JPS6343714B2 - - Google Patents
Info
- Publication number
- JPS6343714B2 JPS6343714B2 JP5974480A JP5974480A JPS6343714B2 JP S6343714 B2 JPS6343714 B2 JP S6343714B2 JP 5974480 A JP5974480 A JP 5974480A JP 5974480 A JP5974480 A JP 5974480A JP S6343714 B2 JPS6343714 B2 JP S6343714B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- phase
- carrier
- underwater acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004458 analytical method Methods 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 239000002131 composite material Substances 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 19
- 238000000605 extraction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 6
- 230000010363 phase shift Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
本発明は、水中音響信号の方位計算方法、特
に、伝搬してきた水中音響信号をx軸方向信号と
y軸方向信号とに分けてセンサーで受信し、これ
らx軸成分信号とy軸成分信号を搬送周波数で直
交変調して得られる直交変調波および前記搬送波
周波数の位相を指示するための搬送波フエーズパ
イロツトからなる合成信号とし、これを遠隔地の
処理器へ伝送し、この伝送された信号にもとづい
て水中音響信号の方位を計算する方位計算方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for calculating the direction of an underwater acoustic signal, and in particular, the underwater acoustic signal that has been propagated is divided into an x-axis direction signal and a y-axis direction signal and received by a sensor, and these x-axis components are A composite signal consisting of an orthogonal modulated wave obtained by orthogonally modulating the signal and the y-axis component signal with a carrier frequency and a carrier phase pilot for indicating the phase of the carrier frequency is transmitted to a remote processor. , relates to an azimuth calculation method for calculating the azimuth of an underwater acoustic signal based on the transmitted signal.
一般に、センサーで受信される水中音響信号
は、x軸方向信号と、y軸方向信号とに分けて受
信され、この受信した信号を伝送して、遠隔地に
ある処理器で処理を行ない、前記水中音響信号が
いかなる方位から伝搬したきたかを算出する。 Generally, an underwater acoustic signal received by a sensor is divided into an x-axis direction signal and a y-axis direction signal, and the received signals are transmitted and processed by a processor located at a remote location. Calculate the direction from which the underwater acoustic signal propagated.
以下に、センサーで受信される水中音響信号に
ついて第1図を参照して説明する。 Below, underwater acoustic signals received by the sensor will be explained with reference to FIG.
第1図は、本発明ならびに従来技術における水
中音響信号を説明するための図で、水中音響信号
aがx軸と方位θをなす方向から伝搬してきたと
きセンサーではx軸方向信号axとy軸方向信号ay
とに分けて受信する。 FIG. 1 is a diagram for explaining an underwater acoustic signal in the present invention and the prior art. When an underwater acoustic signal a propagates from a direction forming an azimuth θ with the x-axis, the sensor detects an x-axis direction signal a x and a y Axial signal a y
and receive it separately.
水中音響信号aは同時に多方向からそれぞれ強
度および周波数を異に発生されセンサーで受信さ
れる。それゆえ、水中音響信号aは水中音響信号
a(1)〜a(N)の集合として受信され、K番目の
水中音響信号a(K)との内で(1)式の関係となつてい
る。 The underwater acoustic signal a is simultaneously generated from multiple directions with different intensities and frequencies and is received by the sensor. Therefore, underwater acoustic signal a is received as a set of underwater acoustic signals a(1) to a(N), and has the relationship of equation (1) with K-th underwater acoustic signal a(K). .
a=N
〓K=1
a(K) …(1)
また、水中音響信号a(K)のx軸方向信号ax(K)、
y軸方向信号ay(K)については、次の(2)式および(3)
式の関係となつている。 a= N 〓 K=1 a(K) …(1) Also, the x-axis direction signal a x (K) of the underwater acoustic signal a(K),
For the y-axis direction signal a y (K), the following equations (2) and (3) are used.
The relationship is as follows.
ax=N
〓K=1
ax(K) …(2)
ay=N
〓K=1
ay(K) …(3)
いま、K番目の水中音響信号a(K)は、信号周波
数ωK、位相差αK、強度AKとすれば(4)式のように
表わされる。 a x = N 〓 K=1 a x (K) …(2) a y = N 〓 K=1 a y (K) …(3) Now, the K-th underwater acoustic signal a(K) has a signal frequency of If ω K , phase difference α K , and intensity A K are expressed as equation (4).
a(K)=AKsin(ωKt+αK …(4)
この水中音響信号a(K)が方位θKから伝搬してき
たとすると、そのx軸方向信号ax(K)およびy軸方
向信号ay(K)はそれぞれ(5)、(6)式で表わされる。 a (K) = A K sin (ω K t + α K … (4) If this underwater acoustic signal a (K) propagates from the direction θ K , its x-axis direction signal a x(K) and y-axis direction signal a y(K) are expressed by equations (5) and (6), respectively.
ax(K)=AKsin(ωKt+αK)cosθK …(5)
ay(K)=AKsin(ωKt+αK)sinθK …(6)
このx軸方向信号axおよびy軸方向信号ayは、
センサーで分けて受信され、処理器が遠隔地にあ
るときには、このx軸方向信号axおよびy軸方向
信号ayをセンサーから処理器に伝送するために、
センサーでx軸方向信号axとy軸方向信号ayとを
搬送周波数ωで直交変調して(7)式に示す直交変調
波S(t)を発生させる。a x (K) = A K sin (ω K t + α K ) cosθ K … (5) a y (K) = A K sin (ω K t + α K ) sin θ K … (6) This x-axis direction signal a x and The y-axis direction signal a y is
When they are received separately by the sensor and the processor is located at a remote location, in order to transmit the x-axis direction signal a x and the y-axis direction signal a y from the sensor to the processor,
The sensor orthogonally modulates the x-axis direction signal a x and the y-axis direction signal a y at a carrier frequency ω to generate an orthogonally modulated wave S(t) shown in equation (7).
S(t)=N
〓K=1
SK(t) …(7)
ここで、直交変調波SK(t)は直交変調されて
いるので(8)式のようになる。 S(t)= N 〓 K=1 S K (t)...(7) Here, since the orthogonally modulated wave S K (t) is orthogonally modulated, it becomes as shown in equation (8).
SK(t)=ax(K)cosωt−ay(K)sinωt
=AKsin(ωKt+αK)・cos(ωt+θK) …(8)
従来の水中音響信号の方位計算方式は、前述の
ように得られた直交変調波S(t)とともに、復
調の際に位相情報を確認するためには搬送波フエ
ーズパイロツトP(t)を、また周波数情報の確
認のためには周波数パイロツトF(t)を利用し、
これら3つの信号を合成して伝送合成信号bとし
てセンサーから処理器に送出する。 S K (t) = a x (K) cosωt−a y(K) sinωt = A K sin (ω K t + α K )・cos (ωt + θ K ) …(8) The conventional method for calculating the direction of underwater acoustic signals is as follows: Along with the orthogonal modulated wave S(t) obtained as described above, a carrier phase pilot P(t) is used to confirm the phase information during demodulation, and a frequency pilot F is used to confirm the frequency information. Using (t),
These three signals are combined and sent from the sensor to the processor as a transmission composite signal b.
