[go: up one dir, main page]

TW201116318A - System and method for analyzing muscle performance status at swing action, and program products thereof - Google Patents

System and method for analyzing muscle performance status at swing action, and program products thereof Download PDF

Info

Publication number
TW201116318A
TW201116318A TW098138564A TW98138564A TW201116318A TW 201116318 A TW201116318 A TW 201116318A TW 098138564 A TW098138564 A TW 098138564A TW 98138564 A TW98138564 A TW 98138564A TW 201116318 A TW201116318 A TW 201116318A
Authority
TW
Taiwan
Prior art keywords
muscle
value
values
swing
sample
Prior art date
Application number
TW098138564A
Other languages
Chinese (zh)
Other versions
TWI393579B (en
Inventor
Tun-Hsiao Chu
Original Assignee
Inst Information Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Information Industry filed Critical Inst Information Industry
Priority to TW098138564A priority Critical patent/TWI393579B/en
Priority to US12/634,190 priority patent/US8348862B2/en
Publication of TW201116318A publication Critical patent/TW201116318A/en
Application granted granted Critical
Publication of TWI393579B publication Critical patent/TWI393579B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/10Athletes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6895Sport equipment
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • A63B2024/0012Comparing movements or motion sequences with a registered reference
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • A63B2024/0065Evaluating the fitness, e.g. fitness level or fitness index
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/08Measuring physiological parameters of the user other bio-electrical signals
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/62Measuring physiological parameters of the user posture

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

This invention discloses a system and method for analyzing muscle performance status at swing action, and program products thereof, the system includes a swing apparatus, which is provided for user to perform the swing action and includes an acceleration sensor for sensing the acceleration of the swing apparatus when the swing apparatus is swung for generating a swing velocity data; a plurality of signal detecting modules for sensing the plurality of electromyography signals generated by a plurality of user's muscles; a database for storing at least one muscle performance sample value, each muscle performance sample value includes at least a swing velocity sample value and the plural corresponding muscle performance sample values; a muscle performance analysis module for analyzing the electromyography signals and the swing velocity data to obtain the plural muscle performance values; and a comparison module for comparing the plural muscle performance values with at least one of the muscle performance value in the database according to the swing velocity for generating a comparison result.

Description

201116318 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種揮擊動作之肌能狀態分析系統、 方法及其電腦程式產品,特別是有關於一種利用肌電訊號 與揮擊速度資料以分析使用者揮擊動作是否正確的揮擊動 作之肌能狀態分析系統、方法及其電腦程式產品。 【先前技術】 鲁 先剞技術中’利用肌電訊號以分析使用者動作的肌肉 反應與施力力道,已常見於醫療技術領域,包括病患的肢 體復健訓練,義肢的使用訓練、癱瘓者的身體全衡訓練等。 亦如,體内器官的肌肉運作偵測,如心臟肌肉反應偵測, 肺部與胸膛肌肉的反應偵測,皆得以結合肌電訊號偵測技 術’但肌電訊號技術甚少應用於就運動領域方面。 事實上,選手進行運動訓練時,需相當重視各相關肌 肉是否正確施力,同時要避免過度的訓練以造成肌肉傷害 ® 的情形。以揮擊運動為例,揮擊運動係指需要多處肌肉瞬 間動作,講求肌肉爆發力'協調性的一系列動作。目前技 術多僅做單純的肌能分析資料,無法即時顯示揮擊動作所 使用到多處之肌肉群的施力狀態,故無法直接用於輔助改 善揮擊動作。 【發明内容】 本發明欲解決的問題係提供一種揮擊動作之肌能狀態 201116318 分析系統、方法及其電腦程式產品,用以分析使用者揮擊 運動的肌肉效能,更進一步時並可給予施力建議,以令使 用者校正其揮擊姿勢與動作。 明係揭露一種揮擊動作之肌能狀態分析系統,其 包括.一揮擊器具’用以供-使用者進行揮擊動作,其包 括-^迷度感’,用以當該揮擊器具被揮動時,感測該 揮具之加逮度以產生—揮擊速m複數個訊號债 貝j核:且 '以感應該使用者之複數個肌肉產生之複數個肌 貝料庠’用以儲存至少—肌能樣本值,每一肌 少包括一揮擊速度樣本值及其對應複數個肌肉 u樣本值,-肌能分析模組,用以 該揮擊速度資料.取得該複數個肌肉效能值;以=; :料=該揮擊速度資料和該複數個肌肉致能值與 果資料。—肌能樣本值進行㈣,以產生〜比對結 包括本::#揭露一種揮擊動作之肌能狀態分析方法,其 =值庫,儲存至少一肌能樣本值,每一肌能 能樣本H—揮擊速度樣本似其賴魏個肌肉效 、.二由—加速度感測器,感測一使用者使 揮 1 咖亍揮擊動作時該揮擊器具之加速度,以產;一: 速度貝料’取得該使用者之複數個肌肉產生 r號;分析該等肌電訊號與該揮擊速度資料“=複 固肌肉越值’·以及依據轉擊速度資料和該複數個肌 201116318 肉效能值與該資料庫中至少一肌能樣本值進行比對,以產 生一比對結果資料。 本發明之特點係在於本發明適用於且揮擊動作之運動 領域,即時分析出使用者之肌肉使用狀態與肌肉效能,提 供一比對結杲資料。更進一步時,可經由分析比對的結果 資料給予使用者適當的建議進而改善整體揮擊效率。其 次,本發明直接偵測使用者運動時,肌肉牵生的肌電訊號, 以分析出使用者之肌肉使用狀態與肌肉效能,再經由比對 模組,標準的肌能樣本值做比對,分析出哪一部分肌肉群 需要修正施力,以給予最適當的施力建議,藉此減少運動 傷害及提高訓練效率。 【實施方式】 茲配合圖式將本發明較佳實施例詳細說明如下。 首先請參照圖1A所繪示本發明實施例之揮擊動作之 肌能狀態分析系統架構示意圖,與圖1B與圖1C所繪示本 • 發明實施例之揮擊動作之肌能狀態分析系統方塊示意圖, 此系統包括一揮擊器具1、複數個訊號偵測模組2、一資料 庫33、一肌能分析模組31與一比對模組32。 揮擊器具1用以供一使用者進行揮擊動作。揮擊器具 1包括一加速度感測器11,其可以是多維度加速度計,如 二維度加速度計或三維度加速度計。本實施例之揮擊器具 1以球棒作說明,但不以此為限,只要是用以進行揮擊動 作的器具,如高爾夫球桿、網球拍、羽球拍等亦可。 201116318 本實施例中,加速度感測器11可配署 以::用者揮動球棒時’感測球棒被:末:產用 —揮擊迷度資料。 X M產生 使用2仙模組2以感應貼片作說明,感應貼片被貼在 吏用者身上,用以感應使用者在作揮擊動作時 在 的肌電訊號’各肌肉包括肩膀部位、手臂部: :::腰部位、手腕部位、大腿部位、小腿部位、腳掌 模=種以上的相關肌肉。在其他實施例中,訊號偵測 复斟處可歧市售可得之肌電訊縣置、設備或系統及 一對應的訊號感應元件,例如可擷取、量測與分析表面肌 電訊號,無線肌電訊號量測(EMG)設備及其微型化無線探 針藍芽八頻肌電訊號儀及其表面型電極、EMG肌電訊號 =測儀及其表面電極片等。更甚者’根據揮擊運動的肌肉 而求’訊號彳貞測模組2被配置於右半身或左半身的相關肌 肉部位。揮擊速度資料43與肌電訊號會被傳送至肌能分析 杈組31。加速度感測器u、訊號偵測模組2與肌能分析模 組31連接的模式如下: (1) 在加速度感測器11、訊號偵測模組2與肌能分 析模組31分別包括一無線通訊模組以進行無線通訊,以將 揮擊速度資料和各肌電訊號從加速度感測器n和訊號偵 測模組2傳送到肌能分析模組31。 (2) 將資料庫33 '肌能分析模組31和比對模組% 同設置於一計算器3中,計算器3經由一有線或無線通訊 201116318 網路與加速度感測器u和各訊號偵測模組 • 於卜 哭仃通訊,例 如計鼻器3制—聰通訊模組並經由無線通_路與各 訊號偵測模組2進行通訊,以取得揮擊速度資料和各個肌 電訊號。如圖1A與圖1C,加速度感測器U、訊號偵測模 組2電性辆接至一無線通訊模組21,由無線通訊模組u 與計算器3無線連接,以傳輸揮擊速度資料和各個肌電訊 號至肌能分析模組31,其中計算器3係為個人電腦、伺服201116318 VI. Description of the Invention: [Technical Field] The present invention relates to a muscle energy state analysis system, method and computer program product for a swing action, and more particularly to a use of a myoelectric signal and a swing speed data A muscle energy state analysis system, method, and computer program product for analyzing whether a user's swipe action is correct or not. [Prior Art] In the Lu Xianyi technology, the use of myoelectric signals to analyze the muscle response and force of the user's movements has been common in the field of medical technology, including limb rehabilitation training for patients, training in the use of prosthetics, and the latter. The body is fully balanced and so on. For example, the detection of muscle function in internal organs, such as the detection of cardiac muscle response, the detection of lung and chest muscles, can be combined with the detection of myoelectric signal technology, but the myoelectric signal technology is rarely used for exercise. Domain aspect. In fact, when athletes exercise, they need to pay considerable attention to whether the relevant muscles are properly applied and avoid excessive training to cause muscle damage. Taking the swinging movement as an example, the swinging movement refers to a series of movements that require multiple muscles to move in an instant and emphasize the coordination of muscles. At present, the technology only uses simple muscle energy analysis data, and cannot immediately display the force state of the muscle groups used in the swing action, so it cannot be directly used to assist the improvement of the swing action. SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a muscle energy state 201116318 analysis method, method and computer program product thereof for analyzing the muscle performance of a user's swinging motion, and further giving Force is recommended to allow the user to correct their swing postures and movements. The system discloses a muscle energy state analysis system for a swing action, which includes a swing device 'for a user to perform a swipe action, which includes a -^ sensation' for when the swing device is waved At the time, the swipe is sensed to generate a swipe speed m of a plurality of signals, and a plurality of muscles are generated by sensing the plurality of muscles of the user to store at least - a muscle energy sample value, each muscle comprising a stroke speed sample value and a corresponding plurality of muscle u sample values, a muscle energy analysis module for using the swing speed data to obtain the plurality of muscle performance values; =; : material = the swing speed data and the plurality of muscle enable values and fruit data. - Muscle energy sample values are performed (4) to generate ~ comparison knots including:: #Exposure a muscle energy state analysis method of a swipe action, which = value library, stores at least one muscle energy sample value, each muscle energy sample The H-swing speed sample is similar to the Wei muscle effect, and the second is the acceleration sensor, which senses the acceleration of the swinging device when a user makes a wave of slaps. The batting material 'obtains the muscles of the user to generate the r number; analyzes the electromyography signals and the swing speed data "=reinforces the muscles over the value" and according to the speed of the shifting speed data and the plurality of muscles 201116318 meat efficiency The value is compared with at least one muscle energy sample value in the database to generate a comparison result data. The invention is characterized in that the invention is applicable to the field of motion of the swipe action, and instantly analyzes the muscle use of the user. The state and muscle performance provide a comparison of the scarring data. Further, the user can appropriately improve the overall swing efficiency by analyzing the comparison result data. Secondly, the present invention directly detects the user's movement. At the time, the muscle-induced myoelectric signal is used to analyze the user's muscle use state and muscle performance, and then compare the standard muscle energy sample values through the comparison module, and analyze which part of the muscle group needs to be corrected. In order to give the most appropriate force recommendation, thereby reducing the sports injury and improving the training efficiency. [Embodiment] The preferred embodiment of the present invention will be described in detail below with reference to the drawings. First, please refer to FIG. 1A for the implementation of the present invention. The schematic diagram of the structure of the muscle energy state analysis system of the swing action, and the block diagram of the muscle energy state analysis system of the swing action of the embodiment of the present invention, which is shown in FIG. 1B and FIG. 1C, the system includes a swing device 1 The signal detecting module 2, a data library 33, a muscle energy analyzing module 31 and a matching module 32. The swinging device 1 is used for a user to perform a swinging action. The swinging device 1 includes an acceleration The sensor 11 can be a multi-dimensional accelerometer, such as a two-dimensional accelerometer or a three-dimensional accelerometer. The swinging device 1 of the embodiment is described by a bat, but not limited thereto, as long as it is used For the swinging action, such as a golf club, a tennis racket, a badminton racket, etc. 201116318 In this embodiment, the acceleration sensor 11 can be equipped with:: sensing the bat when the user swings the bat :: End: Production - Swinging fascination data. XM generation uses 2 sen module 2 to indicate the patch, and the sensor patch is attached to the user to sense the user's swinging action. In the myoelectric signal, each muscle includes the shoulder part, the arm part: ::: the waist part, the wrist part, the thigh part, the calf part, the sole of the foot = more than the relevant muscles. In other embodiments, the signal detection is recuperative A commercially available muscle and telecommunications county, device or system and a corresponding signal sensing component, such as measuring, measuring and analyzing surface myoelectric signals, wireless myoelectric signal measurement (EMG) devices and their Miniaturized wireless probe Bluetooth eight-frequency myoelectric signal meter and its surface electrode, EMG myoelectric signal = measuring instrument and its surface electrode sheet. Furthermore, the signal detection module 2 is disposed on the muscle portion of the right or left body. The swipe speed data 43 and the myoelectric signal are transmitted to the muscle energy analysis group 31. The modes of connecting the acceleration sensor u, the signal detecting module 2 and the muscle energy analyzing module 31 are as follows: (1) The acceleration sensor 11, the signal detecting module 2 and the muscle energy analyzing module 31 respectively include one The wireless communication module performs wireless communication to transmit the swing speed data and the myoelectric signals from the acceleration sensor n and the signal detection module 2 to the muscle energy analysis module 31. (2) The database 33' muscle energy analysis module 31 and the comparison module % are set in a calculator 3, and the calculator 3 communicates through a wired or wireless communication 201116318 network and acceleration sensor u and each signal Detection module • 卜 仃 仃 communication, such as the genius 3 system - Cong communication module and communicate with each signal detection module 2 via wireless channel to obtain the sprint speed data and each myoelectric signal . 1A and FIG. 1C, the acceleration sensor U and the signal detection module 2 are electrically connected to a wireless communication module 21, and the wireless communication module u is wirelessly connected with the calculator 3 to transmit the swing speed data. And each myoelectric signal to the muscle energy analysis module 31, wherein the calculator 3 is a personal computer, servo

