[go: up one dir, main page]

KR101300650B1 - A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type - Google Patents

A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type Download PDF

Info

Publication number
KR101300650B1
KR101300650B1 KR1020130021671A KR20130021671A KR101300650B1 KR 101300650 B1 KR101300650 B1 KR 101300650B1 KR 1020130021671 A KR1020130021671 A KR 1020130021671A KR 20130021671 A KR20130021671 A KR 20130021671A KR 101300650 B1 KR101300650 B1 KR 101300650B1
Authority
KR
South Korea
Prior art keywords
modulation type
svm
pri
recognizing
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020130021671A
Other languages
Korean (ko)
Inventor
한진우
송규하
조제일
김산해
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020130021671A priority Critical patent/KR101300650B1/en
Application granted granted Critical
Publication of KR101300650B1 publication Critical patent/KR101300650B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/106Systems for measuring distance only using transmission of interrupted, pulse modulated waves using transmission of pulses having some particular characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/12Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the pulse-recurrence frequency is varied to provide a desired time relationship between the transmission of a pulse and the receipt of the echo of a preceding pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명은 PRI 변조형태 인식방법 및 이를 이용한 PRI 변조형태 인식방법에 관한 것으로, 상기 PRI 변조형태 인식방법은 (a) PRI(Pulse Repetition Interval) 변조형태별로 SVM(Support Vector Machine)을 생성하고, 상기 생성된 SVM을 상기 변조형태별로 훈련시켜 저장하는 단계; (b) PRI 변조형태를 인식하기 위한 수집된 펄스의 TOA(Time Of Arrival) 정보로부터 특징벡터를 추출하는 단계; (c) 상기 (b)단계에 의해 추출된 특징벡터를 상기 저장된 SVM에 입력하여 분류결과값을 확인하는 단계; (d) 상기 확인된 분류결과값들 중 가장 큰 값을 나타내는 SVM을 선택하는 단계; 및 (e) 상기 선택된 SVM을 이용하여 PRI 변조형태를 인식하는 단계를 포함하는 것을 특징으로 한다. 이에 의해 본 발명은 PRI 변조형태의 인식율을 향상시킬 수 있다.The present invention relates to a PRI modulation mode recognition method and a PRI modulation mode recognition method using the same. The PRI modulation mode recognition method includes (a) generating a support vector machine (SVM) for each PRI (Pulse Repetition Interval) modulation type, and Training and storing the generated SVM for each modulation type; (b) extracting feature vectors from time of arrival information of collected pulses for recognizing a PRI modulation type; (c) checking a classification result value by inputting the feature vector extracted in step (b) to the stored SVM; (d) selecting an SVM representing the largest value among the identified classification result values; And (e) recognizing a PRI modulation type using the selected SVM. As a result, the present invention can improve the recognition rate of the PRI modulation type.

Description

SVM을 이용한 PRI 변조형태 인식방법 및 이를 이용한 PRI 변조형태 인식장치{A method of recognizing PRI modulation type based on Support Vector Machine, and an apparatus of recognizing PRI modulation type}A method of recognizing PRI modulation type based on Support Vector Machine, and an apparatus of recognizing PRI modulation type

본 발명은 레이더신호 PRI(Pulse Repetition Interval) 변조형태의 인식방법에 관한 것으로, 상세하게는 전자전지원(Electronic Warfare Support)시스템의 레이더신호의 탐지에 적용되는 PRI 변조형태의 인식방법 및 이를 이용한 PRI 변조형태 인식장치에 관한 것이다.The present invention relates to a method for recognizing a radar signal pulse repetition interval (PRI) modulation type, and more particularly, to a method for recognizing a PRI modulation type applied to detection of a radar signal of an electronic warfare support system and a PRI modulation using the same. It relates to a shape recognition device.

전자전지원(Electronic warfare Support)시스템은 적의 신호를 수신한 후 위협 신호원(threat emitter)을 확인하고 위치를 파악하여, 적의 전력 구조와 배치를 판단하는 것을 도와준다.Electronic warfare support systems, after receiving enemy signals, identify and locate threat emitters to help determine enemy power structures and placement.

전자전지원시스템에서 레이더 신호를 식별하기 위해서는 레이더 신호의 주요 인자인 주파수, PRI(Pulse Repetition Interval), 스캔 등에 대한 분석이 선행되어야 한다. 그 중에서도 PRI는 각 레이더마다 고유의 변조형태와 값을 사용하므로 레이더를 식별하는데 쓰이는 가장 기초적인 요소이다.In order to identify the radar signal in the electronic warfare support system, the analysis of the frequency, pulse repetition interval (PR), and scan, which are the main factors of the radar signal, must be preceded. Among them, PRI is the most basic element used to identify radar because each radar uses unique modulation type and value.

전자전시스템에서 PRI 변조형태를 분석하기 위한 방법으로는 히스토그램을 이용한 방법, 자기상관관계를 이용한 방법 등이 있으나 이러한 방법들은 몇 가지 제약을 가진다.Methods for analyzing PRI modulation patterns in electronic warfare systems include histogram and autocorrelation, but these methods have some limitations.

히스토그램을 이용한 방법은 각 펄스간 TOA(Time Of Arrival)의 차를 이용하여 히스토그램을 생성하고 각 변조형태별 히스토그램의 특성을 활용하여 PRI 변조형태를 인식한다.The method using the histogram generates the histogram using the difference of TOA (Time Of Arrival) between each pulse and recognizes the PRI modulation type by using the characteristic of the histogram according to each modulation type.