ここで、伝送合成信号bは(9)式のように表わさ
れ、また、搬送波フエーズパイロツトP(t)は
(10)式のように、周波数パイロツトF(t)は(11)式
のように表わされる。 Here, the transmitted composite signal b is expressed as in equation (9), and the carrier phase pilot P(t) is
As in equation (10), the frequency pilot F(t) is expressed as in equation (11).
b=S(t)+P(t)+F(t) …(9)
P(t)=Bcosωt …(10)
F(t)=Ccos(ωt/2) …(11)
次に、従来の水中音響信号の方位計算方法を図
面を参照して説明する。 b=S(t)+P(t)+F(t)...(9) P(t)=Bcosωt...(10) F(t)=Ccos(ωt/2)...(11) Next, conventional underwater acoustics A method for calculating the direction of a signal will be explained with reference to the drawings.
第2図は、従来の水中音響信号の方位計算方法
の一例を示すブロツク図である。 FIG. 2 is a block diagram showing an example of a conventional method for calculating the direction of an underwater acoustic signal.
センサーから伝送された伝送合成信号bは、伝
送信号分離回路1と、周波数変換信号抽出回路2
とに並列に供給される。 The transmission composite signal b transmitted from the sensor is sent to a transmission signal separation circuit 1 and a frequency conversion signal extraction circuit 2.
and are supplied in parallel.
この伝送信号分離回路1は、伝送合成信号bか
ら周波数パイロツトF(t)を除去して(12)式に示
す伝送信号cを得るための回路であり、周波数パ
イロツトF(t)を除去するためのフイルタを含
んでいる。 This transmission signal separation circuit 1 is a circuit for removing the frequency pilot F(t) from the transmission composite signal b to obtain the transmission signal c shown in equation (12). contains filters.
c=S(t)+P(t) …(12)
また、周波数変換信号抽出回路2は、伝送合成
信号bから(13)式に示す第1の周波数変換信号
1と、この第1の周波数変換1と位相が90゜だけ
ずれた(14)式に示す第2の周波数変換信号2と
を得るための回路で、周波数パイロツト分離回路
3と、てい倍回路4と、移相回路5と、位相誤差
除去回路6とで構成されている。 c=S(t)+P(t)...(12) Moreover, the frequency conversion signal extraction circuit 2 extracts the first frequency conversion signal shown in equation (13) from the transmission composite signal b.
1 and a second frequency conversion signal 2 shown in equation (14) whose phase is shifted by 90 degrees from the first frequency conversion 1. , a phase shift circuit 5 , and a phase error removal circuit 6 .
1=cosωt …(13)
2=sinωt …(14)
伝送された伝送合成信号bは、まず周波数パイ
ロツトF(t)だけを通過させるフイルタを含む
周波数パイロツト分離回路3に供給されて(15)
式で示される周波数パイロツトdが作成される。 1 = cosωt...(13) 2 = sinωt...(14) The transmitted transmission composite signal b is first supplied to the frequency pilot separation circuit 3 including a filter that allows only the frequency pilot F(t) to pass (15)
A frequency pilot d shown by the formula is created.
d=cos(ωt/2) …(15)
この周波数パイロツトdは、てい倍回路4でて
い倍されて、てい倍時に位相誤差を生じるので
(15A)式に示すてい倍波e1となる。 d=cos(ωt/2) (15) This frequency pilot d is multiplied by the multiplier circuit 4, and since a phase error occurs during multiplication, it becomes the multiplied wave e1 shown in equation (15A).
e1=cos(ωt+) …(15A)
このてい倍波e1は移相回路5に供給されて位相
が90゜だけずらされて、(16)式に示す移相信号e2
となる。 e 1 = cos (ωt +) ... (15A) This harmonic wave e 1 is supplied to the phase shift circuit 5 and its phase is shifted by 90°, resulting in a phase shift signal e 2 shown in equation (16).
becomes.
e2=sin(ωt+) …(16)
次に、伝送信号cと、てい倍波e1と、移相信号
e2とが位相誤差除去回路6に供給されて位相差
が消去され、搬送波の正確な周波数と位相を求め
ることにより、第1の周波数変換信号1と第2の
周波数変換信号2とが得られる。 e 2 = sin (ωt +) ... (16) Next, the transmission signal c, the harmonic e 1 , and the phase shift signal
e 2 is supplied to the phase error removal circuit 6 to eliminate the phase difference, and by determining the accurate frequency and phase of the carrier wave, the first frequency-converted signal 1 and the second frequency-converted signal 2 are obtained. .
この第1の周波数変換信号1と第2の周波数変
換信号2は、乗算回路7に供給されて、それぞれ
伝送信号cと乗算されて、(17)式に示す第1の
復調信号g1と(18)式に示す第2の復調信号g2と
なる。 The first frequency-converted signal 1 and the second frequency-converted signal 2 are supplied to a multiplier circuit 7, where they are multiplied by the transmission signal c, respectively, to produce the first demodulated signal g 1 and ( The second demodulated signal g2 shown in equation 18) is obtained.
g1={S(t)+P(t)}cosωt …(17)
g2={S(t)+P(t)}tinωt …(18)
ここで、第1の復調信号g1および第2の復調信
号g2はそれぞれ第1の復調信号g1(K)および第2の
復調信号g2(K)の集合として表わされ、この第1の
復調信号g1(K)および第2の復調信号g2(K)はそれぞ
れ(19)式および(20)式で表わされる。g 1 = {S(t)+P(t)} cosωt...(17) g 2 = {S(t)+P(t)}tinωt...(18) Here, the first demodulated signal g 1 and the second The demodulated signal g 2 is represented as a set of a first demodulated signal g 1 (K) and a second demodulated signal g 2 (K), respectively, and the first demodulated signal g 1 (K) and the second demodulated signal The signal g 2 (K) is expressed by equations (19) and (20), respectively.
