[go: up one dir, main page]

RS20130031A1 - SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS - Google Patents

SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS

Info

Publication number
RS20130031A1
RS20130031A1 RS20130031A RSP20130031A RS20130031A1 RS 20130031 A1 RS20130031 A1 RS 20130031A1 RS 20130031 A RS20130031 A RS 20130031A RS P20130031 A RSP20130031 A RS P20130031A RS 20130031 A1 RS20130031 A1 RS 20130031A1
Authority
RS
Serbia
Prior art keywords
data
traffic
analysis
images
events
Prior art date
Application number
RS20130031A
Other languages
Serbian (sr)
Inventor
Marko Maćešić
Vladimir Crnojević
Nenad Prodanović
Marko Panić
Original Assignee
Protech Integra Doo
Fakultet Tehniäśkih Nauka Novi Sad
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protech Integra Doo, Fakultet Tehniäśkih Nauka Novi Sad filed Critical Protech Integra Doo
Priority to RS20130031A priority Critical patent/RS20130031A1/en
Publication of RS20130031A1 publication Critical patent/RS20130031A1/en

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)

Abstract

Invention herewith described refers to the smart camera for traffic surveillance and analysis. The basic idea of this invention is the development of the procedure and the system in which the collected data from video cameras in the system for traffic surveillance are automatically processed locally on the very surveillance location i.e. in the camera to the semantic level (e.g. detected traffic congestion, crash, etc.). Only the metadata, information of high level of abstraction and the relevant data from the cameras (e.g. several selected pictures or short video clips) are sent to the monitoring centre, significantly reducing the required bandwidth for communication. It is possible to send data wirelessly, and data can be stored locally on the memory card, in case of any problems in communicating with the monitoring centre.The smart camera consists of the visual sensor with the colour acquisition - VS (CCD or CMOS chip with associated electronics that allows image acquisition), which is by “usb” or “Ethernet” interface connected to the PC unit - RJ, that is responsible for the intelligent processing of data from the camera using specialized mathematical algorithms as well as data preparation for sending via wireless communication interface - GPRS which was implemented using the GPRS modem.

Description

Pametna kamera za nadzor i analizu saobraćajaSmart camera for traffic monitoring and analysis

(Smart Camera for Traffic Surveillance arrdTamaty»is)(Smart Camera for Traffic Surveillance arrdTamaty»is)

Oblast tehnikeTechnical field

Pronalazak spada u oblast primenjenih informacionih tehnologija i telekomunikacija. Konkretno se odnosi na: obradu video signala, primljenog sa kamere za video nadzor, različitim algoritmima u prenosnom računaru, minimalnih dimenzija, baziranom na ARM procesoru i komunikaciju između nadzirane lokacije i nadzornog centra putem veze ostvarene GPRS uslugom mobilne mreže. The invention belongs to the field of applied information technologies and telecommunications. Specifically, it refers to: processing of the video signal, received from the video surveillance camera, with different algorithms in a portable computer, of minimal dimensions, based on an ARM processor and communication between the monitored location and the monitoring center through a connection established by the GPRS service of the mobile network.

Tehnički problem:Technical problem:

Tehnički problem koji se rešava opisanim pronalaskom sastoji se u sledećem: kako poboljšati sistem detekcije saobraćajnih događaja putem video nadzora, omogućiti veću pouzdanost i robusnost sistema uz značajno smanjenje troškova i jednostavniju organizaciju sistema koja istovremeno omogućava veću fleksibilnost pri nadogradnji postojećih ili izgradnji novih sistema za nadzor saobraćaja? The technical problem that is solved by the described invention consists in the following: how to improve the system of detecting traffic events through video surveillance, enable greater reliability and robustness of the system with a significant reduction in costs and simpler organization of the system, which at the same time allows greater flexibility when upgrading existing or building new traffic surveillance systems?

Stanje tehnike:State of the art:

