[go: up one dir, main page]

JPH076831B2 - Equipment diagnosis method - Google Patents

Equipment diagnosis method

Info

Publication number
JPH076831B2
JPH076831B2 JP2474588A JP2474588A JPH076831B2 JP H076831 B2 JPH076831 B2 JP H076831B2 JP 2474588 A JP2474588 A JP 2474588A JP 2474588 A JP2474588 A JP 2474588A JP H076831 B2 JPH076831 B2 JP H076831B2
Authority
JP
Japan
Prior art keywords
vibration
diagnostic index
spectrum
frequency
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2474588A
Other languages
Japanese (ja)
Other versions
JPH01199127A (en
Inventor
久盛 東藤
秀夫 柴田
充 千頭和
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP2474588A priority Critical patent/JPH076831B2/en
Publication of JPH01199127A publication Critical patent/JPH01199127A/en
Publication of JPH076831B2 publication Critical patent/JPH076831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、公共性の高いLNGプラント、火力発電所、そ
の他の設備に設置されるポンプ、送風機等の回転機械に
適用される設備診断方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for diagnosing equipment applied to rotary machines such as pumps and blowers installed in highly public LNG plants, thermal power plants, and other equipment. It is about.

[従来の技術] LNGプラント等の大型プラント又は設備の中に占める回
転機械の比率は非常に高く、その役割も重要である。こ
れら回転機械に異常又は故障が生じた場合、経済的損失
を生じることは当然のことながら、事故が拡大すると大
きな社会的問題に発展する。
[Prior Art] The ratio of rotary machines to large plants or equipment such as LNG plants is very high, and their role is also important. When an abnormality or a failure occurs in these rotating machines, economic loss naturally occurs, but when the accident spreads, it becomes a big social problem.

例えば、LNGプラントは都市ガス、発電設備等の供給源
として使用されているため、タンクからLNGを圧送するL
NGポンプが故障するとユーザー側に大きな損失を与える
と共に一般需要者にも被害を及ぼすことになる。そこ
で、斯かる問題を解決するために、ポンプケーシングの
代表的な部分に振動センサーを取付けて一定時間間隔で
振動計測を行い、計測した振動データについてフーリエ
解析を行って周波数軸上のデータに移し、処理して診断
指標を求め、診断指標からポンプの異常診断や劣化の予
知を行っている。
For example, an LNG plant is used as a supply source for city gas, power generation equipment, etc.
If the NG pump fails, it will cause a large loss to the user side and damage the general consumers. Therefore, in order to solve such a problem, a vibration sensor is attached to a typical part of the pump casing, vibration is measured at regular time intervals, Fourier analysis is performed on the measured vibration data, and the data is transferred to data on the frequency axis. Then, processing is performed to obtain a diagnostic index, and the pump is diagnosed for abnormality and prediction of deterioration is performed from the diagnostic index.

回転機械に適用される従来の設備診断方法をLNGポンプ
に適用する場合について第4図〜第6図(イ)(ロ)
(ハ)により説明すると、第4図中1はLNGポンプ、2
はケーシング、3はケーシング2内に上下部軸受4,4′
を介して回転自在に支持された垂直軸、5は垂直軸3に
複数段固着されたインペラー、6は垂直軸3及びインペ
ラー5を駆動する駆動装置、7はケーシング2外周の下
部軸受4′に近い位置に配設された加速度検出器或いは
変位検出器、8はLNGである。
Applying the conventional equipment diagnosis method applied to rotating machinery to LNG pumps Fig. 4 to Fig. 6 (a) (b)
Explaining with (C), 1 in FIG. 4 is an LNG pump, 2
Is the casing, 3 is the upper and lower bearings 4, 4'in the casing 2.
A vertical shaft 5 rotatably supported via a vertical shaft 3, an impeller fixed to the vertical shaft 3 in a plurality of stages, a driving device 6 for driving the vertical shaft 3 and the impeller 5, and a lower bearing 4'on the outer periphery of the casing 2. An acceleration detector or a displacement detector, which is arranged at a close position, 8 is an LNG.