なお、搬送波フエーズパイロツトの復調信号は
いずれも搬送波周波数の倍周波として表われる。 Note that the demodulated signal of the carrier phase pilot appears as a frequency double the carrier frequency.
g1(K)=AK′sin(ωKt+αK)cosθK
=(AK′/2)・cosθK
×ej〓Kt(sinαt−jcosαK)
+e-j〓Kt(sinαK+jcosαK)
…(19)
g2(K)=AK′sin(ωKt+αK)sinθK
=(AK′/2)sinθK
×ej〓Kt(sinαK−jcosαK)
+e-j〓Kt(sinαK+jcosαK)
…(20)
このようにして得られた第1の復調信号g1およ
び第2の復調信号g2は周波数分析部8に供給され
て分析帯域幅を|ω|以内に限定して周波数分析
が行なわれるがK番目の信号周波数ωKに限らず、
1番目からN番目までの信号周波数ω1−ωNがあ
れば、これらのすべてについて周波数分析が行な
われる。それゆえ、搬送波フエーズパイロツトの
復調信号は倍周波のため周波数分析時に除去され
る。すなわち、信号のS/N比の向上、および周
波数に変換することによつて信号周波数ω1〜ωN
のそれぞれの方位θ1〜θNの多方位信号に対処して
周波数分析が行なわれる。g 1 (K)=A K ′sin (ω K t+α K )cosθ K = (A K ′/2)・cosθ K ×e j 〓 Kt (sinαt−jcosα K ) +e -j 〓 Kt (sinα K +jcosα K ) …(19) g 2 (K)=A K ′sin (ω K t+α K ) sinθ K = (A K ′/2) sinθ K ×e j 〓 Kt (sinα K −jcosα K ) +e -j 〓 Kt (sinα K + jcosα K ) ...(20) The first demodulated signal g 1 and the second demodulated signal g 2 obtained in this way are supplied to the frequency analyzer 8 and the analysis bandwidth is within |ω| Although frequency analysis is limited to the Kth signal frequency ω K ,
If there are signal frequencies ω 1 −ω N from the first to the Nth, frequency analysis is performed for all of them. Therefore, the carrier phase pilot demodulated signal is frequency doubled and is therefore removed during frequency analysis. That is, by improving the S/N ratio of the signal and converting it into a frequency, the signal frequency ω 1 to ω N
Frequency analysis is performed on multi-directional signals of each direction θ 1 to θ N .
この第1の復調信号g1と第2の復調信号g2は周
波数分析部8に供給されて、第1の復調信号g1は
実数入力として第2の復調信号g2は虚数入力とし
てマイコンなどを利用してFFTによる周波数分
析が行なわれる。それゆえ、第1の復調信号g1(K)
および第2の復調信号g2(K)に対応して周波数分析
の結果、正領域の周波数スペクトルF(ωK)およ
び負領域の周波数スペクトルF(−ωK)が(21)
式および(22)式のように得られる。 The first demodulated signal g1 and the second demodulated signal g2 are supplied to a frequency analyzer 8, where the first demodulated signal g1 is a real number input and the second demodulated signal g2 is an imaginary number input, such as a microcomputer, etc. Frequency analysis is performed using FFT. Therefore, the first demodulated signal g 1 (K)
As a result of frequency analysis, the frequency spectrum F(ω K ) in the positive region and the frequency spectrum F(−ω K ) in the negative region are (21) corresponding to the second demodulated signal g 2 (K).
and (22).
F(ωK)=(AK′/2)
×(sinαKcosθK+cosαKsinθK)
+j(−cosαKcosθK+sinαKsinθK)
…(21)
F(−ωK)=(AK′/2)
×(sinαKcosθK−cosαKsinθK)
+j(cosαKcosθK+sinαK+sinθK)
…(22)
それゆえ、周波数分析部8は周波数スペクトル
F(ωK)の実数部分および虚数部分にそれぞれ対
応して(23)式に示す実数信号ReF(ωK)および
(24)式に示す虚数信号ImF(ωK)を発生し、周
波数スペクトルF(−ωK)の実数部分および虚数
部分にそれぞれ対応して(25)式に示す実数信号
ReF(−ωK)および(26)式に示す虚数信号ImF
(−ωK)を発生する。F(ω K )=(A K ′/2) ×(sinα K cosθ K +cosα K sinθ K ) +j(−cosα K cosθ K +sinα K sinθ K ) …(21) F(−ω K )=(A K '/2) × (sinα K cosθ K − cosα K sinθ K ) +j (cosα K cosθ K + sinα K + sinθ K )...(22) Therefore, the frequency analysis section 8 calculates the real part of the frequency spectrum F(ω K ) and The real number signal ReF (ω K ) shown in equation (23) and the imaginary number signal ImF (ω K ) shown in equation (24 ) are generated corresponding to the imaginary part, respectively, and the real part and Real signal shown in equation (25) corresponding to each imaginary part
ReF (−ω K ) and the imaginary signal ImF shown in equation (26)
(−ω K ) is generated.
ReF(ωK)=(AK′/2)
×(sinαKcosθK+cosαKsinθK)
…(23)
ImF(ωK)=(AK′/2)
×(−cosαKcosθK+sinαKθK)
…(24)
ReF(−ωK)=(AK′/2)
×(sinαKcosθK−cosαKsinθK)
…(25)
ImF(−ωK)=(AK′/2)
×(cosαKcosθK+sinαKsinθK)
…(26)
このため、周波数分析部8からは実数信号ReF
(ωK)の集合として(27)式に示す第1の実数信
号ma1と、虚数信号ImF(ωK)の集合として(28)
式に示す第1の虚数信号mb1と、実数信号ReF
(−ωK)の集合として(29)式に示す第2の実昌
信号ma2と、虚数信号ImF(−ωK)の集合として
(30)式に示す第2の虚数信号mb2とを出力する。ReF (ω K ) = (A K ′/2) × (sinα K cosθ K + cosα K sinθ K ) … (23) ImF (ω K ) = (A K ′/2) × (−cosα K cosθ K + sinα K θ K ) …(24) ReF(−ω K )=(A K ′/2) ×(sinα K cosθ K −cosα K sinθ K )…(25) ImF(−ω K )=(A K ′/2 ) × (cosα K cosθ K + sinα K sinθ K ) …(26) Therefore, the frequency analysis section 8 outputs the real number signal ReF
(ω K ) is the first real signal ma 1 shown in equation (27), and the imaginary signal ImF (ω K ) is (28)
The first imaginary signal m b1 shown in the formula and the real signal ReF
The second real signal m a2 shown in equation (29) as a set of (-ω K ), and the second imaginary signal m b2 shown in equation (30) as a set of imaginary signals ImF (-ω K ). Output.
ma1=N
〓K=1
ReF(ωK) …(27)
mb1=N
〓K=1
ImF(ωK) …(28)
ma2=N
〓K=1
ReF(−ωK) …(29)
mb2=N
〓K=1
ImF(−ωK)) …(30)
これらの第1の実数信号ma1、第1の虚数信号
mb1、第2の実数信号ma2、および第2の虚数信
号mb2パワースペクトル作成部9に供給されてそ
れぞれの信号周波数ω1〜ωNに対応してまず(31)
式に示すx軸成分実数信号XR(ωKと(32)式に示
すx軸成分虚数信号XI(ωK)と(33)式に示すy
軸成分実数信号YR(ωK)と(ωK)と(34)式に
示すy軸成分虚数信号YI(ωK)が作成される。 m a1 = N 〓 K=1 ReF(ω K ) …(27) m b1 = N 〓 K=1 ImF(ω K ) …(28) m a2 = N 〓 K=1 ReF(−ω K ) …( 29) m b2 = N 〓 K=1 ImF(−ω K )) …(30) These first real signal m a1 and first imaginary signal
m b1 , the second real number signal m a2 , and the second imaginary number signal m b2 are supplied to the power spectrum creation unit 9 and corresponding to the respective signal frequencies ω 1 to ω N , first (31)
The x-axis component real signal X R (ω K ) shown in equation (32), the x-axis component imaginary signal X I (ω K ) shown in equation (32), and y shown in equation (33)
The axis component real number signals Y R (ω K ) and (ω K ) and the y axis component imaginary number signal Y I (ω K ) shown in equation (34) are created.
