KR100793616B1 - 배터리 잔존량 추정 장치 및 방법 - Google Patents
배터리 잔존량 추정 장치 및 방법 Download PDFInfo
- Publication number
- KR100793616B1 KR100793616B1 KR1020060052477A KR20060052477A KR100793616B1 KR 100793616 B1 KR100793616 B1 KR 100793616B1 KR 1020060052477 A KR1020060052477 A KR 1020060052477A KR 20060052477 A KR20060052477 A KR 20060052477A KR 100793616 B1 KR100793616 B1 KR 100793616B1
- Authority
- KR
- South Korea
- Prior art keywords
- algorithm
- battery
- neural network
- soft computing
- fuzzy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000013528 artificial neural network Methods 0.000 claims abstract description 73
- 230000004927 fusion Effects 0.000 claims abstract description 16
- 230000002068 genetic effect Effects 0.000 claims abstract description 13
- 210000000987 immune system Anatomy 0.000 claims abstract description 10
- 230000001413 cellular effect Effects 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 4
- 238000002474 experimental method Methods 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims 4
- 230000005855 radiation Effects 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/44—Control modes by parameter estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/46—Control modes by self learning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/48—Control modes by fuzzy logic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/374—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims (20)
- 배터리 잔존량을 추정하는 장치에 있어서,배터리 셀의 전류, 전압 및 온도를 검출하는 센싱부;파라미터를 적응적으로 갱신하는 소프트 컴퓨팅 알고리즘과 신경망 알고리즘이 결합된 퓨전 타입의 소프트 컴퓨팅 알고리즘에 의해 상기 센싱부에서 검출된 전류, 전압 및 온도를 처리하여 배터리 잔존량의 추정값을 출력하는 소프트 컴퓨팅부;를 포함하는 것을 특징으로 하는 배터리 잔존량 추정 장치.
- 제1항에 있어서,상기 소프트 컴퓨팅부는 상기 신경망 알고리즘에 파라미터를 적응적으로 갱신하는 퍼지 알고리즘, 유전 알고리즘, 셀룰러 오토메타 알고리즘, 면역 시스템 알고리즘 또는 러프-세트 알고리즘 중의 어느 하나를 결합하여,상기 신경망 알고리즘의 파라미터를 적응적으로 갱신함을 특징으로 하는 배터리 잔존량 추정장치.
- 제1항에 있어서,상기 신경망 알고리즘은,상기 소프트 컴퓨팅부에서 출력된 추정값과 소정 목표값의 차가 임계범위를 벗어나면 상기 소정 목표값을 추종하도록 학습시키는 학습 알고리즘에 따라 갱신됨을 특징으로 하는 배터리 잔존량 추정장치.
- 제3항에 있어서, 상기 목표값은특정 조건에서 해당 실험을 통하여 얻은 기준값인 것을 특징으로 하는 배터리 잔존량 추정 장치.
- 제3항에 있어서, 상기 목표값은배터리의 정격 용량에서 충방전기로부터 입력되는 Ah 카운팅 값과 배터리의 OCV(Open Circuit Voltage) 값을 상호 보완한 값인 것을 특징으로 하는 배터리 잔존량 추정 장치.
- 제3항에 있어서, 상기 학습 알고리즘은역전파 학습 알고리즘, 칼만 필터, 유전 알고리즘, 퍼지 학습 알고리즘 중 어느 하나인 것을 특징으로 하는 배터리 잔존량 추정 장치.
- 제2항에 있어서,상기 퍼지 알고리즘, 상기 유전 알고리즘, 상기 셀룰러 오토메타 알고리즘, 상기 면역 시스템 알고리즘 또는 상기 러프-세트 알고리즘 중 어느 하나와 결합된 신경망 알고리즘은,상기 소프트 컴퓨팅부에서 출력된 추정값과 소정 목표값의 차가 임계범위를 벗어나면 상기 소정 목표값을 추종하도록 학습시키는 학습 알고리즘에 따라 갱신됨 을 특징으로 하는 배터리 잔존량 추정장치.
- 제7항에 있어서, 상기 목표값은특정 조건에서 해당 실험을 통하여 얻은 기준값인 것을 특징으로 하는 배터리 잔존량 추정 장치.