Postojeće stanje tehnike podrazumeva upotrebu kamera za video nadzor za nadzor saobraćaja. U postojećem stanju tehnike dominantno rešenje u takvim sistemima jeste slanje kompletnog video toka sa nadzornih kamera u nadzorne centre. Ovo stvara velike troškove zbog zakupa skupih telekomunikacionih linkova i otežava izgradnju ovakvih sistema jer su na udaljenim lokacijama često nedostupne kvalitetne telekomunikacione usluge i linkovi. Velika količina podataka koja pristiže u nadzorne centre stvara veliko opterećenje na računarima za obradu koji moraju istovremeno da vrše obradu video signala sa velikog broja kamera. Kako bi se automatski obradili video tokovi sa većeg broja kamera za video nadzor potrebna je velika procesorska moć. Nabavka takve opreme je veoma skupa, ali je potrebno i obezbediti posebne uslove za navedenu opremu: prostor za smeštaj, sistem za hlađenje, sistem za zaštitu od požara i drugo, što dodatno povećava troškove sistema. Rešenje svih ovih problema se nalazi u distribuiranom sistemu gde se obrada podataka vrši lokalno na samim nadzornim lokacijama, a pre slanja informacija od interesa u nadzorni centar. Razvoj takvih distribuiranih sistema omogućen je tek nedavno razvojem telekomunikacija i prenosnih računara. Procesorska moć prenosnih računara je rasla velikom brzinom u toku poslednje 3 do 4 godine dok se istovremeno njihova veličina smanjivala. Tako su danas dostupne mobilne platforme čija procesorska moć odgovara procesorskoj moći personalnih računara od pre nekoliko godina. Ovakve mobilne platforme postale su sastavni deo mobilnih telefona, tablet i netbuk računara. Baziraju se pretežno na ARM i Intel Atom procesorima sa više gigabajta operativne memorije i mogućnošću da izvršavaju različite moderne operativne sisteme kao što su Linux, Android ili iOS. Ove mobilne platforme poseduju i mogućnost nadogradnje različitim eksternim modulima, posebno u cilju komunikacije sa drugih uređajima ili javnim mrežama. Tako postoje moduli za RS-232/RS-422, LAN, Wi-fi ili GSM komunikaciju. Sve navedene karakteristike omogućavaju da se pomoću opisanih mobilnih platformi kreiraju složene, distribuirane mreže uređaja za obradu podataka. Takvi uređaji mogu biti "mozak" u sistemima za automatsku kontrolu i nadzor različitih procesa iz svakodnevnog života. Mogu se koristiti i za upravljanje različitim automatizovanim sistemima koji se nalaze na udaljenim lokacijama. The existing state of the art involves the use of video surveillance cameras for traffic surveillance. In the current state of the art, the dominant solution in such systems is to send the complete video stream from surveillance cameras to surveillance centers. This creates high costs due to the lease of expensive telecommunication links and makes it difficult to build such systems because quality telecommunication services and links are often unavailable in remote locations. The large amount of data arriving at the surveillance centers creates a heavy load on processing computers that must simultaneously process video signals from a large number of cameras. In order to automatically process video streams from a large number of video surveillance cameras, a lot of processing power is required. The acquisition of such equipment is very expensive, but it is also necessary to provide special conditions for the said equipment: accommodation space, cooling system, fire protection system and others, which additionally increases the costs of the system. The solution to all these problems is found in a distributed system where data processing is performed locally at the monitoring locations themselves, before sending information of interest to the monitoring center. The development of such distributed systems was made possible only recently by the development of telecommunications and portable computers. The processing power of notebook computers has grown rapidly over the past 3 to 4 years while simultaneously shrinking in size. Thus, mobile platforms are available today whose processing power corresponds to the processing power of personal computers from a few years ago. Such mobile platforms have become an integral part of mobile phones, tablets and netbook computers. They are based mainly on ARM and Intel Atom processors with several gigabytes of operating memory and the ability to run various modern operating systems such as Linux, Android or iOS. These mobile platforms also have the possibility of upgrading with various external modules, especially in order to communicate with other devices or public networks. Thus there are modules for RS-232/RS-422, LAN, Wi-fi or GSM communication. All the mentioned features allow to create complex, distributed networks of data processing devices using the described mobile platforms. Such devices can be the "brain" in systems for automatic control and monitoring of various processes from everyday life. They can also be used to manage various automated systems located at remote locations.

U modernom sistemu za nadzor saobraćaja potrebno je sakupiti i obraditi informacije sa udaljenih lokacija kao što su putevi, raskrsnice, saobraćajne petlje. U nadzornom centru operater mora imati na raspolaganju što veću količinu informacija kako bi brzo i efikasno doneo pravilne zaključke o stanju saobraćaja na nadziranoj udaljenoj lokaciji, kao i odluke o merama koje treba preduzeti u cilju upravljanja saobraćajem i otklanjanja problematičnih situacija. Kako je video nadzor saobraćaja u ekspanziji, video kamere se postavljaju u različitim okruženjima: duž otvorenih puteva i autoputeva, na mostovima, u tunelima, na raskrsnicama i širom gradova. Postojeće stanje tehnike podrazumeva da se podaci sa ovih kamera u nadzorne centre isporučuju u „sirovom" formatu (raw format) ili sa različitim stepenima kompresije što zahteva ogroman mrežni protok što s druge strane značajno povećava broj komunikacionih grešaka i kašnjenja u isporuci podataka. Komunikaciju između kamera i nadzornog centra dodatno komplikuje činjenica da često postoji potreba da se kamere postave na lokacije koje su veoma udaljene od postojeće telekomunikacione infrastrukture. Postavljanje takve infrastrukture stvara velike troškove za korisnika i komplikuje održavanje sistema. S druge strane kad odgovarajuća infrastruktura postoji, s obzirom da se radi o protocima velikih količina podataka, cena zakupa i održavanja telekomunikacionih linkova je takođe velika. Drugi tehnički problem koji postoji u praksi jeste centralizacija prikupljanja i obrade podataka u nadzornom centru. Ovo podrazumeva da se računarska oprema neophodna za obradu velikih količina podataka tj. video materijala nalazi na jednoj lokaciji. Ovakav pristup stvara velike troškove za nabavku opreme za nadzorne centre i velike probleme usled čestih ili povremenih prekida komunikacije sa udaljenim video kamerama jer je nemoguće lokalno čuvati velike količine podataka. Prilikom prekida komunikacije, u postojećem stanju tehnike, između udaljenih video kamera i nadzornog centra dolazi do potpunog gubitka podataka jer se njihova obrada vrši u nadzornom centru. In a modern traffic monitoring system, it is necessary to collect and process information from remote locations such as roads, intersections, traffic loops. In the monitoring center, the operator must have at his disposal as much information as possible in order to quickly and efficiently make the correct conclusions about the traffic situation at the monitored remote location, as well as decisions about the measures to be taken in order to manage traffic and eliminate problematic situations. As video traffic surveillance is expanding, video cameras are being installed in a variety of environments: along open roads and highways, on bridges, in tunnels, at intersections, and throughout cities. The current state of the art implies that data from these cameras are delivered to monitoring centers in "raw" format or with different degrees of compression, which requires a huge network flow, which on the other hand significantly increases the number of communication errors and delays in data delivery. The communication between the cameras and the monitoring center is further complicated by the fact that there is often a need to place the cameras in locations that are very far from the existing telecommunications infrastructure. Setting up such an infrastructure creates high costs for the user and complicates system maintenance. On the other hand, when the appropriate infrastructure exists, considering the flow of large amounts of data, the cost of leasing and maintaining telecommunication links is also high. Another technical problem that exists in practice is the centralization of data collection and processing in the monitoring center. This means that computer equipment is necessary for processing large amounts of data, ie. video material located in one location. This approach creates high costs for the acquisition of equipment for surveillance centers and major problems due to frequent or occasional interruptions in communication with remote video cameras because it is impossible to store large amounts of data locally. When the communication is interrupted, in the current state of the art, between remote video cameras and the surveillance center, there is a complete loss of data because their processing is done in the surveillance center.