XR(ωK)=ReF(ωK)+ReF(−ωK)
=AK′sinαKcosθK …(31)
XI(ωK)=ImF(ωK)−ImF(−ωK)
=−AK′cosαKcosθK …(32)
YB(ωK)=ImF(ωK)+ImF(−ωK)
=AK′sinαKcosθK …(33)
YI(ωK)=ReF(ωK)−FeF(−ωK)
=AK′cosαKsinθK …(34)
さらに、パワースペクトル作成部9では(35)
式に示す第1のバワースペクトルP1(K)および
(36)式に示す第2のパワースペクトルP2(K)が作
成される。X R (ω K ) = ReF (ω K ) + ReF (−ω K ) = A K ′sinα K cosθ K … (31) X I (ω K ) = ImF (ω K ) − ImF (−ω K ) = −A K ′cosα K cosθ K … (32) Y B (ω K ) = ImF (ω K ) + ImF (−ω K ) = A K ′sinα K cosθ K … (33) Y I (ω K ) = ReF (ω K )−FeF(−ω K ) = A K ′cosα K sinθ K … (34) Furthermore, in the power spectrum creation section 9, (35)
A first power spectrum P 1 (K) shown in equation (36) and a second power spectrum P 2 (K) shown in equation (36) are created.
P1(K)=√{R(K)}2+{I(K)}2
=AK′cosθK …(35)
P2(K)=√{R(K)}2+{I(K)}2
=AK′sinθK …(36)
それゆえ、パワースペクトル作成部9からは第
1のパワースペクトルR1(K)の集合として(37)
式に示す第1のパワースペクトルP1および第2
のパワースペクトルP2(K)の集合として4(38)式
に示す第2のパワースペクトルP2が出力される。P 1 (K)=√{ R ( K )} 2 +{ I ( K )} 2 =A K ′cosθ K …(35) P 2 (K)=√{ R ( K )} 2 +{ I ( K )} 2 = A K ′sinθ K … (36) Therefore, from the power spectrum creation unit 9, as a set of first power spectra R 1 (K) (37)
The first power spectrum P 1 and the second power spectrum shown in Eq.
A second power spectrum P 2 shown in equation 4(38) is output as a set of power spectra P 2 (K).
P1=N
〓K=1
P1(K) …(37)
P2=N
〓K=1
P2(K) …(38)
このようにして作成された第1のパワースペク
トルP1および第2のパワースペクトルP2はそれ
ぞれ周波数に対応して方位計算部10に供給され
方位計算がなされて(39)式に示す方位信号pが
出力される。 P 1 = N 〓 K=1 P 1 (K) …(37) P 2 = N 〓 K=1 P 2 (K) …(38) The first power spectrum P 1 and the first power spectrum created in this way The power spectra P 2 of 2 are each supplied to the azimuth calculation unit 10 in correspondence with the frequency, the azimuth is calculated, and the azimuth signal p shown in equation (39) is output.
p=N
〓K=1
θK …(39)
ここで方位θKは第1のパワースペクトルP1(K)と
第2のパワースペクトルP2(K)によつて(40)式
に従がつて計算される。 p= N 〓 K=1 θ K …(39) Here, the orientation θ K is determined by the first power spectrum P 1 (K) and the second power spectrum P 2 (K) according to equation (40). It is calculated as follows.
θK=tan-1{P2(K)/P1(K)} …(40)
以上のようにして、従来の水中音響信号の方位
計算方式により、信号周波数ωKに対する方位θK
が発生せられる。 θ K =tan -1 {P 2 (K)/P 1 (K)} …(40) As described above, by using the conventional underwater acoustic signal azimuth calculation method, the azimuth θ K with respect to the signal frequency ω K is calculated.
is generated.
すなわち、従来の水中音響信号の方位計算方法
は、伝送合成信号bに含まれる周波数パイロツト
F(t)を分離して搬送波信号ωの正確な周波数
と位相を持つたてい倍波信号e1および移相信号e2
を求めるために、複数な回路構成を有する周波数
変換信号抽出回路2が必要であるという欠点があ
つた。 In other words, the conventional method for calculating the direction of an underwater acoustic signal separates the frequency pilot F(t) included in the transmitted composite signal b, and calculates the vertical harmonic signal e 1 and the shifted harmonic signal e 1 having the accurate frequency and phase of the carrier signal ω. phase signal e 2
In order to obtain this, a frequency conversion signal extraction circuit 2 having a plurality of circuit configurations is required.
本発明の目的は、周波数変換信号抽出回路を必
要としない水中音響信号の方位計算方法を提供す
ることにある。 An object of the present invention is to provide a method for calculating the direction of an underwater acoustic signal that does not require a frequency conversion signal extraction circuit.
本発明の水中音響信号の方位計算方法は、受信
した水中音響信号のx軸成分信号とy軸成分信号
を搬送周波数で直交変調して得られる直交変調波
および前記搬送周波数の位相を指示するための搬
送波フエーズパイロツトからなる合成信号の形式
で伝送された前記水中音響信号を受けてこれを復
調する際に必要な前記搬送波フエーズパイロツト
に近接した周波数を有する第1の周波数変換信号
およびこの第1の周波数変換信号と90度位相が異
る第2の周波数変換信号を発生する周波数変換信
号発生手段と、前記合成信号と前記第1の周波数
変換信号とを乗算して第1の復調信号を発生し前
記合成信号と前記第2の周波数変換信号とを乗算
して第2の復調信号を発生する乗算手段と、前記
第1の復調信号を実数入力とし前記第2の復調信
号を虚数入力として周波数分析を行ない第1の実
数信号と第1の虚数信号ならびに第2の実数信号
と第2の虚数信号からなる分析結果を発生する周
波数分析部と、前記第1の周波数変換信号および
前記第2の周波数変換信号に含まれる変換周波数
と前記搬送周波数との差分周波数そ前記分析結果
により求めこの差分周波数における第1の実数信
号と第1の虚数信号との比のアークタンジエント
により前記第1の周波数変換信号と搬送波フエー
ズパイロツトの位相差を求め前記差分周波数によ
り前記分析結果を周波数シフトして修正するとと
もに前記水中音響信号の各周波数ごとに前記分析
結果から位相角を求めこの各周波数ごとの位相角
を前記位相差で修正して各周波数ごとの方位を求
める方位計算手段とを備えて構成される。 The underwater acoustic signal azimuth calculation method of the present invention is for instructing an orthogonally modulated wave obtained by orthogonally modulating an x-axis component signal and a y-axis component signal of a received underwater acoustic signal with a carrier frequency and the phase of the carrier frequency. a first frequency-converted signal having a frequency close to that of the carrier phase pilot necessary for receiving and demodulating the underwater acoustic signal transmitted in the form of a composite signal consisting of a carrier phase pilot; a frequency-converted signal generating means for generating a second frequency-converted signal having a phase difference of 90 degrees from the first frequency-converted signal; and a first demodulated signal by multiplying the composite signal and the first frequency-converted signal. a multiplier for generating a second demodulated signal by multiplying the synthesized signal and the second frequency-converted signal; the first demodulated signal is a real input, and the second demodulated signal is an imaginary input; a frequency analysis section that performs frequency analysis and generates an analysis result consisting of a first real number signal, a first imaginary number signal, a second real number signal and a second imaginary number signal, and the first frequency converted signal and the second imaginary number signal. The difference frequency between the conversion frequency included in the frequency conversion signal of The phase difference between the frequency-converted signal and the carrier phase pilot is determined, and the analysis result is frequency-shifted and corrected using the difference frequency, and the phase angle is determined from the analysis result for each frequency of the underwater acoustic signal. and azimuth calculation means for correcting the phase angle by the phase difference to obtain the azimuth for each frequency.