器與筆記型電腦之其中之任一。本實施例以第2種方式進 行說明。 I 資料庫33儲存有複數一個以上的肌能樣本值5,其為 代表人在最合乎標準揮擊的動作下,各肌肉的施力與肌能 數值。每一個肌能樣本值5包括一揮擊速度樣本值51與其 對應複數個肌肉效能樣本值52。 本實施例中,肌能分析模組31主要是分析所有的肌電 訊號與揮擊速度資料43,以取得複數個肌肉效能值44,並 將肌肉效能值44與揮擊速度資料43傳輸至比對模組32。 肌能分析模組31包括一訊號分析模組311與一肌能判定模 組312,訊號分析模組311用以對各肌電訊號進行一時域 分析,以取得複數個肌肉施力強度值41。時域分析公式如 下,但不以此為限。.時域分析公式: T+t (公式1) iEMG= \EMG{t)dtAny of the devices and notebooks. This embodiment will be described in the second mode. The I database 33 stores a plurality of muscle energy sample values of 5, which are the values of the force and muscle energy of each muscle under the action of the most standard swing. Each muscle energy sample value 5 includes a swipe speed sample value 51 and a corresponding plurality of muscle performance sample values 52. In this embodiment, the muscle energy analysis module 31 mainly analyzes all the myoelectric signals and the swing speed data 43 to obtain a plurality of muscle performance values 44, and transmits the muscle performance values 44 and the swing speed data 43 to the ratio. For module 32. The muscle energy analysis module 31 includes a signal analysis module 311 and a muscle energy determination module 312. The signal analysis module 311 performs a time domain analysis on each of the myoelectric signals to obtain a plurality of muscle force intensity values 41. The time domain analysis formula is as follows, but not limited to this. Time domain analysis formula: T+t (Formula 1) iEMG= \EMG{t)dt

T 其中為肌電訊號;ζ·五MG為肌肉放電量,在此指 201116318 一肌肉施力強度值41 ; 為五MG經快速傅立葉轉換形 成的頻譜值。每一個肌肉群所對應的肌肉效能值44為(肌 肉施力強度值41/各肌肉施力強度值41之總和)xlOO%。 "月參照圖2所緣示本發明實施例之肌肉效能比對示意 圖’叙设施力的肌肉群包括A肌肉群、B肌肉群、C肌肉 群與D肌肉群,肌肉施力強度值41分別為A=0.35、 Β=〇·25、C=〇.3〇與d=〇.1〇,各肌肉施力強度值41之總和 為1,則A肌肉群的肌肉效能值44為(〇 35/1)χ1〇〇%=35%, B肌肉群的肌肉效能值44為(0.25/1) xl00%=25%,C肌 肉群的肌肉效能值44為(〇 3〇/1) χ1〇〇%=3〇%,D肌肉群 的肌肉效能值44為(o.w ) χ1〇〇%=1〇〇/〇。 比對模組32取得揮擊速度資料43及其對應的肌肉效 月b值44後,會讀取資料庫33的肌能樣本值5,將揮擊速 度資料43每一個揮擊速度樣本值51比對,從中找出一目 標肌能樣本值,其包括_擊速麟本值51相近或相同於 揮擊速度㈣43。肌肉效能值與資料庫33儲存的各肌肉 效能樣本值52係分別對應複數個肌肉屬性其中之一,比對 模組32會將各肌肉效能值44與目標肌能樣本值包括的目 標效能樣本值相輯,產纽對結果資料。輯的方式為 將具有相同肌肉屬性的肌肉效能值44與目標效能樣本值 進行比對’如:肌肉屬性同為A肌肉群的肌肉效能值料 與目標效能樣本值相互比對,肌肉屬性同為B肌肉群的肌 肉效能值44與目標效能樣本值相互比對.·等,以此類推。 201116318 比對結果資料會由顯示模組34進行顯示,顯示的方式乃經 由數值、圖表、和圖式等其中之任一種方式,來表現出揮 擊速度資料與揮擊速度樣本值之差異,以及肌肉效能值與 肌肉效能樣本值之差異。 比對模組32會依據揮擊速度資料與揮擊速度樣本值 之差異及肌肉效能值與相對的肌肉效能樣本值之差異,以 判定各肌肉效能值44是否包括至少一異常肌肉效能值 I 44,並產生比對結果資料,比對模組再根據比對結果資料 以產生施力建議資料。就本實施例而言,如果比對結果資 料為判定有異常肌肉效能值44,比對模組32會產生施力 建議資料以建議使用者調整其肌肉施力模式。相反的,即 比對模組32即不動作,或是建議使用者保持現在的施力模 式。 舉例而言,當肌肉屬性為A肌肉群的目標效能樣本值 為25%,肌肉屬性同為A肌肉群的肌肉效能值44為35%, • 故肌肉效能值44比目標效能樣本值高出10%,比對模組 32判定使用者的A肌肉群施力過大為異常肌肉效能值 44,應降低其施力程度,C肌肉群與D肌肉群施力過小同 為異常肌肉效能值44,應略提升其施力程度。比對模組32 即產生一施力建議資料,以建議使用者減少A肌肉群的施 力,並略提升C肌肉群與D肌肉群的施力,而施力建議資 料透過顯示模組34所顯示,以供使用者參考。 此外,訊號分析模組311更對各肌電訊號進行一頻域 201116318 分析,以取得一疲勞指標值42,頻域分析時,先將肌電訊 號作一快速傅立葉轉換為頻譜後,導入下列的頻域分析公 式(不以此為限)以取得疲勞指標值42:T is the myoelectric signal; ζ·5 MG is the muscle discharge volume, here refers to 201116318 a muscle force intensity value 41; is the spectrum value formed by the fast FFT conversion of the five MG. The muscle performance value 44 corresponding to each muscle group is (the sum of the muscle strength value 41 / the sum of the muscle strength values 41) x 100%. "Monthly Referring to Figure 2, the muscle performance comparison diagram of the embodiment of the present invention is shown in the figure. The muscle group of the facility includes the A muscle group, the B muscle group, the C muscle group and the D muscle group, and the muscle strength value 41 is respectively For A=0.35, Β=〇·25, C=〇.3〇 and d=〇.1〇, the sum of the muscle strength values 41 is 1, and the muscle performance value of the A muscle group is 44 (〇35 /1)χ1〇〇%=35%, muscle strength value of B muscle group is 44 (0.25/1) xl00%=25%, muscle muscle value of C muscle group is 44 (〇3〇/1) χ1〇〇 %=3〇%, muscle strength value 44 of D muscle group is (ow) χ1〇〇%=1〇〇/〇. After the comparison module 32 obtains the swing speed data 43 and its corresponding muscle effect month b value 44, the muscle energy sample value 5 of the database 33 is read, and the swing speed data 43 is used for each swing speed sample value 51. In comparison, a target muscle energy sample value is found, which includes the _ spurt value 51 is similar or the same as the swing speed (four) 43. The muscle performance value and each muscle performance sample value 52 stored in the database 33 correspond to one of a plurality of muscle attributes, and the comparison module 32 sets each muscle performance value 44 and the target muscle energy sample value to include the target performance sample value. The album, the production of the results of the data. The method is to compare the muscle performance value 44 with the same muscle attribute with the target efficacy sample value. For example, the muscle attribute is the same as the muscle performance value of the A muscle group and the target performance sample value, and the muscle attribute is the same. The muscle strength value 44 of the B muscle group is compared with the target efficacy sample value. etc., and so on. 201116318 The comparison result data is displayed by the display module 34, and the display manner is expressed by any one of numerical values, graphs, and patterns to express the difference between the swipe speed data and the swipe speed sample value, and The difference between the muscle performance value and the muscle performance sample value. The comparison module 32 determines whether each muscle performance value 44 includes at least one abnormal muscle performance value I 44 based on the difference between the swing speed data and the swing speed sample value and the difference between the muscle performance value and the relative muscle performance sample value. And the comparison result data is generated, and the comparison module further generates the recommendation data according to the comparison result data. For the present embodiment, if the comparison result data is determined to have an abnormal muscle performance value of 44, the comparison module 32 generates a force suggestion information to advise the user to adjust his muscle application mode. Conversely, the comparison module 32 does not operate, or the user is advised to maintain the current force application mode. For example, when the muscle attribute is 2% of the target performance sample of the A muscle group, and the muscle attribute is the same as the muscle performance value 44 of the A muscle group, the muscle performance value 44 is higher than the target performance sample value by 10%. %, the comparison module 32 determines that the user's A muscle group is excessively applied to the abnormal muscle performance value 44, and the degree of exertion should be reduced. The C muscle group and the D muscle group are too small to apply the abnormal muscle performance value 44. Slightly increase the degree of exertion. The comparison module 32 generates a force recommendation information to suggest that the user reduce the force of the A muscle group and slightly increase the force applied to the C muscle group and the D muscle group, and the force recommendation information is transmitted through the display module 34. Display for user reference. In addition, the signal analysis module 311 performs a frequency domain 201116318 analysis on each myoelectric signal to obtain a fatigue index value of 42. In the frequency domain analysis, the EMG signal is first converted into a spectrum by a fast Fourier transform, and then introduced into the following The frequency domain analysis formula (not limited to this) is used to obtain the fatigue index value 42:

MfpSD{fW 二 lPSD{f)df = \]PSD{f)df {公式” 0 MDF Z 0 其中,ΜλΡ指中心頻率,在此指一疲勞指標值42。 MDF(Median Frequency):在頻域上計算出所積分的面積相 φ 同於總面積的一半時,此點表示出肌肉在此時具有頻率改 變;也是將原始訊號經傅利葉轉換(FFT)成頻譜,可以用來 代表肌肉疲勞的疲勞指標’當肌肉呈現疲勞狀態時,其肌 電訊號的中心頻率會往低頻處移動。 接著’比對模組32更包括由肌肉施力強度值41與疲 勞指標值42為單位所形成之一二維座標軸32卜其劃分為 複數個象限(Quadrant)。比對模組32分析肌肉施力強度 鲁值41與疲勞指標值42所形成之一落點ρι (χ=肌肉施力強 度值41’ y=疲勞指標值42)及其所在象限,判定使用者是 否處於疲勞狀態,當使用者處於疲勞狀態,比對模組32產 生一休息建議資訊。 月多照圖3所綠示本發明實施例之二維座標軸321的 象限及落點P1示意圖,此落點P1代表在連續時間下所量 測到的肌電訊號,其被套入時域分析與頻域分析時’肌肉 把力強度值41與疲勞指標值42隨時間的變化量,即斜 各象限代表意義如下: 201116318 第一象限Q1 (力量增長,Force increase):若z•五wg 值和MDF值隨時間變化之斜率同時為正,表示其肌肉隨著 時間的演進而處於力量增加狀態。 第一象限Q2 (肌肉適應強度,Adaptation ):若z•五 值斜率為負和ΜίλΡ值斜率為正,表示其肌肉隨著時間的演 進而處於對目前揮擊運動的施力強度逐漸適應。 第二象限Q3 (力量衰退,F〇rce decrease):若/五 •值和值隨時間變化之斜率同時為負,表示其肌肉隨著 時間的演進而處於力量衰退狀態。 第四象限Q4 ( Fatigue ):若履G值斜率為正和从咖 值斜率為負,表示其肌肉隨著時間的演進而處於疲勞狀態。 當比對杈組32會根據落點ρι所在象限判定使用者是 否處於疲勞狀態。當落點P1位於第四象限Q4時,即判定MfpSD{fW two lPSD{f)df = \]PSD{f)df {formula" 0 MDF Z 0 where ΜλΡ refers to the center frequency, which refers to a fatigue index value of 42. MDF (Median Frequency): in the frequency domain When the integrated area phase φ is calculated to be half of the total area, this point indicates that the muscle has a frequency change at this time; it is also the Fourier transform (FFT) into the spectrum, which can be used to represent the fatigue index of muscle fatigue. When the muscle is in a fatigue state, the center frequency of the myoelectric signal moves to the low frequency. Then, the comparison module 32 further includes a two-dimensional coordinate axis formed by the muscle force intensity value 41 and the fatigue index value 42. 32 is divided into a plurality of quadrants. The comparison module 32 analyzes the muscle exertion strength Lu value 41 and the fatigue index value 42 to form a drop point ρι (χ = muscle force strength value 41' y = fatigue The indicator value 42) and its quadrant determine whether the user is in a fatigue state, and when the user is in a fatigue state, the comparison module 32 generates a rest suggestion information. The multi-dimensional display of the embodiment of the present invention is two-dimensional. Quadrant and drop of coordinate axis 321 P1 diagram, this drop point P1 represents the measured myoelectric signal in continuous time, which is inserted into the time domain analysis and the frequency domain analysis, the amount of change in the muscle strength value 41 and the fatigue index value 42 over time, That is, the meanings of the oblique quadrants are as follows: 201116318 First quadrant Q1 (Force increase): If the slope of the z·5 wg value and the MDF value change with time is positive, it means that the muscle is in strength over time. Increase the state. First quadrant Q2 (Adaptive Adaptation Strength, Adaptation): If the slope of the z•five value is negative and the slope of the ΜίλΡ value is positive, it indicates that the muscles are gradually exerting strength on the current swinging motion as time progresses. Adaptation. Second quadrant Q3 (power decay, F〇rce decrease): If the slope of the value of /5 value and time changes simultaneously, it means that its muscles are in a state of strength decline with the evolution of time. Fourth quadrant Q4 (Fatigue): If the slope of the G value is positive and the slope of the slave value is negative, it means that the muscles are fatigued with the evolution of time. When the comparison group 32 is determined according to the quadrant of the falling point ρι Whether a state of fatigue. When Q4, drop point P1 is located in the fourth quadrant, i.e., it is determined

其為代表人在最合乎鮮揮擊的動作 口 J W干 <平罕的動作下,各It is the representative's action in the most savvy action, J W dry <

肌此樣本值5包括一揮擊速 L肉效能樣本值52。 201116318 經由一加速度感測器li,感測一使用者使用一揮擊μ 具1進行揮擊動作時揮擊器具1之加速度, ^ Μ屋生一揮擊 速度資料(步驟S120)。本實施例中,捏墼 诨拏器具1以球棒 料 作說明,但不以此為限,只要是用以進行揮擊動作的器具, 如高爾夫球桿 '網球拍、羽球拍等亦可。加速度感測器'u 為多維度加速度計,如二維度加速度計或三維度加°速度 計。加速度感測器11配置於球棒末端,用以感測使用者ς 動球棒時’感應球棒被揮動的速度,以產生—揮擊速产, 取得使用者之複數個肌肉產生之複數個肌電訊號(步 驟SU0)。訊號偵測模組2以感應貼片作說明,感應貼片 被貼在使用者身上,用以感應使用者在作揮擊動作日^ ',各 肌肉產生的肌電訊號。The muscle sample value 5 includes a swipe speed L meat performance sample value 52. 201116318, through an acceleration sensor li, senses the acceleration of the swinging device 1 when a user performs a swipe action using a swipe μ, and generates a swipe speed data (step S120). In the present embodiment, the kneading device 1 is described by a bat bar, but not limited thereto, as long as it is a device for performing a swipe action, such as a golf club 'tennis racket, badminton racket, and the like. The acceleration sensor 'u is a multi-dimensional accelerometer such as a two-dimensional accelerometer or a three-dimensional accelerometer. The acceleration sensor 11 is disposed at the end of the bat to sense the speed at which the sensor bat is swung when the user smashes the bat, to generate a slamming speed, and to obtain a plurality of muscles generated by the user. Myoelectric signal (step SU0). The signal detecting module 2 is described by the sensing patch, and the sensing patch is attached to the user to sense the myoelectric signal generated by each muscle in the user's swinging action day.

分析各肌電訊號與揮擊速度資料43以取得複數個肌 肉^能值44(步驟⑽)。揮擊速度資㈣與肌電訊號會 ?达至肌能分析模組3卜加速度感測器u、訊號债測模 組2與肌能分析模組31連接的模式如下: ⑴在加速度感測器n、訊號偵難組2與肌能] 、,'且31分別包括—無線通訊模組以進行無線通訊,以》 揮擊速度資料和各肌電訊號從加速度感測器u和訊號d 測模組2傳送到肌能分析模組31。 儿 (2)將資料庫33 同設置於一計算器3中 、肌能分析模組31和比對模組32 ,計算器3經由一有線或無線通訊 12 201116318 網路與加速度感測器11和各訊號偵測模組2進行通訊,例 如計算器3使用一 USB通訊模組並經由無線通訊網路與各 訊號偵測模組2進行通訊,以取得揮擊速度資料和各個肌 電訊號。如圖1A與圖1C,加速度感測器11、訊號偵測模 組2電性耦接至一無線通訊模組21,由無線通訊模組21 與計算器3無線連接,以傳輸揮擊速度資料和各個肌電訊 號至肌能分析模組31,其中計算器3係為個人電腦、伺服 器與筆記型電腦之其中之任一。本實施例以第2種方式進 鲁行說明。 請同時參照圖5繪示本發明實施例之步驟S14 0之細部 流程圖,步騾S140包括數個細部流程: 對各肌電訊號進行一時域分析以取得複數個肌肉施力 強度值41 (步驟S141)。肌能分析模組31包括一訊號分析 模組311與一肌能判定模組312,訊號分析模組311用以對 各肌電訊號進行一時域分析,以取得複數個肌肉施力強度 Φ值41。時域分析公式: T+t iEMG= \EMG{t)dt (公式 1)Each muscle electrical signal and swing speed data 43 are analyzed to obtain a plurality of muscle muscle energy values 44 (step (10)). The speed of the swing (4) and the myoelectric signal will reach the muscle energy analysis module 3, the acceleration sensor u, the signal debt measurement module 2 and the muscle energy analysis module 31 are connected as follows: (1) in the acceleration sensor n, signal detection group 2 and muscle energy],, 'and 31 respectively include - wireless communication module for wireless communication, to sway speed data and each myoelectric signal from acceleration sensor u and signal d Group 2 is transferred to the muscle energy analysis module 31. (2) The database 33 is set in a calculator 3, the muscle energy analysis module 31 and the comparison module 32, and the calculator 3 via a wired or wireless communication 12 201116318 network and acceleration sensor 11 and Each of the signal detecting modules 2 communicates. For example, the calculator 3 uses a USB communication module to communicate with each of the signal detecting modules 2 via the wireless communication network to obtain the swing speed data and the respective myoelectric signals. As shown in FIG. 1A and FIG. 1C, the acceleration sensor 11 and the signal detection module 2 are electrically coupled to a wireless communication module 21, and the wireless communication module 21 and the calculator 3 are wirelessly connected to transmit the swing speed data. And each of the myoelectric signals to the muscle energy analysis module 31, wherein the calculator 3 is any one of a personal computer, a server and a notebook computer. This embodiment is described in the second way. Referring to FIG. 5, a detailed flowchart of step S14 0 of the embodiment of the present invention is shown. Step S140 includes several detailed processes: performing a time domain analysis on each myoelectric signal to obtain a plurality of muscle force intensity values 41 (steps) S141). The muscle energy analysis module 31 includes a signal analysis module 311 and a muscle energy determination module 312. The signal analysis module 311 is configured to perform a time domain analysis on each muscle electrical signal to obtain a plurality of muscle force intensity Φ values 41. . Time domain analysis formula: T+t iEMG= \EMG{t)dt (Equation 1)