그러나 이 방법은 히스토그램 빈의 크기, 임계치 등의 모호성 및 누락펄스, 불요신호 등의 신호왜곡현상에 대한 큰 민감도로 인하여 자동화하기 어려워 주로 운용자의 수동분석에 의존함으로써 신뢰도와 정확성을 보장할 수 없는 단점을 가진다.However, this method is difficult to automate due to the ambiguity of histogram bin, threshold, etc. and large sensitivity to signal distortion such as missing pulses and unnecessary signals, so it is not possible to guarantee reliability and accuracy mainly by relying on manual analysis of the operator. Has

자기상관관계를 이용한 방법은 각 펄스간의 자기상관관계를 계산하고 각 PRI 변조형태를 구분하기 위한 형태구분자를 정의하여 각 펄스열에 적용한다. 자기상관관계를 이용한 방법은 누락 및 왜곡현상에 대한 전처리 역할을 하는 필터링이 선행되어야 하고, 주기성을 형태구분에 이용하므로 주기성이 확인될 만큼의 충분한 개수의 펄스가 수집되어야 하며, 각 펄스마다 자기상관관계를 계산하므로 시간복잡도가 높다는 단점이 있다.The autocorrelation method calculates the autocorrelation between each pulse and defines a type separator for distinguishing each PRI modulation type and applies it to each pulse train. The autocorrelation method should be preceded by filtering that acts as a preprocessor for missing and distorted phenomena. Since the periodicity is used for type classification, a sufficient number of pulses must be collected to confirm the periodicity. There is a disadvantage that the time complexity is high because the relationship is calculated.

KR 10-2010-0121108A, 2010. 11. 17, 도 1KR 10-2010-0121108A, November 17, 2010, Fig. 1

본 발명의 목적은 SVM(Support Vector Machine)을 적용하여 PRI 변조형태의 인식율을 향상시킬 수 있는 PRI 변조형태 인식방법 및 이를 이용한 PRI 변조형태 인식장치를 제공하는 것이다.An object of the present invention is to provide a PRI modulation mode recognition method and a PRI modulation mode recognition apparatus using the same that can improve the recognition rate of the PRI modulation type by applying a support vector machine (SVM).

상기 목적을 달성하기 위한 본 발명의 일 측면은 전자전지원(Electronic Warfare Support)시스템의 레이더신호의 탐지에 적용되는 PRI(Pulse Repetition Interval) 변조형태 인식방법에 관한 것으로, 본 PRI 변조형태 인식방법은 PRI(Pulse Repetition Interval) 변조형태별로 SVM(Support Vector Machine)을 생성하고, 상기 생성된 SVM을 상기 변조형태별로 훈련시켜 저장하는 단계; (b) PRI 변조형태를 인식하기 위한 수집된 펄스의 TOA(Time Of Arrival) 정보로부터 특징벡터를 추출하는 단계; (c) 상기 (b)단계에 의해 추출된 특징벡터를 상기 저장된 SVM에 입력하여 분류결과값을 확인하는 단계; (d) 상기 확인된 분류결과값들 중 가장 큰 값을 나타내는 SVM을 선택하는 단계; 및 (e) 상기 선택된 SVM을 이용하여 PRI 변조형태를 인식하는 단계를 포함하는 것을 특징으로 한다.One aspect of the present invention for achieving the above object relates to a PRI (Pulse Repetition Interval) modulation type recognition method applied to the detection of the radar signal of the Electronic Warfare Support (Electronic Warfare Support) system, the PRI modulation mode recognition method (Pulse Repetition Interval) generating a support vector machine (SVM) for each modulation type, and training and storing the generated SVM for each modulation type; (b) extracting feature vectors from time of arrival information of collected pulses for recognizing a PRI modulation type; (c) checking a classification result value by inputting the feature vector extracted in step (b) to the stored SVM; (d) selecting an SVM representing the largest value among the identified classification result values; And (e) recognizing a PRI modulation type using the selected SVM.

상기 (a)단계는 (a1) 인식해야할 PRI 변조형태별로 상기 SVM을 생성하는 단계; (a2) 상기 변조형태별로 TOA(Time Of Arrival)와 변조형태코드로 구성된 다수의 훈련데이터를 생성하는 단계; (a3) 상기 훈련데이터의 모든 TOA에 대하여 계산하여 상기 SVM에 입력하는 특징벡터를 추출하는 단계; (a4) 상기 (a3)단계에 의해 추출되는 특징벡터의 변조형태에 해당되는 PRI변조형태값을 분류하는 단계; (a5) 상기 (a3)단계에 의해 추출되는 특징벡터와상기 (a4)단계에 의해 분류되는 PRI변조형태값으로 이루어진 변환 데이터를 입력받아 상기 변조형태별로 상기 SVM을 훈련시키는 단계; 및 (a6) 학습을 수행하지 않은 훈련데이터가 존재하지 않은 경우 상기 변조형태별로 훈련된 SVM을 저장하고 훈련을 종료하는 단계를 포함할 수 있다.Step (a) may include (a1) generating the SVM for each PRI modulation type to be recognized; (a2) generating a plurality of training data consisting of a time of argument (TOA) and a modulation type code for each modulation type; (a3) extracting feature vectors input to the SVM by calculating all TOAs of the training data; (a4) classifying a PRI modulation form value corresponding to a modulation form of the feature vector extracted by step (a3); (a5) training the SVM for each modulation type by receiving transform data consisting of the feature vector extracted in step (a3) and the PRI modulation type values classified in step (a4); And (a6) if there is no training data that did not perform the learning may include the step of storing the training SVM for each modulation type and terminate the training.

상기 (c)단계에서 사용되는 SVM 분류기의 결정 초평면인 d(x)는 수식 1로 표현되고, d(x)가 0보다 크면 1번째 부류로 0보다 작으면 2번째 부류로 분류하며, 수식 1에서 w는 가중치 값이며, K는 커널함수, s는 서포트 벡터 및 b는 bias일 수 있다.D (x), which is the hyperplane of determination of the SVM classifier used in step (c), is represented by Equation 1, and when d (x) is greater than 0, it is classified as the first class, and if it is less than 0, it is classified as the second class. Where w is a weight value, K may be a kernel function, s may be a support vector, and b may be a bias.