本発明の水中音響信号の方位計算方法の原理
は、従来、伝送合成信号の中に含まれて伝送され
てきていた周波数パイロツトに従がつて抽出され
ていた搬送周波数ωを含む第1の周波数変換信号
および第2の周波数変換信号と近似した変換周波
数ω′を含む第1の周波数変換信号および第2の
周波数変換信号を内部的に発生させ、これを用い
て乗算を行なつたのちに周波数分析を行ない、こ
の分析の結果発生した搬送周波数ωと変換周波数
ω′との差分周波数Δω(=ω′−ω)で周波数シフ
トを行ない、かつ、第1の周波数変換信号が第2
の周波数信号の発生時に混入した搬送周波数ωの
位相との位相誤差′を修正して正しい方位を得る
ものである。 The principle of the underwater acoustic signal azimuth calculation method of the present invention is based on the first frequency conversion including the carrier frequency ω, which was conventionally extracted according to the frequency pilot included in the transmission composite signal and transmitted. A first frequency-converted signal and a second frequency-converted signal containing a converted frequency ω' approximate to the signal and the second frequency-converted signal are internally generated, and after multiplication is performed using these signals, frequency analysis is performed. The first frequency-converted signal is shifted by the difference frequency Δω (=ω'-ω) between the carrier frequency ω and the converted frequency ω' generated as a result of this analysis, and the first frequency-converted signal is changed to the second frequency-converted signal.
The correct orientation is obtained by correcting the phase error ′ with respect to the phase of the carrier frequency ω mixed in when the frequency signal of ω is generated.
次に、本発明の実施例について、図面を参照し
て説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第3図は本発明の一実施例を示すブロツク図
で、周波数変換信号発生回路11と乗算回路7
と、周波数分析部8と、方位計算部10とで構成
されている。 FIG. 3 is a block diagram showing an embodiment of the present invention, in which a frequency conversion signal generation circuit 11 and a multiplication circuit 7 are shown.
, a frequency analysis section 8 , and an azimuth calculation section 10 .
周波数変換信号発生回路11では搬送周波数ω
と近似した周波数の変換周波数ω′を持つ(41)
式に示す第1の周波数変換信号1′とこの第1の
周波数変換信号1′と90゜位相が異なる(42)式に
示す第2の周波数変換信号2′を発生する。ここ
で、周波数変換信号発生回路11は、センサーか
ら送出されてくる伝送合成信号から搬送周波数ω
を抽出するものではないので、上述した1と2は
周波数および位相が若干異なつている。1
′=cos(ω′t′) …(41)2
′=sin(ω′t+′) …(42)
ここで、搬送周波数ωと変換周波数ω′との差
分周波数△ωとの間では(43)式のようになつて
いる。 In the frequency conversion signal generation circuit 11, the carrier frequency ω
(41)
A second frequency converted signal 2 ' shown in equation (42) having a phase difference of 90° from the first frequency converted signal 1 ' shown in the equation (42 ) is generated. Here, the frequency conversion signal generation circuit 11 converts the carrier frequency ω from the transmission composite signal sent out from the sensor.
, so the frequencies and phases of 1 and 2 above are slightly different. 1 ′=cos(ω′t′)…(41) 2 ′=sin(ω′t+′)…(42) Here, between the difference frequency △ω between the carrier frequency ω and the conversion frequency ω′, ( 43) It looks like the formula.
ω′=ω+△ω …(43)
乗算回路7はセンサーから送出されてきた伝送
信号cと前述の第1の周波数変換信号1′および
第2の周波数変換信号2′のそれぞれと乗算を行
なつて(44)式に示す第1の復調信号g1′および
(45)式に示す第2の復調信号g2′を発生する。 ω'=ω+△ω...(43) The multiplier circuit 7 multiplies the transmission signal c sent from the sensor by each of the aforementioned first frequency-converted signal 1 ' and second frequency-converted signal 2 '. Then, a first demodulated signal g 1 ' shown in equation (44) and a second demodulated signal g 2 ' shown in equation (45) are generated.
なお、センサーから送出されてくる伝送合成信
号が第2図の従来例の場合と異り、伝送合成信号
bから周波数パイロツトdを除いた伝送信号cと
なつているのは、本実施例ではこの周波数パイロ
ツトdを、前述した第1および第2の周波数変換
信号f1′およびf2′の形式で独自に発生しているか
らである。 Note that, unlike the conventional example shown in FIG. 2, the transmission composite signal sent from the sensor is the transmission signal c obtained by removing the frequency pilot d from the transmission composite signal b in this embodiment. This is because the frequency pilot d is independently generated in the form of the first and second frequency conversion signals f 1 ' and f 2 ' described above.
g1′={S(t)+P(t)}・cos(ω′t+′)
=N
〓K=1
g1′(K) …(44)
g2′={S(t)+P(t)}・sin(ω′t+′)
=N
〓K=1
g2′(K) …(45)
ここで、第1の復調信号g1′(K)および第2の復
調信号g2′(K)はそれぞれ、次の(46)式および
(47)式で表わされる。また、復調に伴ない位相
誤差がさらに混入して位相誤差は″となる。g 1 ′={S(t)+P(t)}・cos(ω′t+′) = N 〓 K=1 g 1 ′(K) …(44) g 2 ′={S(t)+P(t )}・sin(ω′t+′) = N 〓 K=1 g 2 ′(K) …(45) Here, the first demodulated signal g 1 ′(K) and the second demodulated signal g 2 ′( K) are expressed by the following equations (46) and (47), respectively. Furthermore, a phase error accompanying demodulation is further mixed in, resulting in a phase error of ``.
周波数分析部8は、第1の復調信号g1′を実数
入力とし、第2の復調信号g2′を虚数入力として、
周波数分析を行なう。 The frequency analysis unit 8 receives the first demodulated signal g 1 ′ as a real input, and the second demodulated signal g 2 ′ as an imaginary input.