T 其中為肌電訊號;WMG為肌肉放電量,在此指 一肌肉施力強度值41 ; 為五MG經快速傅立葉轉換形 成的頻譜值。 利用各肌肉施力強度值41與揮擊速度資料43以計算 出各肌肉效能值44 (步驟S142)。每一個肌肉群所對應的 13 201116318 41/各肌肉施力強度值 肌肉效能值44為(肌肉施力強度值 41之總和)xlOO%。 利用揮擊速度資料43從久Ηί7南 中至少一肌ς 肌肉效能值44與資料庫33 中至夕肌此樣本值5進行比對, (步驟S15〇)。比對模組32取;產生:比對結果資料 應的肌肉效能值44後,會讀取資度資料43及其對 a貝取貝枓庠33的肌能樣本值5。T is the myoelectric signal; WMG is the muscle discharge volume, here refers to a muscle exertion intensity value 41; is the spectral value formed by the fast FFT conversion of the five MGs. Each muscle exerting strength value 41 and swing speed data 43 are used to calculate respective muscle performance values 44 (step S142). Corresponding to each muscle group 13 201116318 41 / muscle strength value 44 muscle performance value 44 (the sum of muscle strength value 41) x lOO%. The swing speed data 43 is used to compare at least one tendon muscle performance value 44 of the long-term 77-South with the sample value 5 of the mid-day muscle of the database 33 (step S15〇). The comparison module 32 takes; generates: comparing the muscle performance value 44 of the result data, and reading the capital data 43 and the muscle energy sample value 5 of the abe.

比對模組32會依據揮擊速度資料43及各肌肉效能值44, 與資料庫33 t所有崎樣本值5之揮觀度樣本值51及 其對應各㈣效能樣本值進行比對,從巾找出—目標肌能 樣本值’其包括的揮擊速度樣本值51相近<❹同於揮擊速 度資料43,比對模、组32再將揮擊速度資料43及各肌肉效 能值44與目標肌能樣本值比對^比對時,比對模組%將 相同肌肉屬性的肌肉效能值44與肌肉效能樣本值52進行 比對,以產生比對結果資料,比對結果資料包括揮擊速度 資料43與縣速度樣本值51之差異,以及各肌肉效能值 與各肌肉效能樣本值52之差異。之後,由顯賴組%顯 示比對結果資料,顯示模組34係經由數值、圖表、和圖式 等其中之任-種方式’來顯示揮擊速度資料與揮擊速度樣 本值之差異’及各肌肉效能值與各肌肉效能樣本值之差異。 請同時參照圖6繪示本發明實施例之步驟sl5〇之細部 流程圖,本實鉍例中,肌肉效能值44與各肌肉效能樣本值 52係分別對應複數個肌肉屬性其中之一,步驟sl5〇包括 複數個細部流私* · 201116318 • 將相__性之肌肉效録44與_效能樣本值 對,以產生輯結果倾(步驟Sl51)。比對模 =H將揮擊速度資料43和各肌肉效能值44與資料庫 值再母進行比對,以決定一目標肌能樣本 樣本:= 和各肌肉效能值44與目標肌能 效能值44*肌肉為將具有相同肌_的肌肉 •模% 示模組34顯示比對結果資料,顯示 值、圖表、和圖式其中之任—種方式,來 揮濞逮度資料43與揮擊速度樣本值5丨 個肌肉效能值44與各個肌肉效能樣本值52^差差里。及各 之依據各肌肉效能值與各肌肉效能樣本值 施力建議資料 )’亚根據比對結果資料,產生一 建κΐ判定存在異常肌肉效能值44,產生施力建議資料以 施力模式(步驟S153)建= (步驟⑽),或是建議使用者保持現在的施力模式 圖,7緣示本發明實施例之疲勞狀態分析流程 肌電圖4以利於了解,其執行於取得各 虎後(即步驟8130後),疲勞狀態分析流程包括·· 1各肌電喊進行-頻域分析以取得-疲勞指標值4 2 15 E S] 201116318 (步驟S210)。訊號分析模組311更對各肌電訊號進行一 頻域分析,以取得一疲勞指標值42。頻域分析時’先將肌 電訊號作一快速傅立葉轉換為頻譜後,導入下列的頻域分 析公式·The comparison module 32 compares the swept speed data 43 and the muscle performance values 44 with the sample value 51 of all the sample values of the database 33 and the corresponding (4) performance sample values. Find out - the target muscle energy sample value's including the swipe speed sample value 51 is similar to the same as the swipe speed data 43, the comparison mode, the group 32 and the swipe speed data 43 and the muscle performance values 44 and When the target muscle energy sample value is compared, the comparison module % compares the muscle performance value 44 of the same muscle attribute with the muscle performance sample value 52 to generate the comparison result data, and the comparison result data includes a swipe. The difference between the speed data 43 and the county speed sample value 51, and the difference between each muscle performance value and each muscle performance sample value 52. Thereafter, the comparison result data is displayed by the display group %, and the display module 34 displays the difference between the swipe speed data and the swipe speed sample value by any of the numerical values, graphs, and patterns. The difference between each muscle performance value and each muscle performance sample value. Please refer to FIG. 6 to show a detailed flowchart of the step s15 of the embodiment of the present invention. In the embodiment, the muscle performance value 44 and each muscle performance sample value 52 correspond to one of the plurality of muscle attributes, step sl5. 〇 Include multiple details * · · 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉 肌肉The comparison model = H compares the swing speed data 43 and the muscle performance values 44 with the database value to determine a target muscle energy sample: = and each muscle performance value 44 and the target muscle energy efficiency value 44 * Muscles are the muscles that will have the same muscle _ modulo module 34 display comparison results data, display values, charts, and patterns of any of the ways to swing the catch data 43 and the swing speed sample The value of 5 muscle performance values 44 is in the difference between each muscle performance sample value 52^. And each of the muscle performance values and the muscle strength test sample value suggestion data) 'sub-based comparison of the results of the data, the production of a κ ΐ determination of abnormal muscle performance value 44, generate force suggestion data to force mode (step S153) Construction = (Step (10)), or suggest that the user maintain the current force pattern diagram, and the 7th edge shows the fatigue state analysis process of the embodiment of the present invention to facilitate the understanding of the electromyogram 4, which is performed after obtaining each tiger ( That is, after step 8130), the fatigue state analysis process includes: 1 each muscle power shouting-frequency domain analysis to obtain - fatigue index value 4 2 15 ES] 201116318 (step S210). The signal analysis module 311 performs a frequency domain analysis on each of the myoelectric signals to obtain a fatigue index value of 42. In the frequency domain analysis, after the EMG signal is converted into a spectrum by fast Fourier transform, the following frequency domain analysis formula is introduced.

MfpSD{fW = °\PSDif)df J^\PSDifW i 公 0 MDF 2 〇 其中,MDF指中心頻率,在此指一疲勞指標值42。 MDF(Median Frequency):在頻域上計算出所積分的面積相 同於總面積的一半時,此點表示出肌肉在此時具有頻率改 變,即原始訊號經傅利葉轉換(FFT)成蘋譜,其用來代表肌 肉疲勞的疲勞指標。當肌肉呈現疲勞狀態時,其肌電訊號 的中心頻率會往低頻處移動。 由肌肉施力強度值41與疲勞指標值42為單位形成一 二維座標軸321 (步驟S220)。二維座標轴321劃分為複數 個象限’每一象限代表不同的生理狀態。比對模組32會分 析肌肉施力強度值41與疲勞指標值42所形成之一落點P1 所在之一目標象限(步驟S230)。本實施例中,各象限代 表思義為.弟一象限Q1 (力量增長,Force increase):若 zTMG值和值隨時間變化之斜率同時為正,表示其肌 肉隨著時間的演進而處於力量增加狀態。第二象限q2 (肌 肉適應強度,Adaptation):若/似扣值斜率為負和細厂值 斜率為正,表示其肌肉隨著時間的演進而處於對目前揮擊 運動的施力強度逐漸適應。第三象限q3 (力量衰退,F〇rce [MfpSD{fW = °\PSDif)df J^\PSDifW i Male 0 MDF 2 〇 where MDF is the center frequency, which refers to a fatigue index value of 42. MDF (Median Frequency): When calculating the integrated area in the frequency domain is equal to half of the total area, this point indicates that the muscle has a frequency change at this time, that is, the original signal is converted into a flat spectrum by Fourier transform (FFT). To represent the fatigue index of muscle fatigue. When the muscles are fatigued, the center frequency of the myoelectric signal moves to the low frequency. A two-dimensional coordinate axis 321 is formed by the muscle force intensity value 41 and the fatigue index value 42 (step S220). The two-dimensional coordinate axis 321 is divided into a plurality of quadrants. Each quadrant represents a different physiological state. The comparison module 32 analyzes one of the target quadrants in which the muscle application strength value 41 and the fatigue index value 42 form one of the landing points P1 (step S230). In this embodiment, each quadrant represents a quadrant Q1 (Force increase): if the zTMG value and the value of the slope change with time are positive, indicating that the muscle is increasing in strength over time. status. The second quadrant q2 (Adaptation): If the slope of the/like depreciation is negative and the slope of the fine factory value is positive, it indicates that the muscles gradually adapt to the current applied force of the swinging motion as time progresses. Third quadrant q3 (power decline, F〇rce [

