[go: up one dir, main page]

JPS59135573A - Identifying system of photo region - Google Patents

Identifying system of photo region

Info

Publication number
JPS59135573A
JPS59135573A JP58010373A JP1037383A JPS59135573A JP S59135573 A JPS59135573 A JP S59135573A JP 58010373 A JP58010373 A JP 58010373A JP 1037383 A JP1037383 A JP 1037383A JP S59135573 A JPS59135573 A JP S59135573A
Authority
JP
Japan
Prior art keywords
window
circuit
region
variable density
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58010373A
Other languages
Japanese (ja)
Other versions
JPH0685186B2 (en
Inventor
Toshiyuki Sakai
坂井 利之
Michihiko Mino
導彦 美濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58010373A priority Critical patent/JPH0685186B2/en
Publication of JPS59135573A publication Critical patent/JPS59135573A/en
Publication of JPH0685186B2 publication Critical patent/JPH0685186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Character Input (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To decide that the region of a discordance window of comparison is included in a photo region by observing the document pictures through a two-dimensional window of (mXn) picture element size together with a successive scan and comparing the variable density structure within the window with a basic edge pattern. CONSTITUTION:The variable density data of document pictures are stored in a buffer memory 1 by an amount equivalent to five lines and then delivered to a reference register 2 from upper three stages of the memory 1. The variable density data of a (3X3) picture element window are stored temporarily in the register 2 and then supplied to a pattern comparator 3 as well as to an arithmetic circuit 4. The comparator 3 compares the input picture element with the basic edge pattern and delivers a discordant output to a deciding circuit 6 if no coincidence is obtained from said comparison. Then the circuit 4 calculates the mean variable density value within the window from the (3X3) data and then compares this density value with the threshold value to apply an effective output to the circuit 6 when the mean variable density value is larger than the threshold value. The circuit 6 decides a region where (2X30) units of input signals continue as a photo region. Thus it is possible to identify the photo region in real time.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、文書画像中の写真領域を識別する方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for identifying photographic areas in a document image.

〔従来技術〕[Prior art]

文書画像を構成する要素としては一般に、文章、図、表
、グラフ、写真がある。この中、写真&1本質的に濃淡
情報が必要であるが、他は白黒2値情報として扱うこと
ができる。したがって、文書画像を忠実かつ効率良く蓄
積、検索、伝送、記録する場合には、文書画像中の写真
領域と他の領域を識別し、それぞれに最適な処理を施す
必要fJ−ある。
Generally, the elements constituting a document image include sentences, figures, tables, graphs, and photographs. Among these, the photo &1 essentially require shading information, but the others can be handled as black and white binary information. Therefore, in order to faithfully and efficiently store, search, transmit, and record document images, it is necessary to distinguish between photographic areas and other areas in the document image, and to apply optimal processing to each area.

例えばファクシミリにおいて、記録機構は一般に2値情
報しか記録できないので、文書画像データを2値化する
必要がある。この場合、文書画像中の写真領域以外はあ
る定まった閾値で単純に2値化すれば足りるが、写真領
域につ〜1ては組織的ディザ法等により2値化する必要
がある。
For example, in a facsimile, a recording mechanism can generally record only binary information, so it is necessary to convert document image data into a binary format. In this case, it is sufficient to simply binarize the areas other than the photo area in the document image using a certain predetermined threshold, but the photo area must be binarized using systematic dithering or the like.

このように、写真を含む文書画像を扱う場合、写真領域
の識別がしばしば必要になる。しかし、従来の写真領域
識別方式は例えば、文書画像の全領域について固定閾値
の2値化と組織的ディザ法による2値化とを別々に行い
、2値化データから写真領域を識別するという方式であ
り、極めて非能率的であるとともに、ハードウェア化も
困難であった。
As described above, when dealing with document images that include photographs, it is often necessary to identify photographic areas. However, conventional photo area identification methods, for example, separately perform binarization using a fixed threshold value and binarization using a systematic dithering method for the entire area of a document image, and then identify photo areas from the binarized data. This was extremely inefficient and difficult to implement in hardware.

〔目的〕〔the purpose〕

本発明の目的は、簡易なノ・−ドウエアで効率的に実施
でき、しかもリアルタイム処理の容易な新しい写真領域
識別方式を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new photographic area identification method that can be implemented efficiently using simple hardware and that can be easily processed in real time.