Perform frequency analysis.
それゆえ、第1の復調信号g1′(K)および第2の
復調信号g2′(K)に対応して周波数分析の結果、正
領域の周波数スペクトルF′(ωK△ω)、F′(ωK−△
ω)および負領域の周波数スペクトルF′(−ωK+
△ω)、(−ωK−△ω)は(48)〜(51)式のよ
うに得られる。 Therefore, as a result of frequency analysis, the frequency spectra F′(ω K △ω), F ′(ω K −△
ω) and the frequency spectrum F′(−ω K +
△ω) and (−ω K −△ω) are obtained as in equations (48) to (51).
F′(ωK+△ω)=(AK′/2){sin(αK+θK−
″)
−jcos(αK+θK−″)} …(48)
F′(ωK−△ω)=0 …(49)
F′(−ωK+△ω)=(AK′/2){sin(αK−θK
+″)
+jcos(αK−θK+″)} …(50)
F′(−ωK−△ω)=0 …(51)
それゆえ、周波数分析部8は周波数スペクトル
F′(ωK+△ω)の実数部分および虚数部分にそれ
ぞれ対応して(52)式に示す実数信号ReF′(ωK+
△ω)を発生し、周波数スペクトルF′(−ωK+△
ω)の実数部分および虚数部分にそれぞれ対応し
て(54)式に示す実数信号ReF′(−ωK+△ω)お
よびImF′(−ωK+△ω)を発生する。 F′(ω K +△ω)=(A K ′/2) {sin(α K +θ K −
″) −jcos(α K +θ K −″)} …(48) F′(ω K −△ω)=0 …(49) F′(−ω K +△ω)=(A K ′/2) {sin(α K −θ K
+″) +jcos(α K −θ K +″)} …(50) F′(−ω K −△ω)=0 …(51) Therefore, the frequency analyzer 8 calculates the frequency spectrum.
Corresponding to the real part and imaginary part of F′(ω K +△ω), the real number signal ReF′(ω K +
△ω), and the frequency spectrum F′(−ω K +△
Real number signals ReF' (-ω K +Δω) and ImF' (-ω K +Δω) shown in equation (54) are generated corresponding to the real part and imaginary part of ω), respectively.
ReF′(ωK+△ω)=
(AK′/2)sin(αK+θK−″) …(52)
ImF′(ωK+△ω)=
−(AK′/2)cos(αK+θK−″) …(53)
ReF′(−ωK+△ω)=
(AK′/2)sin(αK−θK+″) …(54)
ImF′(−ωK+△ω)=
(AK′/2)cos(αK−θK+″) …(55)
従つて、周波数分析部8からは実数信号
ReF′(ωK+△ω)の集合として(56)式に示す第
1の実数信号ma1′と、虚数信号ImF′(ωK+△ω)
の集合として(57)式に示す第1の虚数信号
mb1′と、実数信号ReF′(−ωK+△ω)の集合と
して(58)式に示す第2の実数信号ma2′と、虚
数信号ImF′(−ωK+△ω)の集合として(59)式
に示す第2の虚数信号mb2′を出力する。ReF′(ω K +△ω)= (A K ′/2) sin(α K +θ K −″) …(52) ImF′(ω K +△ω)= −(A K ′/2) cos( α K +θ K −″) …(53) ReF′(−ω K +△ω)= (A K ′/2) sin(α K −θ K +″) …(54) ImF′(−ω K + △ω) = (A K ′/2) cos (α K −θ K +″) … (55) Therefore, the frequency analysis section 8 outputs a real number signal.
The first real signal m a1 ′ shown in equation (56) as a set of ReF′(ω K +△ω) and the imaginary signal ImF′(ω K +△ω)
The first imaginary signal shown in equation (57) as a set of
m b1 ′, the second real signal m a2 ′ shown in equation (58) as a set of real signals ReF′ (−ω K +△ω), and a set of imaginary signals ImF′ (−ω K +△ω) Then, the second imaginary signal m b2 ' shown in equation (59) is output.
ma1′=N
〓K=1
ReF′(ωK+△ω) …(56)
mb1′=N
〓K=1
ImF′(ωK+△ω) …(57)
ma2′=N
〓K=1
ReF′(−ωK+△ω) …(58)
mb2′=N
〓K=1
ImF′(−ωK+△ω) …(59)
これらの第1の実数信号ma1′、第1の虚数信
号mb1′、第2の実数信号ma2′および第2の虚数
信号mb2′が方位計算部12に供給される。m a1 ′= N 〓 K=1 ReF′(ω K +△ω) …(56) m b1 ′= N 〓 K=1 ImF′(ω K +△ω) …(57) m a2 ′= N 〓 K=1 ReF′(−ω K +△ω) …(58) m b2 ′= N 〓 K=1 ImF′(−ω K +△ω) …(59) These first real signals m a1 ′ , a first imaginary signal m b1 ′, a second real signal m a2 ′, and a second imaginary signal m b2 ′ are supplied to the azimuth calculating section 12 .
方位計算部12では、まず、搬送周波数ωと変
換周波数ω′との差分周波数△ωおよび位相誤差
′が求められる。 In the azimuth calculating section 12, first, a differential frequency Δω and a phase error' between the carrier frequency ω and the conversion frequency ω' are determined.
すなわち、差分周波数△ωは信号周波数ωKが
搬送周波数ωであり、位相差αKがπ/2、方位θK
が“0”である搬送波周波数パイロツトP(t)
から求められる。 That is, the difference frequency △ω is such that the signal frequency ω K is the carrier frequency ω, the phase difference α K is π/2, and the orientation θ K
The carrier frequency pilot P(t) where is “0”
required from.
すなわち、差分周波数△ωに対する周波数スペ
クトルF′(△ω)、F′(−△ω)はそれぞれ(60)、
(61)で示される。 In other words, the frequency spectra F′(△ω) and F′(−△ω) for the difference frequency △ω are (60), respectively.
(61).
F′(△ω)=cos″+jsin″ …(60)
F′(−△ω)=cos″−jsin″ …(61)
それゆえ、差分周波数△ωにおける第1の実数
信号ReF′(△ω)、第1の虚数信号ImF′(△ω)は
それぞれ(62)、(63)で示される。F′(△ω)=cos″+jsin″…(60) F′(−△ω)=cos″−jsin″…(61) Therefore, the first real signal ReF′(△ω ) and the first imaginary signal ImF'(Δω) are shown as (62) and (63), respectively.
ReF′(△ω)=cos″ …(62)
ImF′(△ω)=sin″ …(63)
それゆえ、位相誤差″は(64)に従がつて求
められる。 ReF'(△ω)=cos''...(62) ImF'(△ω)=sin''...(63) Therefore, the phase error'' is obtained according to (64).