Opisani nedostaci postojećeg stanja tehnike mogu se grupisati u dve kategorije: The described shortcomings of the existing state of the art can be grouped into two categories:

1. svi podaci sa video kamera se kontinualno prikupljaju u nadzornom centru (komunikacioni problem), 2. inteligentno procesiranje podataka, radi automatizacije sistema, vrši se na serverima u nadzornom centru (problem centralizacije), 1. all data from video cameras are continuously collected in the monitoring center (communication problem), 2. intelligent data processing, for system automation, is done on servers in the monitoring center (centralization problem),

Komunikacioni problemse javlja zbog velikog protoka podataka između nadzorne lokacije (na kojoj su postavljene video kamere) i nadzornog centra. Veliki protoci podataka preko ograničenog propusnog opsega rezultuju greškama u komunikaciji, kašnjenjem podataka i velikim troškovima zakupa ili instalacije odgovarajućih telekomunikacionih linkova. Takođe sistem koji zahteva velike propusne opsege ne može biti jednostavno proširen i nadograđen. S druge strane stalna komunikacija između udaljenih nadzornih lokacija i nadzornog centra ima nedostatak što se velike količine podataka gube usled prekida ovakve komunikacije. Ovo zahteva veoma brze intervencije ekipa za održavanje, radi opravke telekomunikacionih linkova, što dodatno povećava troškove sistema.Problem centralizacijeje direktna posledica ograničene procesorske moći računara u vreme kad su sistemi za nadzor saobraćaja instalirani. Do pre par godina za rešavanje bilo kakvih zahtevnih računskih zadataka bilo je potrebno koristiti PC računare ili servere. Inteligentni algoritmi za analizu slike ili video toka su veoma zahtevni zadaci i tek nedavno su se pojavile dovoljno moćne mobilne platforme koje mogu uspešno da ih izvršavaju u realnom vremenu. Instalacija većeg broja računara i servera je tehnički komplikovana i zahteva velika ulaganja, ne samo u računarsku opremu nego i u rek ormane, „data" centre ili prostorije zaštićene kontrolom pristupa, sistemom za hlađenje, detekciju i gašenje požara i sistemima za autonomno napajanje. Kao posledica navedenih problema komunikacije i centralizacije javlja se i problem preciznosti jer se usled grešaka u komunikaciji i opterećenosti računara koji procesiraju podatke mogu javiti greške u detekciji događaja od interesa. Time se povećava broj lažnih alarma (lažno pozitivni događaji) i broj nedetektovanih događaja (lažno negativni događaji). Veći broj lažnih alarma ili nedetektovanih događaja smanjuje poverenje korisnika u sistem. Smanjeno poverenje dovodi do zanemarivanja obaveštenja i alarma od strane operatera i na kraju do neupotrebljivosti sistema za njegovu osnovnu namenu. Na taj način automatizacija umesto povećanja efikasnosti i budnosti operatera, koje bi trebale biti posledica oslobađanja operatera obaveze da 24 časa neprestano prati sliku sa kamera, daje potpuno suprotan rezultat. Communication problems occur due to the large flow of data between the surveillance location (where the video cameras are installed) and the surveillance center. Large data flows over limited bandwidth result in communication errors, data delays, and high costs of leasing or installing appropriate telecommunication links. Also, a system that requires large bandwidths cannot be easily expanded and upgraded. On the other hand, constant communication between remote monitoring locations and the monitoring center has the disadvantage that large amounts of data are lost due to the interruption of such communication. This requires very quick interventions by maintenance teams to repair telecommunication links, which further increases system costs. The problem of centralization is a direct consequence of the limited processing power of computers at the time when traffic control systems were installed. Until a few years ago, it was necessary to use PCs or servers to solve any demanding computational tasks. Intelligent algorithms for image or video stream analysis are very demanding tasks, and only recently have mobile platforms powerful enough to successfully execute them in real time emerged. The installation of a large number of computers and servers is technically complicated and requires large investments, not only in computer equipment but also in rack cabinets, "data" centers or rooms protected by access control, a cooling system, fire detection and extinguishing, and autonomous power supply systems. As a consequence of the aforementioned problems of communication and centralization, the problem of precision also arises because errors in the detection of events of interest may occur due to errors in communication and the workload of computers that process data. This increases the number of false alarms (false positive events) and the number of undetected events (false negative events). A higher number of false alarms or undetected events reduces user confidence in the system. Reduced trust leads to operators ignoring notifications and alarms and ultimately making the system unusable for its primary purpose. In this way, instead of increasing the operator's efficiency and vigilance, which should be the result of releasing the operator from the obligation to continuously monitor the image from the cameras 24 hours a day, automation gives the completely opposite result.