〔実施例〕〔Example〕

文書画像は、写真領域以外の図、表、文書等の部分はす
べて線図形とみなし得る。線図形は線の集合であり、線
のエツジ部(縁辺、j、端)における2次元の濃淡構造
は限られたものである。m X n画素サイズの窓で文
書画像を観測すれば、エツジ部では窓内の濃淡構造はエ
ツジ部固有の濃淡構造(基本エツジパターン)を呈する
。しかも、この基本エツジパターンは写真領域では殆ど
発生しない。したがって、m X n画素サイズの窓で
文書画像を順次走査しながら、窓内の濃淡構造と基本エ
ツジパターンとを比較すれば、窓の領域が線のエツジ部
であるか否かを判別できる。
In a document image, all parts of figures, tables, documents, etc. other than photographic areas can be considered to be line figures. A line figure is a collection of lines, and the two-dimensional shading structure at the edge portions (edges, j, ends) of the lines is limited. When a document image is observed through a window of m×n pixel size, the shading structure within the window at the edge portion exhibits a shading structure (basic edge pattern) unique to the edge portion. Furthermore, this basic edge pattern hardly occurs in photographic areas. Therefore, by sequentially scanning a document image with a window of m x n pixel size and comparing the shading structure within the window with the basic edge pattern, it can be determined whether the window area is the edge of a line or not.

本発明はか又る点に着目したもので、濃淡データとして
与えられる文書画像をm x n画素サイズの2次元の
窓で順次走査しながら観測し、窓内の濃淡構造を基本エ
ツジパターンと比較し、その比較が不一致の窓の領域を
写真領域に含まれると判定することを特徴とするもので
ある。
The present invention focuses on this point, and observes a document image given as gradation data while sequentially scanning it with a two-dimensional window of m x n pixel size, and compares the gradation structure within the window with the basic edge pattern. The method is characterized in that the area of the window where the comparison does not match is determined to be included in the photographic area.

本発明を実施する場合、文書画像の濃淡データに混入す
る雑音を考慮するのが好ましい。この雑音としては、文
書画像の原稿の地肌の濃度や汚れ、裏面側の文字等によ
る不要な濃淡情報成分がある。
When implementing the present invention, it is preferable to take into account noise mixed in gray scale data of a document image. This noise includes the density and dirt of the background of the document image, and unnecessary shading information components such as characters on the back side.

このような雑音に対処するには、窓内の平均濃淡値を調
べ、それがある閾値未満の窓を識別対象から除外すれば
よい。
To deal with such noise, it is sufficient to check the average gray value within the window and exclude windows for which the average gray value is less than a certain threshold value from the identification target.

また、線の内部においても、基本エツジパターン以外の
濃淡構造が観測される可能性がある。この可能性は一般
に少ないが、高精度の写真領域識別を達成するには、線
の内部と写真の領域とを精確に判別しなければならない
。この目的は後述のように、基本エツジパターンとの比
較が不一致となる窓がlXk個以上、2次元的に連続し
た場合にのみ、それら窓の領域を写真領域に含まれると
判定することにより達成できる。
Furthermore, there is a possibility that a shade structure other than the basic edge pattern may be observed inside the line. Although this possibility is generally small, in order to achieve highly accurate photographic area identification, it is necessary to accurately distinguish between the inside of a line and the photographic area. This purpose is achieved by determining that the window area is included in the photographic area only when there are 1Xk or more two-dimensionally consecutive windows that are inconsistent when compared with the basic edge pattern, as described below. can.

以下、図面を参照して、本発明を具体的に詳述する。Hereinafter, the present invention will be specifically described in detail with reference to the drawings.

3×3画素サイズの窓で文書画像を観測した場合、窓が
第1図に示すいずれかの位置に来ると、っその窓内の濃
淡構造が第2図に示すいずれかの基本エツジパターンと
一致する。ここで、第1図において3×3のメツシュは
1つの窓を示し、斜線部分は線を示す。また第2図にお
いて、Hはその画素の濃淡値がある閾値TH以上でなけ
ればならないという条件を意味し、Lはその画素の濃淡
値が別のある閾値TTJ(T、) T1)以下でなけれ
ばならないという条件を意味する。Fはその画素の濃淡
値が任意でよいという条件を意味する。
When a document image is observed through a 3 x 3 pixel size window, when the window comes to one of the positions shown in Figure 1, the shading structure within the window will match one of the basic edge patterns shown in Figure 2. Match. Here, in FIG. 1, a 3×3 mesh represents one window, and a shaded area represents a line. Furthermore, in FIG. 2, H means the condition that the gray value of the pixel must be greater than or equal to a certain threshold TH, and L means that the gray value of the pixel must be less than or equal to another certain threshold TTJ(T,) T1). means that the condition must be met. F means the condition that the gray value of the pixel may be arbitrary.