- 제7항에 있어서, 상기 목표값은배터리의 정격 용량에서 충방전기로부터 입력되는 Ah 카운팅 값과 배터리의 OCV(Open Circuit Voltage) 값을 상호 보완한 값인 것을 특징으로 하는 퓨전 형태의 소프트 컴퓨팅을 이용한 배터리 잔존량 추정 장치.
- 제7항에 있어서, 상기 학습 알고리즘은역전파 학습 알고리즘, 칼만 필터, 유전 알고리즘, 퍼지 학습 알고리즘 중 어느 하나인 것을 특징으로 하는 퓨전 형태의 소프트 컴퓨팅을 이용한 배터리 잔존량 추정 장치.
- 배터리 잔존량을 추정하는 방법에 있어서,배터리 셀의 전류, 전압 및 온도를 검출하는 단계;파라미터를 적응적으로 갱신하는 소프트 컴퓨팅 알고리즘과 신경망 알고리즘이 결합된 퓨전 타입의 소프트 컴퓨팅 알고리즘에 의해 상기 검출된 전류, 전압 및 온도를 처리하여 배터리 잔존량의 추정값을 출력하는 단계;를 포함하는 것을 특징으로 하는 배터리 잔존량 추정 방법.
- 제11항에 있어서,상기 신경망 알고리즘은 파라미터를 적응적으로 갱신하는 퍼지 알고리즘, 유전 알고리즘, 셀룰러 오토메타 알고리즘, 면역 시스템 알고리즘 또는 러프-세트 알고리즘 중의 어느 하나와 결합되어,상기 신경망 알고리즘의 파라미터를 적응적으로 갱신함을 특징으로 하는 배터리 잔존량 추정방법.
- 제11항에 있어서,상기 신경망 알고리즘은,상기 추정값과 소정 목표값의 차가 임계범위를 벗어나면 상기 소정 목표값을 추종하도록 학습시키는 학습 알고리즘에 따라 갱신됨을 특징으로 하는 배터리 잔존량 추정방법.
- 제13항에 있어서, 상기 목표값은특정 조건에서 해당 실험을 통하여 얻은 기준값인 것을 특징으로 하는 배터리 잔존량 추정방법.
- 제13항에 있어서, 상기 목표값은배터리의 정격 용량에서 충방전기로부터 입력되는 Ah 카운팅 값과 배터리의 OCV(Open Circuit Voltage) 값을 상호 보완한 값인 것을 특징으로 하는 배터리 잔존량 추정방법.
- 제13항에 있어서, 상기 학습 알고리즘은역전파 학습 알고리즘, 칼만 필터, 유전 알고리즘, 퍼지 학습 알고리즘 중 어느 하나인 것을 특징으로 하는 배터리 잔존량 추정방법.
- 제12항에 있어서,상기 퍼지 알고리즘, 상기 유전 알고리즘, 상기 셀룰러 오토메타 알고리즘, 상기 면역 시스템 알고리즘 또는 상기 러프-세트 알고리즘 중 어느 하나와 결합된 신경망 알고리즘은,상기 소프트 컴퓨팅부에서 출력된 추정값과 소정 목표값의 차가 임계범위를 벗어나면 상기 소정 목표값을 추종하도록 학습시키는 학습 알고리즘에 따라 갱신됨을 특징으로 하는 배터리 잔존량 추정방법.
- 제17항에 있어서, 상기 목표값은특정 조건에서 해당 실험을 통하여 얻은 기준값인 것을 특징으로 하는 배터리 잔존량 추정방법.
- 제17항에 있어서, 상기 목표값은배터리의 정격 용량에서 충방전기로부터 입력되는 Ah 카운팅 값과 배터리의 OCV(Open Circuit Voltage) 값을 상호 보완한 값인 것을 특징으로 하는 퓨전 형태의 소프트 컴퓨팅을 이용한 배터리 잔존량 추정방법.
