y ~ κ (x) = o } A = , y'u & u , y = K( x) <〇} 1 (14), the positive domain called j' is called the negative domain of 2, and ^ is called the zero bound of J. The correlation function has different forms in application. For =<~于, and <^, do, for @1 and no public endpoint, the elementary correlation function is represented as (8): K(x) = D(x,Xo,X) (15)

其點Λ:與區間A的距定義為(9) Ρ(χ>^〇)= X — a + b ~Ύ~The point is: the distance from the interval A is defined as (9) Ρ(χ>^〇)= X — a + b ~Ύ~

(16) 在可拓集中除需考慮點與區間的位置關係外,經常項 考慮一個點對兩區間之位置關係。設;^<4>,Z=<Ci^ 且為以’則點X關于不/的位值為〇〇) , D{x,X〇,X) = \p(^x^x)~ P{x,X〇) xiX„ l'1 x eX〇 (17) mi m(16) In addition to considering the positional relationship between points and intervals in the extension set, the current item considers the positional relationship of one point to two intervals. Let ^^<4>,Z=<Ci^ and be 'with point X about the value of the non-/, D), D{x, X〇, X) = \p(^x^x) ~ P{x,X〇) xiX„ l'1 x eX〇(17) mi m

幽数吓計升Λ點屬於不之關聯程度,當 心ΛτΓ!0的程度你)$0稱為X不屬於&的程度; ;合的一::。時,表示如果狀態改變時4有機會成為此 性比:ίτ整理了傳統類神經網路及可拓辨識演算法的特 辨識演算法 傳統類神經網路 表 演算法特性 資料須訓練,工作費時 12 201203131 2.以迭代方式更新鍵結值與間值 ,計算量大 耗費電腦資源。The number of stuns is not related to the degree of association, when the heart Λ Γ Γ! 0 degree you) $0 is called X does not belong to the degree of &; When it is changed, 4 has the opportunity to become this ratio: ίτ sorts out the traditional neural network and the extension identification algorithm. The traditional neural network performance algorithm needs to be trained. The work time is 12 201203131 2. Update the key value and the inter-value value in an iterative manner, and the calculation amount is large and consumes computer resources.

料庫必須重新學習 可應用的領域廣泛,模型建構能力強 2‘建立模型簡單方便,節省記憶體空間 3.可節痛大量的建模空間以及分類快速。 料庫不須重新學習 可拓辨識演算法 、 —-—--二_^竹厍不須董新學習。 以下將揭露本揭示内容之實驗7 之手部影像之身㈣識二== 一有所%要的物理特性。應瞭解 經在上述實施方式中提到的要件將不=以下敘述中,已 進一步界定者加以概,合料«述,僅就需 =施方式㈣了細自财的手部影像每個人收 手部影像,總共議手部影像,利用這張手部影 建立辨識物元模型,因此共會有2q個辨識物元模型 储存在辨識資料庫中。 手邮接著個人再各自取1G張不屬於辨識資料庫内的 像,如此會有另外200張的手部影像產生。進行身分 型,如时^像會建立成影像物元模 ηΑ Μ 20 20 式 用 利 識 辨 的 好 立 和 型 模 元 物 像 影 的 測 待 算 ft 13 (19) 201203131 物元模型的關聯度。 -ρ(Κ,νϋ) & P(v“,vy) piv.y^-piv.y,) 其中 P(Vti,Vpi) yti- K- + by Ύ~ oi + K 2 by - aij ~~T~_Kzi 2 ' 1,2,...,20; j = 1,2,...,20The library must be re-learned. The applicable fields are wide, and the model construction ability is strong. 2 'Building a model is simple and convenient, saving memory space. 3. It can save a lot of modeling space and classify quickly. The library does not need to be re-learned. The extension identification algorithm, ------two _^ bamboo 厍 does not require Dong Xin learning. In the following, the body image of the experiment 7 of the present disclosure will be disclosed (4). It should be understood that the requirements mentioned in the above embodiments will not be described in the following descriptions, and those who have been further defined are summarized, and the materials are «reported, only need to be applied. (4) The hand image of the self-finance is closed. Part of the image, a total of hand image, using this hand shadow to create a recognition object model, so there will be 2q identification object models stored in the identification database. The hand mail then personally takes 1G of images that are not in the identification database, so that another 200 hand images are generated. For the identity type, if the image is created as an image element model ηΑ Μ 20 20, the type of image and the image of the model are calculated ft 13 (19) 201203131 The correlation degree of the matter element model . -ρ(Κ,νϋ) & P(v“,vy) piv.y^-piv.y,) where P(Vti,Vpi) yti- K- + by Ύ~ oi + K 2 by - aij ~~ T~_Kzi 2 ' 1,2,...,20; j = 1,2,...,20

依各關聯函數值對身分驗證之重要性設定權重、 、...、,本實施方式均設定權重值為1/20。 20The weights of the identity verification are set according to the values of the correlation functions, and ..., and the weight values of the present embodiment are all set to 1/20. 20

j=J 再利用式(20)計算各驗證身分關聯度。 20 入i =工%& i= 1,2”_”2〇 (20) j=lj=J Reuse equation (20) to calculate the degree of association of each verification identity. 20 into i = work % & i = 1, 2" _" 2 〇 (20) j = l