LNGポンプ1の運転中に加速度検出器或いは変位検出器
7により加速度或いは変位を検出し、このデータの周波
数分析を行い、第5図に示すように加速度又は振幅等の
振動スペクトル分布を求める。
Acceleration or displacement is detected by the acceleration detector or displacement detector 7 during the operation of the LNG pump 1, and the frequency analysis of this data is performed to obtain a vibration spectrum distribution such as acceleration or amplitude as shown in FIG.

一般に、ポンプ等の回転機械の振動は、軸系(垂直軸3
及びインペラー5)、軸受系(軸受4,4′)、内部流体
系(LNG8)が起振源になって発生しており、軸系、軸受
系、内部流体系が発生する振動周波数は、主として0〜
500Hz、500Hz〜10KHz、10KHz〜20KHzの周波数帯域に分
布する。そこで、第5図に示す振動スペクトル分布を0
〜500Hz、500Hz〜10KHz、10KHz〜20KHzに区分して軸系
による周波数帯域A、軸受系による周波数帯域B、内部
流体系による周波数帯域Cに分け、計測した或る時点の
各周波数帯域A,B,Cによる振動レベルの平均値s,b,cを求
め、この振動レベルを第6図(イ)(ロ)(ハ)に示す
ように時系列に表示する。第6図(イ)は軸系、第6図
(ロ)は軸受系、第6図(ハ)は内部流体系の診断指標
を示している。
Generally, vibration of a rotary machine such as a pump is generated by a shaft system (vertical shaft 3
And the impeller 5), bearing system (bearings 4, 4 '), and internal fluid system (LNG8) are generated as vibration sources. The vibration frequency generated by the shaft system, bearing system, and internal fluid system is mainly 0 to
It is distributed in the frequency band of 500Hz, 500Hz-10KHz, 10KHz-20KHz. Therefore, the vibration spectrum distribution shown in FIG.
~ 500Hz, 500Hz ~ 10KHz, 10KHz ~ 20KHz divided into a frequency band A by the shaft system, a frequency band B by the bearing system, a frequency band C by the internal fluid system, each frequency band A, B measured at a certain point , C, the average values of the vibration levels s, b, and c are obtained, and the vibration levels are displayed in time series as shown in FIGS. 6 (a), (b), and (c). FIG. 6 (a) shows the shaft system, FIG. 6 (b) shows the bearing system, and FIG. 6 (c) shows the diagnostic index of the internal fluid system.

而して、第6図(イ)(ロ)(ハ)の診断指標は軸系、
軸受系、内部流体系の劣化の状態を経時的に示すから、
LNGポンプの正常運転時に計測したデータを基として、
注意、異常の診断レベルLC,LDを定めておき、LNGポン
プの実際の運転において上述の手順で求められた診断指
標と注意、異常の診断レベルLC,LDと比較してLNGポン
プに異常が発生したか否かを診断する。
Thus, the diagnostic index of FIG. 6 (a) (b) (c) is the axis system,
Since the state of deterioration of the bearing system and internal fluid system is shown over time,
Based on the data measured during normal operation of the LNG pump,
The warning and abnormality diagnostic levels L C and L D are set in advance, and the diagnostic index and caution and the abnormality diagnostic levels L C and L D obtained in the above procedure in the actual operation of the LNG pump are compared with the LNG pump. It is diagnosed whether or not an abnormality has occurred.

[発明が解決しようとする課題] しかしながら、上述の従来手段では診断指標を求める際
に、所定の周波数帯域の加速度又は振幅の全平均を使用
しているために、外乱等の影響で部分的に平均値診断結
果の高い部分が生じると、診断指標の誤差が大きくな
り、精度の良い正確な診断を行うことができなくなる虞
れがあるという問題がある。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional means, when the diagnostic index is obtained, the entire average of accelerations or amplitudes in a predetermined frequency band is used. If a portion with a high average value diagnosis result occurs, there is a problem that the error in the diagnostic index becomes large, and it may not be possible to perform accurate and accurate diagnosis.