Izlaganje suštine pronalaska:Presentation of the essence of the invention:

Osnovna ideja opisanog pronalaska je razvoj postupka i sistema u kojem se prikupljeni podaci sa video kamera u sistemu za nadzor saobraćaja obrađuju lokalno na samoj nadzornoj lokaciji tj. u samoj kameri do semantičkog nivoa (npr. detektovano je saobraćajno zagušenje, sudar, itd). Samo metapodaci, informacije visokog nivoa apstrakcije i relevantni podaci sa samih kamera (npr. nekoliko izabranih slika ili kraći video klipovi) šalju se u nadzorni centar, značajno smanjujući potreban propusni opseg za komunikaciju. Aktuelan izazov i cilj ovog pronalaska jeste da se podaci sa senzora obrade automatski i da se samo relevantne informacije dostave operateru u nadzornom centru u realnom vremenu tako da on može doneti pravovremene odluke. Odluke mogu biti npr. upravljanje saobraćajnom signalizacijom ili alarmiranje službe održavanja ili hitnih službi. The basic idea of the described invention is the development of a procedure and system in which the data collected from the video cameras in the traffic monitoring system is processed locally at the monitoring location itself, i.e. in the camera itself to the semantic level (eg traffic congestion, collision, etc. was detected). Only metadata, high-level information and relevant data from the cameras themselves (eg a few selected images or short video clips) are sent to the monitoring center, significantly reducing the required bandwidth for communication. The current challenge and the goal of this invention is to process sensor data automatically and to deliver only relevant information to the operator in the monitoring center in real time so that he can make timely decisions. Decisions can be e.g. managing traffic signals or alerting maintenance or emergency services.

Osnovni elementi pametne kamere su (Slika 1): vizuelni senzor za akviziciju slike (VS), računarska jedinica za inteligentnu obradu podataka i pripremu podataka za slanje u nadzorni centar (RJ) i GPRS modem zadužen za bežičnu komunikaciju sa nadzornim centrom putem GPRS veze (GPRS). Kao vizuelni senzor (VS) upotrebljen je CCD čip rezolucije do 640x480 piksela koji daje sliku u boji tokom dana, a crno-belu sliku tokom noći i podržava slanje video toka u MJPEG formatu kompresije. Za povezivanje vizualnog senzora (VS) sa računarskom jedinicom (RJ) koristi se ethernet interfejs brzine 10/100 Mbps. Računarska jedinica (RJ) je mikroprocesorska platforma, bazirana na ARM mikroprocesoru. Ova platforma je integralni deo mobilnih uređaja poslednje generacije (mobilnih telefona i računara) i poseduje dovoljno procesorske snage za rad sa slikom, zvukom i videom. The basic elements of a smart camera are (Figure 1): a visual sensor for image acquisition (VS), a computer unit for intelligent data processing and data preparation for sending to the monitoring center (RJ) and a GPRS modem responsible for wireless communication with the monitoring center via a GPRS connection (GPRS). A CCD chip with a resolution of up to 640x480 pixels is used as a visual sensor (VS), which provides a color image during the day, and a black-and-white image during the night, and supports sending a video stream in MJPEG compression format. A 10/100 Mbps ethernet interface is used to connect the visual sensor (VS) to the computer unit (RJ). The computing unit (RJ) is a microprocessor platform, based on the ARM microprocessor. This platform is an integral part of mobile devices of the last generation (mobile phones and computers) and has enough processing power to work with images, sound and video.

Detaljne specifikacije računarske jedinice (RJ) su: The detailed specifications of the computing unit (RJ) are:

• PC performanse pri veoma niskoj potrošnji energije, • PC performance with very low power consumption,

• moguće je izabrati neki od 4 nivoa performansi i dodatno optimizovati potrošnju, • it is possible to choose one of 4 performance levels and additionally optimize consumption,

• 1,200 Dhrvstone MIPS (Million Instructions Per Second - mera brzine izvršavanja softvera) korišćenjem ARM Cortex-A8 procesora sa 256KB L2 keš memorije i klokom do 600MHz, • OpenGL© ES 2.0 sa podrškom za 2D/3D grafički akcelerator u stanju da renderuje 10 milliona poligona po sekundi, • 1,200 Dhrvstone MIPS (Million Instructions Per Second - measure of software execution speed) using an ARM Cortex-A8 processor with 256KB L2 cache and a clock of up to 600MHz, • OpenGL© ES 2.0 with support for a 2D/3D graphics accelerator capable of rendering 10 million polygons per second,

• TMS320C64x+ DSP specijalizovan za obradu signala sa klokom do 430MHz , • TMS320C64x+ DSP specialized for signal processing with a clock of up to 430MHz,

• početni kapacitet od 128 MB LPDDR i 256 MB Nand Flash memorije, • initial capacity of 128 MB LPDDR and 256 MB Nand Flash memory,

• mogućnost korišćenja SD memorijskih kartica kao prostora za skladištenje podataka. • the possibility of using SD memory cards as data storage space.