文書画像を8ビツトの濃淡データとして表し、閾値TH
9T1をそれぞれT□=90 、 T1=49とし、文
書画像中の文章領域において基本エラジノ(ターン以外
の濃淡構造を持つ窓が7Xk個連続する確率を調べた結
果を第3図に示す(lは副走査方向、kは主走査方向の
個数)。ただし、平均濃淡値が閾値TA=30未満の窓
は除外しである。
The document image is represented as 8-bit grayscale data, and the threshold value TH
Figure 3 shows the results of investigating the probability that 7Xk windows having a gradation structure other than turns (l is (in the sub-scanning direction, k is the number in the main-scanning direction), excluding windows whose average gray value is less than the threshold value TA=30.

第3図の(a) 、 (b) 、 (C)はそれぞれ日
本語(漢字力・な混じり)文章領域における確率分布を
示し、(a)は!=1、(b)はノー2、(C)は!=
3とした場合である。第3図の(d) j (e) 、
 (f)はそれぞれ英語文書領域における確率分布を示
し、(d)は/、、=1、(e)&家A=2、(f)は
l=3とした場合である」第3図から明らかなように、
文章領域にお(1ては、基本エツジパターン以外の濃淡
構造を呈する窓が3×(9)個以上連続することは実質
的に皆無とみなせ、実用上は2×加個以上連続する領域
は写真領域と判定しても問題がないことを実験により確
認している。
(a), (b), and (C) in Figure 3 each show the probability distribution in the Japanese (Kanji/Na mixture) text area, and (a) is! =1, (b) is no 2, (C) is! =
This is the case where it is set to 3. (d) j (e) in Figure 3,
(f) shows the probability distribution in the English document area, (d) is /, , = 1, (e) & house A = 2, and (f) is the case where l = 3.'' From Figure 3. As is clear,
In a text area (1), it is virtually impossible for there to be more than 3 x (9) consecutive windows exhibiting a shading structure other than the basic edge pattern; We have confirmed through experiments that there is no problem even if it is determined to be a photographic area.

次に、本発明の一実施例について第4因により説明する
Next, an embodiment of the present invention will be explained based on the fourth factor.

1はバッファメモリであり、文書画像の濃淡データ(8
ビツト)を5ライン分蓄積できるように5段のシフトレ
ジスタ構成となっている。濃淡データはバッファメモリ
1の最上段から入力され、順次下段ヘシフトされる。バ
ッファメモリ1の上側の3段から濃淡データが参照レジ
スタ2へJ式次出力され、同参照レジスタ2に3×3画
素の濃淡データが一時的に蓄積される。つまり、文書画
像を3×3画素サイズの窓で順次走置し、窓内の濃淡構
造のデータを参照レジスタ2に得るわけである。この3
×3画素の濃淡データはパターン比較回路3と演算回路
4に入力される。
1 is a buffer memory, which stores the density data (8
It has a five-stage shift register configuration so that it can store five lines of bits. The grayscale data is input from the top stage of the buffer memory 1 and is sequentially shifted to the lower stage. The grayscale data is output from the upper three stages of the buffer memory 1 to the reference register 2, and the grayscale data of 3×3 pixels is temporarily stored in the reference register 2. In other words, the document image is sequentially scanned in a 3×3 pixel size window, and the data of the shading structure within the window is obtained in the reference register 2. This 3
The grayscale data of ×3 pixels is input to a pattern comparison circuit 3 and an arithmetic circuit 4.

パターン比較回路3は、入力される3×3画素濃淡デー
タで表わされる窓内の濃淡構造を第2図の基本エツジパ
ターン(マスクパターン)ト比較し、いずれの基本エツ
ジパターンとも一紋しない場合に不一致信号を出力する
。演算回路4は、入力されする3×3画素濃淡データか
ら窓内の平均濃淡値TMを算出し、比較器5へ与える。
The pattern comparison circuit 3 compares the shading structure within the window represented by the input 3×3 pixel shading data with the basic edge pattern (mask pattern) shown in FIG. Outputs a mismatch signal. The arithmetic circuit 4 calculates the average gradation value TM within the window from the input 3×3 pixel gradation data and supplies it to the comparator 5.

この比較器5は平均濃淡値TMと前述の閾値TAとを比
較し、TM≧TAの場合のみ有効信号を出力する。
This comparator 5 compares the average gray value TM with the aforementioned threshold value TA, and outputs a valid signal only when TM≧TA.