本発明は上述の実情に鑑み、正確な設備診断を行えるよ
うにすることを目的としてなしたものである。
The present invention has been made in view of the above circumstances and has an object to enable accurate equipment diagnosis.

[課題を解決するための手段] 本発明は、回転体の回転により発生する加速度或いは変
位を基に振動スペクトルを求めると共に前記回転体の基
本回転数によるスペクトルパターンを設定し、該スペク
トルパターンの整数倍成分に対応して予め定めた所定の
範囲のガウス分布を前記整数倍成分に対する周波数にお
ける前記振動スペクトルに掛け合せたものを、前記予め
定めた所定の範囲にわたり積分すると共に平均化して診
断指標を求め、該診断指標を時系列的に求めて定検時期
を予知するものである。
[Means for Solving the Problems] The present invention finds a vibration spectrum based on acceleration or displacement generated by rotation of a rotating body, sets a spectrum pattern based on the basic rotation speed of the rotating body, and sets an integer of the spectrum pattern. A Gaussian distribution in a predetermined range corresponding to a double component multiplied by the vibration spectrum at the frequency for the integer multiple component is integrated and averaged over the predetermined range to obtain a diagnostic index. The diagnostic index is obtained in time series to predict the scheduled inspection time.

[作用] 回転体の回転により発生した加速度或いは変位から求め
られた振動スペクトルから回転体の基本回転数によるス
ペクトルパターンが設定され、該スペクトルパターンの
整数倍成分に対応して予め定められた所定範囲のガウス
分布が前記整数倍成分に対する周波数における振動スペ
クトルに掛け合わさせたものが所定範囲にわたり積分さ
れて平均化され、診断指標が求められ、該診断指標が時
系列的に求められ、この時系列的に求められた診断指標
から定検時期が予知されるため、定検時期の正確な判断
が可能となり、設備の信頼性が向上する。
[Operation] From the vibration spectrum obtained from the acceleration or displacement generated by the rotation of the rotating body, a spectrum pattern based on the basic rotation speed of the rotating body is set, and a predetermined range determined in advance corresponding to an integer multiple component of the spectrum pattern. The Gaussian distribution of is multiplied by the vibration spectrum at the frequency for the integral multiple component is integrated over a predetermined range and averaged, the diagnostic index is determined, and the diagnostic index is determined in time series, Since the scheduled inspection time is predicted from the diagnostic index required for, it is possible to accurately determine the scheduled inspection time and improve the reliability of the equipment.

[実施例] 以下、本発明の実施例を添付図面を参照しつつ説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図〜第3図は本発明の一実施例である。1 to 3 show an embodiment of the present invention.

従来の場合と同様にして第4図に示す加速度検出器或い
は変位検出器7により、LNGポンプ等の回転体の運転中
に加速度或いは変位を検出し、周波数分析を行って第1
図に示すように、加速度又は振幅等の振動スペクトル分
布を求める。
Similarly to the conventional case, the acceleration detector or the displacement detector 7 shown in FIG. 4 detects the acceleration or the displacement during the operation of the rotating body such as the LNG pump, and performs the frequency analysis to perform the first analysis.
As shown in the figure, a vibration spectrum distribution such as acceleration or amplitude is obtained.

回転体により発生する振動は基本回転数による成分が最
も多く、軸系、軸受系(特にブッシュベアリング)の異
常による情報を含むことが多い、又異常による情報は、
基本回転数の整数倍或いは整数分の1の部分にも派生成
分として生じ、この派生成分は負荷の変動による回転数
の「ゆらぎ」となる場合が多い。
The vibration generated by the rotating body has the largest component due to the basic rotational speed, and often contains information due to abnormalities in the shaft system and bearing system (particularly bush bearings).
The derived component is also generated in a part of the basic number of revolutions that is an integral multiple or a fraction of an integer, and this derived component often becomes “fluctuation” of the number of revolutions due to load fluctuation.