Računarska jedinica (RJ) izvršava Linux operativni sistem i podržava standardne C i C++ biblioteke za programiranje različitih aplikacija. Putem USB veze računarska jedinica (RJ) povezana je sa GPRS modemom (GPRS), preko kojeg se odvija komunikacija sa nadzornim centrom. GPRS modem (GPRS) korišćen u sistemu je eksternog tipa, napajanja od 7-30 V, robusnih fizičkih karakteristika. Radi se o ,,quad band" uređaju, što znači da može koristiti najpopularnije GSM opsege od 850/900/1800/1900 MHz. Podržava GPRS standard klase 10, ima integrisani čitač SIM kartica što maksimalno pojednostavljuje puštanje uređaja u rad i poseduje integrisan TCP/IP protokol stek. The computing unit (RJ) runs the Linux operating system and supports standard C and C++ libraries for programming various applications. Through the USB connection, the computer unit (RJ) is connected to a GPRS modem (GPRS), through which communication with the monitoring center takes place. The GPRS modem (GPRS) used in the system is an external type, powered by 7-30 V, with robust physical characteristics. It is a "quad band" device, which means that it can use the most popular GSM bands of 850/900/1800/1900 MHz. It supports the GPRS class 10 standard, has an integrated SIM card reader, which simplifies the commissioning of the device as much as possible, and has an integrated TCP/IP protocol stack.

Računarska jedinica (RJ) izvršava poseban postupak analize video toka sa vizuelnog senzora i pripreme za slanje ekstrahovanih informacija organizovan u tri modula: 1) modul za izdvajanje slike iz video toka sa vizuelnog senzora, 2) modul za inteligentnu analizu slike i detekciju različitih saobraćajnih događaja od interesa, 3) modul za pripremu i slanje metapodataka, informacija visokog nivoa apstrakcije i kolekcija slika ili video snimaka u nadzorni centar. Svi moduli rade u paraleli, u zasebnim programskim nitima koje su sinhronizovane upotrebom semafora i muteksa. Modul za izdvajanje slike iz video toka realizuje prvi korak u izvršavanju postupka na računarskoj jedinici (RJ). Ovaj modul vrši postupak parsiranja (pretraživanja i analize) video toka koji računarska jedinica (RJ) prima putem HTTP komunikacije preko ethernet interfejsa. Vizuelni senzor šalje video tok u binarnom obliku koji je organizovan kao niz JPEG slika (tzv. MJPEG video format). S obzirom da je JPEG format dobro standardizovan, modul za izdvajanje slike iz video toka radi kao čitač i parser MJPEG video toka. Kako svaka JPEG slike počinje i završava sa specifičnom grupom karaktera (tzv. JPEG markeri, Tabela 1) ovaj modul vrši izdvajanje slike detekcijom ovih markera što je moguće izvršiti u svakom tipu MJPEG video toka, nezavisno od proizvođača vizuelnog senzora. The computer unit (RJ) performs a special procedure for analyzing the video stream from the visual sensor and preparing for sending the extracted information organized in three modules: 1) module for extracting the image from the video stream from the visual sensor, 2) module for intelligent image analysis and detection of various traffic events of interest, 3) module for preparing and sending metadata, information of a high level of abstraction and a collection of images or videos to the monitoring center. All modules run in parallel, in separate program threads that are synchronized using semaphores and mutexes. The module for extracting the image from the video stream realizes the first step in the execution of the procedure on the computer unit (RJ). This module performs the process of parsing (searching and analyzing) the video stream that the computer unit (RJ) receives via HTTP communication via the ethernet interface. The visual sensor sends a video stream in binary form, which is organized as a series of JPEG images (the so-called MJPEG video format). Since the JPEG format is well standardized, the module for extracting an image from a video stream works as a reader and parser of an MJPEG video stream. As each JPEG image begins and ends with a specific group of characters (so-called JPEG markers, Table 1), this module performs image extraction by detecting these markers, which can be performed in any type of MJPEG video stream, regardless of the manufacturer of the visual sensor.

Sama realizacija modula za izdvajanje slike izvršena je upotrebom „cURL" biblioteke koja omogućava veoma jednostavnu obradu HTTP zahteva i odgovora (,,Request - Response" komunikacija). Ovaj modul prosleđuje izdvojenu sliku modulu za inteligentnu analizu slike. The image extraction module itself was implemented using the "cURL" library, which enables very simple processing of HTTP requests and responses ("Request - Response" communications). This module forwards the extracted image to the intelligent image analysis module.

Modul za inteligentnu analizu slike i detekciju različitih saobraćajnih događaja od interesa prima pojedinačne slike koje pristižu od modula za izdvajanje slike iz video toka i vrši njihovu obradu i analizu. Postupak za analizu je realizovan korišćenjem biblioteke „OpenCV". Sam postupak analize (Slika 2) sadrži četiri važna elementa: izdvajanje objekata od interesa (vozila) od statične scene (segmentacija), analiza optičkog protoka u slici, praćenje objekata od interesa i detekcija saobraćajnih događaja. The module for intelligent image analysis and detection of various traffic events of interest receives individual images arriving from the image extraction module from the video stream and performs their processing and analysis. The analysis procedure was implemented using the "OpenCV" library. The analysis procedure itself (Figure 2) contains four important elements: extraction of objects of interest (vehicles) from a static scene (segmentation), analysis of optical flow in the image, tracking of objects of interest and detection of traffic events.