上記の不一致信号と有効信号は判定回路6に入力される
。この判定回路6は、不一致信号および有効信号が入力
される窓(基本エツジパターン以外の濃淡構造を持ち、
閾値TA以上の平均濃淡値を持つ窓)が2×30個以上
連続する領域を写真領域と判定し、写真領域の濃淡デー
タがバッファメモリ1の最下段から出力される期間のみ
選択信号を出力する。
The above-mentioned mismatch signal and valid signal are input to the determination circuit 6. This judgment circuit 6 has a window (having a shading structure other than the basic edge pattern) into which the mismatch signal and the valid signal are input.
An area in which 2×30 or more consecutive windows (with an average gradation value equal to or higher than the threshold TA) are determined to be a photographic area, and a selection signal is output only during the period when the gradation data of the photographic area is output from the bottom stage of the buffer memory 1. .

バッファメモリlの最下段から出力される濃淡データは
、2値化回路7である固定した閾値で2値化され、同時
にディザ回路8で組織的ディザ法により2値化される。
The grayscale data outputted from the bottom stage of the buffer memory l is binarized by a fixed threshold value in a binarization circuit 7, and at the same time, it is binarized in a dither circuit 8 by a systematic dither method.

9は選択回路であり、判定回路6から選択信号が与えら
れる期間はディザ回路8の出力データを選択し、2値化
データとして出力するが、選択信号が与えられない期間
は2値化回路7の出力データを選択して2値化データと
して出力する。つまり本実施例では、写真領域の濃淡デ
ータは組織的ディザ法で2値化し、それ以外の領域の濃
淡データは固定−厘で2値化する。
9 is a selection circuit which selects the output data of the dither circuit 8 during a period when a selection signal is given from the determination circuit 6 and outputs it as binary data; however, during a period when a selection signal is not given, the output data from the dither circuit 7 is selected. output data is selected and output as binarized data. In other words, in this embodiment, the gradation data of the photographic area is binarized using the systematic dithering method, and the gradation data of other areas is binarized using the fixed dither method.

〔効果〕〔effect〕

本発明は以上に詳述したように、簡易なノ・−ドウエア
構成により、リアルタイム処理で写真領域を識別するこ
とができる効果を有するものである。
As described in detail above, the present invention has the effect of being able to identify photographic areas through real-time processing using a simple hardware configuration.