16 201116318 decrease ):若/EMG值和MDF值隨時間變化之斜率同時為 負,表示其肌肉隨著時間的演進而處於力量衰退狀態。第 四象限Q4 ( Fatigue ):若/五MG值斜率為正和ΜΖλΡ值斜率 為負,表示其肌肉隨著時間的演進而處於疲勞狀態。比對 模組32會根據落點Ρ1所在象限判定使用者是否處於疲勞 狀態(步驟S240),本實施例中,當落點Ρ1在第四象限 Q4時,比對模組32即判定使用者已處於疲勞狀態。更甚 者,比對模組32能在落點Ρ1位於第三象限Q3時,即判 ® 定使用者已進入疲勞狀態。當比對模組32判定使用者處於 疲勞狀態時,產生一休息建議資訊(步驟S241 )供使用者 參考;反之,則返回步驟S230,比對模組32重新偵測落 點Ρ1所在象限。 综上所述,乃僅記載本發明為呈現解決問題所採用的 技術手段之實施方式或實施例而已,並非用來限定本發明 專利實施之範圍。即凡與本發明專利申請範圍文義相符, • 或依本發明專利範圍所做的均等變化與修飾,皆為本發明 專利範圍所涵蓋。 【圖式簡單說明】 圖1Α繪示本發明實施例之揮擊動作之肌能狀態分析系統 架構不意圖, 圖1B與圖1C繪示本發明實施例之揮擊動作之肌能狀態分 析系統方塊示意圖; 17 201116318 圖2繪示本發明實施例之肌肉效能比對示意圖; 圖3繪示本發明實施例之二維座標軸的象限及落點示意 圖; / 圖4繪示本發明實施例之揮擊動作之肌能狀態分析方法 之流程圖; 圖5繪示本發明實施例之步驟S140之細部流程圖; 圖6繪示本發明實施例之步驟S150之細部流程圖;以及 圖7繪示本發明實施例之疲勞狀態分析流程圖。 【主要元件符號說明】 1 揮擊器具 11 加速度感測器 2 訊號偵測模組 21 無線傳輸器 3 計算器 31 肌能分析模組 311 訊號分析模組 312 肌能判定模組 32 比對模組 321 二維座標軸 33 資料庫 34 顯示模組 41 肌肉施力強度值 42 疲勞指標值 18 201116318 43 揮擊速度資料 44 肌肉效能值 5 肌能樣本值 51 揮擊速度樣本值 52 肌肉效能樣本值 Qi 第一象限 Q2 第二象限 Q3 第三象限 Q4 第四象限 PI 落點 1916 201116318 decrease ): If the slope of the /EMG value and the MDF value change with time is negative, it means that its muscles are in a state of strength decline with the evolution of time. The fourth quadrant Q4 (Fatigue): If the slope of the / MG value is positive and the slope of the ΜΖλΡ value is negative, it indicates that the muscle is in a state of fatigue with the evolution of time. The comparison module 32 determines whether the user is in a fatigue state according to the quadrant of the drop point (1 (step S240). In this embodiment, when the drop point Ρ1 is in the fourth quadrant Q4, the comparison module 32 determines that the user has In a state of fatigue. Moreover, the matching module 32 can determine that the user has entered a fatigue state when the landing point 位于1 is in the third quadrant Q3. When the comparison module 32 determines that the user is in a fatigue state, a break suggestion information is generated (step S241) for the user to refer to; otherwise, the process returns to step S230, and the comparison module 32 re-detects the quadrant of the drop point Ρ1. In the above, it is merely described that the present invention is an embodiment or an embodiment of the technical means for solving the problem, and is not intended to limit the scope of the practice of the present invention. That is, the equivalent changes and modifications made to the scope of the patent application of the present invention are included in the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1B is a schematic diagram showing the structure of a muscle energy state analysis system of a swing action according to an embodiment of the present invention, and FIG. 1B and FIG. 1C are diagrams showing a muscle energy state analysis system block of a swing action according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing the comparison of the muscle performance of the embodiment of the present invention; FIG. 3 is a schematic diagram showing the quadrant and the falling point of the two-dimensional coordinate axis of the embodiment of the present invention; FIG. 4 is a schematic diagram of the swing of the embodiment of the present invention; FIG. 5 is a detailed flow chart of step S140 of the embodiment of the present invention; FIG. 6 is a detailed flow chart of step S150 of the embodiment of the present invention; and FIG. 7 is a flowchart of the present invention. Flow chart of fatigue state analysis of the embodiment. [Main component symbol description] 1 Swing device 11 Acceleration sensor 2 Signal detection module 21 Wireless transmitter 3 Calculator 31 Muscle energy analysis module 311 Signal analysis module 312 Muscle energy determination module 32 Comparison module 321 2D coordinate axis 33 Database 34 Display module 41 Muscle strength value 42 Fatigue index value 18 201116318 43 Swing speed data 44 Muscle performance value 5 Muscle energy sample value 51 Swing speed sample value 52 Muscle performance sample value Qi One quadrant Q2 second quadrant Q3 third quadrant Q4 fourth quadrant PI landing point 19

Claims (1)