Izdvajanje objekata od interesa (segmentacija) se zasniva na razlici trenutnog frejma od referentne slike pozadine. Na slici razlike se zatim vrši morfologija medijan filtrom (Median Filter) čime se dobijaju celoviti objekti. Za kreiranje i osvežavanje referentne pozadine se koristi metoda aproksimativnog medijana (Approximate median method - AMM). AMM se svodi na smanjivanje (ili povećavanje) vrednosti slike pozadine na mestima gde se trenutni frejm razlikuje od pozadine preko određene vrednosti. Tako se dobija slika pozadine koja se koristi za naredni frejm. Za praćenje objekata se koriste njihovi centroidi i u obzir se uzima položaj objekta u slici i njegova brzina kretanja. Pri istraživanju je korišćeno i ubrzanje objekta za predikciju stanja, ali je se pokazalo da sistem sa položajem i brzinom radi dovoljno precizno, kao i da je otporniji na greške usled nesavršene segmentacije i izbora obeležja za praćenje. Predikcija položaja se koristi u narednom frejmu gde se pomoću metode najbližeg suseda (Nearest Neighbor - NN) vrši asocijacija objekata iz trenutnog frejma sa objektima iz prethodnog. U obzir su uzeti i slučajevi spajanja i razdvajanja objekata (Split&Merge). Paralelno sa postupkom segmentacije vrši se i analiza optičkog protoka u slici. Informacije dobijene na ovaj način važne su za utvrđivanje smera i pravca kretanja pokretnih objekata (različitih tipova vozila). Analiza optičkog protoka se vrši uz pomoć metode koja minimizuje sumu kvadrata razlika intenziteta između dve uzastopne slike. Proračun optičkog protoka koristi se za korekciju praćenja objekata kao i za detekciju događaja. The extraction of objects of interest (segmentation) is based on the difference of the current frame from the background reference image. The difference image is then morphed with a median filter (Median Filter), which results in complete objects. The Approximate median method (AMM) is used to create and refresh the reference background. AMM reduces (or increases) the value of the background image in places where the current frame differs from the background by a certain amount. This creates a background image that is used for the next frame. To track objects, their centroids are used and the position of the object in the image and its speed of movement are taken into account. During the research, object acceleration was also used for state prediction, but it was shown that the system with position and velocity works accurately enough, as well as being more resistant to errors due to imperfect segmentation and selection of tracking features. The position prediction is used in the next frame, where the nearest neighbor method (NN) is used to associate objects from the current frame with objects from the previous one. The cases of joining and separating objects (Split&Merge) were also taken into account. In parallel with the segmentation process, an analysis of the optical flow in the image is performed. The information obtained in this way is important for determining the direction and direction of movement of moving objects (different types of vehicles). Optical flow analysis is performed using a method that minimizes the sum of squares of intensity differences between two consecutive images. Optical flow calculation is used for object tracking correction as well as event detection.

Nakon analize slika postupcima segmentacije, proračuna optičkog protoka i praćenja objekata sistem poseduje sledeće informacije: ukupan broj detektovanih vozila, podatke o svakom vozilu u slici (centar, površinu, broj slike u kojoj je poslednji put detektovano, broj slika u kojima je navedeno vozilo detektovano, trajektoriju od prve slike pa do poslednje slike u kojoj je vozilo detektovano i pridružene vektore optičkog protoka koji ukazuju na smer kretanja vozila). Ove informacije zajedno sa informacijama iz modela scene koriste se za detekciju različitih saobraćajnih događaja. Model scene se zadaje ručno prilikom postavljanja pametne kamere na lokaciju koju će nadzirati i podrazumeva unošenje osnovnih informacija o nadziranoj lokaciji (smerovi kretanja vozila, saobraćajne trake, pešački prelazi, zabranjene zone za parkiranje i zadržavanje vozila). Trajektorija vozila se poredi za zadatim saobraćajnim trakama i dozvoljenim smerovima kretanja vozila iz modela scene i na taj način koristi za detekciju saobraćajnih prekršaja kao što su: vožnja u suprotnom smeru od dozvoljenog i nepropisna skretanja vozila. Brojanje vozila, u cilju statističkih analiza ili detekcije saobraćajnih gužvi, se vrši upotrebom virtuelne linije koja se unosi u model scene. Svaki prelazak virtuelne linije od strane vozila se broji, a smer kretanja vozila se detektuje na osnovu trajektorije i pridruženih vektora optičkog protoka. Informacije o trajektoriji vozila i pridruženim vektorima optičkog protoka koriste se i za detekciju zaustavljanja ili zadržavanja vozila u zabranjenim zonama. Za detekciju saobraćajnih udesa koriste se informacije dobijene od pridruženih vektora optičkog protoka. Određuje se nagib svakog pridruženog vektora i kreira histogram. Tokom normalnog kretanja vozila mod histograma jednak je nagibu koji određuje smer kretanja vozila za posmatranu saobraćajnu traku koji je definisan u modelu scene. Ovo znači da su vektori smera kretanja vozila iz modela scene i većina pridruženih vektora optičkog protoka za posmatrano vozilo kolinearni. U slučaju abnormalnog kretanja vozila After analyzing the images using segmentation procedures, optical flow calculation and object tracking, the system has the following information: the total number of detected vehicles, data about each vehicle in the image (center, area, number of the image in which it was last detected, number of images in which the specified vehicle was detected, the trajectory from the first image to the last image in which the vehicle was detected and associated optical flow vectors indicating the direction of the vehicle). This information together with information from the scene model is used to detect various traffic events. The scene model is set manually when placing the smart camera at the location to be monitored and involves entering basic information about the monitored location (vehicle movement directions, traffic lanes, pedestrian crossings, prohibited parking and vehicle retention zones). The trajectory of the vehicle is compared to the set traffic lanes and the permitted directions of vehicle movement from the scene model and is thus used for the detection of traffic violations such as: driving in the opposite direction from the permitted and illegal turning of the vehicle. Vehicle counting, for the purpose of statistical analysis or detection of traffic jams, is done using a virtual line that is entered into the scene model. Each crossing of the virtual line by the vehicle is counted, and the direction of the vehicle is detected based on the trajectory and associated optical flow vectors. Information about the vehicle's trajectory and the associated optical flow vectors are also used for the detection of stopping or stopping the vehicle in prohibited zones. For the detection of traffic accidents, the information obtained from the associated optical flow vectors is used. The slope of each associated vector is determined and a histogram is created. During the normal movement of the vehicle, the mode of the histogram is equal to the slope that determines the direction of movement of the vehicle for the observed traffic lane, which is defined in the scene model. This means that the vehicle direction vectors from the scene model and most of the associated optical flow vectors for the observed vehicle are collinear. In case of abnormal vehicle movement