最後,確認手部影像的身分,辨識結果依其關聯度來 決定,選擇關聯度最大者且大於預設的門檻值才能確認手 部影像所屬的身分。如果關聯度大於門檻值則顯示辨識身 分,反之則顯示查無此人。 經過實驗測試,將這另外的200張手部影像與辨識資料 庫進行身分辨識,其結果請參見下表四: 表四 手部影像 數目 辨識成功 辨識失敗 辨識率 訓練用 200 200 0 100% 辨識用 200 198 2 99% 14 201203131 證明無論是訓練用的或是辨識用的影像, 的辨識::式:Γ影像之身分辨識系統及方法有很高 辨識演算法實驗:二=是本實施方式與習知的手部Finally, the identity of the hand image is confirmed, and the recognition result is determined according to the degree of relevance. The person with the highest degree of association and greater than the preset threshold value can confirm the identity to which the hand image belongs. If the degree of association is greater than the threshold value, the identity is displayed. Otherwise, it is displayed that there is no such person. After the experimental test, the other 200 hand images and the identification database were identified. The results are shown in the following table IV: Table 4: Hand image identification success identification failure identification rate training 200 200 0 100% identification 200 198 2 99% 14 201203131 Prove that both the training and the identification image, the identification::: The image identification system and method of the image has a very high recognition algorithm experiment: two = is the implementation and practice Knowing hand

201203131 【圖式簡單說明】 第1圖繪示本揭示内容一實施方式之手部影像之身分 辨識系統及方法的流程圖; 第2圖繪示第1圖之手部影像之身分辨識系統及方法 的不意圖, 第3圖繪示第1圖之手部影像之身分辨識系統及方法 中手部影像的幾何特徵示意圖。 【主要元件符號說明】 110〜190 :步驟 210 :影像擷取器 220 :特徵擷取單元 230 :影像處理單元 240 :辨識資料庫 250 :可拓計算單元 260 :輸出單元 A〜L :點201203131 [Simultaneous Description of the Drawings] FIG. 1 is a flow chart showing a system and method for identifying a hand image of an embodiment of the present disclosure; FIG. 2 is a diagram showing a system for identifying an image of a hand image of FIG. Unexplained, FIG. 3 is a schematic diagram showing the geometric features of the hand image in the identity recognition system and method of the hand image of FIG. [Main component symbol description] 110 to 190: Step 210: Image capture device 220: Feature extraction unit 230: Image processing unit 240: Identification database 250: Extension calculation unit 260: Output unit A to L: Point

Claims (1)

201203131 七、申請專利範菌: 1. -種手部影像之身分辨識系統,包含: 一影像榻取器’操取一手部影像. -特徵娜單元,賴景彡_㈣連接 影像的至少-幾何特徵,進而產生至少一影像 一辨識資科庫,具有複數個辨識物元模型,·、 -可拓計算衫’分顺該雜擷取^及辨識 庫連接’㈣㈣可料算單元計算該影像物元模型及辨 識物元模型之間的一關聯度;以及 -輸出單元,與該可拓計算單元連接,並根據該關聯 度與一門檻值相比較的結果輸出一辨識訊號。 2.如請求項1所述之手部影像之身分辨識系統,其中 該幾何特徵為該手部影像的灰階分佈統計。 〃 3.如請求項1所述之手部影像之身分辨識系統,其 該幾何特徵為該手部影像的周長。 ’、 4·如請求項丨所述之手部影像之身分辨識系統,盆 該幾何特徵為該手部影像的長度。 ’、 統,其中 5.如請求項1所述之手部影像之身分辨識系 該幾何特徵為讀手邡影像的寬度。 ’、 [S] 17 201203131 6·如請求項1所述之手部影像之身分辨識系統,更包 含: 一影像處理單元,用以分離該手部影像及其背景。 ' 7.如請求項1所述之手部影像之身分辨識系統,其中 該影像擷取器為一熱影像分析儀。 8. —種藉由手部影像辨識身分之方法,包含: • 利用一影像擷取器擷取一手部影像; 利用一特徵擷取單元擷取該手部影像之至少一幾何特 徵,並產生至少一影像物元模型; 建立至少一辨識物元模型; 利用一可拓計算單元計算該影像物元模型及辨識物元 模型之間的一關聯度;以及 根據該關聯度與一門檻值相比較的結果輸出一辨識訊 號。 9. 如請求項8所述藉由手部影像辨識身分之方法,更 包含: 利用Otsu法(Otsu's method)重新分配灰階值到該手部 影像,以分離該手部影像及其背景。 10.如請求項8所述藉由手部影像辨識身分之方法, 其中該影像擷取器以非接觸的方式感測紅外線波段訊號。201203131 VII. Applying for patents: 1. The identification system of the hand image, including: an image on the device to fetch a hand image. - Feature Na unit, Lai Jingyu _ (4) at least the geometry of the connected image The feature further generates at least one image-identification library, and has a plurality of identification object models, and - the extension computing shirt 'sorts the hash and the identification library connection' (four) (four) can calculate the image object And a correlation unit between the meta-model and the identification matter element; and an output unit connected to the extension calculation unit and outputting an identification signal according to the comparison result of the correlation degree with a threshold value. 2. The identity recognition system for a hand image according to claim 1, wherein the geometric feature is a grayscale distribution statistic of the hand image. 〃 3. The identity recognition system for a hand image according to claim 1, wherein the geometric feature is a perimeter of the hand image. The identification of the hand image of the hand image as claimed in the item ,, the geometric feature of the basin is the length of the hand image. The system identification of the hand image as claimed in claim 1 is the width of the image of the handcuff. </ RTI> [S] 17 201203131 6 The identification system of the hand image according to claim 1, further comprising: an image processing unit for separating the hand image and its background. 7. The identity recognition system for a hand image according to claim 1, wherein the image capture device is a thermal image analyzer. 8. A method for identifying an identity by means of a hand image, comprising: • capturing an image of a hand using an image capture device; capturing at least one geometric feature of the hand image using a feature capture unit and generating at least An image matter element model; establishing at least one identification matter element model; calculating an association degree between the image matter element model and the identification matter element model by using an extension calculation unit; and comparing the correlation degree with a threshold value according to the correlation degree The result outputs an identification signal. 9. The method for recognizing an identity by hand image according to claim 8, further comprising: reallocating the grayscale value to the hand image by using an Otsu's method to separate the hand image and its background. 10. The method of identifying an identity by a hand image as claimed in claim 8, wherein the image capture device senses the infrared band signal in a non-contact manner.
TW99121722A 2010-07-01 2010-07-01 System and method for hand image recognition TW201203131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121722A TW201203131A (en) 2010-07-01 2010-07-01 System and method for hand image recognition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121722A TW201203131A (en) 2010-07-01 2010-07-01 System and method for hand image recognition