201116318 七、申請專利範圍: 1. 一種揮擊動作之肌能狀態分析系統,其包括: -揮擊器具,用以供_使用者進行揮擊動作,其包 括一加速度感測器,用以當該揮擊器具被揮動時,感測 該揮擊器具之加速度以產生一揮擊速度資料; 複數個訊號動]模組,用以感應該使用者之複數個 肌肉產生之複數個肌電訊號; φ -資料庫’用以儲存至少—肌能樣本值,每一肌能 樣本值至丨&括-縣速度樣本值及其對應複數個肌 肉效能樣本值; 、=肌能分析模組,用以分析料肌電訊號與該揮擊 速度資料以取得該複數個肌肉效能值;以及 -比對模組,用以依據該揮擊速度資料和該複數個 肌肉效能值與該資料庫中至少—肌能樣本值進行比 對’以產生一比對結果資料。 # 2.如申請專利範圍第W所述揮擊動作之肌能狀態分析系 統,其中該加速度感測器為多維度加速度吁。 3.如申請專利範圍第丨項所述揮擊動作之肌能狀態分析系 統,其中該比對模組係依據該揮擊速度資料及該複數個 肌肉效能值,與該轉庫巾至少—肌能樣本值之揮 度樣本值及錢應複數個肌·能縣值崎比對、 產生該比對結果資料。 4.如申請專利範圍第1項所述揮擊動作之肌能狀態分 統’其中該肌能分析模組包括—訊號分析模組與—肌能 20 201116318 判定模組,該訊號分析模組對該等肌電訊號進行一時域 分析以取得複數個肌肉施力強度值,該肌能判定模組利 用該等肌肉施力強度值以計算出該等肌肉效能值。 5.如申請專利範圍第4項所述揮擊動作之肌能狀態分析系 統,其中該訊號分析模組更包括對該等肌電訊號進行一 頻域分析以取得一疲勞指標值,且該肌能判定模組更包 括依據該複數個肌肉施力強度值與該疲勞指標值,判定 該使用者是否處於一疲勞狀態。 • 6.如申請專利範圍第5項所述揮擊動作之肌能狀態分析系 統,其中該比對模組更包括由該肌肉施力強度值與該疲 勞指標值為單位所形成之一二維座標軸,其劃分為複數 個象限,該比對模組分析該肌肉施力強度值與該疲勞指 標值所形成之一落點及其所在象限,判定該使用者是否 處於該疲勞狀態,當該使用者處於該疲勞狀態,該比對 模組產生一休息建議資訊。 φ 7.如申請專利範圍第1項所述揮擊動作之肌能狀態分析系 統,其中該等肌肉效能值與該等肌肉效能樣本值係分別 對應複數個肌肉屬性其中之一;以及,該肌能分析模組 係將相同該肌肉屬性之該肌肉效能值與該肌肉效能樣 本值進行比對,以產生該比對結果資料。 8.如申請專利範圍第1項所述揮擊動作之肌能狀態分析系 統,其中該肌能分析模組更包括依據該等肌肉效能值與 該等肌肉效能樣本值之比對,判定該等肌肉效能值是否 包括至少一異常肌肉效能值。 21 201116318 9. 如申請專利範圍第8項所述揮擊動作之肌能狀態分析系 統,其中該比對模組更包括依據該比對結果資料,產生 一施力建議資料。 10. 如申請專利範圍第1項所述揮擊動作之肌能狀態分析系 統,其中該比對模組依據該揮擊速度資料和該複數個肌 肉效能值與該資料庫中至少一肌能樣本值進行比對,係 經由將該揮擊速度資料和該複數個肌肉效能值與該資 料庫中每一肌能樣本值進行比對,並從該至少一肌能樣 本值中決定一目標肌能樣本值,再將該揮擊速度資料和 該複數個肌肉效能值與該目標肌能樣本值之比對,產生 該比對結果資料。 11. 如申請專利範圍第1項所述揮擊動作之肌能狀態分析系 統,其中該系統更包括一顯示模組,用以顯示該比對結 果資料。 12. 如申請專利範圍第1項所述揮擊動作之肌能狀態分析系 統,其中該比對結果資料係為該揮擊速度資料與該揮擊 速度樣本值之差異,以及該複數個肌肉效能值與該複數 個肌肉效能樣本值之差異。 13. 如申請專利範圍第12項所述揮擊動作之肌能狀態分析 系統,其中該系統更包括一顯示模組,用以顯示該比對 結果資料,且該顯示模組係經由數值、圖表、和圖式等 其中之任一種方式,來顯示該揮擊速度資料與該揮擊速 度樣本值之差異,及該複數個肌肉效能值與該複數個肌 肉效能樣本值之差異。 22 201116318 μ.如申請專職圍第12項所述揮擊動作之肌能狀態分析 祕,其中該比賴組更包括依據該揮擊速度資料应該 揮擊速度樣本值之差異及該複數個肌肉效能值與該複 數個肌肉效能樣本值之差異,產生一施力建議資料。 15. 如申請專職圍第14項所述揮擊動作之肌能狀態分析 系統’其中該加速度感測H、該複數個訊號制模組和 該肌能分析模組更分別具有一無線通訊模組以進行無 線通訊’以將該揮擊速度資料和該複數肌電訊號從加速 度感測器和該複數個訊號偵測模組傳送到該肌能分析 模組。 16. 如申請專利範圍帛15項所述揮擊動作之肌能狀態分析 系統,其中該資料庫、該肌能分析模組和該比對模組係 設置於-計算器中,.經由-有線或無線通訊網路與該力: 速度感測器和該複數個訊號偵測模組進行通訊,以取得 該揮擊速度資料和該複數肌電訊號。 • I7.如申請專利範圍第16項所述揮擊動作之肌能狀態分析 系統’其中該計算器係為個人電腦、伺服器與筆記型電 腦之其中之任一。 18.—種揮擊動作之肌能狀態分析方法,其包括: 提供一資料庫,儲存至少一肌能樣本值,每一肌能 樣本值至少包括-揮擊速度樣本值及其對應複數個^ 肉效能樣本值; 經由-加速度感測器,感測__使用者使用一揮擊器 具進行揮擊動作時該揮擊器具之加速度,以產生一揮擊 23 201116318 速度資料; 取得該使用者之複數個肌肉產生之複數個肌電訊 號; 分析該等肌電訊號與該揮擊速度資料以取得該複 數個肌肉效能值;以及 依據該揮擊速度資料和該複數個肌肉效能值與該 資料庫中至少一肌能樣本值進行比對,以產生一比對結 果資料。 ® 19.如申請專利範圍第18項所述之方法,其中該加速度感 測器係為多維度加速度計。 20.如申請專利範圍第18項所述之方法,其中所述之進行 比對,係依據該揮擊速度資料及該複數個肌肉效能值, 與該資料庫中至少一肌能樣本值之揮擊速度樣本值及 其對應複數個肌肉效能樣本值進行比對,以產生該比對 結果資料。 φ 21.如申請專利範圍第18項所述之方法,其中該方法更包 括: 對該等肌電訊號進行一時域分析以取得複數個肌 肉施力強度值,利用該等肌肉施力強度值與該揮擊速度 資料以計算出該等肌肉效能值。 22.如申請專利範圍第21項所述之方法,其中該方法更包 括: 依據該揮擊速度資料和該複數個肌肉效能值與該 資料庫中至少一肌能樣本值進行比對,係將該揮擊速度 24 201116318 資料及該複數個肌肉效能值,與該資料庫中至少一肌能 樣本值之揮擊速度樣本值及其對應複數個肌•能= 本值進行比對,以產生該比對結果資料。 23·如申請專利範圍第21項所述之方法,其中該方法更包 括: 對該等肌電訊號進行一頻域分析以取得一疲勞指 標值,且依據該複數個肌肉施力強度值與該疲勞指^ 值,判定該使用者是否處於一疲勞狀態。 不 24.如申請專韻圍第23項所述之方法,其巾該方法更包 括: 由該肌肉施力強度值與該疲勞指標值為單位所形 成之-二維座標軸,其劃分為複數個象限,分析該肌肉 施力強度值與該疲勞指標值所形成之一落點及其所在 象限,判找使时是减於軸勞狀g,#該使用者 處於該疲勞狀態,該比對模組產生一休息建議資訊。 25=申請專利範圍第18項所述之方法,其中該等肌肉效 能值與該等肌肉效能樣本值係分別對應複數個肌肉屬 性其中之一,且該方法更包括: 將相同該肌肉屬性之該肌肉效能值與該肌肉效能 樣本值進行比對,以產生該比對結果資料。 26.如申請專利範圍第18項所述之方法,其中該方法更包 括: 依據該等肌肉效能值與該等肌肉效能樣本值之比 對’判定該等肌肉效能值是否包括至少一異常肌肉效能 25 201116318 值。 26項所述之方法,其中該方法更包 對結果資料,刀賴資料。201116318 VII. Patent application scope: 1. A muscle energy state analysis system for a swipe action, comprising: - a swing device for the user to perform a swipe action, which includes an acceleration sensor for When the swing device is swung, sensing the acceleration of the swing device to generate a swipe speed data; a plurality of signal modules for sensing a plurality of myoelectric signals generated by the plurality of muscles of the user; - the database 'is used to store at least - muscle energy sample values, each muscle energy sample value to the 丨 & bracket - county speed sample value and its corresponding plurality of muscle performance sample values; , = muscle energy analysis module, for Analyzing the muscle electrical signal and the swing speed data to obtain the plurality of muscle performance values; and a comparison module for using the swing speed data and the plurality of muscle performance values and at least the muscle in the database The sample values can be compared ' to generate a comparison result data. # 2. The muscle energy state analysis system of the swipe action as described in the patent application scope W, wherein the acceleration sensor is a multi-dimensional acceleration call. 3. The muscle energy state analysis system according to the swinging action described in the scope of claim 2, wherein the comparison module is based on the swing speed data and the plurality of muscle performance values, and the transfer towel is at least - muscle The sampling value of the sample value and the amount of money should be compared with the number of muscles and energy counties, and the result of the comparison is generated. 4. The muscle energy state of the swinging action described in the first paragraph of the patent application scope, wherein the muscle energy analysis module comprises: a signal analysis module and a muscle energy 20 201116318 determination module, the signal analysis module pair The electromyographic signals perform a time domain analysis to obtain a plurality of muscle exertion intensity values, and the muscle energy determination module uses the muscle force application strength values to calculate the muscle performance values. 5. The muscle energy state analysis system of the swing action according to claim 4, wherein the signal analysis module further comprises performing a frequency domain analysis on the myoelectric signals to obtain a fatigue index value, and the muscle The determining module further comprises determining whether the user is in a fatigue state according to the plurality of muscle applying strength values and the fatigue index value. 6. The muscle energy state analysis system according to the swinging action described in claim 5, wherein the comparison module further comprises a two-dimensional shape formed by the muscle strength value and the fatigue index value unit. a coordinate axis, which is divided into a plurality of quadrants, wherein the comparison module analyzes the muscle force intensity value and the fatigue index value to form a drop point and a quadrant thereof, and determines whether the user is in the fatigue state, when the use The person is in the fatigue state, and the comparison module generates a rest suggestion information. Φ 7. The muscle energy state analysis system of the swing action as described in claim 1, wherein the muscle performance values and the muscle performance sample values respectively correspond to one of a plurality of muscle attributes; and the muscle The analysis module compares the muscle performance value of the same muscle property with the muscle performance sample value to generate the comparison result data. 8. The muscle energy state analysis system of the swing action according to claim 1, wherein the muscle energy analysis module further comprises: determining the ratio of the muscle performance values to the muscle performance sample values. Whether the muscle performance value includes at least one abnormal muscle performance value. 21 201116318 9. The muscle energy state analysis system of the swing action according to item 8 of the patent application scope, wherein the comparison module further comprises generating a force recommendation data according to the comparison result data. 10. The muscle energy state analysis system of the swing action according to claim 1, wherein the comparison module is based on the swing speed data and the plurality of muscle performance values and at least one muscle energy sample in the database Comparing the values by comparing the swing speed data and the plurality of muscle performance values with each muscle energy sample value in the database, and determining a target muscle energy from the at least one muscle energy sample value The sample value is then compared with the target muscle energy sample value and the plurality of muscle performance values to generate the comparison result data. 11. The muscle energy state analysis system of the swipe action as described in claim 1, wherein the system further comprises a display module for displaying the comparison result data. 12. The muscle energy state analysis system of the swing action according to claim 1, wherein the comparison result data is a difference between the swing speed data and the swing speed sample value, and the plurality of muscle performance The difference between the value and the value of the plurality of muscle performance samples. 13. The muscle energy state analysis system of the swing action according to claim 12, wherein the system further comprises a display module for displaying the comparison result data, and the display module is via a numerical value and a chart. And a pattern, etc., to display a difference between the swipe speed data and the swipe speed sample value, and a difference between the plurality of muscle performance values and the plurality of muscle performance sample values. 22 201116318 μ.If you apply for the muscle energy status analysis of the swing action described in item 12 of the full-time, the comparison group includes the difference between the sample value of the swipe speed and the plurality of muscles according to the swing speed data. The difference between the performance value and the value of the plurality of muscle performance samples produces a recommendation data. 15. The application of the muscle energy state analysis system of the swing action described in item 14 of the full-time division, wherein the acceleration sensing H, the plurality of signal modules and the muscle energy analysis module respectively have a wireless communication module For wireless communication, the swipe speed data and the complex myoelectric signal are transmitted from the acceleration sensor and the plurality of signal detection modules to the muscle energy analysis module. 16. The muscle energy state analysis system of the swing action described in claim 15 wherein the database, the muscle energy analysis module, and the comparison module are disposed in a calculator, via a wired Or a wireless communication network and the force: the speed sensor communicates with the plurality of signal detection modules to obtain the swing speed data and the plurality of myoelectric signals. • I7. The muscle energy state analysis system of the swing action described in claim 16 wherein the calculator is any one of a personal computer, a server, and a notebook computer. 18. A method for analyzing a muscle energy state of a swipe action, comprising: providing a database for storing at least one muscle energy sample value, each muscle energy sample value including at least a swipe speed sample value and a corresponding plurality of ^ a meat performance sample value; via an acceleration sensor, sensing the acceleration of the swinging device when the user uses a swipe device to perform a swipe action to generate a swipe 23 201116318 speed data; obtaining a plurality of the user a plurality of myoelectric signals generated by the muscle; analyzing the muscle electrical signals and the swing speed data to obtain the plurality of muscle performance values; and calculating the plurality of muscle performance values according to the swing speed data and the plurality of muscle performance values A muscle energy sample value is compared to generate a comparison result data. The method of claim 18, wherein the acceleration sensor is a multi-dimensional accelerometer. 20. The method of claim 18, wherein the comparing is based on the swing speed data and the plurality of muscle performance values, and the value of at least one muscle energy sample value in the database The velocity sample values and their corresponding plurality of muscle performance sample values are compared to generate the comparison result data. Φ 21. The method of claim 18, wherein the method further comprises: performing a time domain analysis on the myoelectric signals to obtain a plurality of muscle force intensity values, using the muscle force strength values and The swing speed data is used to calculate the muscle performance values. 22. The method of claim 21, wherein the method further comprises: comparing the swing speed data and the plurality of muscle performance values with at least one muscle energy sample value in the database, The swipe speed 24 201116318 data and the plurality of muscle performance values are compared with a swipe speed sample value of at least one muscle energy sample value in the database and a corresponding plurality of muscle energy = this value to generate the Compare the results data. The method of claim 21, wherein the method further comprises: performing a frequency domain analysis on the myoelectric signals to obtain a fatigue index value, and based on the plurality of muscle force intensity values and the Fatigue refers to a value that determines whether the user is in a fatigue state. 24. The method of claim 23, wherein the method further comprises: a two-dimensional coordinate axis formed by the muscle strength value and the fatigue index value unit, which is divided into a plurality of In the quadrant, analyze the value of the muscle exerting strength value and the fatigue index value to form a falling point and its quadrant, and determine that the time is reduced to the axis labor g, # the user is in the fatigue state, the comparison mode The group generates a break suggestion message. The method of claim 18, wherein the muscle performance value and the muscle performance sample value respectively correspond to one of a plurality of muscle attributes, and the method further comprises: The muscle performance value is compared to the muscle performance sample value to generate the alignment result data. 26. The method of claim 18, wherein the method further comprises: determining whether the muscle performance values include at least one abnormal muscle performance based on a ratio of the muscle performance values to the muscle performance sample values 25 201116318 Value. The method described in item 26, wherein the method further includes information on the results. 27·如申請專利範圍第 括: •如申請專利範圍帛18項所述之方法,其中所述之進行 =對’係經由將該揮擊速度資料和該複數個肌肉效能值 ,、該貧料庫中每-肌能穌值進行比對’錢該至少一 肌能樣核+蚊-目觀能樣本值,再㈣揮擊速度 貝 '料和該複數個肌肉效能值與該目標肌能樣本值之比 對’產生該比對結果資料。 29.如申請專利範_ 18項所述之方法,其中該方法更包 括: 供一顯示模組,以顯示該比對結果資料。 30. 如申請專利範圍第18項所述之方法,其中該比對結果 資料係為該揮擊速度資料與該揮擊速度樣本值之差 異,以及該複數個肌肉效能值與該複數個肌肉效能樣本 值之差異。 31. 如申請專利範圍第30項所述之方法,其中該方法更包 括: 提供一顯示模組,以顯示該比對結果資料,且該顯 示模組係經由數值、圖表、和圖式其中之任一種方式, 來顯示該揮擊速度資料與該揮擊速度樣本值之差異,及 該複數個肌肉效能值與該複數個肌肉效能樣本值之差 異。 26 201116318 32. 如申請專利範圍第30項所述之方法,其中該方法更包 括: 依據該揮擊速度資料與該揮擊速度樣本值之差異 及該複數個肌肉效能值與該複數個肌肉效能樣本值之 差異,產生一施力建議資料。 33. 如申請專利範圍第18項所述之方法,其中該方法更包 括: 經由一無線通訊模組進行無線通訊,從加速度感測 器和該複數個訊號偵測模組傳送出該揮擊速度資料和 該複數肌電訊號,以進行該肌能分析。 34. 如申請專利範圍第18項所述之方法,其中所述分析該 等肌電訊號與該揮擊速度資料以取得該複數個肌肉效 能值,以及依據該揮擊速度資料和該複數個肌肉效能值 與該資料庫中至少一肌能樣本值進行比對,係經由一計 算器予以進行,且該計算器係經由一有線或無線通訊網 路與該加速度感測器和該複數個訊號偵測模組進行通 訊,以取得該揮擊速度資料和該複數肌電訊號。 35. 如申請專利範圍第34項所述之方法,其中,該計算器 係為個人電腦、伺服器與筆記型電腦其中之任一。 36. —種電腦程式產品,用以當一電子設備讀取該電腦程式 產品時執行一揮擊動作之肌能狀態分析方法;其中,該 揮擊動作係經由一加速度感測器,感測一使用者使用一 揮擊器具進行揮擊動作時該揮擊器具之加速度以產生 一揮擊速度資料,以及經由複數個訊號偵測模組取得該 27 201116318 使用者之複數個肌肉產生之複數個肌電訊號;且其中, 該分析方法包括: 提供一資料庫,儲存至少一肌能樣本值,每一肌能 樣本值至少包括一揮擊速度樣本值及其對應複數個肌 肉效能樣本值; 分析該等肌電訊號與該揮擊速度資料以取得該複 數個肌肉效能值;以及 依據該揮擊速度資料和該複數個肌肉效能值與該 • 資料庫中至少一肌能樣本值進行比對,以產生一比對結 果資料。 37.如申請專利範圍第36項所述之電腦程式產品,其中該 方法更包括: 對該等肌電訊號進行一時域分析以取得複數個肌 肉施力強度值,利用該等肌肉施力強度值與該揮擊速度 資料以計算出該等肌肉效能值。 φ 38.如申請專利範圍第37項所述之電腦程式產品,其中該 方法更包括: 依據該揮擊速度資料和該複數個肌肉效能值與該 資料庫中至少一肌能樣本值進行比對,係將該揮擊速度 資料及該複數個肌肉效能值,與該資料庫中至少一肌能 樣本值之揮擊速度樣本值及其對應複數個肌肉效能樣 本值進行比對,以產生該比對結果資料。 39.如申請專利範圍第37項所述之電腦程式產品,其中該 方法更包括: 28 201116318 - ㈣等肌電訊號進行-頻域分析以取得— #值’隸據該複數個職施力強度值錢疲勞日 值,判定該使用者是否處於一疲勞狀態。 曰π 40. 如申請專利範圍第39項所述之電腦^式產品, 方法更包括: ,、中該 由該肌肉施力強度值與該疲勞指標值為單位所形 成之-二維錢軸,其劃分為複數個象限,分析該肌肉 ⑯力強敍與該疲勞指標輯形叙-落點及其所在 象限’判定該使用者是否處於該疲勞狀態,當該使用者 處於該疲勞狀態,㈣對模組產生—休息建議資訊。 41. 如申請專利範圍第36項所述之電腦程式產品,其中該 方法更包括: 人 提供一顯示模組,以顯示該比對結果資料,且該顯 不模組係經由數值、圖表、和圖式等其中之任一種方 式,來顯忝該揮擊速度資料與該揮擊速度樣本值之差 • 異,及該複數個肌肉效能值與該複數個肌肉效能樣本值 之差異。 2927. If the scope of the patent application is as follows: • The method of claim 18, wherein the method of performing the pairing is based on the swipe speed data and the plurality of muscle performance values, the poor material The value of each muscle in the library is compared with the 'money of at least one muscle-like nucleus + mosquito-eye-capturing sample value, and then (four) the speed of the sweeping material and the plurality of muscle performance values and the target muscle energy sample The ratio of the values 'generates the comparison result data. 29. The method of claim 18, wherein the method further comprises: providing a display module to display the comparison result data. 30. The method of claim 18, wherein the comparison result data is a difference between the swing speed data and the swipe speed sample value, and the plurality of muscle performance values and the plurality of muscle performance values The difference in sample values. 31. The method of claim 30, wherein the method further comprises: providing a display module to display the comparison result data, wherein the display module is via a numerical value, a chart, and a graphic Either way, the difference between the swipe speed data and the swipe speed sample value and the difference between the plurality of muscle performance values and the plurality of muscle performance sample values are displayed. The method of claim 30, wherein the method further comprises: determining a difference between the swipe speed data and the swipe speed sample value and the plurality of muscle performance values and the plurality of muscle masses The difference in sample values produces a recommendation for force. 33. The method of claim 18, wherein the method further comprises: transmitting wirelessly via a wireless communication module, transmitting the swing speed from the acceleration sensor and the plurality of signal detection modules The data and the complex myoelectric signal are used to perform the muscle energy analysis. 34. The method of claim 18, wherein the analyzing the electromyography signal and the swing speed data to obtain the plurality of muscle performance values, and based on the swing speed data and the plurality of muscles The performance value is compared with at least one muscle energy sample value in the database, and is performed by a calculator, and the calculator is connected to the acceleration sensor and the plurality of signals via a wired or wireless communication network. The module communicates to obtain the swipe speed data and the complex myoelectric signal. 35. The method of claim 34, wherein the calculator is any one of a personal computer, a server, and a notebook computer. 36. A computer program product for performing a swinging action muscle energy state analysis method when an electronic device reads the computer program product; wherein the swing motion is sensed by an acceleration sensor Using a swipe device to perform a swipe action, the acceleration of the swipe device generates a swipe speed data, and obtains a plurality of myoelectric signals generated by the plurality of muscles of the 27 201116318 user through a plurality of signal detecting modules; And wherein the analyzing method comprises: providing a database for storing at least one muscle energy sample value, each muscle energy sample value including at least one swipe speed sample value and corresponding plurality of muscle performance sample values; analyzing the electromyography signals And the swing speed data to obtain the plurality of muscle performance values; and comparing the swing speed data and the plurality of muscle performance values with at least one muscle energy sample value in the database to generate an alignment Result data. 37. The computer program product of claim 36, wherein the method further comprises: performing a time domain analysis on the myoelectric signals to obtain a plurality of muscle force intensity values, and using the muscle force strength values The swing speed data is used to calculate the muscle performance values. Φ 38. The computer program product of claim 37, wherein the method further comprises: comparing the swing speed data and the plurality of muscle performance values with at least one muscle energy sample value in the database Comparing the swing speed data and the plurality of muscle performance values with a swipe speed sample value of at least one muscle energy sample value in the database and a corresponding plurality of muscle performance sample values to generate the ratio Information on the results. 39. The computer program product of claim 37, wherein the method further comprises: 28 201116318 - (4) performing a myoelectric signal-frequency domain analysis to obtain - #value' according to the plurality of positions The value of the daily fatigue value determines whether the user is in a fatigue state.曰π 40. The computer-type product described in claim 39, the method further includes: , a medium-dimensional two-dimensional money axis formed by the strength value of the muscle and the fatigue index value unit, It is divided into a plurality of quadrants, analyzing the strength of the muscle 16 and the fatigue index and the falling point and its quadrant to determine whether the user is in the fatigue state, when the user is in the fatigue state, (4) Module generation - rest advice information. 41. The computer program product of claim 36, wherein the method further comprises: providing a display module to display the comparison result data, and the display module is via a numerical value, a chart, and A pattern or the like is used to display the difference between the swipe speed data and the swipe speed sample value, and the difference between the plurality of muscle performance values and the plurality of muscle performance sample values. 29
TW098138564A 2009-11-13 2009-11-13 The state of the muscle movement state analysis system, methods and computer program products TWI393579B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098138564A TWI393579B (en) 2009-11-13 2009-11-13 The state of the muscle movement state analysis system, methods and computer program products
US12/634,190 US8348862B2 (en) 2009-11-13 2009-12-09 Muscular energy state analysis system and method for swing motion and computer program product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098138564A TWI393579B (en) 2009-11-13 2009-11-13 The state of the muscle movement state analysis system, methods and computer program products