- 제17항에 있어서, 상기 학습 알고리즘은역전파 학습 알고리즘, 칼만 필터, 유전 알고리즘, 퍼지 학습 알고리즘 중 어느 하나인 것을 특징으로 하는 퓨전 형태의 소프트 컴퓨팅을 이용한 배터리 잔존량 추정방법.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20050050273 | 2005-06-13 | ||
| KR1020050050273 | 2005-06-13 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20060129962A KR20060129962A (ko) | 2006-12-18 |
| KR100793616B1 true KR100793616B1 (ko) | 2008-01-10 |
Family
ID=37532491
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020060052477A Active KR100793616B1 (ko) | 2005-06-13 | 2006-06-12 | 배터리 잔존량 추정 장치 및 방법 |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20070005276A1 (ko) |
| EP (1) | EP1896925B1 (ko) |
| JP (1) | JP5160416B2 (ko) |
| KR (1) | KR100793616B1 (ko) |
| CN (1) | CN101198922B (ko) |
| TW (1) | TWI320977B (ko) |
| WO (1) | WO2006135175A1 (ko) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101020904B1 (ko) * | 2008-12-03 | 2011-03-09 | 현대자동차주식회사 | 자동차의 배터리 잔존용량 계산 시스템 및 방법 |
| CN111081067A (zh) * | 2019-12-27 | 2020-04-28 | 武汉大学 | 车联网环境下基于iga-bp神经网络的车辆碰撞预警系统及方法 |
| WO2020105812A1 (ko) * | 2018-11-22 | 2020-05-28 | 제주대학교 산학협력단 | 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법 |
| US11183715B2 (en) | 2017-11-28 | 2021-11-23 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating state of battery |
| KR20220089200A (ko) | 2020-12-21 | 2022-06-28 | 경북대학교 산학협력단 | 신경회로망을 이용한 배터리의 상태 추정과 모니터링 방법 및 장치 |
| US11714134B2 (en) | 2020-11-19 | 2023-08-01 | Electronics And Telecommunications Research Institute | Device and method for predicting state of battery |
| WO2023149741A1 (ko) * | 2022-02-04 | 2023-08-10 | 한양대학교 산학협력단 | 메타 학습 기반의 배터리 soc 추정 방법 및 장치 |
| US11830991B2 (en) | 2020-08-14 | 2023-11-28 | Korea Power Cell Co., Ltd. | Method and apparatus based on neural network for pre-diagnosing defect and fire in battery cell |
Families Citing this family (76)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4468387B2 (ja) * | 2007-02-05 | 2010-05-26 | キヤノン株式会社 | 電池パック及び電子機器 |
| JP2008232758A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Soken Inc | 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置 |
| CN101067644B (zh) * | 2007-04-20 | 2010-05-26 | 杭州高特电子设备有限公司 | 蓄电池性能分析专家诊断方法 |
| KR100836391B1 (ko) * | 2007-06-21 | 2008-06-09 | 현대자동차주식회사 | 하이브리드 전기자동차용 배터리의 잔존용량 추정방법 |
| KR100936892B1 (ko) * | 2007-09-13 | 2010-01-14 | 주식회사 엘지화학 | 배터리의 장기 특성 예측 시스템 및 방법 |
| KR101189150B1 (ko) * | 2008-01-11 | 2012-10-10 | 에스케이이노베이션 주식회사 | 배터리 관리 시스템에서 배터리의 soc 측정 방법 및 장치 |
| JP5038258B2 (ja) * | 2008-08-25 | 2012-10-03 | 日本電信電話株式会社 | 残容量推定方法および残容量推定装置 |
| CN101430309B (zh) * | 2008-11-14 | 2012-03-21 | 西安建筑科技大学 | 基于粗糙集—rbf神经网络的环境质量评价方法 |
| US8116998B2 (en) | 2009-01-30 | 2012-02-14 | Bae Systems Controls, Inc. | Battery health assessment estimator |
| US8994334B2 (en) | 2009-06-03 | 2015-03-31 | Mitsubishi Heavy Industries, Ltd. | Battery state-of-charge calculation device |
| US8207706B2 (en) * | 2009-08-04 | 2012-06-26 | Honda Motor Co., Ltd. | Method of estimating battery state of charge |
| DE102009037085A1 (de) * | 2009-08-11 | 2011-02-17 | Bayerische Motoren Werke Aktiengesellschaft | Ermittlung einer Verlustleistung eines Energiespeichers |
| US20120105010A1 (en) * | 2010-05-17 | 2012-05-03 | Masahiro Kinoshita | Lithium ion secondary battery system and battery pack |