수식 1:

Figure 112013017964285-pat00001
Equation 1:
Figure 112013017964285-pat00001

상기 (e)단계는, (e1) 상기 선택된 SVM의 번호에 따라 사전에 정의된 결과코드를 생성하는 단계; 및 (e2) 상기 생성된 결과코드를 사전에 정의된 상기 결과코드에 대한 PRI변조형태 테이블과 비교함으로써 상기 PRI 변조형태를 인식하는 단계를 포함할 수 있다.Step (e) may include: (e1) generating a predefined result code according to the number of the selected SVM; And (e2) recognizing the PRI modulation type by comparing the generated result code with a previously defined PRI modulation type table for the result code.

상기 목적을 달성하기 위한 본 발명의 또 다른 일 측면은 전자전지원(Electronic Warfare Support)시스템의 레이더신호의 탐지에 적용되는 PRI(Pulse Repetition Interval) 변조형태 인식장치에 관한 것으로, 본 PRI 변조형태 인식장치는 외부의 레이더신호를 감지하여 처리하는 수신부; 및 상기 수신부에서 감지되어 처리된 정보를 기초로, 전술한 본 발명의 일 측면에 따른 PRI 변조형태 인식방법을 수행하는 제어부를 포함하는 것을 특징으로 한다.
Another aspect of the present invention for achieving the above object relates to a PRI (Pulse Repetition Interval) modulation type recognition device applied to the detection of the radar signal of the Electronic Warfare Support (Electronic Warfare Support) system, the present PRI modulation type recognition device The receiving unit detects and processes an external radar signal; And a controller for performing the PRI modulation type recognition method according to an aspect of the present invention, based on the information detected and processed by the receiver.

이와 같이 본 발명은 결정 초평면(decision hyperplane)을 이용하여 각 변조형태별 부류 사이에 존재하는 여백(margin)을 최대화함으로써 패턴인식의 오류율을 최소화 하는 SVM(Support Vector Machine)을 이용하여 PRI 변조형태 인식율을 향상시킴으로써 레이더신호의 탐지 정확도를 높이고, 신호분석이 필요한 다양한 전자전시스템에 적용이 가능하다.As such, the present invention utilizes a decision hyperplane to maximize the margin between classes of each modulation type, thereby reducing the PRI modulation type recognition rate by using a support vector machine (SVM) that minimizes the error rate of pattern recognition. By improving the radar signal detection accuracy, it can be applied to various electronic warfare systems requiring signal analysis.

도 1은 본 발명의 일 실시예에 따른 PRI 변조형태 인식방법을 설명하기 위한 순서도이다.
도 2는 도 1의 S100단계를 설명하기 위한 순서도이다.
도 3은 본 발명의 일 실시예에 따른 1차 PRI 및 2차 PRI의 개념도이다.
도 4는 본 발명의 또 다른 일 실시예에 따른 PRI 변조형태 인식장치의 블록도이다.
1 is a flowchart illustrating a method for recognizing a PRI modulation type according to an embodiment of the present invention.
FIG. 2 is a flowchart for describing operation S100 of FIG. 1.
3 is a conceptual diagram of a primary PRI and a secondary PRI according to an embodiment of the present invention.
4 is a block diagram of a PRI modulation type recognition apparatus according to another embodiment of the present invention.

이하에서는 첨부된 도면들을 참조하여 본 발명의 일 실시예에 따른 레이더신호 PRI 변조형태 인식방법 및 PRI 변조형태 인식장치에 대해 설명한다.Hereinafter, a radar signal PRI modulation mode recognition method and a PRI modulation mode recognition apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 PRI 변조형태 인식방법을 설명하기 위한 순서도이고, 도 2는 도 1의 S100단계를 설명하기 위한 순서도이다.FIG. 1 is a flowchart illustrating a method for recognizing a PRI modulation type according to an embodiment of the present invention, and FIG. 2 is a flowchart illustrating step S100 of FIG. 1.

본 실시예에 따른 레이더신호 PRI 변조형태 인식방법은 결정 초평면(decision hyperplane)을 이용하여 각 변조형태별 부류 사이에 존재하는 여백(margin)을 최대화함으로써 패턴인식의 오류율을 최소화 하는 SVM(Support Vector Machine)을 적용하여 수행된다.The radar signal PRI modulation type recognition method according to the present embodiment uses a decision hyperplane to maximize margins between classes of each modulation type, thereby minimizing an error rate of pattern recognition. Is performed by applying.

SVM은 데이터를 분석하고 패턴을 인식하는 지도학습(Supervised Learning)학습모형으로, 분류(classification) 및 회귀분석(regression analysis)을 이용하여 수행된다.SVM is a supervised learning model that analyzes data and recognizes patterns. It is performed using classification and regression analysis.

본 실시예에 따른 PRI 변조형태 인식방법은 도 1에 도시된 바와 같이 SVM(Support Vector Machine)을 훈련하는 단계(S100), 입력데이터에 대해 특징벡터를 추출하는 단계(S200), 각 변조형태별 SVM에서의 입력데이터 분류결과 값을 확인하는 단계(S300), 분류결과값을 최대로 하는 SVM을 선택하는 단계(S400), 선택된 SVM에 따라 결과코드를 생성하는 단계(S500) 및 결과코드를 이용하여 PRI 변조형태를 인식하는 단계(S600)를 포함할 수 있다.In the PRI modulation type recognition method according to the present embodiment, as shown in FIG. 1, a step of training a support vector machine (SVM) (S100), extracting a feature vector from input data (S200), and an SVM for each modulation type is performed. Checking the input data classification result value at step S300, selecting the SVM maximizing the classification result value at step S400, generating a result code according to the selected SVM at step S500, and using the result code Recognizing a PRI modulation type may include a step (S600).