″=tan-1{ImF′(△ω)/ReF′(△ω) …(64)
次いで、上述の(52)、(53)式から位相角β1を
求めると(65)式のようになり、また、(54)、
(55)式から位相角β2を求めると(66)式のよう
になる。″=tan -1 {ImF′(△ω)/ReF′(△ω) …(64) Next, if we calculate the phase angle β 1 from equations (52) and (53) above, we get equation (65). becomes, also, (54),
If we calculate the phase angle β 2 from equation (55), we get equation (66).
β1=−(αK+θK−″)=tan-1{ReF′ (ωK+△ω)/ImF′(ωK+△ω)} (65) β2=αK−θK+″=tan-1{ReF′ (−ωK+△ω)/ImF′(−ωK+△ω)} (66) それゆえ、位相角γは(67)式のようになる。β 1 =−(α K +θ K −″)=tan -1 {ReF′ (ω K +△ω)/ImF′(ω K +△ω)} (65) β 2 = α K −θ K +″ = tan -1 {ReF′ (−ω K +△ω)/ImF′ (−ω K +△ω)} (66) Therefore, the phase angle γ is as shown in equation (67).
γ=−(β1+β2)/2=θK−″… (67) それゆえ、方位θKは(68)式のようになる。 γ=−(β 1 +β 2 )/2=θ K −″… (67) Therefore, the orientation θ K is as shown in equation (68).
θK=γ+″
=tan-1{ImF′(△ω)/ReF′(△ω)}
−1/2tan-1{ReF′(ωK+△ω)
/ImF′(ωK+△ω)}=1/2tan-1
{ReF′(−ωK+△ω)/ImF′(−ωK+△ω)}
…(68)
(68)式から明らかな如く、本実施例の方位計
算方法では周波数分析結果の第1の実数信号
ma1′と第1の虚数信号mb1′、および第2の実数
信号ma2′と第2の虚数信号mb2′として示される
ReF′(ωK+△ω)の集合とImF′(−ωK+△ω)の
集合とImF′(−ωK+△ω)の集合のみを利用する
ことによつて方位θKが求まり、従つてパワースペ
クトルを独立的に求めることは不要である。 θ K =γ+″ =tan -1 {ImF′(△ω)/ReF′(△ω)} −1/2tan -1 {ReF′(ω K +△ω) /ImF′(ω K +△ω) }=1/2tan -1 {ReF′(−ω K +△ω)/ImF′(−ω K +△ω)}
...(68) As is clear from equation (68), in the direction calculation method of this embodiment, the first real number signal of the frequency analysis result is
m a1 ′ and the first imaginary signal m b1 ′, and the second real signal m a2 ′ and the second imaginary signal m b2 ′.
The orientation θ K can be found by using only the set of ReF′(ω K +△ω), the set of ImF′(−ω K +△ω), and the set of ImF′(−ω K +△ω). , so it is not necessary to determine the power spectrum independently.
以上に示すように第2図に示す周波数変換信号
抽出回路2の代りに周波数変換信号発生回路11
をつけることにより、周波数パイロツト分離回路
3、てい倍回路4、移相回路5、位相誤差除去回
路6からなる周波数変換信号抽出回路2が不要と
なり、センサーからの入力も直交変調波S(t)
と搬送波フエーズパイロツトP(t)だけで良い。 As shown above, a frequency conversion signal generation circuit 11 is used instead of the frequency conversion signal extraction circuit 2 shown in FIG.
By adding , the frequency conversion signal extraction circuit 2 consisting of the frequency pilot separation circuit 3, multiplier circuit 4, phase shift circuit 5, and phase error removal circuit 6 is no longer necessary, and the input from the sensor is also the quadrature modulated wave S(t).
and carrier wave phase pilot P(t) are all that is required.
本発明の水中音響信号の方位計算方法は、方位
計算部が搬送周波数ωと復調の際に独自に発生す
る変換周波数ω′との差分周波△ωを求め、復調
された信号をこの差分周波数だけシフトし修正す
ることと、前記ωとω′との位相誤差の作成なら
びに修正機能を追加して保有することにより、複
雑な回路構成の周波数変換信号抽出回路の代り
に、処理器変換信号発生回路を用いることができ
るので、複雑な回路構成を有する周波数変換信号
抽出回路が不要となり回路構成が簡素化できると
いう効果がある。 In the underwater acoustic signal azimuth calculation method of the present invention, the azimuth calculation section calculates the difference frequency △ω between the carrier frequency ω and the conversion frequency ω′ that is uniquely generated during demodulation, and then divides the demodulated signal by this difference frequency. By additionally having functions for shifting and correcting the phase error between ω and ω′ and correcting it, a processor conversion signal generation circuit can be used instead of a frequency conversion signal extraction circuit with a complicated circuit configuration. can be used, there is an effect that a frequency conversion signal extracting circuit having a complicated circuit configuration is unnecessary and the circuit configuration can be simplified.
すなわち、本発明の水中音響信号の方位計算方
法は、搬送波周波数に近い周波数変換信号を用い
てこれを中心とする帯域で複素数入力による周波
数分析を行い、その結果を用いて、方位計算及び
復調を行なうように構成することにより、方位を
計算するための回路の簡易化を達成できるという
効果がある。 That is, the method for calculating the direction of an underwater acoustic signal according to the present invention uses a frequency-converted signal close to the carrier frequency, performs frequency analysis using complex number input in a band centered on this signal, and uses the result to perform direction calculation and demodulation. By configuring it to do this, it is possible to simplify the circuit for calculating the direction.
第1図は本発明ならびに従来技術における水中
音響信号を説明するための図、第2図は、従来の
一例を示すブロツク図、第3図は、本発明の一実
施例を示すブロツク図である。
1……伝送信号分離回路、2……周波数変換信
号抽出回路、3……周波数パイロツト分離回路、
4……てい倍回路、5……移送回路、6……位相
誤差除去回路、7……乗算回路、8……周波数分
折部、9……パワースペクトル作成部、10……
方位計算部、11……周波数変換信号発生回路、
12……方位計算部、a……水中音響信号、ax…
…x軸方向信号、ay……y軸方向信号、b……伝
送合成信号、c……伝送信号、d……周波数パイ
ロツト、e1……てい倍波、e2……移相信号、1,
1′……第1の周波数変換信号、2,2′……第2
の周波数変換信号、g1,g1′……第1の復調信号、
g2,g2′……第2の復調信号、ma1,ma2,ma1′,
ma2′……実数信号、mb1,mb2,mb2′,mb2′……
虚数信号、P1……第1のパワースペクトル、P2
……第2のパワースペクトル、q……方位信号、
ω……搬送波周波数、ωK……信号周波数、ω′…
…変換周波数、△ω……差分周波数、,′,
″……位相誤差、θK……方位。
Fig. 1 is a diagram for explaining underwater acoustic signals according to the present invention and the prior art, Fig. 2 is a block diagram showing an example of the conventional technology, and Fig. 3 is a block diagram showing an embodiment of the present invention. . 1... Transmission signal separation circuit, 2... Frequency conversion signal extraction circuit, 3... Frequency pilot separation circuit,
4... Multiplication circuit, 5... Transfer circuit, 6... Phase error removal circuit, 7... Multiplication circuit, 8... Frequency splitting section, 9... Power spectrum creation section, 10...