| TW201224485A (en) | 2010-12-02 | 2012-06-16 | Ind Tech Res Inst | State-of-charge estimation method and battery control unit |
| FR2975501B1 (fr) * | 2011-05-20 | 2013-05-31 | Renault Sas | Procede d'estimation de l'etat de charge d'une batterie electrique |
| CN102494778B (zh) * | 2011-11-14 | 2013-04-24 | 北京理工大学 | 一种基于人工神经网络的二次电池表面最高温度预测方法 |
| CN102364353B (zh) * | 2011-11-14 | 2013-10-16 | 北京理工大学 | 一种基于热效应的二次电池一致性评估方法 |
| US9316699B2 (en) * | 2012-04-05 | 2016-04-19 | Samsung Sdi Co., Ltd. | System for predicting lifetime of battery |
| CN102680903B (zh) * | 2012-05-11 | 2015-01-28 | 齐鲁工业大学 | 便携式蓄电池状态检测系统的检测方法 |
| KR101547006B1 (ko) * | 2012-10-26 | 2015-08-24 | 주식회사 엘지화학 | 배터리 잔존 용량 추정 장치 및 방법 |
| TWI484682B (zh) * | 2012-11-16 | 2015-05-11 | Univ Nat Cheng Kung | 電池充電方法 |
| US9244129B2 (en) * | 2013-01-29 | 2016-01-26 | Mitsubishi Electronic Research Laboratories, Inc. | Method for estimating a state of charge of batteries |
| US20140350875A1 (en) * | 2013-05-27 | 2014-11-27 | Scott Allen Mullin | Relaxation model in real-time estimation of state-of-charge in lithium polymer batteries |
| FR3006450B1 (fr) * | 2013-06-04 | 2015-05-22 | Renault Sa | Procede pour estimer l'etat de sante d'une cellule electrochimique de stockage d'energie electrique |
| CN103413981B (zh) * | 2013-07-24 | 2015-05-20 | 清华大学 | 电池组容量均衡方法和装置 |
| FR3010532B1 (fr) | 2013-09-11 | 2017-06-09 | Commissariat Energie Atomique | Procede, dispositif et systeme d'estimation de l'etat de charge d'une batterie |
| TWI512647B (zh) | 2014-09-10 | 2015-12-11 | Ind Tech Res Inst | 電池充電方法 |
| KR101726483B1 (ko) * | 2014-12-04 | 2017-04-12 | 주식회사 엘지화학 | 배터리 사용 패턴 분석 장치 및 방법 |
| CN104535934B (zh) * | 2014-12-31 | 2017-07-21 | 桂林电子科技大学 | 在线前馈补偿的动力电池电荷状态估计方法与系统 |
| CN106501721A (zh) * | 2016-06-03 | 2017-03-15 | 湘潭大学 | 一种基于生物进化的锂电池soc估算方法 |
| CN106383315A (zh) * | 2016-08-29 | 2017-02-08 | 丹阳亿豪电子科技有限公司 | 一种新能源汽车电池荷电状态soc预测方法 |
| CN106125007A (zh) * | 2016-08-31 | 2016-11-16 | 北京新能源汽车股份有限公司 | 一种电池剩余电量的确定方法、装置及汽车 |
| KR102636362B1 (ko) | 2016-11-22 | 2024-02-14 | 삼성전자주식회사 | 배터리 상태 추정 방법 및 장치 |
| CN106646260A (zh) * | 2016-12-31 | 2017-05-10 | 深圳市沃特玛电池有限公司 | 一种基于遗传神经网络的bms系统的soc的估算方法 |
| KR101912615B1 (ko) * | 2017-04-20 | 2018-10-29 | 이정환 | 배터리 모니터링 및 보호 시스템 |
| CN107167741A (zh) * | 2017-06-06 | 2017-09-15 | 浙江大学 | 一种基于神经网络的锂电池soc观测方法 |
| CN107436409B (zh) * | 2017-07-07 | 2019-12-31 | 淮阴工学院 | 一种电动汽车动力电池soc智能预测装置 |
| US11637331B2 (en) * | 2017-11-20 | 2023-04-25 | The Trustees Of Columbia University In The City Of New York | Neural-network state-of-charge and state of health estimation |
| US11171498B2 (en) | 2017-11-20 | 2021-11-09 | The Trustees Of Columbia University In The City Of New York | Neural-network state-of-charge estimation |
| KR101965832B1 (ko) * | 2017-11-27 | 2019-04-05 | (주) 페스코 | 배터리 soc 추정 시스템 및 이를 이용한 배터리 soc 추정방법 |
| CN107972508A (zh) * | 2017-11-27 | 2018-05-01 | 南京晓庄学院 | 一种电动汽车充电功率控制方法及控制装置 |
| CN109919168A (zh) * | 2017-12-13 | 2019-06-21 | 北京创昱科技有限公司 | 一种电池分类方法和系统 |
| CN108181591B (zh) * | 2018-01-08 | 2020-06-16 | 电子科技大学 | 一种基于改进型bp神经网络的电池soc值的预测方法 |
| KR102458526B1 (ko) * | 2018-02-07 | 2022-10-25 | 주식회사 엘지에너지솔루션 | 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법 |