SVM(Support Vector Machine)을 훈련하는 단계(S100)는, 도 2에 도시된 바와 같이, 변조형태별 SVM생성단계(S110), 훈련데이터 생성단계(S120), 훈련데이터 특징벡터 추출단계(S130), 훈련데이터 분류단계(S140), SVM학습단계(S150), 잔존훈련데이터 확인단계(S160) 및 훈련종료단계(S170)를 포함할 수 있다.Training SVM (Support Vector Machine) (S100), as shown in Figure 2, SVM generation step for each modulation type (S110), training data generation step (S120), training data feature vector extraction step (S130), Training data classification step (S140), SVM learning step (S150), the remaining training data check step (S160) and may end the training step (S170).

변조형태별 SVM생성단계(S110)는 인식해야할 PRI 변조형태별로 SVM을 생성한다. 훈련데이터 생성단계(S120)는 각 변조형태별로 TOA와 변조형태코드로 구성된 다수의 훈련데이터를 생성한다.The SVM generation step for each modulation type (S110) generates an SVM for each PRI modulation type to be recognized. The training data generation step S120 generates a plurality of training data consisting of a TOA and a modulation type code for each modulation type.

훈련데이터 특징벡터추출단계(S130)는 훈련데이터로부터 SVM의 입력으로 넣을 특징벡터를 추출하는 단계로서, 훈련데이터의 모든 TOA에 대하여 계산하며 특징벡터는 표 1과 같다. 도 3에 도시된 바와 같이 1차 PRI는 TOA사이의 차이고, 2차 PRI는 1차 PRI사이의 차이다. The training data feature vector extraction step (S130) is a step of extracting feature vectors to be input into the SVM from the training data. As shown in FIG. 3, the primary PRI is the difference between the TOAs, and the secondary PRI is the difference between the primary PRIs.

특징벡터Vector illustration 설명Explanation 증가확률Probability of increase 1차 PRI간 차가 +인 경우의 확률Probability when the difference between 1st PRI is positive 감소확률Probability of decrease 1차 PRI간 차가 ??인 경우의 확률Probability when the difference between the first PRIs is ?? 1차 증가연속성1st incremental continuity 1차 PRI간 차가 +를 유지하는 확률The probability that the difference between the first PRIs stays positive 2차 증가연속성2nd incremental continuity 2차 PRI간 차가 ??를 유지하는 확률Probability that the difference between the 2nd PRI maintains ?? 1차 감소연속성1st decrease continuity 1차 PRI간 차가 ??를 유지하는 확률The probability that the difference between the first PRIs remains ?? 2차 감소연속성2nd Decrease Continuity 2차 PRI간 차가 ??를 유지하는 확률Probability that the difference between the 2nd PRI maintains ?? 무변화성Invariant 1차 PRI간 차가 σSTB(무변화성 임계치) 이하일 확률Probability that the difference between the first PRIs is less than or equal to σ STB (Invariant Threshold)

훈련데이터 분류단계(S140)는 각 SVM에 입력하는 입력데이터를 분류하는 단계이다. SVM에 입력하는 입력데이터는 S130단계에서 추출한 특징벡터와 PRI 변조형태값(0 혹은 1)이다.Training data classification step (S140) is a step of classifying input data input to each SVM. Input data input to the SVM is the feature vector and the PRI modulation type value (0 or 1) extracted in step S130.

구체적으로 훈련데이터 분류단계(S140)는, 본 실시예에 따른 PRI 변조형태 인식방법에서 이진 SVM 분류기가 사용되는 경우, 입력데이터의 변조형태에 해당되는 SVM에 입력 시에는 PRI 변조형태값을 1로, 다른 변조형태에 해당되는 SVM에 입력 시에는 PRI 변조형태값을 0으로 설정하여 훈련데이터를 분류시킨다.Specifically, in the training data classification step S140, when the binary SVM classifier is used in the PRI modulation mode recognition method according to the present embodiment, the PRI modulation type value is set to 1 when inputting to the SVM corresponding to the modulation type of the input data. In other words, when inputting to the SVM corresponding to another modulation type, set the PRI modulation type value to 0 to classify the training data.

SVM 학습단계(S150)는 입력데이터에 대한 특징벡터와 PRI 변조형태값으로 이루어진 변환 데이터를 입력받아 각 변조형태 별로 SVM을 훈련시킨다.SVM learning step (S150) receives the transform data consisting of the feature vector and the PRI modulation type value for the input data to train the SVM for each modulation type.

잔존 훈련데이터 확인단계(S160)는 학습을 수행하지 않은 훈련데이터가 존재하는지를 확인한다. 그리고 훈련 종료단계(S170)는 S160단계에서 훈련데이터가 존재하지 않은 것으로 확인된 경우 각 변조형태별로 훈련된 SVM을 저장하고 훈련을 종료한다.Residual training data check step (S160) checks whether there is training data that has not performed learning. In step S170, when it is determined in step S160 that there is no training data, the training SVM for each modulation type is stored and the training ends.

위와 같이 S110단계 내지 S170단계로 이루어진 SVM(Support Vector Machine)을 훈련하는 단계(S100)에 의해 각 변조형태별로 훈련된 SVM을 구현할 수 있다.By training the SVM (Support Vector Machine) consisting of the steps S110 to S170 as described above (S100) can be implemented SVM trained for each modulation type.