しかるに、基本回転数によるスペクトルパターンを設定
し、この整数倍成分に対してnf0±Δfの範囲にガウス
分布のフィルターを掛けることによりスペクトルの「ゆ
らぎ」が防止される。各成分は、nf0±Δf内の平均値
を診断指標として により評価する。
However, by setting a spectrum pattern based on the basic rotation speed and filtering a Gaussian distribution in the range of nf 0 ± Δf with respect to this integral multiple component, spectrum “fluctuation” is prevented. For each component, the average value within nf 0 ± Δf is used as the diagnostic index n. Evaluate by.

ここで、Sp(f);振動スペクトル f0;基本周波数 Δf;基本周波数或いはその 周波数の整数倍の周波 数を中心としてスペク トルパターンを求める ための幅 f;周波数 W;係数 K;定数 e;自然対数 (i)式で求めた診断指標(n=1,2,3,…)を時系
列に表示すると第3図のようになり、このグラフから定
検の時間T0を予知できる。従って、診断指標の誤差が少
くなるため、定検時期を正確に診断することが可能とな
り、定検後の設備の安定性を知ることができる。
Here, Sp (f); Vibration spectrum f 0 ; Fundamental frequency Δf; Width f for obtaining the spectrum pattern around the fundamental frequency or a frequency that is an integral multiple of that frequency f; Frequency W; Coefficient K; Constant e; Natural logarithm When the diagnostic index n (n = 1,2,3, ...) Obtained by the equation (i) is displayed in time series, it becomes as shown in FIG. 3, and the time T 0 of regular inspection can be predicted from this graph. Therefore, since the error of the diagnostic index is small, it is possible to accurately diagnose the regular inspection time, and it is possible to know the stability of the equipment after the regular inspection.

なお、本発明は上述の実施例に限定されるものではな
く、本発明の要旨を逸脱しない範囲内で種々変更を加え
得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

[発明の効果] 本発明の設備診断方法によれば、設備の定検時期を正確
に診断することができるため、設備の信頼性が向上す
る、という優れた効果を奏し得る。
[Effects of the Invention] According to the equipment diagnosis method of the present invention, since it is possible to accurately diagnose the time of regular inspection of equipment, there is an excellent effect that the reliability of equipment is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を行う際に求める周波数と振動スペ
クトルの関係を表わすグラフ、第2図は同周波数とガウ
ス分布の関係を表わすグラフ、第3図は同診断指標を時
系列に表示したグラフ、第4図はLNGポンプの一般的な
説明図、第5図は従来方法を行う際に求める周波数と振
動スペクトルの関係を表わすグラフ、第6図(イ)
(ロ)(ハ)は従来方法における診断指標を時系列に表
示したグラフである。 図中1はLNGポンプ、7は加速度検出器或いは変位検出
器である。
FIG. 1 is a graph showing the relationship between the frequency and the vibration spectrum obtained when the method of the present invention is performed, FIG. 2 is a graph showing the relationship between the frequency and the Gaussian distribution, and FIG. 3 is a graph showing the diagnostic index in time series. A graph, FIG. 4 is a general explanatory view of the LNG pump, FIG. 5 is a graph showing the relationship between the frequency and the vibration spectrum obtained when performing the conventional method, and FIG. 6 (a).
(B) and (c) are graphs in which the diagnostic indexes in the conventional method are displayed in time series. In the figure, 1 is an LNG pump, and 7 is an acceleration detector or a displacement detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転体の回転により発生する加速度或いは
変位を基に振動スペクトルを求めると共に前記回転体の
基本回転数によるスペクトルパターンを設定し、該スペ
クトルパターンの整数倍成分に対応して予め定めた所定
の範囲のガウス分布を前記整数倍成分に対する周波数に
おける前記振動スペクトルに掛け合せたものを、前記予
め定めた所定の範囲にわたり積分すると共に平均化して
診断指標を求め、該診断指標を時系列的に求めて定検時
期を予知することを特徴とする設備診断方法。
1. A vibration spectrum is obtained based on acceleration or displacement generated by the rotation of a rotating body, and a spectrum pattern is set by the basic rotation speed of the rotating body, which is predetermined in correspondence with an integral multiple component of the spectrum pattern. A product obtained by multiplying the vibration spectrum at the frequency for the integer multiple component by a Gaussian distribution in a predetermined range is integrated and averaged over the predetermined range determined in advance to obtain a diagnostic index, and the diagnostic index is time-series. A method for diagnosing equipment, characterized by predicting the scheduled inspection time.
JP2474588A 1988-02-04 1988-02-04 Equipment diagnosis method Expired - Lifetime JPH076831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2474588A JPH076831B2 (en) 1988-02-04 1988-02-04 Equipment diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2474588A JPH076831B2 (en) 1988-02-04 1988-02-04 Equipment diagnosis method