| KR102783337B1 (ko) | 2018-02-20 | 2025-03-19 | 주식회사 엘지에너지솔루션 | 에너지 저장 시스템의 충전용량 산출 장치 및 방법 |
| CN110232432B (zh) * | 2018-03-05 | 2022-09-20 | 重庆邮电大学 | 一种基于人工生命模型的锂电池组soc预测方法 |
| EP3775948B1 (en) * | 2018-04-06 | 2024-05-22 | Volvo Truck Corporation | Method and system for estimating battery properties in a vehicle drive system |
| US10958082B2 (en) * | 2018-04-25 | 2021-03-23 | Microsoft Technology Licensing, Llc | Intelligent battery cycling for lifetime longevity |
| CN108656992B (zh) * | 2018-05-10 | 2020-05-22 | 中南大学 | 一种极端暴雨环境下无人驾驶车辆电源智慧预测方法及装置 |
| KR102065120B1 (ko) * | 2018-09-27 | 2020-02-11 | 경북대학교 산학협력단 | 신경회로망 기반 배터리 잔존량 추정방법 및 장치 |
| CN109633450B (zh) * | 2018-11-23 | 2021-05-14 | 成都大超科技有限公司 | 一种基于神经网络的锂电池充电检测系统 |
| TWI687701B (zh) * | 2018-12-05 | 2020-03-11 | 宏碁股份有限公司 | 判斷電量狀態的方法及其電子裝置 |
| CN109828211A (zh) * | 2018-12-25 | 2019-05-31 | 宁波飞拓电器有限公司 | 一种基于神经网络自适应滤波的应急灯电池soc估计方法 |
| CN111487541B (zh) * | 2019-01-25 | 2022-05-31 | 宏碁股份有限公司 | 判断电量状态的方法及其电子装置 |
| KR102757388B1 (ko) * | 2019-02-22 | 2025-01-20 | 주식회사 엘지에너지솔루션 | 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량 |
| WO2020171442A1 (ko) * | 2019-02-22 | 2020-08-27 | 주식회사 엘지화학 | 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량 |
| CN112428878A (zh) * | 2019-08-26 | 2021-03-02 | 上海汽车集团股份有限公司 | 一种软件刷新控制方法、装置及车联网设备 |
| US11443163B2 (en) | 2019-10-11 | 2022-09-13 | Alibaba Group Holding Limited | Method and system for executing neural network |
| CN111103553B (zh) * | 2019-12-26 | 2021-11-23 | 江苏大学 | 一种自适应grnn的电动汽车锂离子电池健康状态的估算方法 |
| CN111220921A (zh) * | 2020-01-08 | 2020-06-02 | 重庆邮电大学 | 基于改进卷积-长短时记忆神经网络的锂电池容量估算方法 |
| CN111308190B (zh) * | 2020-03-20 | 2025-04-29 | 威胜信息技术股份有限公司 | 一种高精度直流电能检测装置和方法 |
| KR102387780B1 (ko) * | 2020-03-30 | 2022-04-18 | 주식회사 아르고스다인 | 신경망 기반의 배터리 용량 추정 방법 및 장치 |
| KR102761936B1 (ko) | 2020-07-24 | 2025-02-05 | 삼성전자주식회사 | 전자 장치 및 전자 장치에서 배터리의 전압 측정 방법 |
| US11555859B2 (en) | 2020-09-10 | 2023-01-17 | Toyota Research Institute, Inc. | Vehicle battery analysis system |
| CN112051507A (zh) * | 2020-09-15 | 2020-12-08 | 哈尔滨理工大学 | 基于模糊控制的锂离子动力电池soc估算方法 |
| KR102599803B1 (ko) * | 2020-12-10 | 2023-11-09 | 한국에너지기술연구원 | Soc추정을 통해 배터리 상태를 진단하는 방법 및 장치 |
| CN112713819A (zh) * | 2020-12-24 | 2021-04-27 | 西安理工大学 | 一种提高永磁同步直线电机定位力补偿精度的方法 |
| CN112858929B (zh) * | 2021-03-16 | 2022-09-06 | 上海理工大学 | 一种基于模糊逻辑与扩展卡尔曼滤波的电池soc估计方法 |
| JP2022157740A (ja) * | 2021-03-31 | 2022-10-14 | 本田技研工業株式会社 | 状態推定システム、状態推定方法、及びプログラム |
| CN114280490B (zh) * | 2021-09-08 | 2024-02-09 | 国网湖北省电力有限公司荆门供电公司 | 一种锂离子电池荷电状态估计方法及系统 |
| US11774504B2 (en) * | 2021-10-04 | 2023-10-03 | Zitara Technologies, Inc. | System and method for battery management |
| CN113655385B (zh) * | 2021-10-19 | 2022-02-08 | 深圳市德兰明海科技有限公司 | 锂电池soc估计方法、装置及计算机可读存储介质 |
| CN114021462A (zh) * | 2021-11-09 | 2022-02-08 | 杭州市电力设计院有限公司余杭分公司 | 储能锂电池soc估算方法、装置、设备及存储介质 |
| KR20230140743A (ko) * | 2022-03-30 | 2023-10-10 | 주식회사 엘지에너지솔루션 | 필드 데이터 기반 인공신경망 배터리 모델을 통한 배터리 이상 검출 방법 및 시스템 |
| CN114757578A (zh) * | 2022-05-10 | 2022-07-15 | 北方工业大学 | 一种粗糙集框架下的电池多级模糊综合评估筛选方法 |
| CN114994547B (zh) * | 2022-08-05 | 2022-11-18 | 中汽研新能源汽车检验中心(天津)有限公司 | 基于深度学习和一致性检测的电池包安全状态评估方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6011379A (en) * | 1997-03-12 | 2000-01-04 | U.S. Nanocorp, Inc. | Method for determining state-of-charge using an intelligent system |