다음, 입력데이터에 대해 특징벡터를 추출하는 단계(S200)는, 전술한 훈련데이터 특징벡터추출단계(S130)와 동일한 방법을 이용하여 PRI 변조형태를 인식하기 위한 수집 데이터(TOA열)로부터 특징벡터를 추출할 수 있다.Next, extracting the feature vector from the input data (S200), the feature vector from the collected data (TOA column) for recognizing the PRI modulation form using the same method as the above-described training data feature vector extraction step (S130) Can be extracted.

다음, SVM별 분류결과값 확인단계(S300)는 각 변조형태별 SVM에서의 입력데이터에 대한 분류결과값을 확인하는 단계로 S200단계에 의해 추출된 특징벡터를 S100단계에 의해 구현된 각 변조형태별 SVM에 입력하여 분류결과값을 확인한다.Next, the classification result value checking step for each SVM (S300) is a step of confirming the classification result value for the input data in the SVM for each modulation type, the SVM for each modulation type implemented in step S100 by using the feature vector extracted in step S200. Enter in to check the classification result.

본 실시예에 사용되는 SVM 분류기의 결정 초평면 d(x)는 수학식 1과 같이 나타낼 수 있다, 결정 초평면 d(x)가 0보다 크면 1번째 부류로, 0보다 작으면 2번째 부류로 분류한다. 수학식 1에서 w는 가중치 값이며, K는 커널함수, s는 서포트 벡터, b는 bias이다.The crystal hyperplane d (x) of the SVM classifier used in this embodiment may be expressed as Equation 1. If the crystal hyperplane d (x) is greater than 0, it is classified as a first class, and if it is smaller than 0, it is classified as a second class. . In Equation 1, w is a weight value, K is a kernel function, s is a support vector, and b is a bias.

Figure 112013017964285-pat00002
Figure 112013017964285-pat00002

SVM 선택단계(S400)는 분류결과값을 최대로 하는 SVM을 선택하는 단계로서, S300단계에 의해 확인된 분류결과값들 중 가장 큰 값을 나타내는 SVM을 선택한다.
The SVM selection step (S400) is a step of selecting an SVM that maximizes the classification result value, and selects the SVM representing the largest value among the classification result values identified by the step S300.

결과코드 생성단계(S500)는 S400단계에 의해 선택된 SVM의 번호에 따라 사전에 정의된 결과코드를 생성한다. 예를 들면, S400단계에 의한 분류결과값 중 3번째가 최대값을 가지는 경우 S500단계에서 생성된 결과코드는 후술하는 표 2과 같이 [0010000]로 표현될 수 있다.Result code generation step (S500) generates a predefined result code according to the number of the SVM selected by the step S400. For example, when the third of the classification result value in step S400 has a maximum value, the result code generated in step S500 may be represented by [0010000] as shown in Table 2 below.

PRI변조형태 구분단계(S600)는 결과코드를 이용하여 PRI 변조형태를 인식하는 단계이다. PRI변조형태 구분단계(S600)는 S500단계에 의해 생성된 결과코드를 표 2와 같이 미리 정의된 결과코드에 대한 PRI변조형태 테이블과 비교함으로써 PRI 변조형태를 인식할 수 있다.The PRI modulation type classification step S600 is a step of recognizing the PRI modulation type using the result code. The PRI modulation type classification step S600 may recognize the PRI modulation type by comparing the result code generated by step S500 with the PRI modulation type table for the predefined result code as shown in Table 2.

결과코드Result code PRI변조형태PRI modulation type 10000001000000 Dwell & SwitchDwell & Switch 01000000100000 워블Wobble 00100000010000 지터Jitter 00010000001000 선형 슬라이딩(+)Linear sliding (+) 00001000000100 선형 슬라이딩(-)Linear sliding (-) 00000100000010 비선형 슬라이딩(+)Nonlinear sliding (+) 00000010000001 비선형 슬라이딩(-)Nonlinear sliding (-)

이하 도 4를 참조하여 본 발명의 일 실시예에 따른 PRI 변조형태 인식장치(1)는 레이더신호를 탐지 및 식별하는 레이더신호 탐지장비에 적용되는 장치로서, 전술한 실시예에 따른 PRI 변조형태 인식방법을 이용하여 동작할 수 있다.Hereinafter, the PRI modulation mode recognition apparatus 1 according to an embodiment of the present invention will be applied to a radar signal detection apparatus for detecting and identifying a radar signal, with reference to FIG. 4. The method can be used to operate.

도 4에 도시된 바와 같이, 본 실시예에 따른 PRI 변조형태 인식장치(1) 레이더신호를 감지하기 위한 수신부(10)와 전술한 PRI 변조형태 인식방법을 수행하는 제어부(20)를 포함할 수 있다.As shown in FIG. 4, the PRI modulation mode recognition device 1 according to the present embodiment may include a receiver 10 for detecting a radar signal and a controller 20 performing the above-described PRI modulation mode recognition method. have.

수신부(10)는 레이더신호를 감지하고 감지된 신호를 처리하여 제어부(20)로 전달한다.The receiver 10 detects the radar signal, processes the detected signal, and transmits the detected signal to the controller 20.

수신부(10)는 레이더신호가 감지되면 신호의 반송주파수(carrier frequency) 펄스폭(pulse width), 펄스크기(pulse amplitude), 펄스도착시간(time of arrival) 등을 측정할 수 있다.When the radar signal is detected, the receiver 10 may measure a carrier frequency pulse width, a pulse amplitude, a time of arrival of the signal, and the like.