(saobraćajni udes, kretanja normalno na saobraćajne trake) pridruženi vektori optičkog protoka posmatranog vozila su potpuno slučajni i posledično značajno se razlikuju od vektora smera kretanja vozila iz modela scene (vektori u ovom slučaju nisu kolinearni). Informacije o svim detektovanim saobraćajnim događajima beleže se i u lokalu i šalju na udaljenu nadzornu lokaciju, na ovaj način sistem je zaštićen od povremenih prekida u komunikaciji ili od grešaka u prenosu velike količine podataka jer se u ovom slučaju prenose samo najvažnije informacije čime se rešavaju problemi komunikacije i centralizacije. (traffic accident, movements normal to the traffic lanes) associated vectors of the optical flow of the observed vehicle are completely random and consequently differ significantly from the vector of the direction of movement of the vehicle from the scene model (the vectors in this case are not collinear). Information about all detected traffic events is recorded locally and sent to a remote monitoring location, in this way the system is protected from occasional interruptions in communication or from errors in the transmission of a large amount of data, because in this case only the most important information is transmitted, which solves the problems of communication and centralization.

Modul za pripremu i slanje podataka koristi prednosti HTTP protokola i GPRS tehnologije. GPRS modem (GPRS) radi kao Internet ,,gateway" preko kojeg se putem HTTP metoda vrši slanje metapodataka, informacija visokog nivoa apstrakcije i kolekcija slika ili video snimaka u nadzorni centar. Najpreje potrebno podesiti GPRS modem (GPRS), tako daje preko njega moguće ostvariti HTTP konekciju. U ,,Linux" okruženju, modem se podešava preko skript-aplikacija, a korišćeni parametri su prikazani u Tabeli 2. Nakon ovog podešavanja, preko modema je moguće pristupiti Internetu, pa se realizacija komunikacionog klijenta svodi na HTTP zahtev za transfer datoteke ili podataka. Za komunikaciju se koriste HTTP metodi: PUT, POST ili GET. The module for preparing and sending data takes advantage of the HTTP protocol and GPRS technology. The GPRS modem (GPRS) works as an Internet "gateway" through which metadata, information of a high level of abstraction and collections of images or videos are sent to the monitoring center via the HTTP method. First of all, it is necessary to set up the GPRS modem (GPRS), so that an HTTP connection can be made through it. In the "Linux" environment, the modem is set up through script applications, and the parameters used are shown in Table 2. After this setting, it is possible to access the Internet through the modem, so the implementation of the communication client is reduced to an HTTP request for file or data transfer. HTTP methods are used for communication: PUT, POST or GET.

Za prijem podataka sa udaljenih lokacija u nadzornom centru je zadužena posebna aplikacija realizovana kao Java servlet, koja prihvata i procesira HTTP zahteve u sklopu „Apache Tomcat" veb-servera. Veb-server rešava probleme konkurentnih pristupa i omogućava istovremeno povezivanje do 100 udaljenih lokacija na server u nadzornom centru. Takođe, veb-server obezbeđuje pouzdanost rada sistema i sigurnost podataka koji se šalju sa udaljenih lokacija. A special application implemented as a Java servlet, which accepts and processes HTTP requests as part of the "Apache Tomcat" web server, is in charge of receiving data from remote locations in the monitoring center. The web server solves the problems of concurrent access and allows simultaneous connection of up to 100 remote sites to the server in the monitoring center. Also, the web server ensures the reliability of system operation and the security of data sent from remote locations.

Pronalazači: Inventors:

Claims (4)