| US6064180A (en) * | 1996-10-29 | 2000-05-16 | General Motors Corporation | Method and apparatus for determining battery state-of-charge using neural network architecture |
| US6369545B1 (en) * | 1999-08-17 | 2002-04-09 | Lockheed Martin Corporation | Neural network controlled power distribution element |
| US6392386B2 (en) * | 2000-03-16 | 2002-05-21 | Cochlear Limited | Device and process for operating a rechargeable storage for electrical energy |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06240318A (ja) | 1993-02-15 | 1994-08-30 | Nkk Corp | 高炉装入物の分布制御方法 |
| US5714866A (en) * | 1994-09-08 | 1998-02-03 | National Semiconductor Corporation | Method and apparatus for fast battery charging using neural network fuzzy logic based control |
| CN1199050C (zh) * | 1998-05-28 | 2005-04-27 | 丰田自动车株式会社 | 电池充电状态的估计装置及电池恶化估计方法 |
| US6469512B2 (en) * | 2000-01-12 | 2002-10-22 | Honeywell International Inc. | System and method for determining battery state-of-health |
| DE10107583A1 (de) * | 2001-02-17 | 2002-08-29 | Vb Autobatterie Gmbh | Verfahren zur Bestimmung der Leistungsfähigkeit einer Speicherbatterie |
| JP2003168101A (ja) * | 2001-12-03 | 2003-06-13 | Mitsubishi Heavy Ind Ltd | 遺伝的アルゴリズムを用いた学習装置、学習方法 |
| US6534954B1 (en) * | 2002-01-10 | 2003-03-18 | Compact Power Inc. | Method and apparatus for a battery state of charge estimator |
| US20030184307A1 (en) * | 2002-02-19 | 2003-10-02 | Kozlowski James D. | Model-based predictive diagnostic tool for primary and secondary batteries |
| JP3935099B2 (ja) * | 2003-04-15 | 2007-06-20 | 株式会社デンソー | 車両用蓄電装置の内部状態検出システム |
| US20040253489A1 (en) * | 2003-06-12 | 2004-12-16 | Horgan Thomas J. | Technique and apparatus to control a fuel cell system |
| KR100651573B1 (ko) * | 2003-12-18 | 2006-11-29 | 주식회사 엘지화학 | 신경망을 이용한 배터리 잔존량 추정 장치 및 방법 |
| US7076350B2 (en) * | 2003-12-19 | 2006-07-11 | Lear Corporation | Vehicle energy management system using prognostics |
-
2006
- 2006-06-12 KR KR1020060052477A patent/KR100793616B1/ko active Active
- 2006-06-13 JP JP2008515628A patent/JP5160416B2/ja active Active
- 2006-06-13 WO PCT/KR2006/002237 patent/WO2006135175A1/en not_active Ceased
- 2006-06-13 US US11/452,007 patent/US20070005276A1/en not_active Abandoned
- 2006-06-13 TW TW095120940A patent/TWI320977B/zh active
- 2006-06-13 CN CN2006800212282A patent/CN101198922B/zh active Active
- 2006-06-13 EP EP06768835.8A patent/EP1896925B1/en active Active
-
2010
- 2010-08-26 US US12/869,242 patent/US8626679B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6064180A (en) * | 1996-10-29 | 2000-05-16 | General Motors Corporation | Method and apparatus for determining battery state-of-charge using neural network architecture |
| US6011379A (en) * | 1997-03-12 | 2000-01-04 | U.S. Nanocorp, Inc. | Method for determining state-of-charge using an intelligent system |
| US6369545B1 (en) * | 1999-08-17 | 2002-04-09 | Lockheed Martin Corporation | Neural network controlled power distribution element |
| US6392386B2 (en) * | 2000-03-16 | 2002-05-21 | Cochlear Limited | Device and process for operating a rechargeable storage for electrical energy |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101020904B1 (ko) * | 2008-12-03 | 2011-03-09 | 현대자동차주식회사 | 자동차의 배터리 잔존용량 계산 시스템 및 방법 |