제어부(20)는 위에서 설명한 PRI 변조형태 인식방법을 구현하기 위해 도 3에 도시된 바와 같이 기능상 SVM 훈련모듈(22), 입력데이터 특징벡터추출모듈(24), SVM별 분류결과값 확인모듈(26) 및 PRI변조형태 구분모듈(28)로 구분될 수 있다. 이러한 기능적 구분은 편의상의 구분으로 본 발명에 따른 제어부(20)가 반드시 위와 같은 기능블록들로 이루어지는 것은 아니다.The control unit 20 is functionally SVM training module 22, input data feature vector extraction module 24, SVM classification result value confirmation module 26 as shown in Figure 3 to implement the PRI modulation type recognition method described above ) And PRI modulation type classification module 28. This functional division is a division for convenience and the control unit 20 according to the present invention is not necessarily made of the above functional blocks.

SVM 훈련모듈(22)은, 전술한 도 2의 순서도에 의한 제어절차를 수행하는 모듈로서, PRI 변조형태별로 SVM을 생성하고, 각 변조형태별로 TOA와 변조형태코드로 구성된 다수의 훈련데이터를 생성한다.The SVM training module 22 is a module for performing the control procedure according to the flowchart of FIG. 2 described above. The SVM training module 22 generates an SVM for each PRI modulation type, and generates a plurality of training data consisting of a TOA and a modulation type code for each modulation type. do.

SVM 훈련모듈(22)은, 생성된 훈련데이터로부터 SVM에 입력하는 특징벡터를 추출하고, 추출한 특징벡터와 PRI 변조형태값을 포함하여 SVM에 입력하는 입력데이터를 분류하며, 입력데이터를 이용하여 각 변조형태 별로 SVM을 훈련시킨다.The SVM training module 22 extracts a feature vector input to the SVM from the generated training data, classifies the input data input to the SVM including the extracted feature vector and the PRI modulation type value, and uses each input data to input the feature vector. Train SVMs by modulation type.

SVM 훈련모듈(22)은 학습을 수행하지 않은 훈련데이터가 존재하는지를 확인하고, 각 변조형태별로 훈련된 SVM을 저장하고 종료한다.The SVM training module 22 checks whether there is training data that has not been learned, and stores and terminates the SVM trained for each modulation type.

입력데이터 특징벡터추출모듈(24)은 도 2의 S130단계에 따른 전술한 훈련데이터 특징벡터추출단계와 동일한 방법을 이용하여 PRI 변조형태를 인식하기 위한 수집 데이터(TOA열)로부터 특징벡터를 추출할 수 있다.The input data feature vector extraction module 24 extracts the feature vector from the collection data (TOA column) for recognizing the PRI modulation form using the same method as the above-described training data feature vector extraction step according to step S130 of FIG. 2. Can be.

SVM별 분류결과값 확인모듈(26)은 각 변조형태별 SVM에서의 입력데이터에 대한 분류결과값을 확인하기 위하여 입력데이터 특징벡터추출모듈(24)에 의해 추출된 특징벡터를 SVM 훈련모듈(22)에 의해 구현된 각 변조형태별 SVM에 넣어 분류결과값을 확인한다.The classification result value checking module 26 for each SVM checks the classification result value for the input data in the SVM for each modulation type and extracts the feature vectors extracted by the input data feature vector extraction module 24 for the SVM training module 22. The result of classification is put into SVM for each modulation type implemented by.

PRI변조형태 구분모듈(28)은 확인된 분류결과값들 중 가장 큰 값을 나타내는 SVM을 선택하고, 이 선택된 SVM의 번호에 따라 결과코드를 생성하며, 이 결과코드를 이용하여 PRI 변조형태를 인식할 수 있다.The PRI modulation type classification module 28 selects the SVM representing the largest value among the identified classification results, generates a result code according to the number of the selected SVM, and recognizes the PRI modulation type by using the result code. can do.

이와 같이 본 발명의 일 실시예에 따른 PRI 변조형태 인식방법 및 PRI 변조형태 인식장치(1)는 수집된 펄스의 TOA정보를 이용하여 특징벡터를 추출하고, 이를 입력으로 하는 SVM을 이용하여 PRI 변조형태를 인식함으로써 변조형태 인식률 및 인식속도를 향상시킬 수 있다.As described above, the PRI modulation mode recognition method and the PRI modulation mode recognition apparatus 1 according to an embodiment of the present invention extract a feature vector using TOA information of collected pulses, and use PRI to modulate a PRI using an SVM. By recognizing the shape, the modulation type recognition rate and the recognition speed can be improved.

1: PRI 변조형태 인식장치
10: 수신부
20: 제어부
22: SVM 훈련모듈
24: 입력데이터 특징벡터추출모듈
26: SVM별 분류결과값 확인모듈
28: PRI변조형태 구분모듈
1: PRI modulation type recognition device
10: receiver
20: control unit
22: SVM Training Module
24: input data feature vector extraction module
26: Classification result value checking module for each SVM
28: PRI modulation type classification module

Claims (5)