Publications (2)

Publication Number Publication Date
TW201116318A true TW201116318A (en) 2011-05-16
TWI393579B TWI393579B (en) 2013-04-21

Family

ID=44011838

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098138564A TWI393579B (en) 2009-11-13 2009-11-13 The state of the muscle movement state analysis system, methods and computer program products

Country Status (2)

Country Link
US (1) US8348862B2 (en)
TW (1) TWI393579B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439733B2 (en) 2007-06-14 2013-05-14 Harmonix Music Systems, Inc. Systems and methods for reinstating a player within a rhythm-action game
US8444464B2 (en) 2010-06-11 2013-05-21 Harmonix Music Systems, Inc. Prompting a player of a dance game
US8449360B2 (en) 2009-05-29 2013-05-28 Harmonix Music Systems, Inc. Displaying song lyrics and vocal cues
US8465366B2 (en) 2009-05-29 2013-06-18 Harmonix Music Systems, Inc. Biasing a musical performance input to a part
US8550908B2 (en) 2010-03-16 2013-10-08 Harmonix Music Systems, Inc. Simulating musical instruments
US8663013B2 (en) 2008-07-08 2014-03-04 Harmonix Music Systems, Inc. Systems and methods for simulating a rock band experience
US8678896B2 (en) 2007-06-14 2014-03-25 Harmonix Music Systems, Inc. Systems and methods for asynchronous band interaction in a rhythm action game
US8686269B2 (en) 2006-03-29 2014-04-01 Harmonix Music Systems, Inc. Providing realistic interaction to a player of a music-based video game
US8702485B2 (en) 2010-06-11 2014-04-22 Harmonix Music Systems, Inc. Dance game and tutorial
US9024166B2 (en) 2010-09-09 2015-05-05 Harmonix Music Systems, Inc. Preventing subtractive track separation
CN105597298A (en) * 2016-04-05 2016-05-25 哈尔滨工业大学 Fitness effect evaluation system based on EMG signal and body movement detection
US9358456B1 (en) 2010-06-11 2016-06-07 Harmonix Music Systems, Inc. Dance competition game
TWI569858B (en) * 2015-07-27 2017-02-11 國立臺灣師範大學 Swing sport training system
US9981193B2 (en) 2009-10-27 2018-05-29 Harmonix Music Systems, Inc. Movement based recognition and evaluation
US10357714B2 (en) 2009-10-27 2019-07-23 Harmonix Music Systems, Inc. Gesture-based user interface for navigating a menu
CN113854794A (en) * 2021-11-02 2021-12-31 赵志刚 EMG-based pillow height intelligent adjusting method and pillow