| US11183715B2 (en) | 2017-11-28 | 2021-11-23 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating state of battery |
| WO2020105812A1 (ko) * | 2018-11-22 | 2020-05-28 | 제주대학교 산학협력단 | 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법 |
| CN111081067A (zh) * | 2019-12-27 | 2020-04-28 | 武汉大学 | 车联网环境下基于iga-bp神经网络的车辆碰撞预警系统及方法 |
| US11830991B2 (en) | 2020-08-14 | 2023-11-28 | Korea Power Cell Co., Ltd. | Method and apparatus based on neural network for pre-diagnosing defect and fire in battery cell |
| US11714134B2 (en) | 2020-11-19 | 2023-08-01 | Electronics And Telecommunications Research Institute | Device and method for predicting state of battery |
| KR20220089200A (ko) | 2020-12-21 | 2022-06-28 | 경북대학교 산학협력단 | 신경회로망을 이용한 배터리의 상태 추정과 모니터링 방법 및 장치 |
| WO2023149741A1 (ko) * | 2022-02-04 | 2023-08-10 | 한양대학교 산학협력단 | 메타 학습 기반의 배터리 soc 추정 방법 및 장치 |
| KR20230118235A (ko) * | 2022-02-04 | 2023-08-11 | 한양대학교 산학협력단 | 메타 학습 기반의 배터리 soc 추정 방법 및 장치 |
| KR102697655B1 (ko) * | 2022-02-04 | 2024-08-21 | 한양대학교 산학협력단 | 메타 학습 기반의 배터리 soc 추정 방법 및 장치 |
| EP4467998A4 (en) * | 2022-02-04 | 2025-12-03 | Iucf Hyu | METHOD AND DEVICE FOR ESTIMATING THE STATE OF CHARGE OF A BATTERY BASED ON META-LEARNING |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20060129962A (ko) | 2006-12-18 |
| US20070005276A1 (en) | 2007-01-04 |
| EP1896925A1 (en) | 2008-03-12 |
| TWI320977B (en) | 2010-02-21 |
| JP5160416B2 (ja) | 2013-03-13 |
| CN101198922A (zh) | 2008-06-11 |
| WO2006135175A1 (en) | 2006-12-21 |
| TW200707823A (en) | 2007-02-16 |
| CN101198922B (zh) | 2012-05-30 |
| EP1896925B1 (en) | 2020-10-21 |
| WO2006135175B1 (en) | 2007-03-29 |
| US20100324848A1 (en) | 2010-12-23 |
| EP1896925A4 (en) | 2017-10-04 |
| JP2008546989A (ja) | 2008-12-25 |
| US8626679B2 (en) | 2014-01-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100793616B1 (ko) | 배터리 잔존량 추정 장치 및 방법 | |
| KR100651573B1 (ko) | 신경망을 이용한 배터리 잔존량 추정 장치 및 방법 | |
| Charkhgard et al. | Design of adaptive H∞ filter for implementing on state‐of‐charge estimation based on battery state‐of‐charge‐varying modelling | |
| He et al. | State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation | |
| KR101992051B1 (ko) | 배터리 잔량 예측 방법 및 배터리 잔량 예측 시스템 | |
| EP4141460A1 (en) | Battery capacity measuring device and method, and battery control system comprising battery capacity measuring device | |
| EP1469321A1 (en) | Device for monitoring the state of charge of a battery | |
| JP5366166B2 (ja) | 二次電池の状態量演算方式 | |
| Fleischer et al. | On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system | |
| Alfi et al. | Hybrid state of charge estimation for lithium‐ion batteries: design and implementation | |
| Samadani et al. | A review study of methods for lithium-ion battery health monitoring and remaining life estimation in hybrid electric vehicles | |
| US11255916B2 (en) | Method and device for monitoring a stable convergence behavior of a Kalman filter | |
| JP2018077199A (ja) | 推定装置 | |
| JP4587299B2 (ja) | 車両用蓄電装置の内部状態検出方式 | |
| Sakile et al. | Estimation of lithium‐ion battery state of charge for electric vehicles using a nonlinear state observer | |