Publications (2)

Publication Number Publication Date
JPH01199127A JPH01199127A (en) 1989-08-10
JPH076831B2 true JPH076831B2 (en) 1995-01-30

Family

ID=12146680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2474588A Expired - Lifetime JPH076831B2 (en) 1988-02-04 1988-02-04 Equipment diagnosis method

Country Status (1)

Country Link
JP (1) JPH076831B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105229A (en) * 1989-09-19 1991-05-02 Hitachi Cable Ltd Abnormality detector for structural body
JP6740247B2 (en) * 2015-12-01 2020-08-12 株式会社Preferred Networks Anomaly detection system, anomaly detection method, anomaly detection program and learned model generation method

Also Published As

Publication number Publication date
JPH01199127A (en) 1989-08-10

Similar Documents

Publication Publication Date Title
US7089154B2 (en) Automatic machinery fault diagnostic method and apparatus
US4876505A (en) Apparatus and method for monitoring steam turbine shroud clearance
US7987725B2 (en) Method of matching sensors in a multi-probe turbine blade vibration monitor
US10787275B2 (en) Propeller health monitoring
EP0327865B1 (en) Turbine blade fatigue monitor
JP2018179735A (en) Method and apparatus for diagnosing abnormality of rotating parts
JP6450575B2 (en) Inverter noise elimination method and diagnostic method for equipment including inverter
EP3355043A1 (en) Systems and methods to detect a fluid induced instability condition in a turbomachine
US12174216B2 (en) Determination of rpm based on scanning vibration spectral plot
US20250271330A1 (en) Method for monitoring a rotating machine in order to detect a fault in an aircraft bearing
US20180327112A1 (en) Propeller health monitoring
US20140288865A1 (en) Blade tip timing
CN118936894A (en) Turbomachinery rotor vibration holographic monitoring and dynamic balancing method, equipment and medium
JP4253104B2 (en) Abnormal diagnosis method for rotating machinery
US5710715A (en) Vibration analysis method
JP2025067046A (en) Data extraction device and abnormality monitoring apparatus
JP3103193B2 (en) Diagnostic equipment for rotating machinery
JPH076831B2 (en) Equipment diagnosis method
JP2000162035A (en) Method and device for determining abnormality in rotating equipment
JP7696851B2 (en) Rolling bearing abnormality detection device and abnormality detection method
JP7260410B2 (en) Abnormal Diagnosis Method for Rotating Machinery
JPH0743278B2 (en) Diagnostic equipment for rotating machinery
KR19990066119A (en) Error Diagnosis Method of Rotating Machine Using Fuzzy Logic
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
Grządziela et al. An application of order tracking procedure for diagnosis technical state of rotor system in shut-down process