Azimuth calculation unit, 11...frequency conversion signal generation circuit,
12...Azimuth calculation unit, a...Underwater acoustic signal, a x ...
...x-axis direction signal, a y ...y-axis direction signal, b ... transmission composite signal, c ... transmission signal, d ... frequency pilot, e 1 ... harmonic, e 2 ... phase shift signal, 1 ,
1 '...first frequency converted signal, 2 , 2 '...second
frequency converted signals, g 1 , g 1 ′...first demodulated signals,
g 2 , g 2 ′...second demodulated signal, m a1 , m a2 , m a1 ′,
m a2 ′……real number signal, m b1 , m b2 , m b2 ′, m b2 ′……
Imaginary signal, P 1 ...first power spectrum, P 2
...Second power spectrum, q...Direction signal,
ω...carrier frequency, ω K ...signal frequency, ω′...
...Conversion frequency, △ω...Difference frequency, ′,
″…Phase error, θ K …Azimuth.
Claims (1)
成分信号を搬送周波数で直交変調して得られる直
交変調波および前記搬送周波数の位相を指示する
ための搬送波フエーズパイロツトからなる合成信
号の形式で伝送された前記水中音響信号を受けて
これを復調する際に必要な前記搬送波フエーズパ
イロツトに近接した周波数を有する第1の周波数
変換信号およびこの第1の周波数変換信号と90度
位相が異る第2の周波変換信号を発生する周波数
変換信号発生手段と、前記合成信号と前記第1の
周波数変換信号とを乗算して第1の復調信号を発
生し前記合成信号と前記第2の周波数変換信号と
を乗算して第2の復調信号を発生する乗算手段
と、前記第1の復調信号を実数入力とし前記第2
の復調信号を虚数入力として周波数分析を行ない
第1の実数信号と第1の虚数信号ならびに第2の
実数信号と第2の虚数信号からなる分析結果を発
生する周波数分析手段と、前記第1の周波数変換
信号および前記第2の周波数変換信号に含まれる
変換周波数と前記搬送周波数との差分周波数を前
記分析結果により求めこの差分周波数における第
1の実数信号と第1の虚数信号との比のアークタ
ンジエント(arctangent)により前記第1の周波
数変換信号と搬送波フエーズパイロツトとの位相
差を求め前記差分周波数により前記分析結果を周
波数シフトして修正するとともに前記水中音響信
号の各周波数ごとに前記分析結果から位相角を求
めこの各周波数ごとの位相角を前記位相差で修正
して各周波数ごとの方位を求める方位計算手段と
を備えて受信した水中音響信号の方位計算を行な
うことを特徴とする水中音響信号の方位計算方
法。1. A composite signal format consisting of an orthogonally modulated wave obtained by orthogonally modulating the x-axis component signal and y-axis component signal of the received underwater acoustic signal with a carrier frequency, and a carrier wave phase pilot for indicating the phase of the carrier frequency. a first frequency-converted signal having a frequency close to the carrier phase pilot necessary for receiving and demodulating the underwater acoustic signal transmitted by the carrier wave; and a phase having a phase difference of 90 degrees from the first frequency-converted signal. a frequency-converted signal generating means for generating a second frequency-converted signal, which generates a first demodulated signal by multiplying the composite signal and the first frequency-converted signal; a multiplier for generating a second demodulated signal by multiplying the converted signal;
frequency analysis means for performing frequency analysis using the demodulated signal of the first imaginary number as an imaginary input to generate an analysis result consisting of a first real number signal, a first imaginary number signal, a second real number signal and a second imaginary number signal; A difference frequency between the conversion frequency included in the frequency conversion signal and the second frequency conversion signal and the carrier frequency is determined based on the analysis result, and an arc of the ratio between the first real number signal and the first imaginary number signal at this difference frequency. The phase difference between the first frequency-converted signal and the carrier phase pilot is determined by the arctangent, and the analysis result is frequency-shifted and corrected by the difference frequency, and the analysis is performed for each frequency of the underwater acoustic signal. and azimuth calculation means for calculating the phase angle from the result and correcting the phase angle for each frequency by the phase difference to calculate the azimuth for each frequency, thereby calculating the azimuth of the received underwater acoustic signal. A method for calculating the direction of underwater acoustic signals.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5974480A JPS56155872A (en) | 1980-05-06 | 1980-05-06 | Bearing calculation system of underwater acoustic signal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5974480A JPS56155872A (en) | 1980-05-06 | 1980-05-06 | Bearing calculation system of underwater acoustic signal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS56155872A JPS56155872A (en) | 1981-12-02 |
| JPS6343714B2 true JPS6343714B2 (en) | 1988-09-01 |
Family
ID=13122038
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5974480A Granted JPS56155872A (en) | 1980-05-06 | 1980-05-06 | Bearing calculation system of underwater acoustic signal |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS56155872A (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112345248B (en) * | 2019-08-09 | 2022-11-25 | 郑州工程技术学院 | Fault diagnosis method and device for rolling bearing |
-
1980
- 1980-05-06 JP JP5974480A patent/JPS56155872A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS56155872A (en) | 1981-12-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102057584B (en) | Apparatus and methods for direct quadrature sampling | |
| US4675614A (en) | Phase difference measurement system | |
| US6944231B2 (en) | Demodulation of multiple-carrier phase-modulated signals | |
| JP2874511B2 (en) | Balanced phase-amplitude baseband processor for quadrature detection receiver | |
| JP2764635B2 (en) | Demodulator | |
| JP4169393B2 (en) | Angle demodulator | |
| JPS6343714B2 (en) | ||
| US4567486A (en) | Phase difference measurement technique for VOR | |
| JP2000341353A (en) | Signal detector | |
| NO802606L (en) | DATA MODEM. | |
| JPH0463574B2 (en) | ||
| JPH06216650A (en) | Digital circuit for extracting phase signal and envelope signal of single-sideband signal | |
| JP2611983B2 (en) | Direction finder | |
| JPH08340366A (en) | Synchronous detection circuit, demodulator and qam demodulator | |
| JPH07336407A (en) | Demodulating device for quadrature amplitude modulation system | |
| EP2797225B1 (en) | Method of and apparatus for demodulating an amplitude modulated signal | |
| JPH0128469Y2 (en) | ||
| JPH08265381A (en) | Quadrature modulator | |
| JPH06105897B2 (en) | Interference compensation circuit | |
| JPS6082984A (en) | Direction finding signal processing device | |
| JPH1138113A (en) | Composite signal demultiplexer | |
| JPH07253464A (en) | Method and device for simulating hydrophone array | |
| JPH0425744B2 (en) | ||
| JPS6016761B2 (en) | Detection device for all carrier single sideband signals | |
| JPH08114464A (en) | Signal conversion circuit |