| Maheshwari et al. | Modelling and State of Charge Estimation of Li-Ion Battery for Electric Vehicle | |
| Lagraoui et al. | Estimation of Lithium-Ion Battery State-of-Charge Using an Unscented Kalman Filter | |
| Padalale et al. | State of charge (soc) determination through extended kalman filter in battery management systems | |
| Liao | Enhanced Battery State of Charge Estimation by Machine Learning and Unscented Kalman Filter | |
| Mazzi et al. | PIL implementation of adaptive gain sliding mode observer and ANN for SOC estimation | |
| Fan et al. | A lithium-ion battery state of charge estimation method based on the fusion of data-driven and Kalman filter-based method | |
| Yan et al. | State-of-charge estimation of Lithium-ion batteries by Lebesgue sampling-based EKF method | |
| Wang | Lithium-Ion Battery SOC Estimation Using Deep Learning Neural Networks | |
| KR20220132319A (ko) | 차등 충전 상태에 기반하는 충전 상태 추정 장치 및 방법 | |
| Ogundana | State of Charge Estimation of Lithium Ion Battery for Electric Vehicle Application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20060612 |
|
| PA0201 | Request for examination | ||
| PG1501 | Laying open of application | ||
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070823 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20071231 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080103 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20080103 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| G170 | Re-publication after modification of scope of protection [patent] | ||
| PG1701 | Publication of correction | ||
| PR1001 | Payment of annual fee |
Payment date: 20110103 Start annual number: 4 End annual number: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20111229 Start annual number: 5 End annual number: 5 |
|
| FPAY | Annual fee payment |
Payment date: 20130102 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
Payment date: 20130102 Start annual number: 6 End annual number: 6 |
|
| FPAY | Annual fee payment |
Payment date: 20140102 Year of fee payment: 7 |
|
| PR1001 | Payment of annual fee |
Payment date: 20140102 Start annual number: 7 End annual number: 7 |
|
| FPAY | Annual fee payment |
Payment date: 20141231 Year of fee payment: 8 |
|
| PR1001 | Payment of annual fee |
Payment date: 20141231 Start annual number: 8 End annual number: 8 |
|
| FPAY | Annual fee payment |
Payment date: 20151229 Year of fee payment: 9 |
|
| PR1001 | Payment of annual fee |
Payment date: 20151229 Start annual number: 9 End annual number: 9 |
|
| FPAY | Annual fee payment |
Payment date: 20180102 Year of fee payment: 11 |
|
| PR1001 | Payment of annual fee |
Payment date: 20180102 Start annual number: 11 End annual number: 11 |
|
| FPAY | Annual fee payment |
Payment date: 20190102 Year of fee payment: 12 |
|
| PR1001 | Payment of annual fee |
Payment date: 20190102 Start annual number: 12 End annual number: 12 |
|
| FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 13 |
|
| PR1001 | Payment of annual fee |
Payment date: 20200102 Start annual number: 13 End annual number: 13 |
|
| PR1001 | Payment of annual fee |
Payment date: 20210104 Start annual number: 14 End annual number: 14 |
|
| PR1001 | Payment of annual fee |
Payment date: 20221226 Start annual number: 16 End annual number: 16 |