1. Uređaj za nadzor i analizu saobraćaja na lokacijama duž različitih tipova saobraćajnica u gradskim i vangradskim sredinama, kao uređaj koji vrši automatsko izdvajanje podataka i događaja od interesa iz video toka sa kamere za video nadzor, njihovu pripremu i slanje u udaljene nadzorne centre putem HTTP protokola, koristeći usluge mobilne telefonske mreže,naznačen timešto se potpuno automatski i autonomno vrši lokalna obrada video toka sa kamere za video nadzor izdvajanjem pojedinačnih JPEG slika, a zatim primenom segmentacije, analize optičkog protoka i praćenja pokretnih objekata nad izdvojenim slikama izdvajaju podaci i događaji od interesa nad kojima se zatim vrši analiza i selekcija informacija od interesa koje se šalju u udaljeni nadzorni centar putem GPRS veze.1. A device for traffic monitoring and analysis at locations along different types of roads in urban and suburban areas, as a device that performs automatic extraction of data and events of interest from the video stream from the video surveillance camera, their preparation and sending to remote monitoring centers via the HTTP protocol, using the services of the mobile phone network, characterized by fully automatic and autonomous local processing of the video stream from the video surveillance camera by extracting individual JPEG images, and then applying segmentation, optical flow analysis and tracking of moving objects over data and events of interest are separated by separated images, on which analysis and selection of information of interest is then carried out, which is sent to a remote monitoring center via a GPRS connection. 2. Postupak izdvajanja pojedinačnih slika iz MJPEG video toka primljenog sa vizuelnog senzora,naznačen timeda se u binarnom toku podataka detektuju početni i krajnji markeri JPEG slika i time izdvajaju sukcesivne slike primljene sa vizuelnog senzora.2. The process of extracting individual images from the MJPEG video stream received from the visual sensor, indicated by detecting the beginning and end markers of JPEG images in the binary data stream and thereby extracting successive images received from the visual sensor. 3. Postupak analize slika primljenih sa vizuelnog senzora radi detekcije različitih saobraćajnih događaja,naznačen timeda se vrši izdvajanje pokretnih objekata na bazi izračunavanja razlike između sukcesivnih slika iz video toka, praćenje izdvojenih pokretnih objekata i logička analiza događaja.3. The procedure of analyzing images received from the visual sensor for the detection of various traffic events, indicated by the separation of moving objects based on the calculation of the difference between successive images from the video stream, tracking of separated moving objects and logical analysis of events. 4. Postupak detekcije saobraćajnih nezgoda i drugih vanrednih saobraćajnih događaja na bazi analize vektora optičkog protoka,naznačen timeda se kreira histogram vektora optičkog protoka za svaki objekat od interesa i njegov mod poredi sa vektorom normalnog i očekivanog smera saobraćaja koji je definisan u modelu scene koji se zadaje ručno od strane instalatera prilikom instaliranja opisanog sistema za nadzor i analizu saobraćaja.4. The procedure for detecting traffic accidents and other extraordinary traffic events based on the analysis of the optical flow vector, indicated by creating a histogram of the optical flow vector for each object of interest and comparing its mode with the vector of the normal and expected direction of traffic defined in the scene model that is set manually by the installer when installing the described traffic monitoring and analysis system.
RS20130031A 2013-01-30 2013-01-30 SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS RS20130031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20130031A RS20130031A1 (en) 2013-01-30 2013-01-30 SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RS20130031A RS20130031A1 (en) 2013-01-30 2013-01-30 SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS

Publications (1)

Publication Number Publication Date
RS20130031A1 true RS20130031A1 (en) 2014-10-31

Family

ID=51900582

Family Applications (1)

Application Number Title Priority Date Filing Date
RS20130031A RS20130031A1 (en) 2013-01-30 2013-01-30 SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS

Country Status (1)

Country Link
RS (1) RS20130031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616465B2 (en) 2015-09-16 2020-04-07 Microsoft Technology Licensing, Llc Bandwidth efficient video surveillance system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616465B2 (en) 2015-09-16 2020-04-07 Microsoft Technology Licensing, Llc Bandwidth efficient video surveillance system

Similar Documents

Publication Publication Date Title
CN202772924U (en) Intelligent cloud toll-gate system
CN109740004B (en) Filing method and device
US9704393B2 (en) Integrated intelligent server based system and method/systems adapted to facilitate fail-safe integration and/or optimized utilization of various sensory inputs
CA2824330C (en) An integrated intelligent server based system and method/systems adapted to facilitate fail-safe integration and/or optimized utilization of various sensory inputs
KR101856488B1 (en) Method, apparatus and computer-readable medium for object tracking using the three-dimensional mapping
CN102509310B (en) A method and system for video tracking analysis combined with geographic information
WO2018223955A1 (en) Target monitoring method, target monitoring device, camera and computer readable medium
Zabłocki et al. Intelligent video surveillance systems for public spaces–a survey
CN113112813B (en) Illegal parking detection method and device
CN110769195A (en) Intelligent Monitoring and Recognition System for Violation of Regulations on Transmission Line Construction Site
WO2018081670A1 (en) Video data and gis mapping for traffic monitoring, event detection and change prediction
GB2508069A (en) A method and system for detecting a traffic violation
CN111369807A (en) Traffic accident detection method, device, equipment and medium
CN109815839B (en) Loitering person identification method under micro-service architecture and related product
CN105608464A (en) Face recognition mobile terminal solving system and solving method
KR20220000226A (en) A system for providing a security surveillance service based on edge computing
US11416542B1 (en) System and method for uploading still images of matching plates in response to an alert hit list using distributed LPR acquisition
CN105528626A (en) RFID (Radio Frequency Identification) reader and camera integrated machine and application thereof
CN103634576B (en) A kind of highway mobile terminal monitoring system and method
CN104601969A (en) District fortifying method and device
CN111429723B (en) A communication and perception data fusion method based on roadside equipment
KR20220000221A (en) A camera apparatus for providing a intelligent security surveillance service based on edge computing
RS20130031A1 (en) SMART CAMERA FOR TRAFFIC MONITORING AND ANALYSIS
CN114529876A (en) Intelligent checking system for violation of regulations of public transport vehicle
Dao et al. Management of video surveillance for smart cities