전자전지원(Electronic Warfare Support)시스템의 레이더신호의 탐지에 적용되는 PRI(Pulse Repetition Interval) 변조형태 인식방법에 있어서,
(a) PRI(Pulse Repetition Interval) 변조형태별로 SVM(Support Vector Machine)을 생성하고, 상기 생성된 SVM을 상기 변조형태별로 훈련시켜 저장하는 단계;
(b) PRI 변조형태를 인식하기 위한 수집된 펄스의 TOA(Time Of Arrival) 정보로부터 특징벡터를 추출하는 단계;
(c) 상기 (b)단계에 의해 추출된 특징벡터를 상기 저장된 SVM에 입력하여 분류결과값을 확인하는 단계;
(d) 상기 확인된 분류결과값들 중 가장 큰 값을 나타내는 SVM을 선택하는 단계; 및
(e) 상기 선택된 SVM을 이용하여 PRI 변조형태를 인식하는 단계를 포함하는 것을 특징으로 하는 PRI 변조형태 인식방법.
In the PRI (Pulse Repetition Interval) modulation type recognition method applied to the detection of the radar signal of the electronic warfare support system,
(a) generating a support vector machine (SVM) for each pulse repetition interval (PRI) modulation type, and training and storing the generated SVM for each modulation type;
(b) extracting feature vectors from time of arrival information of collected pulses for recognizing a PRI modulation type;
(c) checking a classification result value by inputting the feature vector extracted in step (b) to the stored SVM;
(d) selecting an SVM representing the largest value among the identified classification result values; And
(e) recognizing a PRI modulation type using the selected SVM.
제1항에 있어서,
상기 (a)단계는
(a1) 인식해야할 PRI 변조형태별로 상기 SVM을 생성하는 단계;
(a2) 상기 변조형태별로 TOA(Time Of Arrival)와 변조형태코드로 구성된 다수의 훈련데이터를 생성하는 단계;
(a3) 상기 훈련데이터의 모든 TOA에 대하여 계산하여 상기 SVM에 입력하는 특징벡터를 추출하는 단계;
(a4) 상기 (a3)단계에 의해 추출되는 특징벡터의 변조형태에 해당되는 PRI변조형태값을 분류하는 단계;
(a5) 상기 (a3)단계에 의해 추출되는 특징벡터와상기 (a4)단계에 의해 분류되는 PRI변조형태값으로 이루어진 변환 데이터를 입력받아 상기 변조형태별로 상기 SVM을 훈련시키는 단계; 및
(a6) 학습을 수행하지 않은 훈련데이터가 존재하지 않은 경우 상기 변조형태별로 훈련된 SVM을 저장하고 훈련을 종료하는 단계를 포함하는 것을 특징으로 하는 PRI 변조형태 인식방법.
The method of claim 1,
The step (a)
(a1) generating the SVM for each PRI modulation type to be recognized;
(a2) generating a plurality of training data consisting of a time of argument (TOA) and a modulation type code for each modulation type;
(a3) extracting feature vectors input to the SVM by calculating all TOAs of the training data;
(a4) classifying a PRI modulation form value corresponding to a modulation form of the feature vector extracted by step (a3);
(a5) training the SVM for each modulation type by receiving transform data consisting of the feature vector extracted in step (a3) and the PRI modulation type values classified in step (a4); And
(a6) if there is no training data that has not been trained, storing the SVM trained for each modulation type and ending the training.
제1항에 있어서,
상기 (c)단계에서 사용되는 SVM 분류기의 결정 초평면인 d(x)는 수식 1로 표현되고, d(x)가 0보다 크면 1번째 부류로, 0보다 작으면 2번째 부류로 분류하며, 수식 1에서 w는 가중치 값이며, K는 커널함수, s는 서포트 벡터 및 b는 bias인 것을 특징으로 하는 PRI 변조형태 인식방법.
수식 1:
Figure 112013017964285-pat00003
The method of claim 1,
D (x), the hyperplane of determination of the SVM classifier used in step (c), is represented by Equation 1, and when d (x) is greater than 0, it is classified as the first class, and if it is less than 0, it is classified as the second class. In 1, w is a weight value, K is a kernel function, s is a support vector, and b is a bias.
Equation 1:
Figure 112013017964285-pat00003
제1항에 있어서 상기 (e)단계는,
(e1) 상기 선택된 SVM의 번호에 따라 사전에 정의된 결과코드를 생성하는 단계; 및
(e2) 상기 생성된 결과코드를 사전에 정의된 상기 결과코드에 대한 PRI변조형태의 테이블과 비교함으로써 상기 PRI 변조형태를 인식하는 단계를 포함하는 것을 특징으로 PRI 변조형태 인식방법.
The method of claim 1, wherein step (e)
(e1) generating a predefined result code according to the number of the selected SVM; And
(e2) recognizing the PRI modulation form by comparing the generated result code with a table of PRI modulation forms for the result code defined in advance.
전자전지원(Electronic Warfare Support)시스템의 레이더신호의 탐지에 적용되는 PRI(Pulse Repetition Interval) 변조형태 인식장치에 있어서,
외부의 레이더신호를 감지하여 처리하는 수신부; 및
상기 수신부에서 감지되어 처리된 정보를 기초로, 상기 제1항 내지 제4항 중 어느 하나의 항에 따른 PRI 변조형태 인식방법을 수행하는 제어부를 포함하는 것을 특징으로 하는 PRI 변조형태 인식장치.
In the PRI (Pulse Repetition Interval) modulation type recognition device applied to the detection of the radar signal of the Electronic Warfare Support system,
A receiver for detecting and processing an external radar signal; And
And a controller for performing the PRI modulation mode recognition method according to any one of claims 1 to 4, based on the information detected and processed by the receiving unit.
KR1020130021671A 2013-02-28 2013-02-28 A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type Active KR101300650B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130021671A KR101300650B1 (en) 2013-02-28 2013-02-28 A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130021671A KR101300650B1 (en) 2013-02-28 2013-02-28 A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type

Publications (1)

Publication Number Publication Date
KR101300650B1 true KR101300650B1 (en) 2013-08-27

Family

ID=49221318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130021671A Active KR101300650B1 (en) 2013-02-28 2013-02-28 A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type

Country Status (1)