【図面の簡単な説明】 第1図は線のエツジ部と窓の位置関係を示す図、第2図
は基本エツジパターンの説明図、第3図は文章領域に2
いて基本エツジパターン以外の濃淡構造を持つ窓が7X
k個連続する確率を示す図、第4図は本発明の一実施例
の示す概略ブロック図である。 1・・・バッファメモリ、2・・・参照レジスタ、3・
・・パターン比較回路、4・・・演算回路、5・・・比
較回路、6・・・判定回路。 手続補正書(自発) 収入印紙金額 0円 昭和郭年5月13日 特許庁長官 着 杉 和 失敗 1、事件の表示  特願昭58−10373号2、発 
明の名称 写真領域識別方式 3、補正をする者 事件との関係  出願人 4、代理人   ・151 住  所  東京都渋谷区代々木2丁目38番12号 
錦鶏ビル201号5 補正により増加する発明の数 な
し6、補正の対象  明細書の「発明の詳細な説明」の
欄7、 補正の内容 明細書第6頁10〜11行目の「英語文書領域」を「英
語文章領域」に補正する。 以上
[Brief explanation of the drawings] Figure 1 is a diagram showing the positional relationship between the edge of the line and the window, Figure 2 is an explanatory diagram of the basic edge pattern, and Figure 3 is a diagram showing the positional relationship between the edge of the line and the window.
There are 7X windows with shading structures other than the basic edge pattern.
FIG. 4 is a schematic block diagram showing an embodiment of the present invention. 1...Buffer memory, 2...Reference register, 3.
...Pattern comparison circuit, 4. Arithmetic circuit, 5. Comparison circuit, 6. Judgment circuit. Procedural amendment (voluntary) Revenue stamp amount: 0 yen May 13, 1947, Director General of the Patent Office Kazu Sugi Failure 1, case indication Patent application No. 10373-1982 2, issued
Name Photographic area identification method 3, person making amendment Relationship to the case Applicant 4, agent ・151 Address 2-38-12 Yoyogi, Shibuya-ku, Tokyo
Kinkei Building No. 201 No. 5 Number of inventions increased by amendment None 6, Subject of amendment "Detailed explanation of the invention" column 7 of the specification, Contents of amendment "English document area" on page 6, lines 10-11 of the specification ” is corrected to “English sentence area”. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)文書画像中の写真領域を識別する写真領域識別方
式において、濃淡データとして与えられる文書画像を所
定のm x n al素サイズの2次元の窓で走査しな
がら観測し、その各窓内の濃淡構造を線のエツジ部に対
応する所定の濃淡構造と比較し、その比較が不一致の場
合に当該窓の領域を上記文書画像中の写真領域に含まれ
る′と判定することを特徴とする写真領域識別方式。
(1) In a photo area identification method that identifies photo areas in a document image, a document image given as grayscale data is observed while being scanned through a two-dimensional window with a predetermined m x n al element size, and each window is The shading structure of the window is compared with a predetermined shading structure corresponding to the edge portion of the line, and if the comparison does not match, the area of the window is determined to be included in the photographic area in the document image. Photo area identification method.
(2)濃淡構造の比較が不一致となる窓が所定のl×に
個以上、2次元的に連続する場合のみ、当該窓の領域を
写真領域に含まれると判定することを特徴とする特許請
求の範囲第1項記載の写真領域識別方式。
(2) A patent claim characterized in that only when a predetermined lx number or more of windows whose shading structures do not match are two-dimensionally continuous, the region of the window is determined to be included in the photographic region. The photographic area identification method described in item 1.
(3)所定の閾値以上の平均濃淡値を有する窓の領域の
み識別対象とすることを特徴とする特許請求の範囲第1
項または第2項記載の写真領域識別方式。
(3) Claim 1, characterized in that only the region of the window having an average gray value equal to or higher than a predetermined threshold value is to be identified.
2. Photographic area identification method as described in Section 2 or Section 2.
JP58010373A 1983-01-25 1983-01-25 Photo area identification device Expired - Lifetime JPH0685186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58010373A JPH0685186B2 (en) 1983-01-25 1983-01-25 Photo area identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010373A JPH0685186B2 (en) 1983-01-25 1983-01-25 Photo area identification device

Publications (2)

Publication Number Publication Date
JPS59135573A true JPS59135573A (en) 1984-08-03
JPH0685186B2 JPH0685186B2 (en) 1994-10-26

Family

ID=11748337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010373A Expired - Lifetime JPH0685186B2 (en) 1983-01-25 1983-01-25 Photo area identification device

Country Status (1)

Country Link
JP (1) JPH0685186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926251A (en) * 1987-04-07 1990-05-15 Kabushiki Kaisha Toshiba Color image processing apparatus with image corrector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100549A (en) * 1979-01-24 1980-07-31 Nec Corp Image region signal generating method
JPS57125580A (en) * 1981-01-02 1982-08-04 Ibm Threshould processing mode switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100549A (en) * 1979-01-24 1980-07-31 Nec Corp Image region signal generating method
JPS57125580A (en) * 1981-01-02 1982-08-04 Ibm Threshould processing mode switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926251A (en) * 1987-04-07 1990-05-15 Kabushiki Kaisha Toshiba Color image processing apparatus with image corrector

Also Published As

Publication number Publication date
JPH0685186B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
JP2702928B2 (en) Image input device
JPH02100575A (en) Picture processor
JPH08317197A (en) Image processing unit
JPH0787313A (en) Image processing method and image processing apparatus
US4408343A (en) Image enhancement for optical character readers
JPS59135573A (en) Identifying system of photo region
JPS6359272A (en) Picture processor
JP3336046B2 (en) Image area separation device
US7567725B2 (en) Edge smoothing filter for character recognition
JP3225138B2 (en) Image processing apparatus and image processing method
JPH10336441A (en) Image area attribute determination method
JP3358133B2 (en) Image processing device
JP3210378B2 (en) Image input device
JP2881066B2 (en) How to determine the attributes of text images
JP2853140B2 (en) Image area identification device
JP3436003B2 (en) Image processing device
JP2859603B2 (en) Method and apparatus for binarizing image data
JP3281786B2 (en) Braille copying machine
JPH09167207A (en) Image processor
JP2853141B2 (en) Image area identification device
JPS63308471A (en) Picture signal binarization device
JP2934971B2 (en) Image binarization processing device
JPH0442714B2 (en)
JPH0530349A (en) Binary picture generating method for document picture
JPH05342411A (en) Optical character reader