Publications (1)

Publication Number Publication Date
TW201203131A true TW201203131A (en) 2012-01-16

Family

ID=46756324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121722A TW201203131A (en) 2010-07-01 2010-07-01 System and method for hand image recognition

Country Status (1)

Country Link
TW (1) TW201203131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117138B2 (en) 2012-09-05 2015-08-25 Industrial Technology Research Institute Method and apparatus for object positioning by using depth images
US9613328B2 (en) 2012-12-21 2017-04-04 Industrial Technology Research Institute Workflow monitoring and analysis system and method thereof
TWI806254B (en) * 2021-11-24 2023-06-21 英業達股份有限公司 Method of updating data cluster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117138B2 (en) 2012-09-05 2015-08-25 Industrial Technology Research Institute Method and apparatus for object positioning by using depth images
US9613328B2 (en) 2012-12-21 2017-04-04 Industrial Technology Research Institute Workflow monitoring and analysis system and method thereof
TWI806254B (en) * 2021-11-24 2023-06-21 英業達股份有限公司 Method of updating data cluster

Similar Documents

Publication Publication Date Title
Yuan et al. Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis.
Kong et al. Palmprint feature extraction using 2-D Gabor filters
CN106529468B (en) A kind of finger vein identification method and system based on convolutional neural networks
CN109800643B (en) Identity recognition method for living human face in multiple angles
Zhang et al. 3D palmprint identification using block-wise features and collaborative representation
Lin et al. Spatially eigen-weighted Hausdorff distances for human face recognition
Ijjina et al. Facial expression recognition using kinect depth sensor and convolutional neural networks
Rahman et al. Person identification using ear biometrics
Prabhakar et al. Introduction to the special issue on biometrics: Progress and directions
Guo et al. Human face recognition based on spatially weighted Hausdorff distance
Jhong et al. An automated biometric identification system using CNN-based palm vein recognition
Xu et al. Fingerprint pore comparison using local features and spatial relations
Kant et al. Fake face recognition using fusion of thermal imaging and skin elasticity
Radman et al. Robust face pseudo-sketch synthesis and recognition using morphological-arithmetic operations and HOG-PCA
Wu et al. Appearance-based gaze block estimation via CNN classification
Liu et al. A tongue-print image database for recognition
Guan et al. Regression of dense distortion field from a single fingerprint image
TW201203131A (en) System and method for hand image recognition
Zhang et al. Hgaiqa: A novel hand-geometry aware image quality assessment framework for contactless palmprint recognition
TW202119354A (en) Classification and recognition method for pills capable of precisely detecting various locations for one or multiple pills during a speedy image inputting and performing as classifying and recognizing accordingly
Bharadi et al. Multi-modal biometric recognition using human iris and dynamic pressure variation of handwritten signatures
Krishneswari et al. A review on palm print verification system
Jagadeesh et al. DBC based Face Recognition using DWT
Almazrouei et al. Survey of face recognition using eigenfaces
Aydoğdu et al. A study on liveness analysis for palmprint recognition system