Country Link
KR (1) KR101300650B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427149B1 (en) 2014-03-06 2014-08-07 국방과학연구소 A method of recognizing complex PRI modulation type of radar signals based on 2-layer SVM using exponential moving average
KR101559904B1 (en) 2013-12-16 2015-10-14 국방과학연구소 A method of recognizing PRI modulation type of radar signals based on genetic algorithm
KR20160107742A (en) * 2015-03-05 2016-09-19 국방과학연구소 Method and Apparatus of recognizing Radar Scan Pattern based on Support Vector Machine
CN113452637A (en) * 2021-09-01 2021-09-28 中国海洋大学 Underwater acoustic communication signal modulation identification method based on feature selection and support vector machine
CN118869419A (en) * 2024-06-24 2024-10-29 中国科学院国家授时中心 A MSVM demodulation method and computer program product for eLoran signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761795B1 (en) 2006-09-28 2007-09-28 국방과학연구소 Pulse Repetition Period Modulation Recognition Method of Radar Signal Using Shape Separator
KR100780470B1 (en) 2007-08-21 2007-11-28 (주)미래시스템 Adaptive Target Detector for Search Radar
KR101007662B1 (en) 2009-05-08 2011-01-13 국방과학연구소 Clustering method of radar signal using frequency modulation characteristics and signal coupling characteristics, and radar signal receiving and processing device using same
KR101235059B1 (en) 2011-12-05 2013-02-19 국방과학연구소 Apparatus and method for recognizing radar intra-pulse modulation type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761795B1 (en) 2006-09-28 2007-09-28 국방과학연구소 Pulse Repetition Period Modulation Recognition Method of Radar Signal Using Shape Separator
KR100780470B1 (en) 2007-08-21 2007-11-28 (주)미래시스템 Adaptive Target Detector for Search Radar
KR101007662B1 (en) 2009-05-08 2011-01-13 국방과학연구소 Clustering method of radar signal using frequency modulation characteristics and signal coupling characteristics, and radar signal receiving and processing device using same
KR101235059B1 (en) 2011-12-05 2013-02-19 국방과학연구소 Apparatus and method for recognizing radar intra-pulse modulation type

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559904B1 (en) 2013-12-16 2015-10-14 국방과학연구소 A method of recognizing PRI modulation type of radar signals based on genetic algorithm
KR101427149B1 (en) 2014-03-06 2014-08-07 국방과학연구소 A method of recognizing complex PRI modulation type of radar signals based on 2-layer SVM using exponential moving average
KR20160107742A (en) * 2015-03-05 2016-09-19 국방과학연구소 Method and Apparatus of recognizing Radar Scan Pattern based on Support Vector Machine
KR101708275B1 (en) * 2015-03-05 2017-02-20 국방과학연구소 Method and Apparatus of recognizing Radar Scan Pattern based on Support Vector Machine
CN113452637A (en) * 2021-09-01 2021-09-28 中国海洋大学 Underwater acoustic communication signal modulation identification method based on feature selection and support vector machine
CN118869419A (en) * 2024-06-24 2024-10-29 中国科学院国家授时中心 A MSVM demodulation method and computer program product for eLoran signals
CN118869419B (en) * 2024-06-24 2025-09-19 中国科学院国家授时中心 MSVM demodulation method and computer program product for eLoran signal

Similar Documents

Publication Publication Date Title
KR101075516B1 (en) Pulse Repetition Period Modulation Type Recognition Method and Its Recognition Apparatus
KR101300650B1 (en) A method of recognizing pri modulation type based on support vector machine, and an apparatus of recognizing pri modulation type
US20130129219A1 (en) Pattern recognition apparatus, pattern recogntion method, image processing apparatus, and image processing method
CN104008384A (en) Character identification method and character identification apparatus
KR101883228B1 (en) Method and Apparatus for Gesture Recognition
CN105184818A (en) Video monitoring abnormal behavior detection method and detections system thereof
US10366118B2 (en) EM-ID: tag-less identification of electrical devices via electromagnetic emissions
KR101300649B1 (en) A method of extracting jitter pri pulsetrain of radar signal using adaptive histogram, and a apparatus of extracting jitter pri pulsetrain of radar signal using the same
US9971954B2 (en) Apparatus and method for producing image processing filter
US11474613B2 (en) Gesture recognition device and method using radar
KR101476799B1 (en) System and method for detecting object using depth information
WO2014181386A1 (en) Vehicle assessment device
US20240203131A1 (en) Verifying object classification using component-based descriptors and temporal similarity measures
JP3906197B2 (en) PATTERN IDENTIFICATION METHOD, PATTERN IDENTIFICATION DEVICE, AND PROGRAM
KR102733677B1 (en) A method for determining a single sampling frequency of the classification target signal in order to predict a modulation scheme of the classification target signal, and a method and apparatus for predicting the modulation scheme using the classification target signal sampled with the single sampling frequency
CN104270331A (en) BPSK signal blind identification result effectiveness evaluation method based on HOUGH transformation
CN112669277B (en) Vehicle association method, computer equipment and device
KR101708275B1 (en) Method and Apparatus of recognizing Radar Scan Pattern based on Support Vector Machine
CN110488279B (en) Pedestrian and tree distinguishing method and device based on radar
CN106951851B (en) Fingerprint template updating method and device
KR101427149B1 (en) A method of recognizing complex PRI modulation type of radar signals based on 2-layer SVM using exponential moving average
JP5637157B2 (en) Radio station database creation device, radio wave monitoring device, method and program
CN117197584A (en) A method, system and computer storage medium for identifying and classifying geological features
KR101343531B1 (en) Method of recognizing pri modulation type based on hidden markov model
JP6597505B2 (en) Radio source identification device and identification system

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PA0302 Request for accelerated examination

St.27 status event code: A-1-2-D10-D17-exm-PA0302

St.27 status event code: A-1-2-D10-D16-exm-PA0302

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

P14-X000 Amendment of ip right document requested

St.27 status event code: A-5-5-P10-P14-nap-X000

P16-X000 Ip right document amended

St.27 status event code: A-5-5-P10-P16-nap-X000

Q16-X000 A copy of ip right certificate issued

St.27 status event code: A-4-4-Q10-Q16-nap-X000

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 13