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0801267A0 (en) * 2008-05-29 2009-03-12 Cunctus Ab Method of a user unit, a user unit and a system comprising said user unit
US8622795B2 (en) 2008-12-04 2014-01-07 Home Box Office, Inc. System and method for gathering and analyzing objective motion data
WO2011163367A1 (en) * 2010-06-22 2011-12-29 Mcgregor Stephen J Method of monitoring human body movement
US9107627B2 (en) * 2010-09-21 2015-08-18 Alexander B Grey Method for assessing and optimizing muscular performance including a muscleprint protocol
US10216893B2 (en) 2010-09-30 2019-02-26 Fitbit, Inc. Multimode sensor devices
US20120184871A1 (en) * 2011-01-14 2012-07-19 Seungjin Jang Exercise monitor and method for monitoring exercise
US8827846B2 (en) * 2012-02-01 2014-09-09 Christopher Shocklee System for selecting components of a modular bat
US8998754B2 (en) 2012-02-01 2015-04-07 5 Star, Llc Handle weighted bat and assembly process
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US9044149B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. Heart rate data collection
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
JP6439235B2 (en) * 2012-08-10 2018-12-19 カシオ計算機株式会社 Information notification apparatus, information notification method, and program
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9731179B2 (en) 2013-01-24 2017-08-15 Wilson Sporting Goods Co. Bat customization system
US9956464B2 (en) 2013-01-24 2018-05-01 Wilson Sporting Goods Co. Ball bat barrel with luminescent interior
US9511267B2 (en) 2013-01-24 2016-12-06 Wilson Sporting Goods Co. Bat customization system
US9242156B2 (en) 2013-01-24 2016-01-26 Wilson Sporting Goods Co. Tapered isolating element for a ball bat and system for using same
US10387930B2 (en) 2013-01-24 2019-08-20 Wilson Sporting Goods Co. Bat customization system
JP6079340B2 (en) * 2013-03-18 2017-02-15 富士通株式会社 State determination device, method of operating state determination device, and program
US10008126B1 (en) * 2013-04-12 2018-06-26 Marina Linderman Training aid for complex athletic moves
US20140364702A1 (en) 2013-06-06 2014-12-11 Valeriy Nasedkin Apparatus and method for functional state and/or performance assessment and training program adjustment
US20140364701A1 (en) * 2013-06-06 2014-12-11 Leonid Masakov Apparatus and method for assessing functional state of body systems including electromyography
KR102170321B1 (en) * 2013-06-17 2020-10-26 삼성전자주식회사 System, method and device to recognize motion using gripped object
US10512407B2 (en) 2013-06-24 2019-12-24 Fitbit, Inc. Heart rate data collection
EP3188657B1 (en) * 2014-09-04 2023-12-13 Active4D, Inc. Shoulder monitoring and treatment system
US9392946B1 (en) 2015-05-28 2016-07-19 Fitbit, Inc. Heart rate sensor with high-aspect-ratio photodetector element
JP2017000454A (en) * 2015-06-10 2017-01-05 セイコーエプソン株式会社 Exercise guidance system, guidance content generation method, exercise guidance device and guidance content generation device
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US10568525B1 (en) 2015-12-14 2020-02-25 Fitbit, Inc. Multi-wavelength pulse oximetry
US10433739B2 (en) 2016-04-29 2019-10-08 Fitbit, Inc. Multi-channel photoplethysmography sensor
US11185270B1 (en) * 2017-02-03 2021-11-30 Yongwu Yang Wearable device and method for monitoring muscle tension and other physiological data
US11051706B1 (en) 2017-04-07 2021-07-06 Fitbit, Inc. Multiple source-detector pair photoplethysmography (PPG) sensor
CN108211311A (en) * 2017-05-25 2018-06-29 深圳市前海未来无限投资管理有限公司 The movement effects display methods and device of body-building action
US20190358508A1 (en) * 2018-05-24 2019-11-28 Aaron Chamberlain Moment of inertia ball bat structure fitting device
CN110859620A (en) * 2019-11-19 2020-03-06 上海电机学院 Recognition and prediction method of lumbar erector spinae activity based on one-way video signal
JP2023549242A (en) * 2021-03-19 2023-11-22 シェンツェン・ショックス・カンパニー・リミテッド Exercise monitoring method and system
TWI821772B (en) * 2021-10-29 2023-11-11 財團法人工業技術研究院 Muscle state detection method and muscle state detection device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361775A (en) * 1993-04-06 1994-11-08 Mega Elektroniikka Oy Pl. Method for determining muscle endurance and sensitivity to fatigue
US5930741A (en) * 1995-02-28 1999-07-27 Virtual Technologies, Inc. Accurate, rapid, reliable position sensing using multiple sensing technologies
KR100634523B1 (en) * 2004-11-06 2006-10-16 삼성전자주식회사 Exercise motion monitoring device and method
TWI261525B (en) * 2004-12-24 2006-09-11 Giga Byte Tech Co Ltd Motion analyzing device and method for mobile product

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686269B2 (en) 2006-03-29 2014-04-01 Harmonix Music Systems, Inc. Providing realistic interaction to a player of a music-based video game
US8439733B2 (en) 2007-06-14 2013-05-14 Harmonix Music Systems, Inc. Systems and methods for reinstating a player within a rhythm-action game
US8444486B2 (en) 2007-06-14 2013-05-21 Harmonix Music Systems, Inc. Systems and methods for indicating input actions in a rhythm-action game
US8678896B2 (en) 2007-06-14 2014-03-25 Harmonix Music Systems, Inc. Systems and methods for asynchronous band interaction in a rhythm action game
US8678895B2 (en) 2007-06-14 2014-03-25 Harmonix Music Systems, Inc. Systems and methods for online band matching in a rhythm action game
US8663013B2 (en) 2008-07-08 2014-03-04 Harmonix Music Systems, Inc. Systems and methods for simulating a rock band experience
US8465366B2 (en) 2009-05-29 2013-06-18 Harmonix Music Systems, Inc. Biasing a musical performance input to a part
US8449360B2 (en) 2009-05-29 2013-05-28 Harmonix Music Systems, Inc. Displaying song lyrics and vocal cues
US10421013B2 (en) 2009-10-27 2019-09-24 Harmonix Music Systems, Inc. Gesture-based user interface
US10357714B2 (en) 2009-10-27 2019-07-23 Harmonix Music Systems, Inc. Gesture-based user interface for navigating a menu
US9981193B2 (en) 2009-10-27 2018-05-29 Harmonix Music Systems, Inc. Movement based recognition and evaluation
US8568234B2 (en) 2010-03-16 2013-10-29 Harmonix Music Systems, Inc. Simulating musical instruments
US8636572B2 (en) 2010-03-16 2014-01-28 Harmonix Music Systems, Inc. Simulating musical instruments
US8550908B2 (en) 2010-03-16 2013-10-08 Harmonix Music Systems, Inc. Simulating musical instruments
US9278286B2 (en) 2010-03-16 2016-03-08 Harmonix Music Systems, Inc. Simulating musical instruments
US8874243B2 (en) 2010-03-16 2014-10-28 Harmonix Music Systems, Inc. Simulating musical instruments
US8562403B2 (en) 2010-06-11 2013-10-22 Harmonix Music Systems, Inc. Prompting a player of a dance game
US9358456B1 (en) 2010-06-11 2016-06-07 Harmonix Music Systems, Inc. Dance competition game
US8702485B2 (en) 2010-06-11 2014-04-22 Harmonix Music Systems, Inc. Dance game and tutorial
US8444464B2 (en) 2010-06-11 2013-05-21 Harmonix Music Systems, Inc. Prompting a player of a dance game
US9024166B2 (en) 2010-09-09 2015-05-05 Harmonix Music Systems, Inc. Preventing subtractive track separation
TWI569858B (en) * 2015-07-27 2017-02-11 國立臺灣師範大學 Swing sport training system
CN105597298A (en) * 2016-04-05 2016-05-25 哈尔滨工业大学 Fitness effect evaluation system based on EMG signal and body movement detection
CN113854794A (en) * 2021-11-02 2021-12-31 赵志刚 EMG-based pillow height intelligent adjusting method and pillow
CN113854794B (en) * 2021-11-02 2023-03-10 赵志刚 EMG-based pillow height intelligent adjusting method and pillow

Also Published As

Publication number Publication date
US8348862B2 (en) 2013-01-08
TWI393579B (en) 2013-04-21
US20110118621A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
TW201116318A (en) System and method for analyzing muscle performance status at swing action, and program products thereof
KR102819399B1 (en) Method and system for identifying user actions
AU2016236838B2 (en) Muscle activity monitoring
JP5005055B2 (en) Monitoring system and method for muscle strength and exercise / physical ability of limbs
CN102596014B (en) Fitness test system and physical stamina test method
Sasaki et al. Measurement of physical activity using accelerometers
US10327692B2 (en) Apparatus for assessing muscle quality
JP2017520336A (en) Method and system for delivering biomechanical feedback to human body and object motion
CN101692977A (en) Multiparameter biological information testing platform and testing method
US10449417B2 (en) System for optimal physical exercise and training
CN117157622A (en) Motion monitoring method and device
CN102551676A (en) Personal health monitoring system
CN109069055A (en) Physical condition classification
JP2015066155A (en) Analysis method of walking characteristics
CN110974182A (en) Sarcopenia risk assessment system based on bioelectrical impedance method
KR20200094449A (en) Method and system for guiding exercise for pregnant woman
CN102068264A (en) Muscle energy state analysis system and method for swing action
Janssen et al. Intratester reliability and validity of concentric measurements using a new hand-held dynamometer
CN205322327U (en) Wearable foot ring based on human composition of bio -electrical impedance measurable quantity
KR102244148B1 (en) Dedicated content prescription and health care system based on tone
CN116473545A (en) Method and system for assessing low back pain based on multi-sensor
TWI789980B (en) Muscle quantification device, method, and system
CN116616729A (en) Digital healthy body fitness test method
CN115624724B (en) An upper limb rehabilitation training system based on virtual reality
Pozaić et al. Closed-loop system for assisted strength exercising

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees